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Abstract
Experimental time series provide an informative window into the underlying dynam-
ical system, and the timing of the extrema of a time series (or its derivative) contains
information about its structure. However, the time series often contain significant mea-
surement errors.We describe amethod for characterizing a time series for any assumed
level of measurement error ε by a sequence of intervals, each of which is guaranteed
to contain an extremum for any function that ε-approximates the time series. Based on
the merge tree of a continuous function, we define a new object called the normalized
branch decomposition, which allows us to compute intervals for any level ε. We show
that there is a well-defined total order on these intervals for a single time series, and
that it is naturally extended to a partial order across a collection of time series compris-
ing a dataset. We use the order of the extracted intervals in two applications. First, the
partial order describing a single dataset can be used to pattern match against switch-
ing model output (Cummins et al. in SIAM J Appl Dyn Syst 17(2):1589–1616, 2018),
which allows the rejection of a networkmodel. Second, the comparison between graph
distances of the partial orders of different datasets can be used to quantify similarity
between biological replicates.

Keywords Time series · Merge trees · Order of extrema · Partial orders
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1 Introduction

Time series data provide a discrete measurement of a dynamical system. By collecting
simultaneous time series measuring different components of a dynamical system, we
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can infer potentially causal relationships between components (Albert 2007; Sugihara
et al. 2016; Cummins et al. 2015; McGoff et al. 2016). These relationships are rep-
resented in the form of a regulatory network, deduced from data experimentally or
via network learning (McGoff et al. 2016; Akutsu et al. 2000; Brunton et al. 2016;
Maucher et al. 2011; Lähdesmäki et al. 2003; Barker et al. 2011; Carré et al. 2017). Our
recent work Cummins et al. (2016) has focused on the post hoc study of admissible
dynamics for these network models. We associate to each network model a switching
system (Albert et al. 2013; Edwards 2001; Glass and Kauffman 1973; Thomas 1991),
in which each node is modeled by a piecewise linear ODE.

In Cummins et al. (2016), we introduced a method to describe the global dynam-
ics of a regulatory network for all parameterizations of the switching system. This
approach, named DSGRN (Dynamic Signatures Generated by Regulatory Networks)
(Harker 2018), leverages the fact that the switching system admits a finite decompo-
sition of phase space into domains, and each variable of the dynamical system can
be assigned one of the finite number of states representing these domains. Further-
more, the dynamics of the switching system can be described by capturing transitions
between these states via a state transition graph. Finally, the switching systems admit
an explicit finite decomposition of parameter space in regions where the state transi-
tion graph is constant. DSGRN provides a complete combinatorialization of dynamics
in both phase space and parameter space.

The solution trajectories of the parameterized switching system correspond to the
sequences of discrete states determined by paths through the state transition graph.
From the sequence of states, one can deduce the sequences of maxima and minima
(extrema) of the admissible solution trajectories.

In a recent paper (Cummins et al. 2018), we compared a sequence of extrema gen-
erated by paths in the DSGRN switching model to experimentally observed sequences
ofmaxima andminima in time series.Wewere seeking consistency between a network
model and a time series dataset by checking if the ordering of extrema in the dataset
is compatible with the ordering of extrema along a path in the state transition graph.
If such a match could not be found, we proposed that the network model be rejected
as a valid model of the underlying biological system producing time series data.

The sparseness of measurements in time series may not accurately capture the
timing of an extremum. As a consequence, it may be difficult to ascertain differences
in ordering between extrema in different time series with high confidence. To account
for these issues, Cummins et al. (2018) proposed that each extremum in the dataset
should be assigned a time interval representing the level of uncertainty in the timing
of the extremum. If two time intervals overlapped, then the relative ordering of the
extrema was taken to be unknown. If the intervals were disjoint, then the relative order
was known. This relation formed a partial order of extrema representing the time series
dataset.

In Cummins et al. (2018), the intervals were chosen in an ad hoc fashion. In this
manuscript, we describe how to extract the desired time intervals about each extremum
in a dataset D in a rigorous and automated fashion.

We consider our dataset D to be a collection of n time series

D = (D1, D2, . . . , Dn)
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Fig. 1 Top: A smoothed and
normalized time series. Bottom:
The ε-extremal intervals as a
function of increasing noise ε.
The gray lines correspond to
local minima and the reddish
lines are associated to local
maxima (color figure online)
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measured at a common discrete set of time points (z1, . . . , zk). We assume that the
measurement error of size ε is additive and thus the “true” time series Ti lies in a band
of size 2ε about measured time series Di . Our goal is to compute a collection time
intervals Iε(Di ), each of which is guaranteed to contain an extremum of the true time
series Ti . Using the techniques ofmerge trees (Edelsbrunner andHarer 2010;Morozov
et al. 2013), branch decompositions (Morozov and Weber 2013), and sublevel sets,
we construct time intervals Iε(Di ) that increase in length as a function of increasing
ε (see Sect. 4). We call this construction the ε-extremal interval method.

As an example, see Fig. 1. On top is a time series curve D1 that has been interpolated
to smooth it (see “Appendix A”) and normalized to the range [− 0.5, 0.5]. It has
five local extrema including the endpoints. In the second row of Fig. 1, there is a
visualization of Iε(D1) as a function of increasing noise ε. The reddish lines are the
intervals associated to local maxima and the gray lines are associated to the local
minima.

The bottom row in the lower plot has five points marked, each of which is an
interval of length zero corresponding to the case without noise, ε = 0. At a noise level
of ± 1%, the intervals have widened but remain distinct. At a noise level of ± 2%,
some of the intervals have started to overlap. Somewhere between ± 3% and ± 4%,
the two intervals corresponding to the maximum and minimum near time point 100
have widened so much that they coincide. When two intervals coincide, it means the
ε-band has become so large that the true time series T1 is not guaranteed to have
any extrema within that interval, and the interval is removed from Iε(D1). Between
± 4% and ± 5%, the interval associated to the right endpoint minimum has become
a proper subset of the interval of the adjacent maximum. The interval containing
the maximum continues to the 5% noise level, while the interval associated to the
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1526 E. Berry et al.

rightmost minimum has been removed from Iε(D1). Every time an interval becomes
a proper subset of another interval, the smaller interval is removed and the larger one
is retained in Iε(D1). The reason is because the true time series T1 is only guaranteed
to attain the extremum associated to the larger interval.

The top row in the lower plot provides a description of the time series assuming a
measurement error of ± 5%. At this level of precision, the time series is characterized
by a global minimum well-separated from a global maximum. When the noise level
increases enough that these last two intervals coincide, which they will do by a 50%
noise level, then we say that the time series is ε-constant. At that point in time, all
information about the extrema of the time series (if they exist) is is erased by noise.

As alluded to above, the key property that guides the construction of the collection
of intervals Iε(Di ) is the following. Let l be the linear interpolation of a time series Di

and let e be its local extremum. For a fixed measurement error level ε, let I ∈ Iε(Di )

be the ε-extremal interval containing e. We prove in Sect. 4 that every continuous
function whose graph lies within the band l ± ε must attain an extremum of the same
type as e (maximum or minimum) within the interval I . Moreover, I is the minimal
such interval about ewith this property, up to the discretization level of the time series.
This means that the intervals Iε(Di ) describe the position of extrema of a time series
in a way that is robust to noise in the most precise way possible given the information
in the dataset. Naturally, if important extrema are missing from the dataset due to
sparse time points, then this method cannot guess at their existence.

Using our approach, a dataset D is represented as a strict partial order Pε(D) =
(Iε(D), �) of the collection of intervals representing extrema for all time series in the
dataset. If I ∈ Iε(D) is an interval in time series Di and J ∈ Iε(D) is an interval
in time series Dj with i �= j , then I � J if and only if the right endpoint of I is less
than or equal to the left endpoint of J . In other words, I is comparable to J if and
only if the intervals are disjoint, except possibly at a single point. When intervals are
disjoint, then the extrema they represent are well-separated and can be unambiguously
distinguished. Since not all pairs of intervals in Iε(D) are comparable, the intervals
are only partially ordered.

Each partial order Pε(D) can be represented as a graph HR
ε (V , E), called the Hasse

diagram, with nodes V corresponding to intervals in Iε(D), and an edge in E ⊂ V ×V
whenever I � J . This graph is a coarse representation of the information contained in
the dataset, containing qualitative rather than quantitative phase shifts.

As ε increases, there are fewer disjoint intervals in Iε(D), fewer well-ordered pairs
of intervals, and therefore fewer restrictions on the ordering of extrema between time
series. This results in a more permissive partial order, where the amount of trusted
information decreases as assumed noise level increases. Eventually, ε increases to the
point where some neighboring extrema become indistinguishable and the number of
nodes in HR

ε (V , E) decreases. We illustrate this on an example in Fig. 2. In the upper
left, there are two interpolated and normalized time series. The blue curve is the same
as the one in Fig. 1 (top), and has five local extrema. The second orange curve has
four local extrema including endpoints. We calculate the ε-extremal intervals for both
curves for ε = 0.0, 0.03, and 0.05 and get the Hasse diagrams of the partial orders
shown in the figure. In every Hasse diagram, the arrow of time points downward.
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Fig. 2 Hasse diagrams of two time series as a function of ε. Upper left: The time series under consideration.
Upper right: ε = 0.0. Lower left: ε = 0.03. Lower right: ε = 0.05

At the upper right in Fig. 2 is the Hasse diagram for ε = 0.0, which corresponds
to the case without noise, and all nine local extrema are represented. At ε = 0.03
(lower left), all nine extrema are still present, but the greater number of incomparable
ε-extremal intervals indicates a more permissive partial order. For example, at ε = 0,
the first NDD1 minimum (the one closest to the top of the Hasse diagram) must
occur before the first CDC20 maximum. But when ε = 3% those two extrema are
incomparable, as indicated by the lack of an arrow between them in the Hasse diagram
on the lower left. At the lower right with ε = 5%, there are only six extrema. CDC20
has lost its twomiddle extrema and its rightmostminimum, as shown in Fig. 1 (bottom)
where ε = 0.05.

As motivation for the work in Sect. 4, we discuss the applications of our method
after a brief introduction to some standard definitions in graph theory. Application 1
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demonstrates that the ε-extremal intervalmethod can be used for consistency-checking
aDSGRNmodel of network dynamics as suggested inCummins et al. (2018).Applica-
tion 2 shows that the technique can be used to quantify the similarity between different
time series datasets.

For the purpose of the presentation of the applications we will ask the reader to
accept that the collection Iε(D), the partial order Pε(D) = (Iε(D), �), and its repre-
sentation HR

ε (V , E) can be unambiguously constructed for any dataset D and any ε.
Rigorous technical detail for the method of ε-extremal intervals is given in depth in
Sect. 4, along with information on the computational implementation (Cummins and
Nerem 2019). Section 4 may be read before the applications in Sect. 3 if desired.

2 Graph theory preliminaries

Definition 1 A directed graph G(V , E) is a set of nodes (or vertices) V , together with
a collection of edges E ⊆ V ×V . A labeled, directed graphG(V , E, �) has in addition
a labeling function � that assigns labels to the nodes and/or edges of a graph.

We will refer to all of unlabeled, node-labeled, and node- and edge-labeled graphs
in this manuscript. One important example is a gene regulatory network, which is a
node- and edge-labeled directed graph. Each node is labeled by the gene product that
it represents, and every edge is labeled either as an activating (→) or repressing (�)
edge. The gene regulatory network that we will explore in Application 1 is shown in
Fig. 3.

Definition 2 A partial order P = (S,≤) is a binary relation ≤ on the set S that is
reflexive, antisymmetric, and transitive. A strict partial order P = (S,<) is a binary
relation < on the set S that is antisymmetric and transitive. A (strict) total order is a
(strict) partial order where for any pair (a, b) ∈ S × S either a ≤ b (a < b) or b ≤ a
(b < a). A linear extension of a (strict) partial order is a (strict) total order T such that
if a ≤ b (a < b) in P , then a ≤ b (a < b) in T .

In this manuscript, we will only be concerned with strict partial and strict total
orders. Our notation reflects this, but for brevity we will often refer only to partial and
total orders.

Every partial order can be represented as a directed graph called a Hasse diagram.
To explain Hasse diagrams, it is useful to know the concepts of transitive closures and
transitive reductions. A transitive closure adds a direct edge wherever there is a path
between two nodes, and a transitive reduction removes an edge whenever there is a
longer path from one node to another.

Fig. 3 Wavepool model of core
genes involved in regulation of
the yeast (S. cerevisiae) cell
cycle (Cho et al. 2019)

SWI4 HCM1 NDD1

Y OX1
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Using extremal events to characterize noisy time series 1529

Definition 3 Let G(V , E) be a directed graph. A node j is reachable from a node i in
the graph G if there exists a path

(i, i1), (i1, i2), . . . , (in, j)

such that each edge (i j , i j+1) ∈ E . The transitive closure of G(V , E) is the directed
graph GC (V , E ′) with E ⊆ E ′ such that (i, j) ∈ E ′ if and only if j is reachable from
i in G The transitive reduction of G(V , E) is the directed graph GR(V , E ′′) with the
minimal set of edges E ′′ ⊆ E such that if the vertex j ∈ V is reachable from i ∈ V
in the graph G, then j is reachable from i in GR .

Definition 4 Let P = (S,<) be a strict partial order on a finite set S. Let H(V , E) be
a directed graph where the nodes V are in a bijection with the elements of the set S,
and an edge (i, j) ∈ E if and only if i < j . The Hasse diagram HR(V , E ′′) of P is
the transitive reduction of H .

Note that the graph H defined in Definition 4 is its own transitive closure,
H(V , E) = HC (V , E), because the partial order P is transitively closed. For clarity,
we will refer to HC rather than H in the text. The Hasse diagram HR plays a role
in both Applications 1 and 2, and the transitive closure of the Hasse diagram HC is
important in Application 2. We will use the notation HR

ε (D) and HC
ε (D) for a given

dataset D and noise level ε.
Every partial order P is associated to a unique distributive lattice. This is the content

of Birkhoff’s Representation Theorem (see Chapter 5 in Davey and Priestley 2002).

Definition 5 Let P = (S,<) be a strict partial order over a finite set S. A down-set is
any set Q ⊆ S such that if a ∈ Q and b < a, then b ∈ Q. A down-set lattice is the
partial order P ′ = (O(P),⊂), ordered by set inclusion, whereO(P) is the collection
of down-sets of P .

The down-set lattice has a minimal element, the empty set, and a maximal element,
S. In the Hasse diagram of the down-set lattice, the two nodes associated to these sets
are called the root and the leaf respectively. For brevity, we will use the term down-set
lattice interchangeably with the Hasse diagram of the down-set lattice.

Remark 1 The paths from root to leaf in the down-set lattice are in a one-to-one
correspondence with the collection of linear extensions of P . This observation plays
a central role in Application 1.

Definition 6 A graph distance is a non-negative, real-valued, symmetric function
d(G1,G2) acting on two graphs G1 and G2 that satisfies the triangle inequality and
that is zero if and only if G1 = G2.

The graph distance described in Sect. 4.3.3 for node-labeled, directed graphs is
used in Application 2 to assess the similarity between two time series datasets.
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3 Applications

3.1 Model rejection via patternmatching

3.1.1 DSGRN

In our previous work (Cummins et al. 2016) we introduced a method to describe the
global dynamics of a regulatory network for all parameters. This approach, named
DSGRN (Dynamic Signatures Generated by Regulatory Networks) (Harker 2018),
uses combinatorial dynamics generated by switching systems (Albert et al. 2013;
Edwards 2001; Glass and Kauffman 1973; Thomas 1991) to construct a database of
all possible dynamics that a network may exhibit.

The core procedure ofDSGRN(Cummins et al. 2016;Harker 2018) is the following:

1. A switching system ODE model is associated to a gene regulatory network. The
dimension of phase space is the number of nodes in the network, N . The dimension
of parameter space is 3M + N , where M is the number of edges in the network.

2. The form of switching systems allows parameter space R
3M+N+ to be decomposed

into a finite number of semi-algebraic regions. We call each region a DSGRN
parameter.

3. The form of switching systems also admits a decomposition of phase space R
N+

into a finite number of rectangular regions (boxes). The number of boxes depends
on the number of discrete states that each gene product can attain, which is exactly
one more than the number of out-edges from the corresponding node.

4. The dynamics of the switching system for a DSGRN parameter are captured by
a state transition graph, in which each node is associated to one of the boxes in
phase space, and edges capture the direction of the normal component of the vector
field at a boundary between two boxes. This assignment is consistent if there is
no negative self-regulation in the regulatory network (Edwards 2001). A solution
trajectory of the switching system then corresponds to a path in the state transition
graph.

DSGRN produces a finite collection of state transition graphs that captures the
parameter dependence of the dynamics across all of parameter space.

Important to the application here, the nodes of the state transition graph can be
labeled by whether each gene product is increasing (I), decreasing (D), or both (∗)
in the corresponding phase space box. Likewise, the edges can be labeled by which
variable is attaining an extremum between boxes (M for maximum, m for minimum,
a dash for neither). By assumptions on the switching system, only one gene product
may attain an extremum at a time. An example labeled state transition graph for a
fixed DSGRN parameter for the network in Fig. 3 is shown in Fig. 4.

3.1.2 DSGRNmodel consistency with a dataset

In a recent paper (Cummins et al. 2018), we compared a DSGRN model of molecular
regulation to experimentally observed time series. We proposed that a network can be
rejected as a model of a biological system that produces the experimental dataset D
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Fig. 4 Example state transition graph for the network in Fig. 3. This is a state transition graph as described
in the text, with 4-symbol labels indicating whether a variable is increasing (I), decreasing (D), or both (∗)
in the corresponding partition of phase space. The order of the symbols is SW I4, HCM1, NDD1, and
Y OX1. The edge labels indicate the possibility of a local maximum (M) or minimum (m) for each variable.
The dash indicates that no extremum is possible for that variable
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if there is no DSGRN parameter at which a path in a DSGRN state transition graph is
“consistent” with the partial order Pε(D) derived from a dataset.

A path is consistent with partial order Pε(D) if it is a linear extension of Pε(D).
Any linear extension of Pε(D) is a total order of the extrema consistent with the time
discretization and themeasurement error level ε. Therefore a path in the state transition
graph that is a linear extension of Pε(D) represents a solution trajectory that has an
order of extrema consistent with noise level ε in the data. If such an extension exists,
the network cannot be rejected as a valid model.

Because we are seeking a linear extension, we make use of the down-set lattice
structure introduced in Definition 5, since it is a summary of all linear extensions of
Pε(D). First, the lattice is augmented with labels. In the Hasse diagram of Pε(D),
HR

ε (D), the nodes can be naturally labeled with extrema. Therefore one can unam-
biguously label the edges of HR

ε (D) based on whether the gene product is increasing
or decreasing, which is opposite to the labeling on the state transition graph. We
showed that there is a natural way to assign dual labeling to the down-set lattice. In
other words, the lattice can be labeled unambiguously with extrema on the edges and
increasing or decreasing behavior on the nodes. Second, the lattice is augmented with
self-edges at every node. Since gene products maymonotonically increase or decrease
in concentration across multiple boxes before reaching an extremum, self-loops were
added to represent this dwell time. The resulting graph is called a pattern graph, and
has a unique root node and a unique leaf node. An example is shown in Fig. 6 based
on the time series introduced in Fig. 5.

We seek a pair of paths with matching labels on both nodes and edges, where one
path goes from root to leaf in the pattern graph and the other path is in the state
transition graph. The matching relation between labels that we define allows for non-
exact matches; namely the symbol ∗ is allowed to match both I and D. This is a type
of approximate graph matching (Bunke and Riesen 2011; Conte et al. 2004; Livi
and Rizzi 2012; Fu 1996). If such a pair exists, then the model is consistent with the
data and cannot be rejected. In Cummins et al. (2018), we formulate this consistency
problem as a graph theory problem with a polynomial time algorithm.

In Figure 5 of Cummins et al. (2018), the partial order Pε(D) was calculated by
hand via visual inspection of the data. We illustrate the approach developed in this
paper on the example from Cummins et al. (2018).

3.1.3 Cell cycle data model

In Fig. 5 (upper right), we present microarray time series data from the yeast S.
cerevisiae, which was normalized between − 0.5 and 0.5. The data were published in
Orlando et al. (2008), and have here undergone shifting viaCLOCCSanalysis (Orlando
et al. 2007) and smoothing via polynomial splines, as described in “Appendix A”.
These data are similar to those in Cummins et al. (2018) (Section 4.2, data published
in Kelliher et al. 2016), which are data collected on the same genes from the same
organism in the same lab, but using RNAseq technology rather than the microarray
platform.

We show two partial orders arising from this data at two noise levels using the
ε-extremal interval method. The Hasse diagrams are shown in Fig. 5 at ε = 0.0 (left)
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Fig. 5 S. cerevisiae time series data Orlando et al. (2008) (upper right) and example HR
ε (D) for the data at

ε = 0.0 (left) and ε = 0.15 (lower right). The arrow of time points downward on the Hasse diagrams

and 0.15 (lower right). The number of extrema at a noise level of 0 is 28, and drops
to 16 at a noise level of 0.15. The partial order at ε = 0.0 is far more restrictive (and
thus looks closer to a total order), because few of the intervals overlap, and more order
relations are known. The pattern graph associated to the partial order on the right is
shown in Fig. 6.

The regulatory network in Fig. 3 is a simplified version of the wavepool model,
introduced in Cho et al. (2019). This model has been corroborated experimentally
(Kovacs et al. 2012; Bristow et al. 2014; Cho et al. 2017) and describes the mechanism
for controlling the cell-cycle transcriptional program.

In Cummins et al. (2018), we verified that the wavepool model is consistent with
the data. We find the same result here. In particular, there is a pair of matching paths
between Figs. 4 and 6 of length 17:

(18, 38)→(6, 37)→(7, 34) → (8, 32) → (2, 31) → (5, 42)→(4, 25)→(3, 22)

→ (9, 21) → (6, 19) → (7, 65) → (8, 63) → (2, 13) → (5, 80) → (4, 7)

→ (3, 4) → (0, 0)
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Fig. 6 Corresponding pattern graph for HR
0.15(D) in Fig. 5 (lower right). The 4-symbol node labels with I

(increasing) and D (decreasing) and the edge labels with m (minimum) and M (maximum) symbols have
the same meaning as in Fig. 4. Notice the unique root and unique leaf

The first number is the integer node label in Fig. 4, and the second is the integer node
label in Fig. 6. The first node pair is at the root of the pattern graph (node 38) and the
last node pair is at the leaf of the pattern graph (node 0). It can be verified that the
labels at each pair of nodes match, remembering that the wild card character ∗ matches
itself, I, and D. Likewise, the edge labels match as well. So at the DSGRN parameter
that produced the state transition graph in Fig. 4, the wavepool network model cannot
be rejected.

3.1.4 Global assessment of the network model

We seek to characterize the performance of the wavepool model across parameter
space and across various levels of noise. Recall that we use the variable ε to denote
a band of noise around a time series. Recall also that the partial order representing
the dataset Pε(D) depends on ε, so that the pattern graph depends on ε as well. We
independently normalized each time series in the dataset between − 0.5 and 0.5 so
that ε represents a percentage of the distance between the global maximum and global
minimum of each time series in the dataset.

The wavepool network in Fig. 3 has 1080 DSGRN parameters. For ε values ranging
from 0.0 to 0.15, we searched for pairs of matching paths between the pattern graph
and the state transition graph at each DSGRN parameter using the DSGRN pattern
matching algorithm described in Cummins et al. (2018) and implemented in Harker
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Table 1 Number of parameters with at least one match to Pε(D)

ε 0.0 0.01 0.04 0.05 0.06 0.08 0.09 0.10 0.14 0.15

Figure 3 0 22 22 12 12 42 24 24 24 24

Figure 7 0 0 0 0 0 0 0 0 22 22

(2018). See Fig. 5 for the partial orders P0.0(D) and P0.15(D) showing the extremes
of the representation of the dataset.

The results are summarized in the first row of Table 1. There are 22 DSGRN
parameters in the wavepool network that exhibit consistent dynamics with the time
series in Fig. 5 (upper right) for noise levels ε = 0.01 through 0.04. This is the same
number of DSGRN parameters with path matches found in Cummins et al. (2018).

Although the number of matches is the same, none of the partial orders Pε(D)

match the one computed by hand in Cummins et al. (2018). This is likely due to the
difference in sampling times; the RNAseq data in Cummins et al. (2018) have a sam-
pling interval of 5min, while the microarray data have a sampling interval of 16min.
This discrepancy can be responsible for different resolutions in peak detection, and
therefore change the representative partial orders. It is also possible that the CLOCCS
shifting of the microarray dataset resulted in a small phase shift with respect to the
RNAseq data, which could alter the relative locations of the extrema.

In addition to the difference in partial orders, we also do not know if the collec-
tion of parameters at which there are pattern matches is the same between this work
and the previous one. However, the fact that the model has comparable performance
under different data collection platforms and sampling intervals highlights both the
reproducibility of the performance of the S. cerevisiae cell cycle, and the power of this
technique to identify/reject models based on time series data.

We note that at ε = 0, the wavepool model has no matches to the partial order in
Fig. 5 (left). Without considering noise, we would be tempted to reject the hypothesis
that the wavepool model is consistent with the experimental data. However, the ability
to scan through different potential noise levels reveals that the wavepool model cannot
be rejected, as it consistently matches the data over a range of small noise levels.

Finally, we observe that the number of matches does not increase monotonically
with ε. This may at first seem counterintuitive, since as intervals grow larger and
overlap, the number of constraints in the partial order is reduced. However, nodes in
the graph representing shallow extrema in the time series disappear as ε grows larger,
which changes the size of the graph. Under these conditions, there is no guarantee of
monotonicity. In our example here, the number of nodes in the partial order decreases
from 28 to 16 as ε increases from 0 to 0.15. At ε = 0.08, we find the highest number
of parameters with matches, 42.

3.1.5 Model rejection

In a second numerical experiment, we propose a different model for the same time
series data, depicted in Fig. 7. Here we swapped the positions of the genes NDD1
and SW I4 compared with the first model, thus creating an “incorrect” model for the
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Fig. 7 A model in which two
genes of the wavepool model are
swapped, which our
methodology invalidates

NDD1 HCM1 SWI4

Y OX1

data. In Cummins et al. (2018), no matches were found for this model using the partial
order computed by hand and shown in Figure 5 of that work. The number of matches
that we find now for this network are shown in second row of Table 1. We observe
that there are no matches in this network until noise level ε = 0.14, so that we match
(Cummins et al. 2018) in the range ε = 0.01 through 0.04 as before. At a noise level
of ε = 0.14, the band of uncertainty around the data is 28% of the difference between
the global maximum and the global minimum in the normalized data. This a very high
level of noise, and we hypothesize that the partial order at this noise level does not
sufficiently constrain the model, leading to matches with models that are inconsistent
with experimental results. The large range of noise levels with zero matches would
lead us to reject the network in Fig. 7 as a description of the biological mechanism
that produced the time series data.

3.2 Quantifying similarity between replicate experiments

In this application, we seek to quantify the similarity between two replicates of the
same experiment with datasets D1 and D2. We construct for each dataset partially
ordered sets of ε-extremal intervals Pε(D1) and Pε(D2), and represent them by the
transitive closures of Hasse diagrams HC

ε (D1) and HC
ε (D2) as in Definitions 3 and 4.

We then calculate a graph distance between HC
ε (D1) and HC

ε (D2), which is roughly
the proportion of non-shared edges between the two graphs; see Sect. 4.3.3 for a
precise definition. The distance d(HC

ε (D1), HC
ε (D2)) that we use is scaled so it has a

range between 0 and 1. We say that the similarity between two datasets D1 and D2 is
given by

s(D1,D2) = 1 − d(HC
ε (D1), H

C
ε (D2)).

This similaritymeasure gives roughly the proportion of shared edges between HC
ε (D1)

and HC
ε (D2).

In order for the comparison of the two datasets to be biologically relevant, they
must be synchronized at the same point in the yeast cell cycle. In the datasets we
consider, the time series were processed to align with the yeast cell cycle using the
techniques described in “Appendix A”. After this processing, we normalized the data
to the range [− 0.5, 0.5] and truncated so that most of the time series exhibited one
period, as shown in Fig. 8. The truncation limits the computation time of the graph
distance, and focuses the analysis on the highest and most synchronized peaks.

To illustrate the properties of the similarity measure, we perform four different
comparison experiments.
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Fig. 8 Microarray yeast cell
cycle data from Orlando et al.
(2008), processed as described in
“Appendix A”. (Top) Replicate
1. (Bottom) Replicate 2
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1. We first concentrate on only four genes, SW I4, Y OX1, NDD1, and HCM1. We
denote byD′

1 andD′
2 the time series of these four genes extracted from experiments

D1 andD2, respectively (see Fig. 9 top row).We calculate the similarity s(D′
1,D′

2)

over a range of ε.
2. We compute s(D′

1,D′′
2), where D′′

2 is the dataset formed by time series SW I4,
CLB2, NDD1, and HCM1. Here we replace the time series of Y OX1 in the
second dataset by the time series of CLB2, where the CLB2 time series can be
seen in Fig. 8.

3. We compare the same data as in (2), but we mislabel CLB2 in D′′
2 as Y OX1. We

call the mislabeled dataset D′′
3 . The calculation of s(D′

1,D′′
3) shows the effect of

replacing the Y OX1 data inD′
2 by a different time series. The comparison between

experiments (2) and (3) gives an idea of the impact on the distance measure when
there are non-matching gene labels in the partial orders.

4. Lastly, we compare all of the time series by randomly sampling four genes to
construct datasets D̂1 and D̂2 one hundred times, and calculating s(D̂1, D̂2) for
each over a range of ε. The mean of these curves is taken to be representative of
the full dataset. The same experiment is performed with random samples of eight
genes to show the dependence of results on gene sample size.

Experiment 1:
We compute ε-extremal intervals to produce a partially ordered set of extrema for

D′
1 andD′

2. As an example, the Hasse diagrams HR
0.01(D′

1) and HR
0.01(D′

2) for ε = 0.01
are shown in the bottom row of Fig. 9. Although we use the transitive closure HC

ε (D)

to calculate distances, the transitive reductions are shown for simplicity, so that the
structures of the partial orders are easier to compare.
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Fig. 9 (Top left) Time series for replicate 1. (Top right) Time series for replicate 2. (Bottom left) Hasse
diagram HR

0.01(D′
1) for replicate 1 at ε = 0.01. (Bottom right) Hasse diagram HR

0.01(D′
2) for replicate 2 at

ε = 0.01. The arrow of time points downward on the Hasse diagrams

Fig. 10 Similarity as a function
of ε. Blue curve: Experiment 1,
s(D′

1,D′
2). Orange curve:

Experiment 2, s(D′
1,D′′

2 ).
Green curve: Experiment 3,
s(D′

1,D′′
3 ) (color figure online)
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We repeat this procedure at noise levels ε = 0 to 0.15 at intervals of 0.005. The
similarity s(D′

1,D′
2) was calculated at each ε and represented as the blue curve in

Fig. 10. Notice that the similarity between the partially ordered sets goes to 1 at
larger values of ε and varies between 0.7 and 1.0 over the whole range of ε. To
assess if this represents strong or weak similarity, we perform two other numerical
experiments.
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Fig. 11 Similarity s(D̂1, D̂2) as a function of ε. Thin gray curves: one hundred samples of 4 genes each
(left) and 8 genes each (right) from the 16 genes listed in the legend of Fig. 8. Thick black curve: Mean of
the one hundred samples with ± 1 standard deviation

Experiment 2:
We replace the second data set D′

2 by the dataset D′′
2 composed of genes SW I4,

CLB2, NDD1, and HCM1, and we show the similarity s(D′
1,D′′

2) in the orange
curve in Fig. 10. Since the Y OX1 extrema in replicate 1 are being compared with the
CLB2 extrema in replicate 2, the distance between the partially ordered sets is larger
than in Experiment 1. The similarity between the partial orders ranges between about
40–55%. This gives an idea of the distance when nodes cannot be matched across
partial orders because of a single time series swap.

Experiment 3:
We relabeled all “CLB2” extrema in replicate 2 to “Y OX1” labels to get dataset

D′′
3 . This allows us to compare the distance when the curve shape of CLB2 is used

in place of the true Y OX1 data. The resulting similarities s(D′
1,D′′

3) are shown in
the green curve in Fig. 10. By comparing the orange curve (Experiment 2) with the
green curve (Experiment 3) in Fig. 10, it can be seen that having mismatched labels
contributes substantially to the dissimilarity of time series. However, even when the
mismatched labels are artificially removed with relabeling, we see by comparing the
blue curve (Experiment 1) with the green curve (Experiment 3) in Fig. 10 that using
the same set of time series in both replicates leads to a noticeably higher similarity
over most of the range of ε.

Experiment 4:
We now consider all the time series in the dataset, as shown in Fig. 8, to quantify

the similarity of the two replicates as a function of noise. Because our algorithm for
graph distance does not scale favorably with the size of the graph, we chose to (a)
sample ε more coarsely from 0 to 0.15 at intervals of 0.01, and (b) pick at random one
hundred samples of four and eight genes each, and then calculate the mean similarity.
The resulting curves are shown in Fig. 11 with samples of 4 genes on the left and 8
genes on the right. The thick black line indicates the mean and ± 1 standard deviation
of the one hundred samples shown in grey. The mean on both curves ranges between
about 75–95% similarity, with the bulk of the values over 80% similar. The standard
deviation decreases substantially with increasing gene sample sizes, suggesting that
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sampling subsets of genes is a reasonable proxy for calculating the similarity of the
whole dataset.

4 Methods

The applications in the previous section are dependent on the representation of a time
series dataset D by a partial order Pε(D) over time intervals Iε(D) representing the
location of extrema up to a noise level ε. We now present in detail the construction of
the intervals Iε(D).

We begin in Sect. 4.1 by establishing the theory for continuous functions. For
f : [x1, x2] → R a continuous function on a closed interval [x1, x2], we present an
approach that finds a collection of intervals Jε( f ), called ε-extremal intervals, with
the property that any continuous function g whose values are within measurement
error ε of f is guaranteed in each interval I ∈ Jε( f ) to attain a local extremum.

Our main tool is the notion of the merge tree of f (Edelsbrunner and Harer
2010; Morozov et al. 2013) that we use to define a new object, called the normalized
branch decomposition of f on [x1, x2]. The normalized branch decomposition allows
us construct a collection of ε-minimal intervals on [x1, x2], such that every continuous
function g that remains within the bounds f − ε and f + ε is guaranteed to achieve a
minimum in each ε-minimal interval. By taking − f and applying the same method,
we construct ε-maximal intervals, in which every perturbation g of f bounded by
ε is guaranteed to attain a local maximum. The union of ε-minimal and ε-maximal
intervals forms the set Jε( f ).

The extension of merge trees and branch decompositions to discrete time series is
straightforward (Smirnov and Morozov 2017). We show in Sect. 4.2 that ε-extremal
intervals Iε can also be assigned to a discrete time series by using the linear interpola-
tion to construct a continuous function f . With this view, most of the same theorems
hold for discrete time series as for general continuous functions.

In both discrete and continuous cases, there is a total order on the ε-extremal
intervals for a single function f . In other words, the ε-extremal intervals represent
a sequence of extrema of f that can be trusted up to measurement error level of ε.
The total orders associated to a collection of functions { fi } derived from a time series
dataset can be extended to a partial order on the extrema of { fi }.

In Sect. 4.3, we discuss Algorithms 1 and 2 of Smirnov andMorozov (2017) that are
used to computemerge trees andbranch decompositions for a set of time series.Wealso
discuss algorithms derived from Sect. 4.2 for constructing ε-extremal intervals, partial
orders, and a graph distance for partial orders. We provide a repository (Cummins and
Nerem 2019) in Python 3.7 that implements all the algorithms.

4.1 �-Extremal intervals for continuous functions

Consider a continuous function, f : [x1, x2] → R, defined on a closed interval,
[x1, x2] ⊂ R.
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Definition 7 Let C([x1, x2]) denote the space of continuous functions g : [x1, x2] →
R, endowed with the supremum norm. For ε ≥ 0, define

Nε( f ) := {g ∈ C([x1, x2]) : | f − g| < ε}

to be the ε-neighborhood of f . A function g ∈ Nε( f ) will be called an
ε-perturbation of f .

Given ε ≥ 0, we would like to compute a collection of intervals, Jε( f ) :=
{I ε

i }, I ε
i ⊂ [x1, x2], not necessarily disjoint such that

1. every g ∈ Nε( f ) attains either a minimum or a maximum in each I ε
i , and

2. for any nonempty J ⊂ I ε
i , there exists some h ∈ Nε( f ) such that h does not attain

a maximum or a minimum in J .

The collection Jε( f ) represents a set of extrema corresponding to a noise level of ε.
To construct Jε( f ) for all ε, we use merge trees (Edelsbrunner and Harer 2010;

Morozov and Weber 2013; Morozov et al. 2013; Pascucci et al. 2004) to construct an
associated object, which we call the normalized branch decomposition. We will show
that the normalized branch decomposition provides the proper framework to allow us
to associate a collection Jε( f ) to all ε > 0.

4.1.1 Merge trees

The merge tree of a real-valued function, f , captures the connectivity of the sublevel
sets, f −1(−∞, h], for each h ∈ R, similar to how the Reeb graph (Edelsbrunner
and Harer 2010) captures the connectivity of the level sets of a function. Here, we
recall the definition of the merge tree associated to a function, and refer the reader to
Edelsbrunner and Harer (2010) and Morozov et al. (2013) for more details.

Definition 8 The merge tree of f , denoted T f , is defined to be the quotient space

T f := �( f )/ ∼,

where �( f ) denotes the graph of f , and for x, y ∈ �( f ), we declare x ∼ y if there
exists an h ∈ R such that both x and y belong to the same level set of f , f −1(h), and
also to the same connected component of the sublevel set, f −1(−∞, h].

See Fig. 12b for an example of a merge tree. To visualize the construction of the
merge tree, imagine a horizontal line sweeping upward from the bottom of the time
series depicted in Fig. 14a. An intersection of such a line with a local minimum
corresponds to a leaf of a merge tree, where the leaves are located at the bottom of the
merge tree, and an intersection with a local maximum corresponds to an internal node
of the merge tree. Notice that each node of T f , whether maximum or minimum, is
associated to a time at which the extremum is located, ti , and a height of the extremum,
f (ti ). Denote by {�i } the leaves and by {mi } the internal nodes of the merge tree. For
�i a leaf, denote its height by ai = f (ti ), and similarly for mi an internal node,
bi = f (ti ).
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(a) (b) (c) (d)

Fig. 12 a The graph of a function with height h versus time t , b its corresponding merge tree, c the branch
decomposition represented as a colored graph, and d the normalized branch decomposition

Note that while the left hand endpoint in Fig. 1a is a local maximum, it does not
play an important role in the merge tree, Fig. 1b, because no new topological features
appear or merge with other features at that height. The endpoints are the only extrema
that might not play a significant role in the merge tree.

4.1.2 Normalized branch decomposition

A branch decomposition is a way of partitioning a merge tree that pairs up the appear-
ance (i.e. birth) and the disappearance (i.e. death) of minima as a function of sublevel
height h (Morozov and Weber 2013). The birth heights are given by values { f (ti )}
associated to leaves �i and the death heights { f (tk)} correspond to the internal nodes
of the merge tree. At each internal node, at least two branches merge. We choose to
continue the branch with lowest birth height and terminate all other branches.

This is unambiguous when the branches start at distinct heights. Although having
distinct minima is a generic property in continuous functions, experimental time series
may be measured only up to some finite resolution, in which case equal height values
at which different minima appear may be common. Therefore, in the case that the
branches do not start at distinct heights, we arbitrarily decide to continue the branch
with the lowest height that also occurs first in time. Other choices are reasonable and
would induce different branch decompositions.

Definition 9 We define a total order ≺ on the leaves of the merge tree {�i } by saying
�i ≺ � j if one of the following holds:

1. ai < a j , or
2. ai = a j and ti < t j .

This defines an indexing on the leaves of T f that satisfies �i ≺ �i+1 for all i , starting
at i = 0.

Definition 10 Letmk be an internal node of T f , with associated height bk . Define Smk

to be the subtree of T f that is rooted at mk . We define the branch decomposition of f
to be the collection of intervals

(a) [a0, b0], where b0 is the global maximum of f ; and
(b) [ai , bk) whenever Smk is the largest subtree satisfying
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(1) �i is in the subtree Smk and
(2) �i ≺ � j for all � j ∈ Smk with i �= j .

The branch decomposition can be viewed as a partition of the merge tree, as shown
in Fig. 12c.

Definition 11 The normalized branch decomposition of f : [x1, x2] → R is a collec-
tion of intervals

B( f ) :=
⊔

i

Ji ,

where
⊔

denotes disjoint union, J0 := [0, b0 − a0], and Ji := [0, bk − ai ) for i > 0
are defined using the branch decomposition of f . Recall that each Ji is uniquely
associated to a leaf �i , with value ai = f (ti ), and its time of occurrence ti . We say
that ti is the representative of Ji .

Note that by representing the collection (Ji ) as disjoint intervals, we can visualize
the normalized branch decomposition as a “barcode”-like summary, which we show
in Fig. 12d.

4.1.3 �-Minimal intervals

We now establish properties of the normalized branch decomposition that allow us
to associate a collection of intervals Jε( f ) to each parameter ε. First, we describe
how to obtain the intervals corresponding to local minima, and then we dualize this
procedure to obtain intervals corresponding to the local maxima.

Definition 12 Fix ε > 0. Let Bε ⊂ B( f ) be the collection of all intervals in the
normalized branch decomposition B( f ) that are longer than 2ε,

Bε = {Ji ∈ B( f ) : |Ji | > 2ε}.

Let Ji = [0, bk − ai ) ∈ Bε and consider its representative ti . Define ϕ(Ji )
to be the connected component of ( f − ε)−1(−∞, ai + ε) that contains ti .
Clearly, ϕ(Ji ) is a well-defined relatively open interval in [x1, x2]. We define the
collection of ε-minimal intervals, denoted

J min
ε ( f ) := {ϕ(Ji ) | Ji ∈ Bε}

to be the collection of all such intervals. For Ii = ϕ(Ji ), we say that ti is the
representative of Ii as well as of Ji .

See Fig. 13 for a depiction of the action of ϕ. The following Proposition shows that
we cannot have overlapping ε-minimal intervals.

Proposition 1 For any Ii , I j ∈ J min
ε ( f ), Ii ∩ I j = ∅.
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Fig. 13 A graph of a function, f , as well as f ± ε. While ( f − ε)−1(−∞, ai + ε) consists of both the
dark blue and light blue intervals, ϕ(Ji ) is just the connected component that contains the representative,
ti (color figure online)

Proof Consider Ii = ϕ(Ji ) for some Ji = [0, bk − ai ) ∈ Bε, and I j = ϕ(J j ) for
some J j = [0, b� − a j ) ∈ Bε, their representatives ti and t j , and their leaves in
the merge tree �i and � j , respectively. Since ti and t j are locations of minima of the
continuous function f , there must exist at least one maximum of f between ti and
t j . Let bq denote the highest local maximum between the two minima, with location
tq ∈ (ti , t j ). Notice that if bq < bk or bq < b�, then the two leaves �i and � j are in
the same subtree rooted at one of the internal nodes mk or m� associated to bk and b�

respectively. This contradicts the fact that Ii , I j correspond to distinct branches in the
branch decomposition. So bq ≥ bk and bq ≥ b�. Then by Definition 12,

bq − ai ≥ bk − ai > 2ε and bq − a j ≥ b� − a j > 2ε,

so that tq /∈ ( f − ε)−1(−∞, ai + ε) = Ii and tq /∈ ( f − ε)−1(−∞, a j + ε) = I j .
Since tq ∈ (ti , t j ) with ti ∈ Ii and t j ∈ I j , this establishes that Ii ∩ I j = ∅. ��

Assume f : [x1, x2] → R is a continuous function and assume B( f ) is its corre-
sponding normalized branch decomposition.

Proposition 2 Fix ε > 0. Then any g ∈ Nε( f ) attains a local minimum in the relative
interior of every interval I ∈ J min

ε ( f ).

Proof Note that any interval I ∈ J min
ε ( f ) has a corresponding interval Ji ∈ Bε ⊂

B( f ) given by I = ϕ(Ji ). By construction of B( f ), f attains a local minimum ai in
I , since ai = f (ti ) and ti ∈ I .

We now consider several cases.

• First, assume I = (y1, y2) away from the endpoints of [x1, x2]; i.e. yi �= xi , i =
1, 2. Since g ∈ Nε( f ), and f (ti ) = ai , it follows that g(ti ) < ai + ε. But by
definition of I we have ai + ε = f (y1) − ε, because otherwise y1 ∈ I . Therefore

ai + ε = f (y1) − ε < g(y1),
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and by similar argument ai + ε < g(y2). It follows that

g(ti ) < g(y1) and g(ti ) < g(y2)

and by continuity g attains a local minimum in I .
• Next, assume that I = [x1, y), and g ∈ Nε( f ). If g attains a local minimum at x1,
then the proof is complete; so assume that g(x1) is not a local minimum of g in
I . As before we have that g(y) > ai + ε, and g(ti ) < ai + ε. If g(x1) ≥ ai + ε,
then by continuity, g must attain a local minimum in the interior of I . Finally,
assume that g(x1) < ai + ε. Since g does not attain a local minimum at x1, there
exists some x̃ ∈ I such that g(̃x) < g(x1) < g(y). By continuity, g must attain a
minimum in the interior of I .

• The case where I = (y, x2] follows from a similar argument to that of the previous
case. ��
Let I denote the closure of interval I .

Proposition 3 Consider I ∈ J min
ε ( f ). For any J � I , there exists a strictly monotone

function g : J → R such that g ∈ Nε( f |J ).
Proof Let I = [y1, y2] and J := [z1, z2]. We prove the case z1 �= y1, with an
analogous argument proving the case z2 �= y2. Recall that f attains a minimum in I ,
ai = f (ti ). First assume that the minimum is located in the interior of the subinterval,
ti ∈ (z1, z2). Note that f (z2) < ai + 2ε, and for all z ∈ (ti , z2), we have f (z) ≥ ai .
Therefore there exists δ2 > 0 such that

ai + ε + δ2 ∈ Nε( f (z2)) = ( f (z2) − ε, f (z2) + ε).

Since z1 �= y1, there exists some δ0 > 0, such that

ai + ε − δ0 ∈ Nε( f (z1)).

Finally, there is δ1 < δ0 such that

ai + ε − δ1 ∈ Nε( f (ti )).

We define two linear increasing functions g1 : [z1, ti ] → R and g2 : [ti , z2] → R by

g1(z1) = ai + ε − δ0, g1(ti ) = ai + ε − δ1; and

g2(ti ) = ai + ε − δ1, g2(z2) = ai + ε + δ2.

Function g1 is increasing; since δ1 < δ0; g2 is also clearly increasing.Most importantly,
we have that the graph of g1 is contained in Nε( f |[z1,ti ]) and the graph of g2 is contained
in Nε( f |[ti ,z2]). Since g1(ti ) = g2(ti ) the continuous function, g : J → R, defined
by

g(x) =
{
g1(x), if x ∈ [z1, ti ]
g2(x) if x ∈ [ti , z2]

123



1546 E. Berry et al.

is in Nε( f J ). By construction, g is a piecewise linear, strictly increasing function.
This establishes the result for the case ti ∈ (z1, z2). To finish the proof, we note that
if ti ≤ z1, the construction of g2 produces the desired function, and if z2 ≤ ti , then
the construction of g1 produces the desired function. ��
Corollary 1 For any non-empty, proper subinterval, J ⊂ I with I ∈ J min

ε ( f ), such
that J � I , there exists some g ∈ Nε( f ) such that g does not attain a local minimum
in J .

We conclude that J min
ε ( f ) consists of intervals on which every ε-perturbation of

f attains a local minimum, and furthermore, that these intervals are the smallest such
intervals for which this is true. This justifies the name and notation of J min

ε ( f ). This
collection robustly represents the minima of f up to precision ε.

4.1.4 Dual construction for local maxima

The simple observation that the maxima of f are the minima of − f leads to the
following definition.

Definition 13 We define a collection of ε-maximal intervals J max
ε ( f ) by

J max
ε ( f ) := J min

ε (− f ).

Given the above definition, we have the following corollary from Proposition 2 and
Corollary 1.

Corollary 2 Fix ε > 0. Then any g ∈ Nε( f ) attains a local maximum in every interval
I ∈ J max

ε ( f ). Furthermore, for any nonempty, proper subinterval J ⊂ I with J � I ,
there exists some h ∈ Nε( f ) such that h does not attain a local maximum in I .

Therefore the collection J max
ε ( f ) robustly represents the maxima of f , which is a

natural dual of J min
ε ( f ). The corresponding dual merge tree, dual branch decomposi-

tion, and dual normalized branch decomposition of the function f in Fig. 12 are shown
in Fig. 14. To visualize the construction of the merge tree, imagine a horizontal line
sweeping down from the top of the time series depicted in Fig. 14a. An intersection
of such a line with a local maximum corresponds to a leaf of a merge tree, where

(a) (b) (c) (d)

Fig. 14 From left to right: the graph of a function, its corresponding dual merge tree, the dual branch
decomposition, and the normalized dual branch decomposition
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the leaves are located at the top of the merge tree, and an intersection with a local
minimum corresponds to an internal node of the merge tree.

Definition 14 The collection of ε-extremal intervals is the collection

Jε( f ) := J min
ε ( f ) � J max

ε ( f ).

If Jε( f ) = ∅, then we say f is ε-constant.

The motivation for the definition of ε-constant is that when Jε( f ) = ∅, then
b − a ≤ 2ε for any minimum a and maximum b, and so the extrema cannot be
distinguished at ε. We now show that the ε-minimal intervals are distinct from ε-
maximal intervals.

Proposition 4 Consider I ∈ J min
ε ( f ), represented by u and J ∈ J max

ε ( f ), repre-
sented by v. Then u /∈ J and v /∈ I .

Proof By the definition of representative, f (u) = a is a local minimum with u ∈ I
and f (v) = b is a local maximum with v ∈ J . Then v /∈ I since otherwise

v ∈ ( f − ε)−1(−∞, a + ε)

⇒ b = f (v) ≤ a + 2ε

⇒ b − a ≤ 2ε

⇒ I , J /∈ Jε( f ).

A similar argument shows u /∈ J . ��
Corollary 3 J min

ε ( f ) ∩ J max
ε ( f ) = ∅.

4.1.5 Total ordering inJ�(f )

Since f (x) is continuous, we expect that the ε-minimal and ε-maximal intervals must
alternate. In this section, we define a total order on these intervals and prove that it
is well-defined and that the extremal intervals alternate as expected. Technicalities
occur, because the ε-minimal intervals can overlap with the ε-maximal intervals; see
Fig. 15.

Definition 15 We define an order � onJε( f ) as follows. Consider two relatively open
intervals I , J ∈ Jε( f ), with y1 < y2 the endpoints of I and z1 < z2 the endpoints of
J . Then I � J if and only if either y1 < z1 or y2 < z2.

Theorem 1 The order � on Jε( f ) is a well-defined total order.

Proof Consider two relatively open intervals I , J ∈ Jε( f ),with y1 < y2 the endpoints
of I and z1 < z2 the endpoints of J . Let u represent I and let v represent J . To prove
that � is well-defined, we must show that y1 ≤ z1 iff y2 ≤ z2.

123



1548 E. Berry et al.

Fig. 15 A graph of a function, f , as well as f ± ε. Here, ti is a representative of a minimum with
associated ε-minimum interval ϕ(Ji ), and t j is a representative of the ε-maximum interval ϕ(J j ). Notice
that ϕ(Ji ) ∩ ϕ(J j ) �= ∅

The case where I ∩ J = ∅ is trivial, so we consider I ∩ J �= ∅. It follows from
Proposition 1 that when I ∩ J �= ∅, then either I ∈ J min

ε ( f ) and J ∈ J max
ε ( f ) or

vice versa. Now it follows from Proposition 4 that

u < v ⇒ y1 ≤ u ≤ z1 and y2 ≤ v ≤ z2

and similarly

v < u ⇒ z1 ≤ v ≤ y1 and z2 ≤ u ≤ y2.

This shows that the order is well defined. It now follows from Corollary 3 that the
order is total. ��
Theorem 2 ε-minimal intervals alternate with ε-maximal intervals.

Proof Consider two adjacent ε-minimal intervals I1 � I2 with a1 and a2 the associated
local minima. Assume without loss that a1 > a2. Then there exists t ∈ (a1, a2) such
that t /∈ ( f − ε)−1(−∞, a1 + ε), since otherwise I1 and I2 are not distinct. This
implies that f (t) > a1 + 2ε and therefore b := maxx∈[a1,a2] f (x) > a1 + ε > a2 + ε.
Thus there is an ε-maximal interval J containing b. Since � is a total order this implies
I � J � K .

The argument ruling out two adjacent maxima is similar. ��

4.1.6 Partial ordering betweenJ�(fi)

So far we have considered the representation of a single function f (t) in terms of
a noise-level dependent collection of ε-minimal and ε-maximal intervals. However,
many datasets include M functions fi on the same domain [x1, x2]. There is a natural
partial order on the union of the ε-extremal intervals.

123



Using extremal events to characterize noisy time series 1549

Definition 16 Define the partially ordered set

(
M⊔

i

Jε( fi ), �
)

to be an extension of the total order of each Jε( fi ) as follows. If I , J ∈ Jε( fi ) for
some i , define � as in Definition 15. Now consider I ∈ Jε( fi ) and J ∈ Jε( f j ) for
i �= j , with y1 < y2 the endpoints of I and z1 < z2 the endpoints of J . Then

I � J if and only if y2 ≤ z1.

We choose this order because overlapping ε-extremal intervals across functions
indicate that the order of the respective local extrema is not decidable at the noise
level of ε.

4.2 �-Extremal intervals for discrete time series

Time series have values measured at only a finite collection of times. In this section,
we consider this case in more detail.

Definition 17 A set D := {Di }Mi=1 is a dataset on the interval [x1, x2] if Di :=
{(zk, hik)}Nk=1 where

Z := {z1 = x1, z2, . . . , zN−1, zN = x2},

is an ordered set with z j < z j+1 and the heights hik are measurements of the i th

variable at zk . The components Di will be referred to as time series.

The collection Z is independent of i . An example would be a collection of time
series of gene expression, such as comes from RNAseq data. We note, however, that
the independent variable is not required to be time.

Definition 18 Let fi be the linear interpolation of Di , and letJε( fi ) be the ε-extremal
intervals of the linear interpolation. Define Kmin

ε (Di ) to be the set of relatively open
intervals in [x1, x2]with endpoints in the set Z such that for each Ii ∈ J min

ε ( fi ), there
exists Ji ∈ Kmin

ε (Di ) satisfying

(1) Ji ⊇ Ii , and
(2) Ji is the minimal such interval; i.e. there does not exist an interval Ki with end-

points in Z such that Ji � Ki ⊇ Ii .

We define a function βmin : Kmin
ε (Di ) → J min

ε ( fi ) by βmin(Ji ) = Ii that captures
this relationship. Analogously, considering the linear interpolation − fi , there is an
analogous set of intervals Kmax

ε (Di ) and a map βmax.

Since every local extremum of the linear interpolation fi occurs at one of the points
z j ∈ Z , it is easy to see that the proof of Proposition 1 is still valid. Therefore we have
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Proposition 5 For any I , J ∈ Kmin
ε (Di ), I ∩ J = ∅.

Note that choosing fi to be the linear interpolation of Di is critical in order for this
proposition to hold.

Definition 18 is a conservative definition in the sense that a minimum is guaranteed
to occur within each interval I of Kmin

ε (Di ) by restricting to βmin(I ) ∈ J min
ε ( fi ). In

other words, Proposition 2 still holds for Kmin
ε (Di ). However, minimality is lost in

discretization and Proposition 3 does not hold for Kmin
ε (Di ).

This widening of the ε-extremal intervals means that an ε-minimal interval and
an ε-maximal interval can coincide. In other words, given I ∈ Kmin

ε (Di ) and J ∈
Kmax

ε (Di ), we can have that I = J , so that Proposition 3 does not hold. To address
this issue, we remove these intervals from the sets Kmin

ε (Di ) and Kmax
ε (Di ).

Definition 19 Let K∩
ε (Di ) be the intersection Kmin

ε (Di ) ∩ Kmax
ε (Di ). Then define

Imin
ε (Di ) := Kmin

ε (Di ) \ K∩
ε (Di )

Imax
ε (Di ) := Kmax

ε (Di ) \ K∩
ε (Di )

Iε(Di ) := Imin
ε (Di ) � Imax

ε (Di ).

We say that a time series Di is ε-constant if and only if

Iε(Di ) = ∅.

In a slight abuse of nomenclature, we will refer to Iε(Di ) as the collection of ε-
extremal intervals of Di , and Imax

ε (Di ) and Imin
ε (Di ) will be called the ε-maximal

and ε-minimal intervals of Di , respectively. We say that

Iε(D) :=
M⊔

i

Iε(Di )

is the set of ε-extremal intervals of the dataset.

Since Iε(D) ⊆ Kε(D), all the results for Kε(D) hold on Iε(D).
The total order described inDefinition 15, now applied toIε(Di ), and the associated

Theorem 1 proving the total order is well-defined, hold without changes—provided
we again use the fact that all extrema of fi occur at some z j in the discretized time
interval. Using that observation,we remark that the ε-minimal and ε-maximal intervals
of Iε(Di ) still alternate, as in Theorem 2. We are now free to apply Definition 16 for
the partial order � on Iε(D), as restated here.

Definition 20 Define a partial order � on the set Iε(D)

as follows: Let I ∈ Iε(Di ) and J ∈ Iε(Dj ) with y1 < y2 the endpoints of I and
z1 < z2 the endpoints of J . If i = j , then I � J if and only if either y1 < z1 or y2 < z2.
If i �= j , then I � J if and only if y2 ≤ z1.

123



Using extremal events to characterize noisy time series 1551

4.3 Algorithms and software

4.3.1 Merge trees and branch decompositions

To calculate merge trees and branch decompositions for a discrete time series
Di = {z j , hij }, we follow Smirnov and Morozov (2017), who provide pseudocode
for Kruskals algorithm and a helper function called FindDeepest. This combination
of algorithms has O(m log n) complexity for a merge tree with n nodes and m edges.
We briefly summarize these algorithms here.

Let Z be the ordered set of time points {z1, . . . , zN } and let fi be the linear inter-
polation as before, with fi (z j ) = hij . We form a linear graph G, where the vertices of
G are labeled by the elements of Z , and edges in G connect and z j and z j+1 for all i .
For brevity, we will drop subscripts where the context allows, and we will refer to a
vertex in G as an element z ∈ Z .

Definition 21 (Smirnov and Morozov 2017) For h ∈ R, the sublevel graph at h,
denoted Gh , is the subgraph induced by the vertices Z ′ ⊆ Z whose function values
fi (z) for z ∈ Z ′ do not exceed h. The representative of vertex z at level h ≥ fi (z) is
the vertex y ∈ Z with the minimum function value in the connected component of Gh

containing z.

Definition 22 (Smirnov and Morozov 2017) The merge tree of fi on G is the tree on
the vertex set of G that has an edge (z, y), with fi (z) < fi (y), if the connected
component of z in G fi (z) is a subset of the connected component of y in G fi (y), and
there is no vertex x with fi (z) < fi (x) < fi (y) such that the connected component
of z is a subset of the connected component of x in G fi (x).

The algorithm of Smirnov andMorozov (2017) is based on a representation of each
vertex z in the merge tree by a triplet of vertices (z, s, y), where vertex z represents
itself at levels h ∈ [ fi (z), fi (s)), and y becomes its representative at level fi (s). We
make the following observations:

• if z is a vertex representing the global minimum of fi , then the triplet attached to
z will be (z, z, z);

• if z is any other local minimum of fi and hence a leaf of the merge tree, then the
triplet associated to z is (z, s, y) with z �= s �= y and fi (y) < fi (z) < fi (s);

• if z is any other non-leaf vertex of G, then its triplet representation is (z, z, y)with
fi (y) < fi (z).

Note that for any leaf z of themerge tree with triplet (z, s, y), the interval [ fi (z), fi (s))
represents a branch in the branch decomposition. For z with a triplet (z, z, z), the
branch is [ fi (z), b0], where b0 is the global maximum of fi . The normalized branch
decomposition is then the collection {[0, fi (s) − fi (z))} ∪ {[0, b0 − fi (z)]} for every
triplet in the branch decomposition. Therefore the algorithms of Smirnov and Moro-
zov (2017) calculate both the merge tree and the normalized branch decomposition
simultaneously.

We implemented Algorithms 1 and 2 of Smirnov and Morozov (2017) in Python
3 (Cummins and Nerem 2019), along with a post-processing function to isolate the
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leaves of the merge tree using the fact that non-leaf vertices always have the triplet
form (z, z, y) with fi (y) < fi (z). When there are two minima of identical depth, the
one that occurs first in time is chosen to represent the triplet as in Definition 9.

4.3.2 �-Extremal intervals

Once the leaves are isolated, we calculate, for some specified noise level ε, the
ε-minimal interval associated to each minimum. First, we remove all normalized
branches that are not greater than 2ε. Then we take each representative z in the
remaining triplets (z, s, y), and grow a ball around z until the associated function
values fi (z − δ1) and fi (z + δ2) meet or exceed a distance of 2ε from fi (z). This
constraint arises because we are constructing the connected component of the sublevel
set ( fi − ε)−1(−∞, fi (z) + ε) that contains z. So we are seeking the largest set of
vertices Z ′ ⊆ Z such that the subgraph of G induced by Z ′ is connected, and any
v ∈ Z ′ satisfies fi (v) − ε ∈ (−∞, fi (z) + ε), or equivalently, fi (v) − ε < fi (z) + ε.

In order to find the dual merge tree, dual branch decomposition, and associated
ε-maximal intervals, we simply reflect the curve fi over the z-axis to get − fi , and
repeat exactly the same procedure. The calculation of ε-extremal intervals given the
triplets is at worst linear in the number of time points in the time series.

Once we have all of the ε-extremal intervals for a dataset, Iε(D), we impose the
partial order in Definition 20. All of this functionality is in the open source software
(Cummins and Nerem 2019), along with Jupyter notebooks that generate the figures
for the applications in Sect. 3.

4.3.3 Graph distance

In Application 2, we use a graph distance to calculate similarity between the transi-
tive closures of Hasse diagrams. This graph distance gives roughly the proportion of
dissimilar edges between HC

ε (D1) and HC
ε (D2).

Definition 23 For two node-labeled graphs G(V , E, �) and G ′(V ′, E ′, �′), a bijection
φ : V → V ′ is a graph isomorphism if and only if

• (v1, v2) ∈ E ⇐⇒ (φ(v1), φ(v2)) ∈ E ′ for all v1, v2 ∈ V ,
• �(v) = �′(φ(v)) for all v ∈ V .

Definition 24 For two node-labeled graphs G(V , E, �) and G ′(V ′, E ′, �′) the
directed maximum common edge induced subgraph (DMECS) problem is to find
some ordered pair (W ,W ′) with W ⊆ E and W ′ ⊆ E ′ such that if

U = {v1 ∈ V | (v1, v2) ∈ W or (v2, v1) ∈ W }
U ′ = {v1 ∈ V ′ | (v1, v2) ∈ W ′ or (v2, v1) ∈ W ′}

then the graphs H = (U ,W , �|U ) and H ′ = (U ′,W ′, �′|U ′) are isomorphic and the
value of |W | = |W ′| is maximized. Here H and H ′ are edge-induced subgraphs of G
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and G ′. |W | is maximized if for all Z ⊆ E and Z ′ ⊆ E ′ such that Z and Z ′ induce
isomorphic subgraphs of G and G ′,

|Z | ≤ |W |.

We define DMCES(G,G ′) = |W | where |W | is maximized.

It is shown in Nerem et al. (2019) that

d(G,G ′) = 1 − DMCES(G,G ′)
max(|E |, |E ′|) .

is a metric on the space of node-labeled, directed graphs.
Since by definition

DMCES(G,G ′) ≤ max(|E |, |E ′|),

distance varies between 0 (most similar) and 1 (least similar).
As shown in Nerem et al. (2019), there is a polynomial-time reduction of the

DMCES problem to the maximum clique problem and polynomial-time reduction
of the graph isomorphism problem to the DMCES problem. Thus DMCES is no
easier than the graph isomorphism problem and no harder than the maximum clique
problem. This suggests that computing the DMCES problem is exponentially hard
but no harder than NP-complete problems. We use an algorithm from Nerem et al.
(2019) to compute the DMCES problem which leverages the special structure of the
Hasse diagrams produced from datasets; namely that the partial order is built from the
collection of total orders that arise from each individual time series.

5 Discussion

The method described in this paper assigns to a time series a collection of partially
ordered intervals that are dependent upon a level of measurement uncertainty ε. Each
interval is guaranteed to contain either a maximum or a minimum of every continuous
function that is ε-close to the time series. We are particularly focused on applications
in molecular and cellular biology where ’omics data can measure expression levels of
thousands of genes; however, this approach is widely applicable.

Due to experimental challenges, a typical time series has 10–20 time points with
time resolution of minutes to hours, and significant levels of measurement error. We
do not assume that the measured variables are statistically independent; in fact this
dependence carries information about the interactions between the components of
the system which are of great interest. There are methods that use time series to
deduce a structure of the underlying causal network (Albert 2007; Sugihara et al.
2016; Cummins et al. 2015; McGoff et al. 2016), i.e. which genes up-regulate or
down-regulate other genes. These methods rely on sequencing of time points when
genes achieve their peak expression, lowest expression, or time points when they pass
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the half saturation point. Since this is the timewheremaximal rate of change occurs, we
may alternatively approximate the derivative of the time series and turn the problem of
finding the sequence of times with maximal rates of change to the problem of finding
extrema.

Our work is closely related to work on merge trees and persistence homology
(Edelsbrunner and Harer 2010; Carlsson 2009; Zomorodian and Carlsson 2005). Per-
sistence type methods use topological data analysis to extract the most prominent
extrema. Since the most persistent features have large amplitude, and we are inter-
ested in all levels where extrema appear and disappear, the 0-persistence of f gives
closely related, but complementary results to ours.

Similar ideas to those presented in this paper have been used inGünther et al. (2014)
in the context of 2D uncertain scalar fields. Their goal is to describe mandatory critical
points for 2D data for which upper and lower bounding scalar fields f − and f + are
given. The mandatory critical points are characterized by regions of the plane called
critical components where the critical point is guaranteed to occur for any realization
of a scalar field within f − and f +, and by critical intervals in R which bound the
admissible height of the critical point. These critical components correspond in our
approach to ε-minimal intervals when f + = f + ε and f − = f − ε.

Our approach can be viewed as an adaptation of the technique in Günther et al.
(2014) to time series data, with some important differences. Since the time series data
are assumed to arise from a continuous process, we first analyze continuous functions
and only then extend it to the discrete time series data. Moreover, we do not assume
that the upper ( f +) and lower ( f −) bounds are given; rather we parameterize these in
terms of parameter ε and analyze a range of values of ε. This aspect is very important
in the applications we present in Sect. 3. In these applications, we analyze multiple
time series, construct partial orders of ε-extremal intervals, and use the partial orders
to compare models to time series as well as quantify differences between time series
replicates.

The two applications of our technique usemicroarry data. In the first application, the
presented analysis allows the rejection of DSGRN network models (Cummins et al.
2018, 2016) that cannot reproduce the experimentally observed sequences of min-
ima and maxima of microarray time series. For a proposed network model, DSGRN
computes all possible sequences of minima and maxima that can be produced by the
network, across all parameters. This data can be then compared to a partial order
computed from the experimental time series data, at different levels of assumed exper-
imental measurement uncertainty ε. We illustrate our approach on data from the yeast
cell cycle, where the regulatory network is well-described and has substantial experi-
mental validation (Cho et al. 2019; Haase and Wittenberg 2014; Orlando et al. 2008;
Pramila et al. 2006; Kovacs et al. 2012; Simon et al. 2001). We show that the network
model can reproduce experimental data at a low level of assumed experimental noise,
but cannot reproduce data where we artificially swap labels on the time series. Swap-
ping labels is equivalent to making the model incorrect, and such a model is consistent
with data only at very high levels of noise (28% of the total signal amplitude).

In our second application, we study again the gene regulatory network that controls
the cell-cycle-transcriptional program (Bristow et al. 2014; Cho et al. 2017; Orlando
et al. 2008; Kovacs et al. 2012). The network of serially-activated transcription factors
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activates other transcription factors at appropriate phase of the cell cycle and thus
plays a key role in establishing a cell cycle generating order in cellular transcription.
There is an ongoing debate in the field on the role of this network in controlling
cell-cycle-regulated transcription and in the ordering of cell-cycle events (Rahi et al.
2016; Shedden and Cooper 2002). A reproducible ordering of gene expression, which
we observe in this paper, argues for precise control of the transcriptional program and
provides further supporting evidence for the importance of a cell-cycle gene regulatory
network.

The problem of aligning data from different experiments and evaluating the simi-
larity of two experiments is a problem in biology that goes beyond the study of cell
cycles. Circadian clock networks also control large, well-ordered programs of phase-
specific gene expression (Mure et al. 2018; Zhang et al. 2014), and perturbations
to those programs are likely to be found in clock-associated diseases. Ordering the
expression of genes is also a fundamental mechanism for the assembly of a variety
of protein complexes (Kovacs et al. 2008). Thus, the ability to accurately compare
ordering in gene expression will be useful for identifying perturbations in complex
formation, circadian regulation, as well as cell-cycle control. The approach presented
in this paper is applicable to any experimental time series data where comparison and
evaluation of similarity of ordering is desired.
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A Yeast data analysis

Time-series transcriptomic data for one replicate of wild-type yeast Saccharomyes
cerevisiaewere previously published in Orlando et al. (2008). Microarray (Affymetrix
Yeast Genome 2.0) expression data were normalized as previously described (Orlando
et al. 2008), although for this study Affymetrix probe IDs were re-annotated using
Affymetrix Yeast Genome 2.0 microarray annotation 35. Expression data were
aligned to a common cell-cycle time line using the CLOCCS (Characterizing Loss
of Cell Cycle Synchrony) (Orlando et al. 2007) population synchrony model, as
previously described (Orlando et al. 2008). Briefly, the CLOCCS model allows mul-
tiple time-series experiments to be aligned to a common cell-cycle timeline, using
experimentally-derived yeast budding data. The CLOCCSmodel converts time points
in the series to life points, which indicate the progression through the cell cycle.
Expression data for both replicates were interpolated to integer life points with an
interval of one using a Piecewise Cubic Hermite Interpolating Polynomial (PCHIP)
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spline. Life points were then trimmed so both replicate time series were of identical
location and duration in the cell cycle.
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