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ABSTRACT: We present a relativistic time-dependent equation-of-motion
coupled-cluster with single and double excitations (TD-EOM-CCSD) formal-
ism. Unlike other explicitly time-dependent quantum chemical methods, the
present approach considers the time correlation function of the dipole operator,
as opposed to the expectation value of the time-dependent dipole moment. We
include both scalar relativistic effects and spin—orbit coupling variationally in
this scheme via the use of the exact two-component (X2C) wave function as
the reference that enters the coupled-cluster formalism. In order to evaluate the
accuracy of X2C-TD-EOM-CCSD, we compare zero-field splitting in atomic
absorption spectra of open-shell systems (Na, K, Mg", and Ca*) with values
obtained from experiment. In closed-shell species (Na*, K*, Mg, and Ca’),
we observe singlet—triplet mixing in the X2C-TD-EOM-CC calculations, which
results from the use of the X2C reference. The effects of the X2C reference are
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evaluated by comparing spectra derived from X2C-TD-EOM-CC calculations to those from TD-EOM-CC calculations using a

complex generalized Hartree—Fock (C-GHF) reference.

1. INTRODUCTION

Relativistic effects, including both scalar effects and spin—orbit
coupling, have profound impacts on many photochemical
processes. These effects are responsible for the manifestation
of orbital contraction, increased binding energies, and
intersystem crossing in molecular spectroscopies.' > As such,
a qualitatively correct theoretical description of the spectros-
copy of heavy elements or of spin-forbidden processes requires
full consideration of both scalar relativistic and spin—orbit
coupling effects. Frequency-domain quantum chemical models
built upon coupled-cluster (CC) theory,* such as the linear
response (LR)™ or equation-of-motion (EOM)’™" ap-
proaches, are highly accurate and widely used tools for
modeling both valence- and core-electron absorption spec-
tra.'”'" Relativistic frequency-domain LR- and EOM-CC
calculations provide highly accurate descriptions of spin—
orbit splittings, photoelectron spectra, and other excited-state
properties by incorporating relativistic effects through both
perturbative'”™"? and variational treatments of spin—orbit
couplings.”*~**

While frequency-domain LR- and EOM-CC approaches
have proven to be powerful tools for the excited-state problem,
the response of a molecular system to an external perturbation
can also be evaluated explicitly via integration of the time-
dependent Schrodinger equation. Spectroscopic signals, such
as the linear absorption spectrum, can be resolved by
transforming quantum mechanical observables in the time
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domain to the frequency domain. Time-domain approaches are
particularly advantageous when computing a broad-band
spectrum of a molecular system,” resolvin% spectroscopic
signatures of a region of high density of states,” or simulating
nonequilibrium dynamics driven by a strong electromagnetic
perturbation.”” Such explicitly time-dependent approaches
have become common at the Hartree—Fock and density
functional theory levels (see ref 27 and references therein). On
the other hand, simulations of correlated electron dynamics,
particularly at the CC**~** and EOM-CC**** levels of theory,
are much more rare.

Given a time-dependent Hamiltonian operator, a time-
dependent CC theory can be achieved by incorporating time
dependence into the CC excitation amplitudes”*>**~® and
the underlying molecular orbital (MO) basis.”®%31393¢ The
MOs and CC amplitudes can then be evolved according to the
time-dependent Schrodinger equation. However, because the
CC wave function must satisfy a time-dependent bivariational
principle,’® the complete specification of the system at
arbitrary times can be achieved only through the evolution
of both the right-hand CC wave function, parametrized by the
CC excitation amplitudes, and a left-hand CC wave function,
which is defined in terms of both CC excitation and de-
excitation amplitudes.’®™** The CC de-excitation amplitudes
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also depend on time, and their time evolution is governed by
the complex conjugate of the time-dependent Schrodinger
equation. Moreover, the nonlinear nature of the cluster
operator leads to complicated equations for the time evolution
of the system. This latter complexity can potentially be avoided
by holding the (de-)excitation amplitudes and orbitals fixed at
their ground-state values and considering time evolution of the
system only at the EOM-CC level of theory.””***”*% Indeed,
refs 33 and 34 describe laser-driven electron dynamics
modeled according to this prescription.

In this work, we employ a fundamentally different approach
to time-dependent CC theory based not on the laser-induced
time evolution of observables such as the dipole moment but,
rather, on the time evolution of a field-free dipole
autocorrelation function.”””” Unlike other time-dependent
CC and EOM-CC approaches, which require the time
evolution of both left- and right-hand CC wave functions,
the moment-based formalism requires the explicit time
evolution of only a single quantity: either the left-hand or
right-hand CC dipole moment function. Specifically, we
develop a two-component relativistic extension of the time-
dependent EOM-CC (TD-EOM-CC) approach outlined in
refs 39 and 25 that is suitable for computing zero-field splitting
in linear absorption spectra. Scalar and spin—orbit relativistic
effects are included variationally through the exact-two-
component (X2C) transformation scheme,”*™>* which re-
quires the machinery underlying TD-EOM-CC to be
generalized to handle two-component (i.e., spin-broken)
quantities. We then apply relativistic X2C-TD-EOM-CC with
single and double excitations (EOM-CCSD) to simulate
atomic absorption spectra of open-shell (Na, K, Mg, and
Ca") and closed-shell (Na*, K*, Mg®", and Ca®") species and
benchmark the accuracy of the computed splittings against
those obtained from experiment.

2. THEORY

2.1. Relativistic Two-Component Reference Wave
Function. The relativistic TD-EOM-CCSD method devel-
oped in this work utilizes spinor MOs from a relativistic two-
component reference. In this section, we present a brief review
of the relativistic two-component approach; for a more
thorough review on relativistic electronic structure theory, we
refer readers to refs 55—57.

In two-component methods, the large and small compo-
nents of the four-component Dirac equation are decoupled by
a unitary transformation U that block-diagonalizes the four-
component Hamiltonian:

UHU =
(1)
Because only the electronic solutions are of interest, only the
two-component Hamiltonian corresponding to electronic
solutions, H', needs to be computed. Effectively, the two-

component transformation eliminates the need to evaluate the
small component by “folding” it into the large component:

WL _ l/NIL
LS 0 (2)
In this work, we use the X2C transformation approach®*™>*

in which the decoupling scheme is obtained by solving the one-
body four-component Dirac—Hartree—Fock equation. The
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two-electron term is added as the bare Coulomb operator. The
leading error in this one-electron X2C approach arises from the
neglect of the transformation of the two-electron Coulomb
repulsion operator. To compensate for this error, an empirical
correction, known as the Boettger factor, is used to scale the
one-electron spin—orbit terms in order to approximately
account for the two-electron spin—orbit terms.”® This
approach has been shown to be reasonably accurate in
describing spin—orbit splittings of both valence and core
electrons, 1950:52:53,59,60

In the one-electron X2C framework, the transformation (or
“picture change”) is independent of the two-electron operator.
This simplification gives rise to a major advantage of using an
effective one-electron X2C approach in the context of post-
SCF methods,”’ which is that the two-component trans-
formation U becomes invariant with respect to the
optimization of cluster amplitudes in the CC formalism. This
nice property is due to the fact that, in the one-electron X2C
framework, the four- to two-component transformation
depends on only the choice of basis set through the one-
electron Hamiltonian. In this work, we choose to formulate
X2C-CC in the general Kramers unrestricted case. For open-
shell systems, this could lead to breaking of the time-reversal
symmetry.”> However, in the light element cases tested here,
the time-reversal symmetry is mostly maintained.

2.2. Two-Component Equation-of-Motion Coupled-
Cluster. Throughout this section, the labels ikl and a,b,c,d
refer to MOs that are occupied and empty in the reference
configuration, respectively. Note that the nature of the
relativistic Hamiltonian requires the CC equations to be
formulated with complex arithmetic and generalized (spin-
broken) amplitudes. Hence, unless stated otherwise, the
following discussion assumes that all quantities are complex-
valued and spin-broken. These generalizations increase the
storage requirements and the number of floating-point
operations, but the formal scalings and convergence properties
of the ground-state CC calculation and the evolution of the
TD-EOM-CC equations are unchanged.

The ground-state CC wave function is given by

) = e'ldy) (3)
wherg |d~>0> is the X2C-transformed reference wave function
and T represents the cluster operator, defined at the CC with
single and double excitations (CCSD) level as

T =
(4)

Here, the symbols a" and & represent creation and annihilation
operators of second quantization, respectively. The CCSD de-
excitation operator is similarly defined as

)

llATA

jatata a
o 4+ — Z}'abtaaba
qah

()

The t and A amplitudes in eqs 4 and S can be determined using
a conventional CCSD algorithm,**™* modified for complex
arithmetic and spin-broken amplitudes.

At the EOM-CCSD level of theory, the n™ electronic state is
defined by single and double excitations out of the ground

state
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R ¥y =|r, + Z rala, + = 2 Lalajaa, e’ 1d,)
t]ub (6)

Here, the expansion coefficients 7, r{, and r,] comprise right-
hand eigenfunctions of the normal-ordered similarity-trans-
formed Hamiltonian

oo iy f

Hy=e "He — Ecc (7)
within the space spanned by the reference, singly excited, and
doubly excited determinants; these eigenfunctions satisfy

HR D)) = o,R |D,) (8)
where Ecc represents the ground-state energy, and o,
represents the difference between the energy of the n excited
state and that of the ground state. Because the similarity-
transformed Hamiltonian is non-Hermitian, a set of left-hand
eigenfunctions satisfying

<&)0|‘i’nHN = <&)0|‘i’nwn (9)

similarly defines the left-hand excited-state wave functions

Z ] AT Tah&
1;:117
(10)

The right- and left-hand wave functions for the ground state
are recovered by specifying Ry=landIy=1+A, respectively,
and I, = O for all excited states.

2.3. Moment-Based Determination of Linear Absorp-
tion Spectra. Linear absorption spectra can be generated
from a time-domain simulation in which one propagates the
right- and left-hand CC wave functions in the presence of an
oscillating electric field (for resonant or near-resonant spectra)
or a delta pulse (for broad-band spectra). The time-dependent
dipole moment then carries information regarding the excited
states that are accessed via the external perturbation. In the
present formalism, however, a time-dependent external electric
field is not added to the Hamiltonian directly. Rather, the
absorption line shape is extracted from the Fourier transform
of the dipole autocorrelation function.

The working equations of the present approach can be
obtained in the following manner,”**%’ beginning with the
Fermi’s Golden Rule expression for the £-component of the
isotropic linear absorption line shape

(@) = Y p (M) S(E, — E; — )
IF

IATA
lax a

(®ple™"L

If = (@ ‘Tl+z

(11)

Here, @ is the frequency of the incident light, the sums run
over all initial and final states, W; and Wy, respectively, p;
represents the Boltzmann factor for the initial state, ¥}, and ji:
is the component of the dipole operator that is parallel to the &
axis (¢ € x,y,z). Because at 0 K the Boltzmann factor is zero for
all excited states, we consider only the sum over final states

(@) = Y KB ¥)P5(o0p — o) )

Substituting in the ground and excited states from EOM-CC
and replacing the Dirac 6 with its Fourier integral,

S(w') = /_o:o dt "', we obtain
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L(w) = / dt ¢ (L o1, RylDo) (B e IR By
- .

(13)

where Ji: represents the {th component of the similarity-
transformed dipole operator

_T,\

o= ie’ (14)
Because (P, |I:F is an eigenfunction of Hy, we can replace eVt
with e™ and then use the closure relation,
2, Rp® ) (DL, = 1, to achieve

(o) = /_ . dt e (DyIL i, e ™R |Dy) (15)
Left and right dipole functions can be defined such that

_ © —iwt 7 3

I(0) = /_ e (OM(0)) o)

or
_ © —iwt 7 3 _
I(0) = /_ e (0)M(-1) -

At the TD-EOM-CCSD level of theory, these functions are
expanded linearly as

. 1 .
(M) = (Dyl| 7y + 2 wa'a, + + g a4 a4,
ijab
(18)
and
IM.(8)) = | my + Z miala, + = Z m;"ala) a4, |1,
I}ab
(19)

and the m and m amplitudes are defined at time t = 0 by

(M:(0) = (By)(1 + A)z, (20)
and
IM,(0)) = zBy) (1)

respectively. The m and 7 amplitudes can be evolved in time
according to the Schrodinger equation
0

E|M§(t)> = —iHN|M§(t)> (22)

and its complex conjugate

0 _
o (M:(t)l = i(M,(t)Hy (23)
respectively. It is important to note that eqs 16 and 17 yield
equivalent line shapes; therefore, an absorption spectrum can
be obtained by propagating either the left or the right dipole
function, meaning that either the m or # amplitudes need to
be evolved in time but not both.”” This result contrasts with
standard EOM-CC theory, in which both left and right
eigenvalue problems must be solved in order to determine
oscillator strengths.
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3. RESULTS AND DISCUSSION

The real-time propagation of the relativistic X2C-TD-EOM-
CCSD moment function is implemented in the Chronus
Quantum software package.68 In the current implementation,
the evaluation of the matrix—vector products (i.e, the
construction of sigma vectors) is powered by the TiledArray®
library. All computations employed the 6-31G basis set,”’”">
unless otherwise noted. It has been shown that the time
evolution of the left and right dipole functions gives rise to
nearly identical spectroscopic observables.”® Therefore, we
choose to obtain the time signals by propagating the right
dipole function only (eq 17), which is done using a fourth-
order Runge—Kutta (RK4) numerical integrator. For these
calculations, a step size of either 0.24 or 0.024 attoseconds is
used and propagated for around 12 fs or until the spectrum is
converged. The Padé transform of the dipole autocorrelation
function is used to resolve the linear absorption spec-
tra.”>%°%7* Prior to the transformation into the frequency

domain, the signal is damped using the function e 2)”,

where ¢ is time and I' is the full width at half maximum
(fwhm). For these calculations, a damping constant of 0.00002
au was used.

3.1. Sodium D-Lines: Relativistic vs Nonrelativistic.
The lowest-energy excitation of a sodium atom corresponds to
the *S — ?P electronic transition. Due to spin—orbit coupling,
the six-fold degenerate P term splits into ’p, /o and 2P3 P
levels, giving rise to a bright doublet known as the sodium D-
lines (ZSI/2 - 2P1/2 and 251/2 - 2P3/2). Splitting between
sodium D-lines is experimentally measured to be 2.1 meV,”
which can be captured only with an accurate relativistic
electronic structure method.

The time evolution of the dipole autocorrelation function of
a sodium atom is show in Figure 1A. This series is obtained by
propagating the dipole autocorrelation function forward in
time, resulting in the complex-valued oscillating dipole
function. This dipole function can be transformed from the
time domain into the frequency domain, resulting in the
absorption spectra seen in Figure 1B.

Atomic absorption spectra computed using relativistic and
nonrelativistic TD-EOM-CCSD are compared in Figure 1B. In
the two-component TD-EOM-CCSD formalism developed
here, relativistic corrections, such as the scalar relativity and
spin—orbit coupling, come from the variational reference wave
function. The nonrelativistic TD-EOM-CCSD uses a two-
component reference wave function without any relativistic
correction or transformation, also known as complex
generalized Hartree—Fock (C-GHF).”” When using C-GHF
as the reference wave function, the resulting spectrum has a
single peak for the *S — P transition. In contrast, when a
relativistic X2C reference is used, the splitting between the

’p, /, and 2P3 /5 states is clearly seen with an estimated splitting

of ~2.0 meV. While the peak positions appear slightly red-
shifted (by ~0.1 eV) compared to experimental values,”* the
error in the zero-field splitting is only ~0.1 meV.

The relativistic X2C-TD-EOM-CCSD also correctly predicts

the relative oscillator strength between the ’s, = ’p, /» and
’s, e 2P3 o transitions. Although Kramers unrestricted

reference is used for open-shell atoms, Kramers symmetry is
largely maintained in the ground-state X2C-HF reference for

light atoms studied here, and the *P, o and ’p, /o states are
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Figure 1. (A) Time propagation of both the real and imaginary parts
of the dipole autocorrelation function. (B) Absorption spectra from
TD-EOM-CCSD of a sodium atom using both the nonrelativistic
C-GHEF reference and the relativistic X2C reference wave functions.
Absorption spectra were obtained through Padé transformation of the
dipole time signal into the frequency domain.

two- and four-fold degenerate, respectively. As a result, the

251/2—>2P3/2 peak is almost twice as intense as the

’s, = ’p, /, transition. In contrast, because all six *S — *P
transitions are degenerate in the nonrelativistic limit, the height
of the peak with the C-GHF reference is the sum of the heights
of the two peaks from the simulations with the X2C reference.

3.2. Zero-Field Splitting of S — P Photoabsorption
Spectra. To further analyze the quality of relativistic X2C-TD-
EOM-CCSD, S — P excitations in a series of alkali metal
atoms and alkaline earth metal cations are computed. In Table
1, the excited-state zero-field splitting of the calculated atomic
spectra is compared to experiments. For open-shell atoms (Na,
K, Mg", Ca") with a single valence electron, the computed

peaks correspond to 281/2 - 2P1/2 and 281/2 - 2P3/2.
Table 1 shows that the computed 281/2 - 2P1/2 and

281/2 - 2P3/2 peaks are slightly red-shifted by less than 0.2 eV
for neutral atoms compared to experiments. This is likely due
to the small size of the basis set used in these calculations. The
error in peak position decreases for atomic cations. The extra
nuclear charge in cationic species gives rise to a higher degree
of contraction of the electron wave function. As a result, a
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Table 1. Zero-Field Splitting of Atomic Absorption Spectra
(in eV) for the %S/, — *P,,, and *S,,, — *P;,, Transitions
of Open-Shell Alkali Metal Atoms and Alkaline Earth
Cations, Computed at the X2C-TD-EOM-CCSD/6-31G
Level of Theory and Compared with Experimental Values”*

Na Mg* K Ca*

X2C-TD-EOM-CCSD

281, = Py 1.9970 42831 1.4286 3.1035
28, = Py 1.9989 42926 1.4334 3.1252
splitting 0.0019 0.0095 0.0048 0.0218
Experiment

Sy, = Py 2.1023 4.4224 1.6100 3.1233
28, = Py 2.1044 44338 1.6171 3.1510
splitting 0.0021 0.0114 0.0071 0.0277

smaller basis set is better able to describe electronic transitions
in atomic cations than that in corresponding neutral atoms.

The computed zero-field splittings of the absorption peaks
are in excellent agreement with experiments, with the largest
error of 5.9 meV for the Ca™ test case. As expected, the zero-
field splitting within the alkali group of atoms and the alkaline
earth metal cations increases with increasing principal quantum
number of the valence electron. Orbital contraction and
increased nuclear charge in atomic cations lead to a larger
spin—orbit coupling. As a result, among isoelectronic atoms
(e.g, Na and Mg"), cations have a larger zero-field splitting
than isoelectronic neutral atoms.

3.3. Photoabsorption of Spin-Forbidden Transitions.
For closed-shell systems, such as Na*, K, Mg**, and Ca’*, the
lowest-energy excitation in nonrelativistic calculations, such as
those using the C-GHF reference, is the spin-allowed 'S — 'P
transition. In the relativistic X2C-TD-EOM-CC calculations,
an additional lower-energy peak appears in this spectral region
(Figure 2). The 'S, — P, transition becomes dipole-allowed
due to the spin—orbit coupling but has a smaller intensity than
the spin-allowed 'Sy — 'P; transition.

Table 2 compares computed peak positions using different
basis sets with those optioned from experimentally obtained
values. All computed peaks using a smaller 6-31G basis are
blue-shifted by 1—2 eV compared to the experiments. For
isoelectronic closed-shell ions (e.g,, K* and Ca’"), 2+ cations
have a larger zero-field splitting, in agreement with experiment.

54 —==~ GHF Reference
—— X2C Reference
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231 ] S
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Jg _r 3p | 3P,
= 24 1
i
— 1 13 1S,
14 !
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32.9 33.0 33.1 33.2 33.3 33.4 335

Frequency in eV

Figure 2. Absorption spectra from TD-EOM-CCSD/Sapporo-DZP-
2012-ALL of a Na* using both the nonrelativistic C-GHF reference
and the relativistic X2C reference wave functions.
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Table 2. X2C-TD-EOM-CCSD-Computed Atomic
Absorption Spectra (in eV) for the 'S, — 3P, and 'S, — 'P,
Transitions in Closed-Shell Noble Gas-Like Cations,
Compared with Experimental Values’* along with Mean
Absolute Errors (MAEs) in Peak Position

Na* Mg** K Ca**
6-31G
1S, — 3P, 35.1108 54.8683 21.2317 31.0904
s, —» 'p, 35.3054 55.2221 21.4773 31.4645
splitting 0.1946 0.3538 0.2456 0.3741
MAE 1.4061
Sapporo-DZP-2012-ALL
'S, — °P, 32.9622 53.0249 20.2357 30.2354
1S, = 'p, 33.2667 53.5256 20.5704 30.6781
splitting 0.3045 0.5007 0.3347 0.4427
MAE 0.0387
Experiment
1S, — 3P, 32.9413 52.9249 20.2382 30.2435
s, - 'p, 33.3224 53.5029 20.6381 30.7104
splitting 0.3811 0.5780 0.3999 0.4669

This is due to an increased spin—orbit coupling arising from
increased nuclear charge and contraction of orbitals.
Calculations using the 6-31G basis set significantly over-
estimate the absorption peak positions by 1—2 eV, with a larger
error for smaller cations. In contrast to systems in the previous
section, electronic transitions in these closed-shell atoms
involve core-electron excitations. The poor description of core-
electron wave functions using the 6-31G basis set leads to an
overcontracted core-electron wave function and significantly
blue-shifted spectra. Increasing the size of the basis set and
flexibility of core orbitals with the relativistic Sapporo-DZP-
2012-ALL basis,’® the accuracy of computed spectra is
drastically improved, with <0.04 eV in mean absolute error
in peak position and <0.08 eV error in peak splitting.

For comparison, relativistic time-dependent density func-
tional theory (X2C-TDDFT) calculations™”” (Table 3) were

Table 3. X2C-TDDFT-Computed Atomic Absorption
Spectra (in V) for the 'S, — P, and 'S, — 'P, Transitions
in Closed-Shell Noble Gas-Like Cations, Compared with
Experimental Values’* along with Mean Absolute Errors
(MAE) in Peak Position”

Na* Mg** K* Ca*
TD-X2C-B3LYP
S, — 3P, 30.1930 49.4285 19.6621 28.7842
s, = 'p, 30.5015 49.9755 19.8995 29.2494
splitting 0.3086 0.5470 02375 0.4651
MAE 22521
TD-X2C-BP86
1S, — 3P, 29.2987 48.8303 18.8295 28.7896
1S, — 'p, 29.5308 49.2456 19.1039 29.2005
splitting 0.2321 0.4153 0.2744 0.4109
MAE 27116
TD-X2C-BHandH
1S, — 3P, 31.9982 51.3506 19.8055 29.5461
1S, = ', 32.3611 51.9756 20.1467 30.0574
splitting 0.3629 0.6250 0.3412 0.5113
MAE 0.9101

“Sapporo-DZP-2012-ALL is used for all calculations.

DOI: 10.1021/acs.jctc.9b00729
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performed using the Sapporo-DZP-2012-ALL basis with the
B3LYP, BP86, and BHandH functionals. Looking at the
absolute peak positions, the X2C-TDDFT results are always
red-shifted, with errors between ~0.5 and 4.5 eV. For all
results analyzed here, X2C-TD-EOM-CCSD outperforms
X2C-TDDFT.

4. CONCLUSIONS

Here, we have discussed an implementation of relativistic X2C-
TD-EOM-CCSD. By using X2C as our reference wave
function and expanding the machinery of TD-EOM-CCSD
to handle two-component calculations, we are able to observe
relativistic effects in the calculated absorption spectra. The
approach was validated by considering the zero-field splitting
in Na, Mg", K, and Ca" and the appearance of spin-forbidden
transitions in Na', Mg?*, K*, and Ca®". By comparing these
calculations to similar TD-EOM-CCSD calculations with a
nonrelativistic reference, we can clearly see the splitting of
peaks occurring in the open-shell species and the appearance of
previously dark transitions in the closed-shell species.
Compared to spectra obtained by X2C-TDDFT, X2C-TD-
EOM-CCSD results are consistently in better agreement with
experiment.

The primary advantage of working in the time domain is a
drastic reduction in the storage requirements of the approach,
as compared to those of a standard, frequency-domain
implementation of EOM-CCSD (or X2C-EOM-CCSD). For
example, a conventional EOM-CCSD calculation of an
absorption spectra involving N excited states requires the
storage of N copies of right-hand and left-hand EOM-CCSD
wave functions, as well as several times as many comparably
sized objects during the actual diagonalization of Hy (i.e.,
additional subspace vectors and sigma vectors). On the other
hand, TD-EOM-CCSD requires only the storage of a single
copy of the left-hand and right-hand dipole moment functions
and a small number of comparably sized objects to perform the
time integration (in this case, according to the RK4 scheme).
Further, while other time-dependent formulations of EOM-
CCSD require propagation of both the left and right wave
functions, the moment-based formalism requires only the
propagation of either the left or right dipole function,
effectively decreasing the required number of floating-point
operations by a factor of 2. This reduction is important as
time-domain calculations generally involve far more floating-
point operations than are required by frequency-domain
approaches (note, however, that the formal scalings of TD-
EOM-CC and EOM-CC are the same; only the prefactor
increases in the time-dependent case). This implementation of
X2C-TD-EOM-CCSD sets the groundwork for simulations of
electron dynamics in the presence of time-varying electro-
magnetic fields, so that nonequilibrium dynamics with a
variational treatment of relativistic effects can be considered in
the future.
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