

REVIEW

Cellular dynamics of double fertilization and early embryogenesis in flowering plants

Ji Min Shin^{1,2,3} | Ling Yuan^{1,2} | Masaru Ohme-Takagi^{3,4} |
Tomokazu Kawashima¹

¹Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky

²Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky

³Graduate School of Science and Engineering, Saitama University, Saitama, Saitama, Japan

⁴Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan

Correspondence

Tomokazu Kawashima, Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312.

Email: tomo.k@uky.edu

Funding information

National Institute of Food and Agriculture, Grant/Award Number: 1014280; National Science Foundation, Grant/Award Numbers: 1355438, 1928836

Abstract

Flowering plants (angiosperms) perform a unique double fertilization in which two sperm cells fuse with two female gamete cells in the embryo sac to develop a seed. Furthermore, during land plant evolution, the mode of sexual reproduction has been modified dramatically from motile sperm in the early-diverging land plants, such as mosses and ferns as well as some gymnosperms (Ginkgo and cycads) to nonmotile sperm that are delivered to female gametes by the pollen tube in flowering plants. Recent studies have revealed the cellular dynamics and molecular mechanisms for the complex series of double fertilization processes and elucidated differences and similarities between animals and plants. Here, together with a brief comparison with animals, we review the current understanding of flowering plant zygote dynamics, covering from gamete nuclear migration, karyogamy, and polyspermy block, to zygotic genome activation as well as asymmetrical division of the zygote. Further analyses of the detailed molecular and cellular mechanisms of flowering plant fertilization should shed light on the evolution of the unique sexual reproduction of flowering plants.

KEY WORDS

asymmetric zygotic division, cytoskeleton, double fertilization, flowering plants, gamete nuclear migration, karyogamy, polyspermy block, zygotic genome activation

1 | INTRODUCTION

Sexual reproduction is accomplished by the mixture of genomes from parents resulting from fertilization, a fusion of female and male gametes that forms a zygote. In flowering plants, unlike animals, two nonmotile sperm cells are encapsulated in a pollen grain. Sperm cells are delivered through a tube extended from the pollen grain into an embryo sac (female gametophyte), which contains two female gamete cells, the egg cell, and central cell. The egg cell is haploid while the ploidy of the central cell is diverse (Baroux, Spillane, & Grossniklaus, 2002). In most flowering plants, including *Arabidopsis thaliana*, the embryo sac has dimorphic female gametes, a haploid egg cell (n), and a homodiploid central cell ($2n$; Figure 1a). Besides the female gamete cells, the embryo sac contains synergid cells that

secrete chemical attractants that guide pollen tube growth toward the unfertilized female gametes (Figure 1b). The sperm cells fuse with the egg cell and central cell to develop an embryo ($2n$) and endosperm ($3n$), respectively, in a typical developing seed (Figure 1d). This distinctive process of flowering plants is called double fertilization (Kawashima & Berger, 2011). The endosperm nourishes the developing embryo at the early stage and either keeps nutrients for germination in monocots, such as rice and maize, or is absorbed before seed maturation in eudicots, such as soybean and *Arabidopsis* (Hands, Rabiger, & Koltunow, 2016).

The advances in the understanding of the double fertilization process and the regulatory mechanisms of early zygotic events in flowering plants have been achieved by recent progress in microscopy techniques with *in vivo* and *in vitro* fertilization systems.

FIGURE 1 Schematic representation of double fertilization in *Arabidopsis*. (a) Two sperm cells are delivered into an embryo sac via a pollen tube, which is attracted by chemical cues secreted from synergid cells. (b) The pollen tube bursts and releases two sperm cells, which are subsequently located between the plasma membranes of the egg cell (n) and central cell ($2n$), leading to plasmogamy. One of the synergid cells receives the pollen tube contents and degenerates. (c) After plasmogamy, one sperm nucleus each migrates toward the egg cell nucleus and central cell nucleus by the constant F-actin inward movement, followed by karyogamy. Assembly of an F-actin aster around the migrating sperm nucleus is apparent in the *Arabidopsis* central cell, and it remains to be determined in the egg cell. Successful double fertilization triggers degeneration of the persistent synergid cell, which can terminate pollen tube attraction. (d) The fertilized egg cell and central cell generate the embryo ($2n$) and endosperm ($3n$), respectively, in a developing seed [Color figure can be viewed at wileyonlinelibrary.com]

For successful fertilization in flowering plants, the sperm cells adhere to the egg cell and central cell, and the plasma membrane fusion of female and male gametes (plasmogamy) is followed by gamete nuclear migration and gamete nuclear fusion (karyogamy). In animals, maternal gene transcripts already deposited in the egg cell are utilized to support early embryogenesis, followed by de novo transcription from the zygotic genome through minor and major zygotic genome activation (ZGA; Schulz & Harrison, 2019). Unlike in animals, fertilization in flowering plants triggers an immediate maternal-to-zygotic transition (MZT), promoting the zygote elongation necessary for asymmetric cell division with distinct cell fates. Recent understanding of flowering plant fertilization mechanisms from pollen tube guidance to plasmogamy has been well summarized (Sprunck, 2020); here, we provide an update with recent advances in knowledge of flowering plant fertilization mechanisms after plasmogamy, from gamete nuclear migration to first division of the zygote, and we compare those processes in flowering plants and animals.

2 | GAMETE NUCLEAR MIGRATION

After gamete fusion in the fertilized egg, pronuclei/nuclei of the female and male gametes migrate toward each other, before the fusion of female and male gamete nuclei (Fatema, Ali, Hu, Clark, & Kawashima, 2019). Animal cells contain centrioles constituting the centrosome that serves as the microtubule-organizing center. In many mammalian species, the spermatozoal centrosomes (pericentriolar materials dispersed in ooplasm in rodents) form the microtubule sperm asters around the sperm pronucleus in the fertilized egg. Microtubule bundles extending from the sperm asters interact with

the egg pronucleus, drawing it toward the sperm pronucleus for the completion of fertilization (Hochi, 2016). In contrast to the essential role of microtubules in pronuclear migration, treatment with inhibitors for filamentous actin (F-actin), another cytoskeleton component, does not disturb pronuclear migration in most animals with few exceptions (Fatema et al., 2019).

Unlike animals, flowering plants lack centrosomes (Carvalho-Santos, Azimzadeh, Pereira-Leal, & Bettencourt-Dias, 2011) and evolved F-actin-based sperm nuclear migration (Kawashima, Maruyama, et al., 2014; Ohnishi, Hoshino, & Okamoto, 2014; Peng, Yan, & Sun, 2017). Both the egg cell and central cell generate a constant F-actin active inward movement from the plasma membrane periphery to the center of the cell where the nucleus resides (Figures 1c and 2a). This F-actin inward movement is already taking place in the female gamete even before sperm cell delivery by the pollen tube, in preparation for rapid sperm nuclear migration right after plasmogamy. In *Arabidopsis*, a sperm nucleus is released into the central cell, becomes surrounded by F-actin meshwork and is transferred to the central cell nucleus by an inward moving F-actin (Figure 1c; Kawashima & Berger, 2015; Kawashima, Maruyama, et al., 2014). How F-actin is assembled and its movement is facilitated for sperm nuclear migration during double fertilization remain largely unknown. Whether de novo actin polymerization is initiated around the sperm nucleus or pre-existing F-actin in the female cytoplasm adheres to the sperm nucleus needs to be determined.

3 | KARYOGAMY

Like in yeast (*Saccharomyces cerevisiae*) karyogamy, gametes of sea urchins and sea stars undergo fusion of pronuclear envelopes,

FIGURE 2 Schematic diagrams showing dynamics of the *Arabidopsis* zygote. (a) The mature egg cell has a polarity with the nucleus (shown in pink) in the apical position and large vacuoles in the basal position. After plasmogamy, Ca^{2+} is transiently increased in the fertilized egg cytoplasm, and the sperm nucleus (shown in blue) moves toward the egg nucleus by F-actin active inward movement. In the in vitro-fertilized egg cell in rice and maize, the cell wall is formed immediately after fertilization. (b) While nuclear membranes of the egg and sperm nuclei are fusing, sperm chromatin decondensation is rapidly occurring, and maternal and paternal genomes blend. (c) After karyogamy, maternal transcripts inherited from the egg cell are rapidly degraded, and then transcripts are synthesized de novo from the zygotic genome (zygotic genome activation; ZGA). The maternal factor clearance, maternal-to-zygotic transition, and ZGA occur in the zygote nucleus (shown in green). Fertilization triggers zygote cell shrinkage and the zygote loses its polarity with disassembly of the large vacuoles and the zygote nucleus returning to the center of the cell. (d) The zygote is repolarized and elongates; the nucleus moves to an apical location and large vacuoles reorganize at the basal end. Longitudinal F-actin bundles are arranged along the apical-basal axis. Large vacuoles accumulate at the basal region and form tubular strands along the F-actin. F-actin cables promote the formation of tubular vacuoles in the perinuclear region so the F-actin-dependent polar vacuole distribution results in migration of the zygote nucleus toward the apical region (left). At the same time as the events in (d, left), microtubules (MT) form subapical transverse rings, promoting zygote elongation (right). (e) The mature zygote asymmetrically divides into two daughter cells with distinct cell fates, the one-cell embryo proper and basal cell, which develops into the suspensor [Color figure can be viewed at wileyonlinelibrary.com]

composed of two lipid bilayers, the outer and inner nuclear membranes. *Ascaris*, mammals, and most arthropods including insects, on the contrary, exhibit different modes of parental genome fusion (Combelles & Rawe, 2013; Gibeaux & Knop, 2013; Loppin, Dubruille, & Horard, 2015; Poccia & Collas, 1996). In *Ascaris* and most mammals, pronuclei remain separate until the initiation of the first zygotic mitosis. The parental chromosomes are blended at the metaphase plate. Pronuclei of most arthropods attach to each other but the pronuclear envelopes do not fuse and the parental chromosomes do not blend until the end of the first zygotic mitosis (Kawamura, 2001; Longo, 1973; Loppin et al., 2015; Poccia & Collas, 1996).

In flowering plants, the fusion of both nuclear envelope membranes between male and female gamete nuclei occurs in the zygote right after fertilization (Figure 2b; Dresselhaus, Sprunck, & Wessel, 2016; Mori, Igawa, Tamiya, Miyagishima, & Berger, 2014). The first mitosis of the endosperm (fertilized central cell) in *Arabidopsis* occurs within a few hours after plasmogamy (Boisnard-Lorig et al., 2001), and therefore rapid decondensation of sperm chromatin must happen in the fertilized central cell. The constant F-actin inward movement for sperm nuclear migration, even before plasmogamy, in the female gametes likely prepares for the rapid completion of karyogamy including sperm decondensation (Kawashima, 2020).

Using in vitro-fertilized rice zygotes, Ohnishi et al. (2014) discovered that female-derived histones, labeled by a fluorescent

marker, start to accumulate in the condensed sperm chromatin before the completion of karyogamy when the inner nuclear membrane of the sperm nuclear envelope appears to remain intact. In *Arabidopsis*, inner membrane fusion defective mutants show successful decondensation of the sperm chromatin in the central cell (Maruyama, Higashiyama, Endo, & Nishikawa, 2019). In contrast, outer membrane fusion defective mutants cannot decondense the sperm chromatin, causing a seed development failure (Maruyama et al., 2019; Portereiko et al., 2006). These results suggest that histone exchange in the sperm chromatin can occur before the completion of karyogamy and that sperm decondensation is the key for the successful onset of mitosis and the subsequent seed development. It still remains unclear whether histones in the egg nucleus directly move to the sperm nucleus for histone exchange or histones in the zygote cytoplasm are transported to the sperm nucleus.

An *Arabidopsis* mutant of mitochondrial ribosomal protein exhibits a defective fusion of the outer nuclear membranes of polar nuclei forming the central cell nucleus as well as failure of karyogamy in both the egg cell and the central cell, suggesting that ATP synthesis is important to nuclear membrane fusion (Portereiko et al., 2006). GAMETE EXPRESSED 1 (GEX1) in the unicellular green alga, *Chlamydomonas reinhardtii*, and yeast is localized in the nuclear envelope during sexual reproduction and plays an important role in karyogamy (Ning et al., 2013). In *Chlamydomonas*, the gex1 mutant gametes adhere

to each other successfully but their nuclear fusion is strongly inhibited. In *Arabidopsis*, GEX1 is expressed in both the embryo sac and pollen grain and is involved in female and male gametophyte development (Alandete-Saez, Ron, Leiboff, & McCormick, 2011). However, the GEX1 function for karyogamy in *Arabidopsis* is still not clear, and further experiments are awaited.

4 | POLYSPERMY BLOCK

In animals and fucoid algae, polyspermy (fertilization of the egg by multiple sperm) causes zygote (embryo) lethality by multipolar or supernumerary mitotic spindles in the zygote due to transmission of extra centrioles from multiple sperm, resulting in aberrant nuclear and cell division (Nagasato, Motomura, & Ichimura, 1999; Navara, First, & Schatten, 1994; Santelices, 2002; Schuel, 1984). To restrict the number of sperm simultaneously approaching the egg plasma membrane, animals have the egg's extracellular coats such as the jelly layers and vitelline envelope in amphibians, mollusks, and crustaceans; zona pellucida in mammals; and chorion in teleosts (Iwao & Izaki, 2018; Wong & Wessel, 2006). The number of sperm reaching the egg membrane is dramatically reduced by the physical barriers of these extracellular coats; however, many sperm still possibly arrive at the egg simultaneously (Gardner & Evans, 2006; Iwao & Izaki, 2018; Wong & Wessel, 2006). Therefore, fast blocking of additional sperm entry (polyspermy block) is achieved in many animals by an increase in Ca^{2+} in the egg cytoplasm. The intracellular Ca^{2+} increase acts as a signal, resulting, for instance, in dephosphorylation of mitogen-activated protein kinase (MAPK). This inhibits extra sperm–egg fusions and sperm attraction in jellyfish and, in monospermic frogs, induces a reversal of electrical properties between the interior and exterior of the egg membrane, blocking additional sperm entry by activating an efflux of Cl^- (Arakawa, Takeda, Tachibana, & Deguchi, 2014; Iwao & Izaki, 2018; Watabe et al., 2019).

In contrast, polyspermy at fertilization does occur in some animals such as birds, newts, and salamanders, and, especially in birds, polyspermy is necessary for normal embryo development (Hemmings & Birkhead, 2015; Iwao, Kimoto, Fujimoto, Suda, & Hara, 2019). In urodele amphibians including newts and salamanders, a principle sperm pronucleus forms prominent sperm asters, enabling organized pronuclear migration to produce a zygote nucleus (Iwao et al., 2019). Other accessory sperm nuclei form smaller asters, which do not act as functional sperm asters for pronuclear migration, and they are removed by chromatin pyknosis and centrosome degradation.

In contrast to animals, flowering plants have lost the centrioles (Carvalho-Santos et al., 2011), and polyploidization is a common phenomenon mainly caused by cell cycle defects which can result in somatic doubling or unreduced gametes (Blanc & Wolfe, 2004; Tekleyohans & Groß-Hardt, 2019; Wendel, 2000). Does polyspermy occur in flowering plants and can it contribute to polyploidization? In vitro fertilization experiments in maize and rice eggs can mimic polyspermy events and the triploid embryos form viable plants (Kranz & Lörz, 1993; Toda, Ohnishi, & Okamoto, 2016). In plants, two

sperm cells delivered by the pollen tube are simultaneously released into the ovule, yet one sperm cell fuses with the egg cell and the other with the central cell for double fertilization (Huang, Ju, Wang, Zhang, & Sodmergen, 2015; Igawa, Yanagawa, Miyagishima, & Mori, 2013). This suggests that flowering plants possess a mechanism to prevent two sperm cells from fusing to one female gamete cell; however, flowering plant polyspermy does occur in nature and is accomplished by multiple pollen tubes leading into the embryo sac (polytubey; Beale, Leydon, & Johnson, 2012; Kasahara et al., 2012). Grossniklaus (2017) carried out a polyspermy/polytubey experiment in maize using a mixture of pollens from two genetically distinct male parents which convey different pigmented phenotypic patterns to their endosperm offspring. A mixture of two pigmented patterns in the endosperm indicates polyspermy in the central cell. The polyspermy frequency of the central cell is much higher than that of the egg cell in maize (Grossniklaus, 2017) and the results are consistent with a study in *Arabidopsis* (Scott, Armstrong, Doughty, & Spielman, 2008). These results indicate that the polyspermy block is likely weaker in the central cell compared with the egg cell. It is possible that the difference in the level of polyspermy block between the egg cell and central cell may contribute to one sperm cell with one female gamete cell fusion event in simultaneous double fertilization, and further work should clarify the biological significance of the difference of the polyspermy block levels. Nevertheless, polyspermy events in both female gamete cells are extremely rare in nature (Grossniklaus, 2017; Nakel et al., 2017), raising the question of whether flowering plants indeed possess a highly stringent polyspermy block in the egg cell and/or a functional polytubey block mechanism to minimize such events.

In *Arabidopsis*, a first transient Ca^{2+} rise in the egg cell occurs at pollen tube rupture for sperm cell release. A second transient Ca^{2+} rise in the fertilized egg cell at plasmogamy has also been observed (Denninger et al., 2014; Hamamura et al., 2014). It is still not clear, however, whether these Ca^{2+} influxes play a role in signaling, leading to polyspermy block and/or activation of other reproductive processes such as polytubey block in the fertilized egg cell. The cell wall in flowering plants can also be a physical barrier for polyspermy block. The egg cell in flowering plants does not generate an obvious cell wall, and the release of cell wall material to initiate cell wall formation starts 30 s after plasmogamy in maize, followed by the deposition of cell wall around the whole surface 20 min after plasmogamy (Kranz, Wiegand, & Lörz, 1995). In vitro polyspermic rice zygotes are efficiently obtained when the second in vitro fertilization process is carried out within 10 min of the first egg–sperm fusion, but are hardly observed 20 min after the first fusion (Toda et al., 2016), suggesting that cell wall formation may contribute to polyspermy block.

While there are possible polyspermy block mechanisms in flowering plants, these blocks are not as vigorous as those in animals. However, polyspermy remains very rare in flowering plants, and this is likely due to polytubey block. In flowering plant double fertilization, two synergid cells, which lie adjacent to the egg cell and central cell, secrete small peptide chemical attractants to guide pollen tube

growth and assist the delivery of two sperm cells into the embryo sac (Figure 1a-c; Higashiyama, 2002; Márton, Cordts, Broadhvest, & Dresselhaus, 2005; Okuda et al., 2009). With unknown mechanisms of pollen tube–pollen tube repulsion, preventing additional pollen tubes from invading (Shimizu & Okada, 2000), flowering plants achieve the lowest mating ratio of male to female gametes (1:1 sperm to egg and central cells) at fertilization, lower than those of animals (Spielman & Scott, 2008). Furthermore, successful fertilization triggers the degeneration of synergid cells, resulting in the termination of pollen tube attraction (Maruyama et al., 2015; Völz, Heydlauff, Ripper, von Lyncker, & Groß-Hardt, 2013). Although it seems that a polyspermy barrier is not strictly required in flowering plants, how exactly Ca^{2+} influx in the fertilized egg cell, cell wall formation right after plasmogamy, and low pollen tube to embryo sac ratio affect the rate of polyspermy is currently unclear. Further molecular and cellular dissections of the polyspermy block system in flowering plants, including the investigation of the consequence of polyspermy in triparental plant lines, might reveal the evolutionary reason for the polyspermy rate being kept low even though polyspermy-derived plants are viable.

5 | ZYGOTIC GENOME ACTIVATION

After completion of the fertilization process, animal zygotes undergo rapid cell divisions supported by maternal factors stored in the egg cell, followed by minor ZGA with clearance of the maternal transcripts in the developing embryo. Major ZGA then occurs to complete the transition from maternal control to de novo transcripts expressed from the zygotic genome (MZT; Kawashima & Berger, 2014; Lee, Bonneau, & Giraldez, 2014). In land plants, fertilization itself gives rise to transition from the gametophytic haploid life phase to the sporophytic diploid life phase, a clear shift of developmental control from haploid-to-diploid genomes (Gilbert, 2000). However, until recently, it was unclear how flowering plants undergo MZT and ZGA after fertilization. Zhao et al. (2019) used genetically distinct geographic varieties of *Arabidopsis*, known as ecotypes, as maternal or paternal lines to distinguish which of the zygotic transcripts are from the maternal or paternal genome by identifying ecotype-specific single nucleotide polymorphisms. Transcriptome analyses of the egg cells, spherical zygotes, elongated zygotes, one-cell embryos, and 32-cell embryos discovered a significant reduction of maternally inherited transcripts in the zygote after fertilization, showing that plant MZT starts with rapid clearance of maternal transcripts in the zygote shortly after fertilization. Furthermore, ZGA takes place in the zygote before the first cell division (Zhao et al., 2019). ZGA shortly after fertilization is also evident by the rapid accumulation of RNAPII Ser2P (phosphorylated serine 2 of the carboxy-terminal domain of RNA polymerase II) in the zygote nucleus, which marks active transcription, compared with the unfertilized egg cell in *Arabidopsis* (Kao & Nodine, 2019). Transcriptome analysis in maize and rice also showed that ZGA takes place shortly after fertilization, revealing that the timing of ZGA in the zygote is

similar among flowering plants (Anderson et al., 2017; Chen et al., 2017; Zhao et al., 2019).

In the *Arabidopsis* zygote after karyogamy, egg-derived histone H3 variants are actively removed and rapidly replaced with de novo synthesized H3 (Ingouff et al., 2010). The analysis of three-dimensional genome structures of rice egg cells, sperm cells, and zygotes by chromatin conformation capture (3C) and high-throughput 3C (Hi-C) also provides evidence of active chromatin reorganization by fertilization (Zhou, Jiang, Zhao, & Zhou, 2019). Interestingly, the ectopic expression of sperm-specific gene, BABY BOOM 1 (BBM1), a member of the plant-specific APETALA2 transcription factor family, in the egg cell can initiate rice embryo development without fertilization (Khanday, Skinner, Yang, Mercier, & Sundaresan, 2019). This result is consistent with paternal gene activation being essential for the initiation of embryo development in flowering plants and BBM1 is one of the paternal factors that are expressed immediately after fertilization. How exactly sperm chromatin decondensation and chromatin reorganization play their roles in rapid ZGA in the flowering plant zygote will be the next questions to be addressed.

Reduced length of the reproductive phase, such as decreased time between flower maturation and fertilization, has evolved in the flowering plants, increasing seed production under seasonally deteriorating environments (Hackenberg & Twell, 2019; Snell & Aarssen, 2005). Rapid ZGA might also positively contribute to the adaption to short lifecycles by assigning embryo proper and suspensor cell fates immediately after the first division of the zygote (ten Hove, Lu, & Weijers, 2015). However, the biological significance of the immediate ZGA in flowering plants compared with the "delayed" ZGA like in animals is still largely unknown. It would be interesting to know when immediate maternal factor clearance and ZGA in the zygote were acquired during land plant evolution.

6 | ASYMMETRIC DIVISION OF THE ZYGOTE

The formation of the body axis is one of the first developmental events in offspring resulting from successful fertilization in multicellular eukaryotes. Oocytes and unfertilized eggs in most animals show a clear cell polarity, but the body axis is changed by the site of sperm entry (Houston, 2017). In flowering plants, the mature egg cell also has polarity; however, different species have different sperm cell adhesion site positions relative to the axis of the embryo sac, and whether the zygotic polarization is inherited from the egg cell or is determined after fertilization remains unknown (Hamamura et al., 2011; Mansfield & Briarty, 1991; Mansfield, Briarty, & Erni, 1991; Olson & Cass, 1981). In the *Arabidopsis* mature egg cell, the nucleus is at the apical position and large vacuoles occupy the basal region (Figures 1a-c and 2a,b). After fertilization, the zygote volume is remarkably reduced, the vacuoles are evenly distributed, and the position of the zygote nucleus is in the center of the cell (Figure 2c). Zygote elongation from the apical side then follows together with repolarization, which is marked by the migration of the

FIGURE 3 A phylogeny of green plants. Sperm motility evolved first in an ancestor of the freshwater green algae Charophyceae (stoneworts). Conjugating algae, a sister group of the land plants, have lost sperm motility and reproduce via conjugation. The pollen grain/tube was acquired by an ancestor of the gymnosperms and angiosperms (flowering plants). Centrioles and sperm motility have been lost in the angiosperms and a part of the gymnosperms (i.e., conifers and *Gnetum**). Other gymnosperms (i.e., *Ginkgo* and cycads) retain sperm motility. The white circle (conjugation), yellow ellipse (motile sperm), red star (nonmotile sperm), green rectangle (pollen grain/tube and seed), and blue triangle (centriole loss) on the phylogenetic tree branch indicate the appearance of each characteristic during evolutionary divergence.

*Confirmation of centriole loss in *Gnetum* is awaited [Color figure can be viewed at wileyonlinelibrary.com]

nucleus toward the apical part and reformation of large and tubular vacuoles at the basal region (Figure 2d). Subsequently, the zygote divides asymmetrically into a smaller apical cell and a larger vacuolated basal cell with distinct cell fates, leading to the embryo proper and suspensor, respectively (Figure 2e). Live-imaging analysis revealed that both cytoskeleton and vacuole dynamics lead directional zygote elongation and polar nuclear migration coordinately and determine the plane of the first asymmetric division in the zygote (Figure 2d; Kimata et al., 2016, 2019). Like vacuoles, both microtubules and F-actin become disorganized right after fertilization and are subsequently rearranged differently in the elongating zygote to support directional elongation and nuclear migration toward the apical tip, respectively (Kimata et al., 2016). The activation of WUSCHEL HOMEBOX 8 (WOX8), a homeodomain transcription factor, in the *Arabidopsis* zygote is essential for asymmetric zygotic division (Breuninger, Rikirsch, Hermann, Ueda, & Laux, 2008; Ueda et al. 2017; Ueda, Zhang, & Laux, 2011). WOX8 is directly upregulated by maternally inherited transcription factors HOMEODOMAIN GLABROUS 11/12 (HGD11/12) and biparentally derived plant-specific transcription factor WRKY2. Antecedently, the function of WRKY2 as a transcription factor is activated via phosphorylation by

the YODA (YDA) MAPK signaling cascade (Lukowitz, Roeder, Parmenter, & Somerville, 2004). YDA is a MAPKK kinase and is activated in the zygote by the Pelle/interleukin-1 receptor (IL-1R)-associated kinase (IRAK)-like kinase SHORT SUSPENSOR (SSP). The SSP gene transcripts are delivered to the zygote from the sperm after fertilization and translated into SSP proteins (Bayer et al., 2009). Together with the central cell-derived peptide EMBRYO SURROUNDING FACTOR1, SSP activates the YDA signaling cascade by yet to be discovered mechanisms (Costa et al., 2014). ZGA is not only involved in the activation of the aforementioned genes, ZGA itself is also required for both zygote elongation and asymmetric division (Zhao et al., 2019), and further analyses will reveal which genes among those activated during ZGA are responsible for the initiation of repolarization and the direction of zygote elongation.

7 | CONCLUDING REMARKS

During land plant evolution from green algae to bryophytes and flowering plants, drastic changes in the mode of sexual plant reproduction occurred (Figure 3). One example is sperm

differentiation. Early-diverging green algae of the land plant lineage (e.g., *Mesostigma* and *Klebsormidium*) do not differentiate sperm (McCourt, Delwiche, & Karol, 2004). By contrast, stoneworts (Charophyceae) produce motile sperm and the neofunctionalized MYB domain transcription factor DUO1 was recently identified as the key regulatory factor for sperm differentiation in the land plant lineage (Higo et al., 2018; Hisanaga et al., 2019). In land plants, from bryophytes to some gymnosperms (i.e., *Ginkgo* and cycads), sperm motility has been retained (Figure 3). Other gymnosperms (i.e., conifers and *Gnetum*) and flowering plants have lost centrioles and sperm motility (Southworth & Cresti, 1997). Interestingly, both gymnosperms and flowering plants generate the pollen grain/tube, yet it is not clear how these traits (i.e., centriole loss, sperm motility, and acquisition of the pollen grain/tube) are linked to each other and evolved during seed plant evolution (Hackenberg & Twell, 2019). Nevertheless, the pollen grain/tube allowed plant fertilization to become completely independent from water as is now seen in flowering plants (siphonogamy; Figure 3). *Ginkgo* and cycad gymnosperms generate motile sperm with pollen grain/tube (Hackenberg & Twell, 2019), and these species possibly represent the transition of the mode of sexual reproduction in seed-bearing plants.

Centrioles are essential not only for flagella formation as basal bodies, but also for microtubule-based sperm nuclear migration. Interestingly, in early-diverging land plants, such as the liverwort, *Marchantia polymorpha*, blepharoplasts consisting of centrioles appear only in the sperm mother cells (Carothers & Kreitner, 1968). The absence of centrioles in somatic cells of the early-diverging land plants indicates that land plant cells were already capable of centriole-independent cellular dynamics. Although it is not still clear, this systematic change might have enabled and/or accelerated the shift from microtubule-based to F-actin-based gamete nuclear migration as well as the complete loss of centrioles in flowering plants. The biological significance of the complete loss of centrioles in flowering plants remains unknown. The investigation of sperm nuclear migration in gymnosperms will provide us with further insights into the evolution of the mode of sexual reproduction in land plants.

Cytological investigations of the female gametophyte and seed in early-diverging flowering plants have shed light on the evolution of flowering plant sexual reproduction (Baroux & Grossniklaus, 2019; Friedman & Williams, 2004; Gasser & Skinner, 2019). The genomes of freshwater green algae (Charophytes), the relatives of land plants, have been sequenced and compared with those of land plants, highlighting the genetical origin of the adaptions to the terrestrial environment of ancient land plants (Hori et al., 2014; Nishiyama et al., 2018). Together with these findings, the integration of the identified mechanisms of molecular and cellular dynamics at fertilization and genome and transcriptomic data from a range of land plants should provide further insights into the evolution of sexual reproduction of land plants such as the shift from motile to nonmotile sperm, centriole loss, gamete nuclear migration, double fertilization, and MZT and ZGA in the zygote.

ACKNOWLEDGMENTS

We are grateful to Dr. Anthony J. Clark for helpful comments and editing the manuscript. This study was supported by the National Science Foundation (IOS-1928836 to T. K. and 1355438 to L. Y.), National Institute of Food and Agriculture, United States Department of Agriculture (Hatch-1014280 to T. K.), a start-up fund from the Department of Plant and Soil Sciences and the College of Agriculture, Food and Environment, University of Kentucky (T. K.), the Harold R. Burton Endowed Professorship (L. Y.), and the Program for Advancing Strategic International Networks to Accelerate the Circulation of Talented Researchers from Japan Society for the Promotion of Science (J. M. S. and M. O.-T.).

PEER REVIEW

The peer review history for this article is available at <https://publons.com/publon/10.1002/jez.b.22981>

ORCID

Ji Min Shin <https://orcid.org/0000-0001-6480-5623>

Ling Yuan <https://orcid.org/0000-0003-4767-5761>

Masaru Ohme-Takagi <https://orcid.org/0000-0003-2700-4119>

Tomokazu Kawashima <http://orcid.org/0000-0003-3803-3070>

REFERENCES

Alandete-Saez, M., Ron, M., Leiboff, S., & McCormick, S. (2011). *Arabidopsis thaliana* GEX1 has dual functions in gametophyte development and early embryogenesis. *The Plant Journal*, 68(4), 620–632. <https://doi.org/10.1111/j.1365-313X.2011.04713.x>

Anderson, S. N., Johnson, C. S., Chesnut, J., Jones, D. S., Khanday, I., Woodhouse, M., ... Sundaresan, V. (2017). The zygotic transition is initiated in unicellular plant zygotes with asymmetric activation of parental genomes. *Developmental Cell*, 43(3), 349–358.e4. <https://doi.org/10.1016/j.devcel.2017.10.005>

Arakawa, M., Takeda, N., Tachibana, K., & Deguchi, R. (2014). Polyspermy block in jellyfish eggs: Collaborative controls by Ca^{2+} and MAPK. *Developmental Biology*, 392(1), 80–92. <https://doi.org/10.1016/j.ydbio.2014.04.020>

Baroux, C., & Grossniklaus, U. (2019). Seeds—An evolutionary innovation underlying reproductive success in flowering plants. *Current Topics in Developmental Biology*, 131, 605–642. <https://doi.org/10.1016/bs.ctdb.2018.11.017>

Baroux, C., Spillane, C., & Grossniklaus, U. (2002). Evolutionary origins of the endosperm in flowering plants. *Genome Biology*, 3(9), 1026. <https://doi.org/10.1186/gb-2002-3-9-reviews1026>

Bayer, M., Navy, T., Giglione, C., Galli, M., Meinnel, T., & Lukowitz, W. (2009). Paternal control of embryonic patterning in *Arabidopsis thaliana*. *Science*, 323(5920), 1485–1488. <https://doi.org/10.1126/science.1167784>

Beale, K. M., Leydon, A. R., & Johnson, M. A. (2012). Gamete fusion is required to block multiple pollen tubes from entering an *Arabidopsis* ovule. *Current Biology*, 22(12), 1090–1094. <https://doi.org/10.1016/j.cub.2012.04.041>

Blanc, G., & Wolfe, K. H. (2004). Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. *The Plant Cell*, 16(7), 1667–1678. <https://doi.org/10.1105/tpc.021345>

Boisnard-Lorig, C., Colon-Carmona, A., Bauch, M., Hodge, S., Doerner, P., Bancharel, E., ... Berger, F. (2001). Dynamic analyses of the expression of the HISTONE::YFP fusion protein in *Arabidopsis* show that syncytial

endosperm is divided in mitotic domains. *The Plant Cell*, 13(3), 495–509. <https://doi.org/10.1105/tpc.13.3.495>

Breuninger, H., Rikirsch, E., Hermann, M., Ueda, M., & Laux, T. (2008). Differential expression of WOX genes mediates apical-basal axis formation in the *Arabidopsis* embryo. *Developmental Cell*, 14(6), 867–876. <https://doi.org/10.1016/j.devcel.2008.03.008>

Carothers, Z. B., & Kreitner, G. L. (1968). Studies of spermatogenesis in the Hepaticae. II Blepharoplast structure in the spermatid of *Marchantia*. *J Cell Biol*, 36(3), 603–616. <https://doi.org/10.1083/jcb.36.3.603>

Carvalho-Santos, Z., Azimzadeh, J., Pereira-Leal, J. B., & Bettencourt-Dias, M. (2011). Evolution: Tracing the origins of centrioles, cilia, and flagella. *Journal of Cell Biology*, 194(2), 165–175. <https://doi.org/10.1083/jcb.201011152>

Chen, J., Strieder, N., Krohn, N. G., Cyprys, P., Sprunck, S., Engelmann, J. C., & Dresselhaus, T. (2017). Zygotic genome activation occurs shortly after fertilization in maize. *The Plant Cell*, 29(9), 2106–2125. <https://doi.org/10.1105/tpc.17.00099>

Combelles, C. M. H., & Rawe, V. Y. (2013). Determinants of oocyte quality: Impact on in vitro fertilization failures. In G. Coticchio, D. Albertini, & L. De Santis (Eds.), *Oogenesis*. London: Springer.

Costa, L. M., Marshall, E., Tesfaye, M., Silverstein, K. A., Mori, M., Umetsu, Y., ... Gutierrez-Marcos, J. F. (2014). Central cell-derived peptides regulate early embryo patterning in flowering plants. *Science*, 344(6180), 168–172. <https://doi.org/10.1126/science.1243005>

Denninger, P., Bleckmann, A., Lausser, A., Vogler, F., Ott, T., Ehrhardt, D. W., ... Grossmann, G. (2014). Male–female communication triggers calcium signatures during fertilization in *Arabidopsis*. *Nature Communications*, 5, 4645. <https://doi.org/10.1038/ncomms5645>

Dresselhaus, T., Sprunck, S., & Wessel, G. M. (2016). Fertilization mechanisms in flowering plants. *Current Biology*, 26(3), R125–R139. <https://doi.org/10.1016/j.cub.2015.12.032>

Fatema, U., Ali, M. F., Hu, Z., Clark, A. J., & Kawashima, T. (2019). Gamete nuclear migration in animals and plants. *Frontiers of Plant Science*, 10, 517. <https://doi.org/10.3389/fpls.2019.00517>

Friedman, W. E., & Williams, J. H. (2004). Developmental evolution of the sexual process in ancient flowering plant lineages. *The Plant Cell*, 16, S119–S132. <https://doi.org/10.1105/tpc.017277>

Gardner, A. J., & Evans, J. P. (2006). Mammalian membrane block to polyspermy: New insights into how mammalian eggs prevent fertilisation by multiple sperm. *Reproduction, Fertility, and Development*, 18(1–2), 53–61. <https://doi.org/10.1071/rd05122>

Gasser, C. S., & Skinner, D. J. (2019). Development and evolution of the unique ovules of flowering plants. *Current Topics in Developmental Biology*, 131, 373–399. <https://doi.org/10.1016/bs.ctdb.2018.10.007>

Gibeaux, R., & Knop, M. (2013). When yeast cells meet, karyogamy!: An example of nuclear migration slowly resolved. *Nucleus*, 4(3), 182–188. <https://doi.org/10.4161/nucl.25021>

Gilbert, S. F. (2000). *Developmental Biology* (6th ed.). Sunderland, MA: Sinauer Associates. Retrieved from <https://www.ncbi.nlm.nih.gov/books/NBK9983/>

Grossniklaus, U. (2017). Polyspermy produces tri-parental seeds in maize. *Current Biology*, 27(24), R1300–R1302. <https://doi.org/10.1016/j.cub.2017.10.059>

Hackenberg, D., & Twell, D. (2019). The evolution and patterning of male gametophyte development. *Current Topics in Developmental Biology*, 131, 257–298. <https://doi.org/10.1016/bs.ctdb.2018.10.008>

Hamamura, Y., Nishimaki, M., Takeuchi, H., Geitmann, A., Kurihara, D., & Higashiyama, T. (2014). Live imaging of calcium spikes during double fertilization in *Arabidopsis*. *Nature Communications*, 5, 4722. <https://doi.org/10.1038/ncomms5722>

Hamamura, Y., Saito, C., Awai, C., Kurihara, D., Miyawaki, A., Nakagawa, T., ... Higashiyama, T. (2011). Live-cell imaging reveals the dynamics of two sperm cells during double fertilization in *Arabidopsis thaliana*. *Current Biology*, 21(6), 497–502. <https://doi.org/10.1016/j.cub.2011.02.013>

Hands, P., Rabiger, D. S., & Koltunow, A. (2016). Mechanisms of endosperm initiation. *Plant Reproduction*, 29(3), 215–225. <https://doi.org/10.1007/s00497-016-0290-x>

Hemmings, N., & Birkhead, T. R. (2015). Polyspermy in birds: Sperm numbers and embryo survival. *Proceedings of the Royal Society B: Biological Sciences*, 282(1818), 20151682. <https://doi.org/10.1098/rspb.2015.1682>

Higashiyama, T. (2002). The synergid cell: Attractor and acceptor of the pollen tube for double fertilization. *Journal of Plant Research*, 115(1118), 149–160. <https://doi.org/10.1007/s102650200020>

Higo, A., Kawashima, T., Borg, M., Zhao, M., Lopez-Vidriero, I., Sakayama, H., ... Araki, T. (2018). Transcription factor DUO1 generated by neo-functionalization is associated with evolution of sperm differentiation in plants. *Nature Communications*, 9(1), 5283. <https://doi.org/10.1038/s41467-018-07728-3>

Hisanaga, T., Yamaoka, S., Kawashima, T., Higo, A., Nakajima, K., Araki, T., ... Berger, F. (2019). Building new insights in plant gametogenesis from an evolutionary perspective. *Nat Plants*, 5(7), 663–669. <https://doi.org/10.1038/s41477-019-0466-0>

Hochi, S. (2016). Microtubule assembly crucial to bovine embryonic development in assisted reproductive technologies. *Animal Science Journal*, 87(9), 1076–1083. <https://doi.org/10.1111/asj.12621>

Hori, K., Maruyama, F., Fujisawa, T., Togashi, T., Yamamoto, N., Seo, M., ... Ohta, H. (2014). *Klebsormidium flaccidum* genome reveals primary factors for plant terrestrial adaptation. *Nature Communications*, 5, 3978.

Houston, D. W. (2017). Vertebrate axial patterning: From egg to asymmetry. *Advances in Experimental Medicine and Biology*, 953, 209–306. https://doi.org/10.1007/978-3-319-46095-6_6

Huang, J., Ju, Y., Wang, X., Zhang, Q., & Sodmergen. (2015). A one-step rectification of sperm cell targeting ensures the success of double fertilization. *Journal of Integrative Plant Biology*, 57(5), 496–503. <https://doi.org/10.1111/jipb.12322>

Igawa, T., Yanagawa, Y., Miyagishima, S. Y., & Mori, T. (2013). Analysis of gamete membrane dynamics during double fertilization of *Arabidopsis*. *Journal of Plant Research*, 126(3), 387–394. <https://doi.org/10.1007/s10265-012-0528-0>

Ingouff, M., Rademacher, S., Holec, S., Soljić, L., Xin, N., Readshaw, A., ... Berger, F. (2010). Zygotic resetting of the HISTONE 3 variant repertoire participates in epigenetic reprogramming in *Arabidopsis*. *Current Biology*, 20(23), 2137–2143. <https://doi.org/10.1016/j.cub.2010.11.012>

Iwao, Y., & Izaki, K. (2018). Universality and diversity of a fast, electrical block to polyspermy during fertilization in animals. In K. Kobayashi, T. Kitano, Y. Iwao, & M. Kondo (Eds.), *Reproductive and developmental strategies: Diversity and commonality in animals*. Tokyo: Springer.

Iwao, Y., Kimoto, C., Fujimoto, A., Suda, A., & Hara, Y. (2019). Physiological polyspermy: Selection of a sperm nucleus for the development of diploid genomes in amphibians. *Molecular Reproduction and Development*, 87, 358–369. <https://doi.org/10.1002/mrd.23235>

Kao, P., & Nodine, M. (2019). Transcriptional activation of *Arabidopsis* zygotes is required for initial cell divisions. *Scientific Reports*, 9(1), 17159. <https://doi.org/10.1038/s41598-019-53704-2>

Kasahara, R. D., Maruyama, D., Hamamura, Y., Sakakibara, T., Twell, D., & Higashiyama, T. (2012). Fertilization recovery after defective sperm cell release in *Arabidopsis*. *Current Biology*, 22(12), 1084–1089. <https://doi.org/10.1016/j.cub.2012.03.069>

Kawamura, N. (2001). Fertilization and the first cleavage mitosis in insects. *Development Growth and Differentiation*, 43(4), 343–349. <https://doi.org/10.1046/j.1440-169x.2001.00584.x>

Kawashima, T. (2020). Male chromatin needs to relax to get seeds started. *Plant and Cell Physiology*, 61(1), 1–2. <https://doi.org/10.1093/pcp/pcz211>

Kawashima, T., & Berger, F. (2011). Green love talks: cell-cell communication during double fertilization in flowering plants. *AoB Plants*, 2011, plr015. <https://doi.org/10.1093/aobpla/plr015>

Kawashima, T., & Berger, F. (2014). Epigenetic reprogramming in plant sexual reproduction. *Nature Reviews Genetics*, 15(9), 613–624. <https://doi.org/10.1038/nrg3685>

Kawashima, T., & Berger, F. (2015). The central cell nuclear position at the micropylar end is maintained by the balance of F-actin dynamics, but dispensable for karyogamy in *Arabidopsis*. *Plant Reproduction*, 28(2), 103–110. <https://doi.org/10.1007/s00497-015-0259-1>

Kawashima, T., Maruyama, D., Shagirov, M., Li, J., Hamamura, Y., Yelagandula, R., ... Berger, F. (2014). Dynamic F-actin movement is essential for fertilization in *Arabidopsis thaliana*. *eLife*, 3, e04501. <https://doi.org/10.7554/eLife.04501>

Khanday, I., Skinner, D., Yang, B., Mercier, R., & Sundareshan, V. (2019). A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds. *Nature*, 565(7737), 91–95. <https://doi.org/10.1038/s41586-018-0785-8>

Kimata, Y., Higaki, T., Kawashima, T., Kurihara, D., Sato, Y., Yamada, T., ... Ueda, M. (2016). Cytoskeleton dynamics control the first asymmetric cell division in *Arabidopsis* zygote. *Proceedings of the National Academy of Sciences of the United States of America*, 113(49), 14157–14162. <https://doi.org/10.1073/pnas.1613979113>

Kimata, Y., Kato, T., Higaki, T., Kurihara, D., Yamada, T., Segami, S., ... Ueda, M. (2019). Polar vacuolar distribution is essential for accurate asymmetric division of *Arabidopsis* zygotes. *Proceedings of the National Academy of Sciences of the United States of America*, 116(6), 2338–2343. <https://doi.org/10.1073/pnas.1814160116>

Kranz, E., & Lörz, H. (1993). In vitro fertilization with isolated, single gametes results in zygotic embryogenesis and fertile maize plants. *The Plant Cell*, 5, 739–746.

Kranz, E., Wiegen, P., & Lörz, H. (1995). Early cytological events after induction of cell division in egg cells and zygote development following in vitro fertilization with angiosperm gametes. *The Plant Journal*, 8(1), 9–23. <https://doi.org/10.1046/j.1365-313X.1995.08010009.x>

Lee, M. T., Bonneau, A. R., & Giraldez, A. J. (2014). Zygotic genome activation during the maternal-to-zygotic transition. *Annual Review of Cell and Developmental Biology*, 30, 581–613. <https://doi.org/10.1146/annurev-cellbio-100913-013027>

Longo, F. J. (1973). Fertilization: A comparative ultrastructural review. *Biology of Reproduction*, 9(2), 149–215. <https://doi.org/10.1093/biolreprod/9.2.149>

Loppin, B., Dubruille, R., & Horard, B. (2015). The intimate genetics of *Drosophila* fertilization. *Open Biology*, 5(8), 150076. <https://doi.org/10.1098/rsob.150076>

Lukowitz, W., Roeder, A., Parmenter, D., & Somerville, C. (2004). A MAPKK kinase gene regulates extra-embryonic cell fate in *Arabidopsis*. *Cell*, 116(1), 109–119. [https://doi.org/10.1016/s0092-8674\(03\)01067-5](https://doi.org/10.1016/s0092-8674(03)01067-5)

Mansfield, S. G., & Briarty, L. G. (1991). Early embryogenesis in *Arabidopsis thaliana*. II. The developing embryo. *Canadian Journal of Botany*, 69(3), 461–476. <https://doi.org/10.1139/b91-063>

Mansfield, S. G., Briarty, L. G., & Erni, S. (1991). Early embryogenesis in *Arabidopsis thaliana*. I. The mature embryo sac. *Canadian Journal of Botany*, 69(3), 447–460. <https://doi.org/10.1139/b91-062>

Márton, M. L., Cordts, S., Broadhurst, J., & Dresselhaus, T. (2005). Micropylar pollen tube guidance by egg apparatus 1 of maize. *Science*, 307(5709), 573–576. <https://doi.org/10.1126/science.1104954>

Maruyama, D., Higashiyama, T., Endo, T., & Nishikawa, S. I. (2019). Fertilization-coupled sperm nuclear fusion is required for normal endosperm nuclear proliferation. *Plant and Cell Physiology*, 61, 29–40. <https://doi.org/10.1093/pcp/pcz158>

Maruyama, D., Volz, R., Takeuchi, H., Mori, T., Igawa, T., Kurihara, D., ... Higashiyama, T. (2015). Rapid elimination of the persistent synergid through a cell fusion mechanism. *Cell*, 161(4), 907–918. <https://doi.org/10.1016/j.cell.2015.03.018>

McCourt, R. M., Delwiche, C. F., & Karol, K. G. (2004). Charophyte algae and land plant origins. *Trends in Ecology and Evolution*, 19(12), 661–666. <https://doi.org/10.1016/j.tree.2004.09.013>

Mori, T., Igawa, T., Tamiya, G., Miyagishima, S. Y., & Berger, F. (2014). Gamete attachment requires GEX2 for successful fertilization in *Arabidopsis*. *Current Biology*, 24(2), 170–175. <https://doi.org/10.1016/j.cub.2013.11.030>

Nagasato, C., Motomura, T., & Ichimura, T. (1999). Influence of centriole behavior on the first spindle formation in zygotes of the brown alga *Fucus distichus* (Fucales, Phaeophyceae). *Developmental Biology*, 208(1), 200–209. <https://doi.org/10.1006/dbio.1998.9183>

Nakel, T., Tekleyohans, D. G., Mao, Y., Fuchert, G., Vo, D., & Groß-Hardt, R. (2017). Triparental plants provide direct evidence for polyspermy induced polyploidy. *Nature Communications*, 8(1), 1033. <https://doi.org/10.1038/s41467-017-01044-y>

Navara, C. S., First, N. L., & Schatten, G. (1994). Microtubule organization in the cow during fertilization, polyspermy, parthenogenesis, and nuclear transfer: The role of the sperm aster. *Developmental Biology*, 162(1), 29–40. <https://doi.org/10.1006/dbio.1994.1064>

Ning, J., Otto, T. D., Pfander, C., Schwach, F., Brochet, M., Bushell, E., ... Snell, W. J. (2013). Comparative genomics in *Chlamydomonas* and *Plasmodium* identifies an ancient nuclear envelope protein family essential for sexual reproduction in protists, fungi, plants, and vertebrates. *Genes and Development*, 27(10), 1198–1215. <https://doi.org/10.1101/gad.212746.112>

Nishiyama, T., Sakayama, H., deVries, J., Buschmann, H., Saint-Marcoux, D., Ullrich, K. K., ... Rensing, S. A. (2018). The *Chara* genome: Secondary complexity and implications for plant terrestrialization. *Cell*, 174(2), 448–464.e24. <https://doi.org/10.1016/j.cell.2018.06.033>

Ohnishi, Y., Hoshino, R., & Okamoto, T. (2014). Dynamics of male and female chromatin during karyogamy in rice zygotes. *Plant Physiology*, 165(4), 1533–1543. <https://doi.org/10.1104/pp.114.236059>

Okuda, S., Tsutsui, H., Shiina, K., Sprunck, S., Takeuchi, H., Yui, R., ... Higashiyama, T. (2009). Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells. *Nature*, 458(7236), 357–361. <https://doi.org/10.1038/nature07882>

Olson, A. R., & Cass, D. D. (1981). Changes in megagametophyte structure in *Papaver nudicaule* L. (Papaveraceae) following in vitro placental pollination. *American Journal of Botany*, 68(10), 1333–1341. <https://doi.org/10.1002/j.1537-2197.1981.tb07844.x>

Peng, X., Yan, T., & Sun, M. (2017). The WASP-Arp2/3 complex signal cascade is involved in actin-dependent sperm nuclei migration during double fertilization in tobacco and maize. *Scientific Reports*, 7, 43161. <https://doi.org/10.1038/srep43161>

Poccia, D., & Collas, P. (1996). Transforming sperm nuclei into male pronuclei in vivo and in vitro. *Current Topics in Developmental Biology*, 34, 25–28. [https://doi.org/10.1016/S0070-2153\(08\)60708-5](https://doi.org/10.1016/S0070-2153(08)60708-5)

Portereiko, M. F., Sandaklie-Nikolova, L., Lloyd, A., Dever, C. A., Otsuga, D., & Drews, G. N. (2006). NUCLEAR FUSION DEFECTIVE1 encodes the *Arabidopsis* RPL21M protein and is required for karyogamy during female gametophyte development and fertilization. *Plant Physiology*, 141(3), 957–965. <https://doi.org/10.1104/pp.106.079319>

Santelices, B. (2002). Recent advances in fertilization ecology of macroalgae. *Journal of Phycology*, 38(1), 4–10. <https://doi.org/10.1046/j.1529-8817.2002.00193.x>

Schuel, H. (1984). The prevention of polyspermic fertilization in sea urchins. *Biological Bulletin*, 167(2), 271–309. <https://doi.org/10.2307/1541277>

Schulz, K. N., & Harrison, M. M. (2019). Mechanisms regulating zygotic genome activation. *Nature Reviews Genetics*, 20(4), 221–234. <https://doi.org/10.1038/s41576-018-0087-x>

Scott, R. J., Armstrong, S. J., Doughty, J., & Spielman, M. (2008). Double fertilization in *Arabidopsis thaliana* involves a polyspermy block on the

egg but not the central cell. *Molecular Plant*, 1(4), 611–619. <https://doi.org/10.1093/mp/sss016>

Shimizu, K. K., & Okada, K. (2000). Attractive and repulsive interactions between female and male gametophytes in *Arabidopsis* pollen tube guidance. *Development*, 127(20), 4511–4518. Retrieved from <https://dev.biologists.org/content/develop/127/20/4511.full.pdf>

Snell, R., & Aarssen, L. W. (2005). Life history traits in selfing versus outcrossing annuals: Exploring the 'time-limitation' hypothesis for the fitness benefit of self-pollination. *BMC Ecology*, 5, 2. <https://doi.org/10.1186/1472-6785-5-2>

Southworth, D., & Cresti, M. (1997). Comparison of flagellated and nonflagellated sperm in plants. *American Journal of Botany*, 84(9), 1301–1311. <https://doi.org/10.2307/2446056>

Spielman, M., & Scott, R. J. (2008). Polyspermy barriers in plants: From preventing to promoting fertilization. *Sexual Plant Reproduction*, 21(1), 53–65. <https://doi.org/10.1007/s00497-007-0063-7>

Sprunck, S. (2020). Twice the fun, double the trouble: Gamete interactions in flowering plants. *Current Opinion in Plant Biology*, 53, 106–116. <https://doi.org/10.1016/j.pbi.2019.11.003>

Tekleyohans, D. G., & Groß-Hardt, R. (2019). New advances and future directions in plant polyspermy. *Molecular Reproduction and Development*, 87, 370–373. <https://doi.org/10.1002/mrd.23261>

ten Hove, C. A., Lu, K. J., & Weijers, D. (2015). Building a plant: Cell fate specification in the early *Arabidopsis* embryo. *Dev*, 142(3), 420–430. <https://doi.org/10.1242/dev.111500>

Toda, E., Ohnishi, Y., & Okamoto, T. (2016). Development of polyspermic rice zygotes. *Plant Physiology*, 171(1), 206–214. <https://doi.org/10.1104/pp.15.01953>

Ueda, M., Aichinger, E., Gong, W., Groot, E., Verstraeten, I., Vu, L. D., ... Laux, T. (2017). Transcriptional integration of paternal and maternal factors in the *Arabidopsis* zygote. *Genes and Development*, 31(6), 617–627. <https://doi.org/10.1101/gad.292409.116>

Ueda, M., Zhang, Z., & Laux, T. (2011). Transcriptional activation of *Arabidopsis* axis patterning genes WOX8/9 links zygote polarity to embryo development. *Developmental Cell*, 20(2), 264–270. <https://doi.org/10.1016/j.devcel.2011.01.009>

Völz, R., Heydlauff, J., Ripper, D., vonLyncker, L., & Groß-Hardt, R. (2013). Ethylene signaling is required for synergid degeneration and the establishment of a pollen tube block. *Developmental Cell*, 25(3), 310–316. <https://doi.org/10.1016/j.devcel.2013.04.001>

Watabe, M., Izaki, K., Fujino, S., Maruyama, M., Kojima, C., Hiraiwa, A., ... Iwao, Y. (2019). The electrical block to polyspermy induced by an intracellular Ca(2+) increase at fertilization of the clawed frogs, *Xenopus laevis* and *Xenopus tropicalis*. *Molecular Reproduction and Development*, 86(4), 387–403. <https://doi.org/10.1002/mrd.23115>

Wendel, J. F. (2000). Genome evolution in polyploids. *Plant Molecular Biology*, 42, 225–249.

Wong, J. L., & Wessel, G. M. (2006). Defending the zygote: Search for the ancestral animal block to polyspermy. *Current Topics in Developmental Biology*, 72, 1–151. [https://doi.org/10.1016/S0070-2153\(05\)72001-9](https://doi.org/10.1016/S0070-2153(05)72001-9)

Zhao, P., Zhou, X., Shen, K., Liu, Z., Cheng, T., Liu, D., ... Sun, M. X. (2019). Two-step maternal-to-zygotic transition with two-phase parental genome contributions. *Developmental Cell*, 49(6), 882–893.e5. <https://doi.org/10.1016/j.devcel.2019.04.016>

Zhou, S., Jiang, W., Zhao, Y., & Zhou, D. X. (2019). Single-cell three-dimensional genome structures of rice gametes and unicellular zygotes. *Nature Plants*, 5(8), 795–800. <https://doi.org/10.1038/s41477-019-0471-3>

How to cite this article: Shin JM, Yuan L, Ohme-Takagi M, Kawashima T. Cellular dynamics of double fertilization and early embryogenesis in flowering plants. *J Exp Zool (Mol Dev Evol)*. 2020;1–10. <https://doi.org/10.1002/jez.b.22981>