
J Exp Zool (Mol Dev Evol). 2020;1–10. wileyonlinelibrary.com/journal/jezb © 2020 Wiley Periodicals LLC | 1

Received: 1 November 2019 | Revised: 12 June 2020 | Accepted: 18 June 2020

DOI: 10.1002/jez.b.22981

R EV I EW

Cellular dynamics of double fertilization and early
embryogenesis in flowering plants

Ji Min Shin1,2,3 | Ling Yuan1,2 | Masaru Ohme‐Takagi3,4 |

Tomokazu Kawashima1

1Department of Plant and Soil Sciences,

University of Kentucky, Lexington, Kentucky

2Kentucky Tobacco Research and

Development Center, University of Kentucky,

Lexington, Kentucky

3Graduate School of Science and Engineering,

Saitama University, Saitama, Saitama, Japan

4Bioproduction Research Institute, National

Institute of Advanced Industrial Science and

Technology, Tsukuba, Ibaraki, Japan

Correspondence

Tomokazu Kawashima, Department of Plant

and Soil Sciences, University of Kentucky,

Lexington, KY 40546‐0312.
Email: tomo.k@uky.edu

Funding information

National Institute of Food and Agriculture,

Grant/Award Number: 1014280; National

Science Foundation, Grant/Award Numbers:

1355438, 1928836

Abstract

Flowering plants (angiosperms) perform a unique double fertilization in which two

sperm cells fuse with two female gamete cells in the embryo sac to develop a seed.

Furthermore, during land plant evolution, the mode of sexual reproduction has been

modified dramatically from motile sperm in the early‐diverging land plants, such as

mosses and ferns as well as some gymnosperms (Ginkgo and cycads) to nonmotile

sperm that are delivered to female gametes by the pollen tube in flowering plants.

Recent studies have revealed the cellular dynamics and molecular mechanisms for

the complex series of double fertilization processes and elucidated differences and

similarities between animals and plants. Here, together with a brief comparison with

animals, we review the current understanding of flowering plant zygote dynamics,

covering from gamete nuclear migration, karyogamy, and polyspermy block, to

zygotic genome activation as well as asymmetrical division of the zygote. Further

analyses of the detailed molecular and cellular mechanisms of flowering plant fer-

tilization should shed light on the evolution of the unique sexual reproduction of

flowering plants.
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1 | INTRODUCTION

Sexual reproduction is accomplished by the mixture of genomes from

parents resulting from fertilization, a fusion of female and male ga-

metes that forms a zygote. In flowering plants, unlike animals, two

nonmotile sperm cells are encapsulated in a pollen grain. Sperm cells

are delivered through a tube extended from the pollen grain into an

embryo sac (female gametophyte), which contains two female

gamete cells, the egg cell, and central cell. The egg cell is haploid

while the ploidy of the central cell is diverse (Baroux, Spillane, &

Grossniklaus, 2002). In most flowering plants, including Arabidopsis

thaliana, the embryo sac has dimorphic female gametes, a haploid egg

cell (n), and a homodiploid central cell (2n; Figure 1a). Besides the

female gamete cells, the embryo sac contains synergid cells that

secrete chemical attractants that guide pollen tube growth toward

the unfertilized female gametes (Figure 1b). The sperm cells fuse with

the egg cell and central cell to develop an embryo (2n) and en-

dosperm (3n), respectively, in a typical developing seed (Figure 1d).

This distinctive process of flowering plants is called double fertili-

zation (Kawashima & Berger, 2011). The endosperm nourishes the

developing embryo at the early stage and either keeps nutrients for

germination in monocots, such as rice and maize, or is absorbed

before seed maturation in eudicots, such as soybean and Arabidopsis

(Hands, Rabiger, & Koltunow, 2016).

The advances in the understanding of the double fertilization

process and the regulatory mechanisms of early zygotic events in

flowering plants have been achieved by recent progress in micro-

scopy techniques with in vivo and in vitro fertilization systems.
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For successful fertilization in flowering plants, the sperm cells adhere

to the egg cell and central cell, and the plasma membrane fusion of

female and male gametes (plasmogamy) is followed by gamete

nuclear migration and gamete nuclear fusion (karyogamy). In animals,

maternal gene transcripts already deposited in the egg cell are uti-

lized to support early embryogenesis, followed by de novo tran-

scription from the zygotic genome through minor and major zygotic

genome activation (ZGA; Schulz & Harrison, 2019). Unlike in animals,

fertilization in flowering plants triggers an immediate maternal‐to‐
zygotic transition (MZT), promoting the zygote elongation necessary

for asymmetric cell division with distinct cell fates. Recent under-

standing of flowering plant fertilization mechanisms from pollen tube

guidance to plasmogamy has been well summarized (Sprunck, 2020);

here, we provide an update with recent advances in knowledge of

flowering plant fertilization mechanisms after plasmogamy, from

gamete nuclear migration to first division of the zygote, and we

compare those processes in flowering plants and animals.

2 | GAMETE NUCLEAR MIGRATION

After gamete fusion in the fertilized egg, pronuclei/nuclei of the fe-

male and male gametes migrate toward each other, before the fusion

of female and male gamete nuclei (Fatema, Ali, Hu, Clark, & Kawa-

shima, 2019). Animal cells contain centrioles constituting the cen-

trosome that serves as the microtubule‐organizing center. In many

mammalian species, the spermatozoal centrosomes (pericentriolar

materials dispersed in ooplasm in rodents) form the microtubule

sperm asters around the sperm pronucleus in the fertilized egg.

Microtubule bundles extending from the sperm asters interact with

the egg pronucleus, drawing it toward the sperm pronucleus for the

completion of fertilization (Hochi, 2016). In contrast to the essential

role of microtubules in pronuclear migration, treatment with in-

hibitors for filamentous actin (F‐actin), another cytoskeleton com-

ponent, does not disturb pronuclear migration in most animals with

few exceptions (Fatema et al., 2019).

Unlike animals, flowering plants lack centrosomes (Carvalho‐Santos,
Azimzadeh, Pereira‐Leal, & Bettencourt‐Dias, 2011) and evolved F‐actin‐
based sperm nuclear migration (Kawashima, Maruyama, et al., 2014;

Ohnishi, Hoshino, & Okamoto, 2014; Peng, Yan, & Sun, 2017). Both the

egg cell and central cell generate a constant F‐actin active inward

movement from the plasma membrane periphery to the center of the cell

where the nucleus resides (Figures 1c and 2a). This F‐actin inward

movement is already taking place in the female gamete even before

sperm cell delivery by the pollen tube, in preparation for rapid sperm

nuclear migration right after plasmogamy. In Arabidopsis, a sperm nucleus

is released into the central cell, becomes surrounded by F‐actin mesh-

work and is transferred to the central cell nucleus by an inward moving

F‐actin (Figure 1c; Kawashima & Berger, 2015; Kawashima, Maruyama,

et al., 2014). How F‐actin is assembled and its movement is facilitated for

sperm nuclear migration during double fertilization remain largely un-

known. Whether de novo actin polymerization is initiated around the

sperm nucleus or pre‐existing F‐actin in the female cytoplasm adheres to

the sperm nucleus needs to be determined.

3 | KARYOGAMY

Like in yeast (Saccharomyces cerevisiae) karyogamy, gametes of sea

urchins and sea stars undergo fusion of pronuclear envelopes,

F IGURE 1 Schematic representation of double fertilization in Arabidopsis. (a) Two sperm cells are delivered into an embryo sac via a pollen

tube, which is attracted by chemical cues secreted from synergid cells. (b) The pollen tube bursts and releases two sperm cells, which are
subsequently located between the plasma membranes of the egg cell (n) and central cell (2n), leading to plasmogamy. One of the synergid cells
receives the pollen tube contents and degenerates. (c) After plasmogamy, one sperm nucleus each migrates toward the egg cell nucleus and
central cell nucleus by the constant F‐actin inward movement, followed by karyogamy. Assembly of an F‐actin aster around the migrating sperm

nucleus is apparent in the Arabidopsis central cell, and it remains to be determined in the egg cell. Successful double fertilization triggers
degeneration of the persistent synergid cell, which can terminate pollen tube attraction. (d) The fertilized egg cell and central cell generate the
embryo (2n) and endosperm (3n), respectively, in a developing seed [Color figure can be viewed at wileyonlinelibrary.com]
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composed of two lipid bilayers, the outer and inner nuclear mem-

branes. Ascaris, mammals, and most arthropods including insects, on

the contrary, exhibit different modes of parental genome fusion

(Combelles & Rawe, 2013; Gibeaux & Knop, 2013; Loppin, Dubruille,

& Horard, 2015; Poccia & Collas, 1996). In Ascaris and most mam-

mals, pronuclei remain separate until the initiation of the first zygotic

mitosis. The parental chromosomes are blended at the metaphase

plate. Pronuclei of most arthropods attach to each other but the

pronuclear envelopes do not fuse and the parental chromosomes do

not blend until the end of the first zygotic mitosis (Kawamura, 2001;

Longo, 1973; Loppin et al., 2015; Poccia & Collas, 1996).

In flowering plants, the fusion of both nuclear envelope

membranes between male and female gamete nuclei occurs in the

zygote right after fertilization (Figure 2b; Dresselhaus, Sprunck, &

Wessel, 2016; Mori, Igawa, Tamiya, Miyagishima, & Berger, 2014). The

first mitosis of the endosperm (fertilized central cell) in Arabidopsis

occurs within a few hours after plasmogamy (Boisnard‐Lorig
et al., 2001), and therefore rapid decondensation of sperm chroma-

tin must happen in the fertilized central cell. The constant F‐actin
inward movement for sperm nuclear migration, even before plasmo-

gamy, in the female gametes likely prepares for the rapid completion

of karyogamy including sperm decondensation (Kawashima, 2020).

Using in vitro‐fertilized rice zygotes, Ohnishi et al. (2014)

discovered that female‐derived histones, labeled by a fluorescent

marker, start to accumulate in the condensed sperm chromatin before

the completion of karyogamy when the inner nuclear membrane of the

sperm nuclear envelope appears to remain intact. In Arabidopsis, inner

membrane fusion defective mutants show successful decondensation

of the sperm chromatin in the central cell (Maruyama, Higashiyama,

Endo, & Nishikawa, 2019). In contrast, outer membrane fusion de-

fective mutants cannot decondense the sperm chromatin, causing a

seed development failure (Maruyama et al., 2019; Portereiko

et al., 2006). These results suggest that histone exchange in the sperm

chromatin can occur before the completion of karyogamy and that

sperm decondensation is the key for the successful onset of mitosis

and the subsequent seed development. It still remains unclear whether

histones in the egg nucleus directly move to the sperm nucleus for

histone exchange or histones in the zygote cytoplasm are transported

to the sperm nucleus.

An Arabidopsis mutant of mitochondrial ribosomal protein exhibits

a defective fusion of the outer nuclear membranes of polar nuclei

forming the central cell nucleus as well as failure of karyogamy in both

the egg cell and the central cell, suggesting that ATP synthesis is im-

portant to nuclear membrane fusion (Portereiko et al., 2006).

GAMETE EXPRESSED 1 (GEX1) in the unicellular green alga, Chla-

mydomonas reinhardtii, and yeast is localized in the nuclear envelope

during sexual reproduction and plays an important role in karyogamy

(Ning et al., 2013). In Chlamydomonas, the gex1mutant gametes adhere

F IGURE 2 Schematic diagrams showing dynamics of the Arabidopsis zygote. (a) The mature egg cell has a polarity with the nucleus (shown in

pink) in the apical position and large vacuoles in the basal position. After plasmogamy, Ca2+ is transiently increased in the fertilized egg
cytoplasm, and the sperm nucleus (shown in blue) moves toward the egg nucleus by F‐actin active inward movement. In the in vitro‐fertilized
egg cell in rice and maize, the cell wall is formed immediately after fertilization. (b) While nuclear membranes of the egg and sperm nuclei are

fusing, sperm chromatin decondensation is rapidly occurring, and maternal and paternal genomes blend. (c) After karyogamy, maternal
transcripts inherited from the egg cell are rapidly degraded, and then transcripts are synthesized de novo from the zygotic genome (zygotic
genome activation; ZGA). The maternal factor clearance, maternal‐to‐zygotic transition, and ZGA occur in the zygote nucleus (shown in green).

Fertilization triggers zygote cell shrinkage and the zygote loses its polarity with disassembly of the large vacuoles and the zygote nucleus
returning to the center of the cell. (d) The zygote is repolarized and elongates; the nucleus moves to an apical location and large vacuoles
reorganize at the basal end. Longitudinal F‐actin bundles are arranged along the apical–basal axis. Large vacuoles accumulate at the basal region

and form tubular strands along the F‐actin. F‐actin cables promote the formation of tubular vacuoles in the perinuclear region so the F‐actin‐
dependent polar vacuole distribution results in migration of the zygote nucleus toward the apical region (left). At the same time as the events in
(d, left), microtubules (MT) form subapical transverse rings, promoting zygote elongation (right). (e) The mature zygote asymmetrically divides
into two daughter cells with distinct cell fates, the one‐cell embryo proper and basal cell, which develops into the suspensor [Color figure can be

viewed at wileyonlinelibrary.com]
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to each other successfully but their nuclear fusion is strongly inhibited.

In Arabidopsis, GEX1 is expressed in both the embryo sac and pollen

grain and is involved in female and male gametophyte development

(Alandete‐Saez, Ron, Leiboff, & McCormick, 2011). However, the

GEX1 function for karyogamy in Arabidopsis is still not clear, and

further experiments are awaited.

4 | POLYSPERMY BLOCK

In animals and fucoid algae, polyspermy (fertilization of the egg by

multiple sperm) causes zygote (embryo) lethality by multipolar or

supernumerary mitotic spindles in the zygote due to transmission of

extra centrioles from multiple sperm, resulting in aberrant nuclear

and cell division (Nagasato, Motomura, & Ichimura, 1999; Navara,

First, & Schatten, 1994; Santelices, 2002; Schuel, 1984). To restrict

the number of sperm simultaneously approaching the egg plasma

membrane, animals have the egg's extracellular coats such as the jelly

layers and vitelline envelope in amphibians, mollusks, and crusta-

ceans; zona pellucida in mammals; and chorion in teleosts (Iwao &

Izaki, 2018; Wong & Wessel, 2006). The number of sperm reaching

the egg membrane is dramatically reduced by the physical barriers of

these extracellular coats; however, many sperm still possibly arrive at

the egg simultaneously (Gardner & Evans, 2006; Iwao & Izaki, 2018;

Wong & Wessel, 2006). Therefore, fast blocking of additional sperm

entry (polyspermy block) is achieved in many animals by an increase

in Ca2+ in the egg cytoplasm. The intracellular Ca2+ increase acts as a

signal, resulting, for instance, in dephosphorylation of mitogen‐
activated protein kinase (MAPK). This inhibits extra sperm–egg fu-

sions and sperm attraction in jellyfish and, in monospermic frogs,

induces a reversal of electrical properties between the interior and

exterior of the egg membrane, blocking additional sperm entry by

activating an efflux of Cl− (Arakawa, Takeda, Tachibana, &

Deguchi, 2014; Iwao & Izaki, 2018; Watabe et al., 2019).

In contrast, polyspermy at fertilization does occur in some ani-

mals such as birds, newts, and salamanders, and, especially in birds,

polyspermy is necessary for normal embryo development (Hemmings

& Birkhead, 2015; Iwao, Kimoto, Fujimoto, Suda, & Hara, 2019). In

urodele amphibians including newts and salamanders, a principle

sperm pronucleus forms prominent sperm asters, enabling organized

pronuclear migration to produce a zygote nucleus (Iwao et al., 2019).

Other accessory sperm nuclei form smaller asters, which do not act

as functional sperm asters for pronuclear migration, and they are

removed by chromatin pyknosis and centrosome degradation.

In contrast to animals, flowering plants have lost the centrioles

(Carvalho‐Santos et al., 2011), and polyploidization is a common

phenomenon mainly caused by cell cycle defects which can result in

somatic doubling or unreduced gametes (Blanc & Wolfe, 2004;

Tekleyohans & Groß‐Hardt, 2019; Wendel, 2000). Does polyspermy

occur in flowering plants and can it contribute to polyploidization? In

vitro fertilization experiments in maize and rice eggs can mimic

polyspermy events and the triploid embryos form viable plants

(Kranz & Lörz, 1993; Toda, Ohnishi, & Okamoto, 2016). In planta, two

sperm cells delivered by the pollen tube are simultaneously released

into the ovule, yet one sperm cell fuses with the egg cell and the

other with the central cell for double fertilization (Huang, Ju, Wang,

Zhang, & Sodmergen, 2015; Igawa, Yanagawa, Miyagishima, &

Mori, 2013). This suggests that flowering plants possess a mechanism

to prevent two sperm cells from fusing to one female gamete cell;

however, flowering plant polyspermy does occur in nature and is

accomplished by multiple pollen tubes leading into the embryo sac

(polytubey; Beale, Leydon, & Johnson, 2012; Kasahara et al., 2012).

Grossniklaus (2017) carried out a polyspermy/polytubey experiment

in maize using a mixture of pollens from two genetically distinct male

parents which convey different pigmented phenotypic patterns to

their endosperm offspring. A mixture of two pigmented patterns in

the endosperm indicates polyspermy in the central cell. The poly-

spermy frequency of the central cell is much higher than that of

the egg cell in maize (Grossniklaus, 2017) and the results are con-

sistent with a study in Arabidopsis (Scott, Armstrong, Doughty, &

Spielman, 2008). These results indicate that the polyspermy block is

likely weaker in the central cell compared with the egg cell. It is

possible that the difference in the level of polyspermy block between

the egg cell and central cell may contribute to one sperm cell with

one female gamete cell fusion event in simultaneous double fertili-

zation, and further work should clarify the biological significance of

the difference of the polyspermy block levels. Nevertheless, poly-

spermy events in both female gamete cells are extremely rare in

nature (Grossniklaus, 2017; Nakel et al., 2017), raising the question

of whether flowering plants indeed possess a highly stringent poly-

spermy block in the egg cell and/or a functional polytubey block

mechanism to minimize such events.

In Arabidopsis, a first transient Ca2+ rise in the egg cell occurs at

pollen tube rupture for sperm cell release. A second transient Ca2+

rise in the fertilized egg cell at plasmogamy has also been observed

(Denninger et al., 2014; Hamamura et al., 2014). It is still not clear,

however, whether these Ca2+ influxes play a role in signaling, leading

to polyspermy block and/or activation of other reproductive pro-

cesses such as polytubey block in the fertilized egg cell. The cell wall

in flowering plants can also be a physical barrier for polyspermy

block. The egg cell in flowering plants does not generate an obvious

cell wall, and the release of cell wall material to initiate cell wall

formation starts 30 s after plasmogamy in maize, followed by the

deposition of cell wall around the whole surface 20min after plas-

mogamy (Kranz, Wiegen, & Lörz, 1995). In vitro polyspermic rice

zygotes are efficiently obtained when the second in vitro fertilization

process is carried out within 10min of the first egg–sperm fusion, but

are hardly observed 20min after the first fusion (Toda et al., 2016),

suggesting that cell wall formation may contribute to polyspermy

block.

While there are possible polyspermy block mechanisms in

flowering plants, these blocks are not as vigorous as those in animals.

However, polyspermy remains very rare in flowering plants, and this

is likely due to polytubey block. In flowering plant double fertiliza-

tion, two synergid cells, which lie adjacent to the egg cell and central

cell, secrete small peptide chemical attractants to guide pollen tube
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growth and assist the delivery of two sperm cells into the embryo sac

(Figure 1a–c; Higashiyama, 2002; Márton, Cordts, Broadhvest, &

Dresselhaus, 2005; Okuda et al., 2009). With unknown mechanisms

of pollen tube–pollen tube repulsion, preventing additional pollen

tubes from invading (Shimizu & Okada, 2000), flowering plants

achieve the lowest mating ratio of male to female gametes (1:1 sperm

to egg and central cells) at fertilization, lower than those of animals

(Spielman & Scott, 2008). Furthermore, successful fertilization trig-

gers the degeneration of synergid cells, resulting in the termination

of pollen tube attraction (Maruyama et al., 2015; Vo lz, Heydlauff,

Ripper, von Lyncker, & Groß‐Hardt, 2013). Although it seems that a

polyspermy barrier is not strictly required in flowering plants, how

exactly Ca2+ influx in the fertilized egg cell, cell wall formation right

after plasmogamy, and low pollen tube to embryo sac ratio affect the

rate of polyspermy is currently unclear. Further molecular and cel-

lular dissections of the polyspermy block system in flowering plants,

including the investigation of the consequence of polyspermy in

triparental plant lines, might reveal the evolutionary reason for the

polyspermy rate being kept low even though polyspermy‐derived
plants are viable.

5 | ZYGOTIC GENOME ACTIVATION

After completion of the fertilization process, animal zygotes undergo

rapid cell divisions supported by maternal factors stored in the egg

cell, followed by minor ZGA with clearance of the maternal tran-

scripts in the developing embryo. Major ZGA then occurs to

complete the transition from maternal control to de novo transcripts

expressed from the zygotic genome (MZT; Kawashima &

Berger, 2014; Lee, Bonneau, & Giraldez, 2014). In land plants, ferti-

lization itself gives rise to transition from the gametophytic haploid

life phase to the sporophytic diploid life phase, a clear shift of de-

velopmental control from haploid‐to‐diploid genomes (Gilbert, 2000).

However, until recently, it was unclear how flowering plants undergo

MZT and ZGA after fertilization. Zhao et al. (2019) used genetically

distinct geographic varieties of Arabidopsis, known as ecotypes, as

maternal or paternal lines to distinguish which of the zygotic tran-

scripts are from the maternal or paternal genome by identifying

ecotype‐specific single nucleotide polymorphisms. Transcriptome

analyses of the egg cells, spherical zygotes, elongated zygotes, one‐
cell embryos, and 32‐cell embryos discovered a significant reduction

of maternally inherited transcripts in the zygote after fertilization,

showing that plant MZT starts with rapid clearance of maternal

transcripts in the zygote shortly after fertilization. Furthermore, ZGA

takes place in the zygote before the first cell division (Zhao

et al., 2019). ZGA shortly after fertilization is also evident by the

rapid accumulation of RNAPII Ser2P (phosphorylated serine 2 of the

carboxy‐terminal domain of RNA polymerase II) in the zygote nu-

cleus, which marks active transcription, compared with the un-

fertilized egg cell in Arabidopsis (Kao & Nodine, 2019). Transcriptome

analysis in maize and rice also showed that ZGA takes place shortly

after fertilization, revealing that the timing of ZGA in the zygote is

similar among flowering plants (Anderson et al., 2017; Chen

et al., 2017; Zhao et al., 2019).

In the Arabidopsis zygote after karyogamy, egg‐derived histone H3

variants are actively removed and rapidly replaced with de novo

synthesized H3 (Ingouff et al., 2010). The analysis of three‐dimensional

genome structures of rice egg cells, sperm cells, and zygotes by

chromatin conformation capture (3C) and high‐throughput 3C (Hi‐C)
also provides evidence of active chromatin reorganization by fertili-

zation (Zhou, Jiang, Zhao, & Zhou, 2019). Interestingly, the ectopic

expression of sperm‐specific gene, BABY BOOM 1 (BBM1), a member

of the plant‐specific APETALA2 transcription factor family, in the egg

cell can initiate rice embryo development without fertilization

(Khanday, Skinner, Yang, Mercier, & Sundaresan, 2019). This result is

consistent with paternal gene activation being essential for the in-

itiation of embryo development in flowering plants and BBM1 is one of

the paternal factors that are expressed immediately after fertilization.

How exactly sperm chromatin decondensation and chromatin re-

organization play their roles in rapid ZGA in the flowering plant zygote

will be the next questions to be addressed.

Reduced length of the reproductive phase, such as decreased

time between flower maturation and fertilization, has evolved in the

flowering plants, increasing seed production under seasonally

deteriorating environments (Hackenberg & Twell, 2019; Snell &

Aarssen, 2005). Rapid ZGA might also positively contribute to the

adaption to short lifecycles by assigning embryo proper and sus-

pensor cell fates immediately after the first division of the zygote

(ten Hove, Lu, & Weijers, 2015). However, the biological significance

of the immediate ZGA in flowering plants compared with the

“delayed” ZGA like in animals is still largely unknown. It would be

interesting to know when immediate maternal factor clearance and

ZGA in the zygote were acquired during land plant evolution.

6 | ASYMMETRIC DIVISION OF THE
ZYGOTE

The formation of the body axis is one of the first developmental

events in offspring resulting from successful fertilization in multi-

cellular eukaryotes. Oocytes and unfertilized eggs in most animals

show a clear cell polarity, but the body axis is changed by the site of

sperm entry (Houston, 2017). In flowering plants, the mature egg cell

also has polarity; however, different species have different sperm cell

adhesion site positions relative to the axis of the embryo sac, and

whether the zygotic polarization is inherited from the egg cell or is

determined after fertilization remains unknown (Hamamura

et al., 2011; Mansfield & Briarty, 1991; Mansfield, Briarty, &

Erni, 1991; Olson & Cass, 1981). In the Arabidopsis mature egg cell,

the nucleus is at the apical position and large vacuoles occupy the

basal region (Figures 1a–c and 2a,b). After fertilization, the zygote

volume is remarkably reduced, the vacuoles are evenly distributed,

and the position of the zygote nucleus is in the center of the cell

(Figure 2c). Zygote elongation from the apical side then follows to-

gether with repolarization, which is marked by the migration of the
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nucleus toward the apical part and reformation of large and tubular

vacuoles at the basal region (Figure 2d). Subsequently, the zygote

divides asymmetrically into a smaller apical cell and a larger vacuo-

lated basal cell with distinct cell fates, leading to the embryo proper

and suspensor, respectively (Figure 2e). Live‐imaging analysis

revealed that both cytoskeleton and vacuole dynamics lead direc-

tional zygote elongation and polar nuclear migration coordinately

and determine the plane of the first asymmetric division in the zygote

(Figure 2d; Kimata et al., 2016, 2019). Like vacuoles, both micro-

tubules and F‐actin become disorganized right after fertilization and

are subsequently rearranged differently in the elongating zygote to

support directional elongation and nuclear migration toward the

apical tip, respectively (Kimata et al., 2016). The activation of

WUSCHEL HOMEOBOX 8 (WOX8), a homeodomain transcription

factor, in the Arabidopsis zygote is essential for asymmetric zygotic

division (Breuninger, Rikirsch, Hermann, Ueda, & Laux, 2008; Ueda

et al. 2017; Ueda, Zhang, & Laux, 2011). WOX8 is directly upregu-

lated by maternally inherited transcription factors HOMEODOMAIN

GLABROUS 11/12 (HDG11/12) and biparentally derived plant‐
specific transcription factor WRKY2. Antecedently, the function of

WRKY2 as a transcription factor is activated via phosphorylation by

the YODA (YDA) MAPK signaling cascade (Lukowitz, Roeder,

Parmenter, & Somerville, 2004). YDA is a MAPKK kinase and is

activated in the zygote by the Pelle/interleukin‐1 receptor (IL‐1R)‐
associated kinase (IRAK)‐like kinase SHORT SUSPENSOR (SSP). The

SSP gene transcripts are delivered to the zygote from the sperm after

fertilization and translated into SSP proteins (Bayer et al., 2009).

Together with the central cell‐derived peptide EMBRYO SUR-

ROUNDING FACTOR1, SSP activates the YDA signaling cascade by

yet to be discovered mechanisms (Costa et al., 2014). ZGA is not only

involved in the activation of the aforementioned genes, ZGA itself is

also required for both zygote elongation and asymmetric division

(Zhao et al., 2019), and further analyses will reveal which genes

among those activated during ZGA are responsible for the initiation

of repolarization and the direction of zygote elongation.

7 | CONCLUDING REMARKS

During land plant evolution from green algae to bryophytes and

flowering plants, drastic changes in the mode of sexual plant re-

production occurred (Figure 3). One example is sperm

F IGURE 3 A phylogeny of green plants. Sperm motility evolved first in an ancestor of the freshwater green algae Charophyceae
(stoneworts). Conjugating algae, a sister group of the land plants, have lost sperm motility and reproduce via conjugation. The pollen grain/tube
was acquired by an ancestor of the gymnosperms and angiosperms (flowering plants). Centrioles and sperm motility have been lost in the

angiosperms and a part of the gymnosperms (i.e., conifers and Gnetum*). Other gymnosperms (i.e., Ginkgo and cycads) retain sperm motility. The
white circle (conjugation), yellow ellipse (motile sperm), red star (nonmotile sperm), green rectangle (pollen grain/tube and seed), and blue
triangle (centriole loss) on the phylogenetic tree branch indicate the appearance of each characteristic during evolutionary divergence.

*Confirmation of centriole loss in Gnetum is awaited [Color figure can be viewed at wileyonlinelibrary.com]
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differentiation. Early‐diverging green algae of the land plant line-

age (e.g.,Mesostigma and Klebsormidium) do not differentiate sperm

(McCourt, Delwiche, & Karol, 2004), By contrast, stoneworts

(Charophyceae) produce motile sperm and the neofunctionalized

MYB domain transcription factor DUO1 was recently identified as

the key regulatory factor for sperm differentiation in the land

plant lineage (Higo et al., 2018; Hisanaga et al., 2019). In land

plants, from bryophytes to some gymnosperms (i.e., Ginkgo and

cycads), sperm motility has been retained (Figure 3). Other gym-

nosperms (i.e., conifers and Gnetum) and flowering plants have lost

centrioles and sperm motility (Southworth & Cresti, 1997). Inter-

estingly, both gymnosperms and flowering plants generate the

pollen grain/tube, yet it is not clear how these traits (i.e., centriole

loss, sperm motility, and acquisition of the pollen grain/tube) are

linked to each other and evolved during seed plant evolution

(Hackenberg & Twell, 2019). Nevertheless, the pollen grain/tube

allowed plant fertilization to become completely independent from

water as is now seen in flowering plants (siphonogamy; Figure 3).

Ginkgo and cycad gymnosperms generate motile sperm with pollen

grain/tube (Hackenberg & Twell, 2019), and these species possibly

represent the transition of the mode of sexual reproduction in

seed‐bearing plants.

Centrioles are essential not only for flagella formation as basal

bodies, but also for microtubule‐based sperm nuclear migration. In-

terestingly, in early‐diverging land plants, such as the liverwort,

Marchantia polymorpha, blepharoplasts consisting of centrioles ap-

pear only in the sperm mother cells (Carothers & Kreitner, 1968).

The absence of centrioles in somatic cells of the early‐diverging land

plants indicates that land plant cells were already capable of

centriole‐independent cellular dynamics. Although it is not still clear,

this systematic change might have enabled and/or accelerated the

shift from microtubule‐based to F‐actin‐based gamete nuclear mi-

gration as well as the complete loss of centrioles in flowering plants.

The biological significance of the complete loss of centrioles in

flowering plants remains unknown. The investigation of sperm nu-

clear migration in gymnosperms will provide us with further insights

into the evolution of the mode of sexual reproduction in land plants.

Cytological investigations of the female gametophyte and seed in

early‐diverging flowering plants have shed light on the evolution of

flowering plant sexual reproduction (Baroux & Grossniklaus, 2019;

Friedman &Williams, 2004; Gasser & Skinner, 2019). The genomes of

freshwater green algae (Charophytes), the relatives of land plants,

have been sequenced and compared with those of land plants,

highlighting the genetical origin of the adaptions to the terrestrial

environment of ancient land plants (Hori et al., 2014; Nishiyama

et al., 2018). Together with these findings, the integration of the

identified mechanisms of molecular and cellular dynamics at fertili-

zation and genome and transcriptomic data from a range of land

plants should provide further insights into the evolution of sexual

reproduction of land plants such as the shift from motile to nonmotile

sperm, centriole loss, gamete nuclear migration, double fertilization,

and MZT and ZGA in the zygote.
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