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Abstract: Turning maneuvers by aquatic animals are essential for fundamental life functions
such as finding food or mates while avoiding predation. However, turning requires resolution of
a fundamental dilemma based in rotational mechanics: the force powering a turn (torque) is favored
by an expanded body configuration that maximizes lever arm length, yet minimizing the resistance
to a turn (the moment of inertia) is favored by a contracted body configuration. How do animals
balance these opposing demands? Here, we directly measure instantaneous forces along the bodies
of two animal models—the radially symmetric Aurelia aurita jellyfish, and the bilaterally symmetric
Danio rerio zebrafish—to evaluate their turning dynamics. Both began turns with a small, rapid shift in
body kinematics that preceded major axial rotation. Although small in absolute magnitude, the high
fluid accelerations achieved by these initial motions generated powerful pressure gradients that
maximized torque at the start of a turn. This pattern allows these animals to initially maximize torque
production before major body curvature changes. Both animals then subsequently minimized the
moment of inertia, and hence resistance to axial rotation, by body bending. This sequential solution
provides insight into the advantages of re-arranging mass by bending during routine swimming turns.

Keywords: propulsion; rotational physics; convergent evolution; torque; moment of inertia;
animal movement

1. Introduction

The study of aquatic locomotion has primarily focused on the dynamics and energetics of
linear, unidirectional swimming. This approach has yielded important insights but largely reflects
longstanding constraints in the empirical measurement, numerical simulation, and theoretical modeling
of animal swimming. Experiments conducted in a water channel constrain animal swimming to the
single direction of the oncoming flow. With the exception of notable efforts to quantify C-start and
S-start behaviors of some fishes [1-3], experimental [4,5] and theoretical [6] biomechanical models of
animal swimming focus primarily on linear translation. The implicit assumption that swimming is
primarily unidirectional has influenced prevailing notions regarding the kinematic parameters that are
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most important for efficient swimming and body design. Specifically, the observation that swimming
animals maintain nearly constant values of Strouhal number St = fA/U (where f is the stroke frequency,
A is the stroke amplitude, and U is the unidirectional, steady state swimming speed) has encouraged
many efforts to explain the efficiency of animal swimming on the basis of the unidirectional swimming
parameters that define the Strouhal number [7-9]. Likewise, other measures employed to compare
swimming efficiency between animals, such as cost of transport [10,11] and Froude efficiency [12-14]
inherently place animal swimming within the context of linear pathways between points in a fluid.

This emphasis on unidirectional swimming belies the fact that actual animal swimming in
nature is rarely linear, but instead, is more typically characterized by frequent changes in direction
that are mediated by turning maneuvers. The importance of turning has long been documented in
studies of aquatic animal ecology. Efforts to model the circuitous trajectories of animals have often
focused on Brownian motion or Levy walks [15-17]. Regardless of behavioral assumptions about
swimmers, many studies of empirically measured pathways have demonstrated that across a variety
of spatial scales, swimming animals exhibit predominantly non-linear pathways with frequent turns
that change their trajectories. Recognition that swimmers in nature turn frequently is important from
a biomechanical perspective because turning maneuvers require rotational motions of the swimmer’s
major body axis. The mechanics of rotational motion parallel, but differ from, the more studied
mechanics of linear translation by swimmers (Figure 1). In contrast to the large body of knowledge
concerning thrust production and force generation during linear swimming, there is not a similar
body of mechanical information evaluating torque generation and moment of inertia minimization by
flexible bodies such as animal swimmers. Consequently, greater understanding of maneuverability by
animal swimmers requires deeper examination of their rotational mechanics to complement existing
knowledge of their translational mechanics.
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Figure 1. Swimming turns require both translational and rotational components of motion.
The mechanics of these components are described by parallel but different physical terms for translational
force and rotational torque (F = thrust force, m = mass, a = acceleration; T = torque, I = moment of
inertia and o« = rotational acceleration).

Evaluation of rotational mechanics involves a previously unaddressed issue that is essential for
turning by animal swimmers. The same body configurations that maximize the forces powering a turn
(torque) also maximize that body’s the resistance to turning (moment of inertia). Torque (T) generation
relies upon a force (F) applied at a distance (r) from the axis of rotation (r is also termed the lever arm)
according to the relationship t = Fr. The longer the lever arm, r, the greater is the torque applied by
a limited force to power a turn. Consequently, the most force-efficient body configuration for turning
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is an elongate or expanded body that maximizes r and requires the least amount of force to affect
axial rotation. However, there is an inherent problem with expanded body forms for turning because
expanded bodies also maximize the moment of inertia (I), that resists angular rotation of a body
according to the relationship T = I« where « is angular acceleration. For a limited torque, the greatest
angular acceleration will be achieved when the body’s moment of inertia (I) is minimized. I depends
upon the arrangement of a body’s mass around the axis of rotation according to the relationship
Ip = Zg\i 1 m;r;> where Ip represents the sum moments of inertia for the constituent parts (i ... N) of
a swimmers body with m; denoting that body part’s mass (e.g., the head or tail of the body) and r;
its distance from the whole-body center of rotation. There are straightforward means to minimize
Ip, e.g., the mass of the body can be re-arranged to place body components closer to the axis of
whole-body rotation. This is commonly achieved by bending body parts closer to the axis during a turn.
Flexible bodies that allow bending by animal swimmers permit dramatically greater angular velocities
during turns than are possible for rigid animal bodies or rigid human-engineered structures [18].
However, it remains unclear how these flexible swimmers resolve the fundamentally conflicting
demands of high torque production (expanded body configuration) with those of low moment of
inertia (contracted body configuration) to achieve high turning performance. The results are important
for understanding maneuverability by swimming animals, and potentially, human engineered vehicles.

We hypothesized that the high frequency and energetic demands of turning by natural swimmers
could produce a selective force on swimming performance that might lead to similar solutions for
widely divergent animal models. Such patterns would be missed by the conventional biomechanical
focus on unidirectional translational swimming, yet are essential for efficient aquatic locomotion by
these swimmers in their natural environments.

To evaluate this question broadly, we used two model species with extremely divergent body
types, neural organization, and phylogenetic relatedness. The jellyfish Aurelia aurita is a member of
the oldest animal group to use muscle-driven swimming and one of the most energetically efficient
metazoan swimmers [11]. Medusae such as A. aurita are characterized by a radially symmetric body
plan with a comparatively simple level of neuromuscular organization [19]. By contrast, the zebrafish
Danio rerio represents the evolution of a bilaterally symmetric body plan with comparatively complex
neuromuscular organization representative of modern fish species [20]. In both cases, we quantified
their natural swimming motions using a combination of high-speed videography and laser-based
flow measurements.

2. Materials and Methods

2.1. Animals and Imaging

The zebrafish (Danio rerio) used in this study were adults acquired from the Zebrafish Facility at
the Marine Biological Laboratory (MBL). All procedures were in accordance with standards set by the
National Institutes of Health and approved by the Institutional Animal Care and Use Committee at the
MBL. Zebrafish were maintained at room temperature (23-25 °C) in 37 L aquaria until imaged while
swimming. Swimming and turning behaviors were recorded as individual fish swam along the center
of an acrylic raceway tank (1.5 x 0.5 m). Aurelia aurita medusae were obtained from the New England
Aquarium and maintained at 25 °C in 20 1 aquaria. Medusae were recorded while freely swimming
in a 0.3 x 0.1 x 0.25 m glass vessel, using methods reported previously [11]. Many individuals of
both species were recorded, but only those that swam within the laser light plane could be used for
analysis. The number of separate individuals satisfying this criterion was greatest for the start of the
turn (n = 10 for both species). A number of individuals subsequently moved out of the laser sheet
while completing a turn. Time course analysis for full turns was limited to separate individuals that
completed full turns within the laser light sheet (n = 4 for zebrafish and n = 6 for medusae).
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2.2. Particle Image Velocimetry (PIV)

We used high-speed digital particle image velocimetry (PIV) to obtain resulting flow fields
around the fish and medusae. Recordings were acquired by a high-speed digital video camera
(Fastcam 1024 PCI; Photron, San Diego, CA, USA) at 1000 frames per second and at a spatial resolution
of 1024 x 1024 pixels with a scale factor of 0.178 mm per pixel. Seeding particles (10 pm hollow glass
beads; Potters Industries, Malvern, PA, USA) were laser-sheet illuminated for PIV measurements.
Medusae were illuminated with a laser sheet (680 nm, 2W continuous wave; LaVision, Ypsilanti, MI,
USA) oriented perpendicular to the camera’s optical axis to provide a distinctive body outline for
image analysis and to ensure the animal remained in-plane, which ensures accuracy of 2D estimates
of position and velocity. The semitransparent bodies of medusae allowed a single laser light sheet
passing through the central axis of the body to illuminate fluid surrounding the entire body. Fish were
not transparent and so were illuminated by two laser sheets (532 nm, 600 mW continuous wave,
Laserglow Technologies, North York, ON, Canada) mounted in the same plane on opposite sides of the
tank to eliminate shadows on either side of the body as each animal swam within the field of view [21].

Fluid velocity vectors for both fish and medusae were determined from sequential images using
a cross-correlation algorithm (LaVision software). Image pairs were analyzed with shifting overlapping
interrogation windows of a decreasing size of 32 x 32 pixels to 16 X 16 pixels. Masking of the body of
the fish before image interrogation confirmed the absence of surface artifacts in the PIV measurements.
While the medusae were not masked for velocity analyses, our previous work with medusae [11],
indicated that adverse effects from surface artifacts are minimal.

2.3. Pressure and Torque Measurement

Direct measurements of instantaneous forces acting along animal bodies were made throughout
complete turning sequences. These measurements were produced at high spatial and temporal
resolution, providing instantaneous values at highly localized points on the body [22-24],
contrasting with, for example, net force calculation based on vortex circulation. Our approach
involved converting velocity fields collected via PIV through a custom program in MATLAB that
computed the corresponding pressure fields. The algorithm integrates the Navier-Stokes equations
along eight paths emanating from each point in the field of view and terminating at the boundaries of
the field of view. The pressure at each point is determined by computing the median pressure from the
eight integration results. Bodies of the fish and medusae were masked prior to computation to prevent
surface artefacts in the pressure and torque results. Masks were generated using a custom MATLAB
(Mathworks, Inc., Natick, MA, USA) program that automatically identified the boundary of the animal
body based on image contrast at the interface between the animal body and the surrounding fluid,
and body outlines were smoothed prior to later analyses. The zebrafish’s anatomy allowed for these
outlines to enclose the body while allowing flow calculations directly alongside all surfaces, but for
medusae, the semitransparent bell and opaque gonads outside the laser light sheet interfere with the
view of the subumbrellar surface within the bell cavity. As such, the outlines around the medusae
traced the exumbrellar surface and, on the oral side of the body, the bell margin to prevent erroneous
pressure calculations within the bell cavity from affecting pressure calculations in the areas adjacent
to the medusan oral sides. These methods have been previously validated against experimental and
computational data, including numerical simulations of anguilliform swimming [22] and direct force
and torque measurements of a flapping foil [24]. The MATLAB code is available for free download at
http://dabirilab.com/software.

The fluid force normal to the body surface due to the local fluid pressure was determined by
integrating the calculated pressure along the corresponding surfaces of the body [24]. Validations against
measurements made on physical models show that these calculation techniques based on 2D PIV images
are robust to a small degree of out-of-plane flow such as that induced by a fish’s slight rolling motions
during turns, so long as the fish remains centered in the imaging plane [24]. The body outline of each
animal was divided into segments of equal length (zebrafish: 84 segments, medusa: 70-85 segments)
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for spatial integration. Again, for medusae, bell components outside the laser sheet can interfere with
images of the subumbrellar surface within the bell cavity, so surface segments on the oral side of
the body traced the bell margin even as it protruded out of the PIV imaging plane. Although these
bell margin surface segments were required to mask the animal body during pressure calculation as
indicated above, the central segments—defined as the central two-thirds of the bell’s radius—did not
represent surfaces visible within the PIV laser light sheet, and so forces and torques calculated on these
central bell segments were not included in later analyses. The areas where calculations were conducted
are visible in the force vector plots in Figure 2i-1.
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Figure 2. Turning kinematics and fluid pressure for representative medusa (Aurelia aurita, 30° rotation,
profiled in Figure Ald in Appendix A) and zebrafish (Danio rerio, 62° rotation, profiled in Figure A2c)
turns. The red line shows the midline of the medusa (a—d) and the fish (m—p) throughout the turn,
along with PIV vector and vorticity fields. Pressure fields around the medusa (e-h) and the fish (q-t)
demonstrate that both animals generate large, asymmetric pressure gradients around their bodies
(panels (f) and (r), respectively) before major body orientation shifts (illustrated by the midline position).
Force vectors exerted on the animal due to local fluid pressure at the medusa (i-1) and zebrafish (u—x)
body surface indicated in red arrows. Note that force vectors, and hence torques, were not calculated
on the central region of the oral surface of the jellyfish (the bottom of the bell), as the bell margin in
this region protrudes outward from the 2D imaging plane and blocks the view of the subumbrellar
surface within the bell cavity, the surface where forces and torques would actually act. Black circles
represent the center of mass in each of the latter panels. Note that during peak torque periods, forces
along the body stabilize the center of mass while causing rotation of extended body regions such as the
bell margin of medusae (j) and caudal fin of fish (v). For jellyfish, the most rapid rotation occurs during
bell contraction and bell relaxation may be accompanied by negative torque (1) that brakes bell rotation.



Fluids 2020, 5, 106 60f13

Because the surface geometry was specified in a single plane, the force calculations were evaluated
per unit depth (i.e., giving units of Newtons per meter of depth perpendicular to the measurement
plane). The corresponding torque was calculated as the vector product of the moment arm from each
location on the body surface to the center of mass, and the local force due to pressure at the same
location on the body surface. The resulting torque calculations have units of Newton-meters per meter,
corresponding to the aforementioned planar measurements. MATLAB codes for force and torque
calculations similar to those conducted presently as well as the segment-making methods have been
validated in earlier work [24] and are available on Github (https://github.com/kelseynlucas).

2.4. Turning Equations of Motion

The mass moment of inertia of a body is a measure of how its mass is distributed relative to
a reference axis, often taken as the geometric centroid. It is given by

I—fvrzdm 1)

where V is the region occupied by the body mass, and r is the distance of each infinitesimal portion of
body mass from the reference axis. In the present case, this mass moment of inertia was approximated
using the area moment of inertia, which is a measure of how the body area in a cross section is
distributed relative to the reference axis:

IA = ij T’ZdA (2)

where A is the region occupied by a two-dimensional cross-section of the body. The cross-section in
the present measurements was the body symmetry plane illuminated by the laser sheet during PIV
measurements. The area moment of inertia (henceforth called the moment of inertia for brevity) was
calculated using a custom program in MATLAB as described in the following section.

The torque exerted on a body is related to changes to both its angular motion and its moment of

inertia by the following relation:

d(lw) do  dI
T——dt _IE+O)E (3)

where w is the angular velocity of the body. The first term of the summation incorporates the rate of
change of angular velocity, i.e., the angular acceleration. The second term depends on the change in
the moment of inertia, i.e., changes in body shape or mass.

2.5. Moment of Inertia and Angular Velocity Measurements

Calculations of the moment of inertia for turning sequences used the same smoothed animal body
outlines automatically detected for pressure and torque calculation. A separate custom MATLAB
algorithm subsequently calculated the moment of area for each image. Animal bodies were partitioned
as for the force and torque measurements above, with each of segment of area 4; having a centroid
located at distance r; from the whole body centroid. The area moment of inertia for each frame p was

then calculated as: N
Ip = Zi:l a,»r,»z (4)

where the summation was taken over the N body segments. Angular velocities of zebrafish during
turns used local body surface position changes to calculate the angle of the line segment connecting the
anterior head region with that of the body centroid. The rate of change of that angle in a lab-fixed frame
determined the fish angular velocity. The hemi-ellipsoidal shape of medusae and shifts within the bell
during contraction required a different approach for angular measurements. Medusan angular changes
were measured by changes of relatively fixed structures within the bell, the gonads, during medusan
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turning. The angle of the selected gonads were measured relative to the lab-fixed frame in successive
images using Image J v1.48 software (National Institutes of Health, Bethesda, MD, USA).

3. Results

Jellyfish (Figure 2a-l)-and zebrafish (Figure 2m—x) both exhibited frequent bouts of turning,
during which flow measurements revealed pronounced changes in fluid velocities and pressure fields
in the water adjacent to the animal (Figure 2f 1, for jellyfish and fish, respectively). These substantial
pressure fields preceded the more pronounced body motions that occurred during the subsequent turn
that changed the animal swimming direction (Figure 2c,0, respectively).

Examination of the body shape during the period of transient pressure buildup led to the
discovery of a small, rapid asymmetric shift in the curvature of the animal body immediately preceding
the turn for both the jellyfish (1.5 + 1.0 percent change in curvature, n = 10 individuals) and the
zebrafish (0.8 + 0.2 percent, n = 10 individuals). Although the amplitude of this initial body bend was
small, it occurred over a sufficiently short period of time—few milliseconds—that the corresponding
acceleration of the body was large relative to accelerations during unidirectional swimming. These fluid
accelerations occurred along much of the body surface as the extreme outset of the turn (Figure 3).
The measured peak accelerations preceding the turn were over 1 m s~2. This motion was transmitted
to the adjacent water via a process known as the acceleration reaction or added-mass effect [25].

Acceleration {m s?)

-0.25
Tom I -05

Figure 3. Rapid fluid accelerations during turn initiation give rise to high torque forces along the
bodies of jellyfish and fish. Fluid acceleration (positive values correspond to vertical motion toward
bottom of page) along animal bodies during turn initiation by medusa (a) Aurelia aurita and zebrafish
(b) Danio rerio. Fluid accelerations in both panels are for the same turning sequences as depicted in
Figure 2, so that the acceleration field in panel (a) corresponds to the high pressure state of Figure 2f,
while panel (b) corresponds to that of Figure 2r.

Because the water is effectively incompressible, the fluid in contact with the body responded to the
high local body acceleration by an increase in the local fluid pressure where the body was advancing
(pushing the water), and a decrease in the local pressure where the body surface retreated from the
local water (pulling the water with it). When integrated over the full animal body, the pressure field
created by the small, asymmetric body bending leads to a large net torque capable of turning the
organism toward a new heading. The more pronounced body motions that occur after the generation
of this pressure field do not contribute greatly to torque generation, but they do reduce the moment
of inertia of the body (Figure 4; see also Figures A1l and A2). Therefore, the body kinematics that
follow peak pressure generation enhance the effect of the generated torque by amplifying the resulting
angular acceleration so that the body rotates rapidly through a turn. This sequence of asymmetric
body kinematics that initially maximizes torque forces and subsequently minimizes the moment of
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inertia resolves the fundamental competition between these two components of rotational motion
during turns. Although the maximum torque generation and minimum moment of inertia do not occur
simultaneously (Figure 5), the inertia of the fluid and of the animal body allows the initial pressure
transient to affect subsequent turning dynamics even as fluid viscosity resists body acceleration during
a turn.

Torque

Area Moment of Inertia

Angular Velocity

0.0 0.2 0.4 06 0.8 1.0 0.0 0.2 0.4 06 0.8 1.0
Time Time

Figure 4. Normalized data for comparison of turning variables between jellyfish and fish.
Patterns represent data for replicate individuals during variable turn excursions (medusa Aurelia aurita,
panels (a—c), n = 6; bell diameters 1.8-5.4 cm, range in turn angles 13-53°; zebrafish Danio rerio,
panels (d-f), n = 4, fish lengths 3.2—4.4 cm, range in turn angles 17-95°). Data for each replicate turn
was divided into a uniform number of sample intervals and each variable (time, area moment of inertia,
angular velocity and torque) was normalized by the highest value of each replicate sequence so that
all variables could be expressed in dimensionless form with a maximum value of 1. Solid curves
represent the mean value and dashed lines represent one standard deviation above or below the
mean for each sample interval. Note that peak values do not always reach 1 because they are
averages of all the turns and not all the peak values occurred in the same time interval for every turn.
The original, non-normalized data for each individual replicate are displayed in Figure A1 (medusa)
and Figure A2 (zebrafish).
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Figure 5. Conceptual summary of turning dynamics by the medusa (Aurelia aurita) and the zebrafish
(Danio rerio). Arrows for each axis represent increasing magnitude for that variable. A turn is initiated by
a subtle body bend, which builds torque before the animal turns (changes heading). After peak torque
production, the animal bends its body more radically to minimize its moment of inertia. This decreases
the body’s resistance to rotational motion while increasing angular velocity and turning the animal.
The turning sequence ends as negative torque brakes the turning rotation when the body returns to its
extended configuration with high moment of inertia and low angular velocity. Black circles represent
the center of mass for each body image.

4. Discussion

We observed strikingly similar turning dynamics for both the jellyfish and the zebrafish,
despite their substantially different body organization and swimming kinematics (Figures 2—4).
The dynamical importance of the observed pressure fields for both the jellyfish and zebrafish was
confirmed by computing the net torque (per meter depth) and area moment of inertia of the body.
For turns of varying net change in heading, the initial pressure pattern created by the animals was nearly
constant. The ultimate magnitude of each turning maneuver was instead modulated by asymmetrical
changes in body shape that tuned the moment of inertia and thereby controlled the angular acceleration
of the body. In all cases, the relationships between pressure measurements and turning kinematics
followed a similar sequential pattern (Figure 4).

An essential feature of animal turning by the mechanisms described here is the flexibility of the
body, which enables the animal to dynamically redistribute its mass to manipulate the lever arm of the
propulsive surfaces used to initiate the turn (e.g., the bell margin of the jellyfish and the caudal fin of
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the zebrafish) and the body moment of inertia (Figure 5). For animal swimmers with flexibility and
size scales favoring this process, the performance advantages of this turning strategy may select for
very similar turning kinematics despite the vastly different animal forms studied here.

While the present results motivate further study of turning in other swimming animals whose
locomotion lies between jellyfish and zebrafish, we anticipate that extension of these findings will
depend upon scaling factors that influence the size range over which this approach is effective. In the
regime of swimming at low Reynolds numbers (Re = ULv~!, where U and L are the nominal
animal swimming speed and size, respectively, and v is the kinematic viscosity of the water),
angular momentum generated during periods of maximum torque would experience rapid viscous
dissipation, leaving little remaining angular momentum to complete the turn during the subsequent
period of major body bending. For large animals with body lengths on the order of tens of meters,
power requirements for rapid body bending may exceed the available muscle capacity. In geometrically
similar animals, angular acceleration scales to the —2/3 power of body mass [26], making it more difficult
for large animals to generate the initial pressure transient or to alter their moment of inertia through
body rearrangement to increase their angular velocity. Hence, very large swimmers such as whales
may not bend as readily as smaller animal swimmers such as zebrafish [27]. However, the majority of
animal swimmers exist within the millimeter to meter size range [28,29], in which a time-varying lever
arm enabled by body bending would provide favorable performance advantages relative to rigid body
turning mechanics.

Although the patterns that we describe here—torque maximization followed by concomitant
alterations in moment of inertia and angular velocity—may appear unexpected for animal swimmers,
a well-developed body of research in the field of human gymnastic diving provides a more intuitive
guide to the mechanics of animal turning. Human divers generate all of their angular momentum
before they leave the springboard and subsequent alterations in turning velocity come about solely
by modulation of the diver’s moment of inertia [30]. The diver’s ability to rapidly rotate through
somersaults and aerial maneuvers depends on the ability to redistribute body mass and alter the diver’s
moment of inertia [31]. Although the animal models documented here capitalized on self-generated
pressure fields rather than a springboard, they utilized analogous patterns to human divers for
increasing angular velocity by decreasing moment of inertia during through turning maneuvers.
The essential physical relationships between time-varying lever arm deployment, moment of inertia
and angular velocity provide a very basic mechanical process enabling rapid turning. For animal
swimmers within the size scales favoring this process, the performance advantages of this sequence
may select for very similar turning kinematics and provide insight into the convergence of very
different animal forms, such as medusae and fish, on similar turning mechanics.

These observations of a large dynamical impact from small kinematic shifts can motivate further
study of the neuromuscular control of aquatic locomotion and engineered systems that aim to be
inspired by animal swimming. In particular, while nature has not converged upon unidirectional
locomotion that leverages similar kinematic subtleties as in turning (i.e., steady, straight swimming
does not exhibit the small body motions observed here), it might be feasible to achieve net propulsion
using such an approach in a robotic system. The pronounced pressure fields observed presently in the
jellyfish and zebrafish are incompatible with unidirectional translation, as they achieve high net torque
but low net force due to the balance of high and low pressure on either side of the animal. However,
it is conceivable that modified kinematics could result in net propulsive force.

More broadly, an appreciation of the important role of turning maneuvers in the success of aquatic
locomotion can influence efforts to understand the role of physical forces in the evolution and ecology
of other animal swimmers. The methods employed here to study freely swimming organisms and to
quantify their dynamics in terms of pressure field manipulations provide a powerful tool to enable
new insights into aquatic locomotion. The solution arrived at by our study organisms allows them to
initially maximize torque production before major body curvature changes that subsequently minimize
the moment of inertia by bending. Further testing with other animal swimmers will be important for
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evaluating whether this pattern has influenced the widespread capability of swimmers to re-arrange
their mass by flexible bending. Application of similar non-invasive approaches can provide new
pathways to understanding the complex physical exchanges that take place between animals and their
surrounding fluids.
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Figure Al. Turning parameters for replicate medusae (Aurelia aurita) executing turns of different
magnitude. Variable designations are same as in Figure 1: torque per unit depth (red line),
angular velocity (blue line) and moment of inertia (green line). Bell diameter and total turn angle for
each turn: (a) 2.7 cm, 53°, (b) 1.8 cm, 50°, (c) 2.3 cm, 13°, (d) 4.9 cm, 30°, (e) 5.4 cm, 20°, (f) 2.5 cm, 23°.
Local peak in torque is indicated by vertical dashed line each panel.
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Figure A2. Turning parameters for replicate zebrafish (Danio rerio) executing turns of different
magnitude. Variable designations are same as in Figure 1: torque per unit depth (red line),
angular velocity (blue line) and moment of inertia (green line). Fish body standard length and
total turn angle for each turn: (a) 4.4 cm, 17°, (b) 3.5 cm, 95°, (c) 3.2 cm, 62°, (d) 3.3 cm, 24°. Local peak
in torque is indicated by vertical dashed line each panel. The fluctuations in torque near the end of the
turn cycle in panels A—C are within 0.001 mN/m? and are within the margin of error that includes zero
(Figure 2d).
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