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Summary 

 

Most chemical experiments are planned by human scientists and thus are subject 

to a variety of human cognitive biases,1 heuristics,2 and social influences.3 These 

anthropogenic reaction data are widely used to train machine learning models4 used to 

predict organic5 and inorganic6,7 synthesis.  However, it is known that societal biases, 

encoded in datasets, are perpetuated in machine learning models.8 Here we identify 

unacknowledged anthropogenic biases in both the reagent choices and reaction 

conditions of chemical reaction datasets using a combination of data-mining and 

experiments. The amine choices in reported crystal structures of hydrothermal synthesis 

of amine-templated metal oxides9 follow a power-law distribution where 17% of amine 

reactants comprise 79% of reported compounds, consistent with social influence 

models.10-12   Analysis of unpublished historical laboratory notebook records shows 

similarly biased distributions of reaction condition choices.  By performing 548 randomly 

generated experiments, we demonstrate that popularity of the reactants or reaction 

condition choices is uncorrelated to the reaction success.  Randomly generated 

experiments better illustrate the range of parameter choices compatible with crystal 

formation. Machine learning models trained on the smaller randomized reaction dataset 

outperform models trained on larger human-selected reaction datasets, demonstrating 

the importance of identifying and addressing anthropogenic biases in scientific data.  
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 Scientific publications do not provide a representative dataset.12 Confirmation bias favors 

publishing positive results, yet the missing “failures” are essential for modeling chemical 

reactions.6 Scientific attention is skewed by biases such as the “Matthew Effect”, in which 

eminent individuals are given disproportionate credit.10 Self-reinforcing preferential graph 

attachment ("rich get richer") mechanisms result in power law distributions of citations, resulting 

in disproportionately popular articles.10,11 The emerging "Science of Science" attempts to 

quantify the role of social interactions on problem selection, career trajectory, and citations.13 

Studies of scientific decision errors have tended to focus on individual-specific causes, such as 

differences in the classification variability and decision inconsistency.14,15  Such error processes 

produce uncorrelated individual-specific noise in the resulting dataset. However, systematic 

errors in scientific experiment planning have not been studied. In general, social influences such 

as knowledge about others' choices can cause popularity to diverge from the underlying quality 

of the item.3 Socially-influenced scientific decision errors have been widely speculated, but 

never explicitly confirmed.  The distribution of reported medicinal chemistry compounds is 

unrelated to the intended application, cost, or reaction difficulty.16  Disproportionately few drug 

scaffolds comprise the majority of antimalarial17 and other drug-candidate molecules,18 and 

popularity is uncorrelated to synthetic feasibility or biological activity.   Medicinal chemists  make 

new pharmaceutical molecules resembling those they have synthesized in the past,19 using a 

limited set of reactions,20 whose choice is uncorrelated to cost, estimated synthetic ease, or 

properties of the reactants or products.21  However, an over-representation of a particular 

experimental choice need not be irrational.  For example, 36% of entries in the Protein Data 

Bank (PDB) report using polyethylene glycol (PEG) additives, which under-represents the true 

success rate of 59%, including many proteins that cannot be crystallized using other additives.22  

This suggests that lack of crystallization additive diversity in the PDB stems from sub-optimal 

novelty seeking. Excessively consistent or inconsistent experimental choices that do not mimic 

the natural distribution of the underlying problem are signatures of anthropogenic influence. 

 

What is the evidence of bias in reactant choices for organically templated metal oxides 

synthesis?  Incorporating different organic amines results in compounds with diverse 

composition, local and extended connectivity, and functionality,9 so one expects to see the 

broadest possible range of amine choices. The discipline defines "success" as formation of a 

crystal of sufficient size and quality to yield a stable single-crystal X-ray diffraction refinement. 

Publishers require structures to be deposited in the Cambridge Structural Database (CSD). The 

number of reported compounds is a proxy for experimental effort and success for a particular 

amine. The CSD contains 5010 amine-templated metal oxides structures, containing 415 unique 

amines. The 17% most observed amines (70 individual molecules) are found in 79% of the 

structures (3947 distinct CSD entries), whereas the remaining 83% (345) of the amines are 

found in just 21% of the structures (1063 entries), see Figure 1.  (Structures containing multiple 

amines preclude an even split.) The gini coefficient is 0.654.   A log probability-log rank plot 

(Figure 1a inset) is consistent with a single power-law generation process, consistent with a 

preferential attachment mechanism.10,11  Similar distributions are observed in the subset of 

metal borates (Extended Data Figure 1).  Unpublished experimental records provide evidence of 

bias in attempted reaction conditions, such as pH and reactant quantities.  Our dark reactions 

database (http://darkreactions.haverford.edu) contains 557 hydrothermal vanadium borate 
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reactions (inspired by the first report in the literature23) consisting of three years of work by three 

students prior to the start of this study.  Human reactions are almost exclusively conducted at 

pH=8, (Figure 2a) with unevenly distributed amine quantities (Figure 2b).   These results are 

consistent with previous work showing that humans often use a one-variable-at-a-time strategy 

to explore reaction conditions, which is both inefficient and is easily trapped in local optima.24  

 

The skewed distributions discussed above are consistent with anthropogenic attention 

heuristics,2 in which experimenters select reactants and reaction conditions that they “know” to 

work from (personal, supervisor, literature) experience. The interplay of shorter-timescale 

communicative memory and longer-timescale cultural memory,11 results in power law 

distributions like  Figure 1. The precise nature of the underlying psychological process is an 

active area of debate,1,2 and distinguishing between competing models is challenging even in 

highly controlled psychological experiment settings.25 For example, aesthetic biases linking 

symmetry with positive affect,26 result in "irrational" affective criterion favoring experimentation 

with symmetric molecules.  Alternatively, humans more easily discriminate and recall symmetric 

three-dimensional objects,27 favoring symmetrical molecules in recall and attention heuristics 

used to create new experiments.2 Both scenarios yield unrepresentative datasets (i.e., datasets 

that are "biased"), despite radically different mechanisms.  Given the many possible types of 

anthropogenic influence and the difficulty of distinguishing them experimentally,25 we instead 

demonstrate the presence of an anthropogenic influence, without assigning a specific 

psychosocial origin, by eliminating alternative explanations.   

 

 Non-anthropogenic factors can be classified following a classical four-fold theory of 

causes.28 Efficient causes are the technical ability to perform the experiments. Hydrothermal 

syntheses have been conducted for over 50 years,9 and the reagent and reaction condition 

choices present no pressure or corrosion resistance challenges. Final causes favor particular 

product materials having desired technological properties.  Because functional diversity follows 

from structural diversity,9 one expects the broadest diversity in the public databases. Material 

causes, specifically reagent availability, were excluded by considering a structurally diverse 

(primary through tertiary amines, and linear, branched, cyclic, and aromatic molecules) set of 55 

commercially available amines containing 27 popular, 16 unpopular, and 12 absent from the 

CSD. All selected amines are commercially available in 5-gram quantities from major suppliers, 

and there is no significant difference in cost (Extended Data Figure 2).  

  

The only remaining non-anthropogenic cause is eliminated by experiment. The formal 

cause is the intrinsic propensity of some reactants and reaction condition choices to yield 

crystals.  For an unbiased assessment, we generated 10 random reactions for each of the 55 

amines described above, by selecting random pH and amine quantities using two independent 

triangular distributions, with the literature precedent as the peak, and physically motivated upper 

and lower bounds.  See Methods section.  The goal is not to efficiently explore the chemical 

space, but rather to establish a neutral estimate of the “reaction cross section” for each amine 

revealing systematic reactivity differences between popular and not-popular amines centered 

around where humans are likely to have attempted to search.  However, we note that random 

choices are often better than human expertise and comparable to more sophisticated numerical 
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methods in fields as diverse as oil exploration,29 chemical reaction discovery,30 and numerous 

social and financial applications.31  

 

Randomized reaction outcomes for popular and not-popular (unpopular and absent) 

amines were ranked using the four-class crystal scoring system described in the Methods 

section, with the stringent criterion where “success” consists only of crystals comparable to 

those used for the CSD data. All four reaction outcomes occur nearly equally in randomly 

chosen reactions for popular and not-popular amines (Figure 3a; similar plots separating 

unpopular and absent outcomes are shown in Extended Data Figure 3).  Therefore, any single 

randomly chosen reaction is equally likely to be successful regardless of popularity.  A typical 

exploratory synthesis campaign will test several variations of a reaction until success is 

achieved or one decides to stop.  Publishable data require only a single success.  We modeled 

this as the observation of success (score = 4) at least once in the set of 10 random experiments 

conducted for each of the 55 amines. At least one success is observed in 17 (63 ± 9%) of the 27 

popular amines and 21 (75 ± 8%) of the 28 not-popular amines (Figure 3b).  There is no support 

for intrinsic reaction propensity difference between popular and not-popular amines.  In fact, 

popular amines were less likely to successfully form crystals than not-popular amines in our 

experiments, but this (one-sided) success rate difference occurs with p = 0.26 in a random 

permutation. Having excluded non-anthropogenic material, efficient, formal, and final causes, 

only an anthropogenic explanation for the observed reactant choice distribution remains. 

 

 

The random reaction outcomes also expose anthropogenic influence in reaction 

condition choices.  Human-selected reactions are biased to lower amine amounts and peaked 

around the literature precedent (Figure 2c). In contrast, we find limited dependence of the 

reaction outcome on amine choice, as the distribution for successful (outcome = 4) and failed 

(outcome = 3, 2, 1) reactions mimics the triangular distribution that generate them.  Human pH 

choices are almost exclusively based on a literature precedent of pH 8. (Figure 2d) Our random 

reactions indicate that although higher pH is (ceteris paribus) more likely to be successful, 

reactions can be successful over a wide range of pH.     

 

Correcting anthropogenic bias improves machine learning models.  We compared 

machine learning models trained on the complete set of (both successful and failed) human-

selected reactions to models trained on these randomly-generated (unbiased) reactions, 

evaluated on a true time-separated holdout test set of 110 additional vanadium borate 

experiments, consisting of 10 randomly-generated reaction conditions for each of 11 amines.  

No test amines were present in either training set.  For the purposes of training, only the 

subsets of the human-generated and random datasets containing the 37 amines common to 

both sets were used, reducing the training set sizes to 467 and 370 reactions, respectively.  

(Our human-generated training set has more diverse amine choices than typically present in the 

literature, as it used amines from our previous diversity-oriented studies.6) Restricting the 

dataset in this way means differences are solely due to reaction condition choices. To give each 

training set the best chance to succeed, a variety of classifiers were tested (logistic regression, 

k nearest neighbors, support vector machines, decision trees, random forests, and Gaussian 
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naive Bayes) and the best performing classifier for each training set was considered. A detailed 

analysis of results is presented in Tables S8-S21, and summarized in Extended Data Table 2. 

The best classifier trained on the human-generated dataset was a k nearest neighbors (k=2) 

with an accuracy of 69% and an AUC of 0.64 on the held-out test set.  The best classifier 

trained by the randomly generated training set was k nearest neighbors (k=5) with an accuracy 

of 79% and an AUC of 0.80.  Thus, the randomly-generated training set outperforms the human-

generated set by all metrics, despite containing 20% fewer reactions.   

 

The performance gain results from better reaction condition sampling, which can be 

established by the average nearest-neighbor distance between reactions (Extended Data Figure 

4).  The average distance to the k-th nearest neighbor within a given training set is greater for 

the randomly generated training set for k>10, indicating that it more comprehensively samples 

the chemical space. Furthermore, the average distance from an experiment in the training set to 

the k-th nearest neighbor in the test set is smaller for the randomly-generated training set for k ≤ 

60, indicating that it allows for better generalization to the test set.  Both factors contribute to the 

randomly-generated experiments being more informative than the human-selected reactions.  

 

Anthropogenic dataset bias obscures chemical insights.  Because the two training sets 

contain the same amines, the dependence of reaction outcomes on amine structural and 

physicochemical property features should be equally well described.  Indeed, the direct 

influence of the features, the contribution of a feature to the difference between the given 

predictions and a mean result,32 is comparable for models built on the different training sets.  In 

contrast, the indirect influence of a feature, estimated by computing the degradation in model 

accuracy when the ability of the model to predict it from the other features is removed,32 is 

linearly correlated, with the exception of 6 features describing the amine properties of solvent 

accessible polar surface area, presence of rings, rotatable bonds, and presence of amidine 

moieties in the organic molecules.  (Extended Data Figure 5) Computationally obscuring these 

features in random-reaction-trained model degrades the model performance, but 

computationally obscuring them in the human-reaction-trained model does not, because 

anthropogenic reaction selection has implicitly obscured these feature contributions. 

 

 Anthropogenic bias hinders the discovery of new materials. Only 41/110 test reactions 

successfully produced a sufficient quality and size crystalline product, and the positive recall 

scores were 46% and 85% for the human- and randomly-generated data models, respectively.  

(Tables S9 & S17) The two models disagree for 23/110 test outcomes, and in every case the 

human model predicts failure whereas the random model predicts success.  The "pessimism" of 

the former is consistent with loss-aversion bias in the human experimental choices.1 When the 

models disagree, it is preferable to trust the model trained on randomly-generated data (which 

correctly predicts 16 true positives) rather than the model trained on human data (which 

correctly predicts 7 true negatives). Furthermore, only 7/11 amines in the test set had at least 

one successful reaction outcome sufficient for discovery of a new material.  The human model 

failed to identify 2/7 of these compounds, whereas the random-data model found at least one 

successful reaction for all 7/7 compounds. Therefore, models trained on the unbiased dataset 
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are both quantitatively and qualitatively better at identifying reaction conditions, and find 

compounds that would otherwise remain undiscovered.   

 

Models trained on anthropogenic data less effectively select new experiments.  We 

generated 10,000 random reactions for each of the 11 test amines.  Predictions by the two 

models agree on 81% of these reactions, including all generated experiments for 3/11 amines.  

For the 8 amines where the models have any disagreement, the human-data model makes 

unique predictions of success for only 2/8 amines, whereas the model trained on unbiased data 

identifies unique positive predictions for all cases.  As a test, we conducted additional laboratory 

syntheses of 10 discrepant positive predictions made by each model for each amine (totaling 

100 additional reactions). For the two amines where both models made different positive 

predictions, the anthropogenic data model was slightly more successful (16/20 positives found) 

than the model trained on random experiments (12/20).  However, for the other 6 amines in 

which only the randomly-generated data model made unique positive predictions, at least one 

successful reaction was observed in all cases. The relatively low (43%) aggregate precision is 

because these are more speculative reactions where the models are less confident about the 

outcome; precision increases with the predicted model probability and is as high as 80%. 

(Extended Data Table 4 and Supplementary Tables S22 and Figures S1-S2 contain a complete 

analysis of the laboratory and computational results.) This confirms that models trained on data 

without anthropogenic bias better identify reaction success over a broader range of reactant and 

reaction condition choices.   

 

Our results indicate the importance of including reactions that humans ordinarily do not 

choose, for example by designing experiments with structured randomness. A simple process of 

(i) listing all experimental options, (ii) defining distributions that exclude impossible (based on 

known physical considerations such as solubility or protonation state) or or practically infeasible 

(e.g., costs and safety) choices, and then (iii) randomly sampling from those distributions 

removes anthropogenic bias, is at least as successful as human choices, and greatly improves 

the value of the resulting datasets for machine learning.  Ongoing efforts using anthropogenic 

data to plan chemical syntheses5-7 should consider this potential limitation. 
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Methods 

 

Data capture from experiment.  Data capture from historical notebooks and from new 

experiments conducted in this study follows the procedure described in our previous work,6  and 

includes compositional information (reactant identities and quantities), categorized by type 

(organic/inorganic/solvent), reaction conditions (e.g., pH, temperature, time), and reaction-

outcome.  Reaction outcomes are coded qualitatively based on crystal size, using labels 1 for 

no solid product, 2 for an amorphous solid, 3 for a polycrystalline sample or 4 for single crystals 

with average crystallite dimensions exceeding approximately 0.01 mm. This size corresponds to 

the general requirements for standard single-crystal X-ray diffraction data collection. To 

eliminate measurement bias, students performing reactions and scoring crystal outcomes were 

unaware of whether the reagents were "popular" or "not popular". A machine readable collection 

of all experimental data is provided in the Supplementary Information files. 

 

Analysis of published crystal structure.  Amine-templated metal oxides were extracted from 

the Cambridge Structural Database (CSD)33 by stipulating both inclusion and exclusion criteria.  

The inclusion criteria were used to dictate the presence of an oxide, metal oxide or metal borate 

substructure, in addition to an organic amine. (Defined in Extended Data Table 1.) The 

exclusion criteria were used to remove structures with bonding motifs that fall outside the 

targeted family of compounds for this work.  This results in 7630 oxides, 4870 metal-oxides, and 

115 metal borates.  Analysis of the metal-oxides data is presented in the article; parallel 

analysis of the metal borates is described in the Extended Data Figure 1.  We initially attempted 

to extract the organic components from the 3D structure, but the presence of structural disorder 

makes this ambiguous.  The 2D structure diagrams are not publicly available through the CSD 

API.  Therefore, we parsed the systematic names to identify the amine component.  Excluded 

names were manually curated, and 43 typographical errors in the CSD entries were 

communicated to the maintainers.  A strict definition of “organic amines” was used, which 

includes only molecules comprised of solely C, H, and N, and no nitriles, azo, diazo, or 

diazonium compounds.  After performing these exclusions, 6458 oxides, 4152 metal-oxides, 

and 109 metal borate structures remained.  The amine names were resolved to canonical 

SMILES strings using the CACTUS Chemical Identity Resolver 

(https://cactus.nci.nih.gov/chemical/structure), and then converted to neutral molecules and 

canonicalized using RDKit.34  CACTUS was also used to generate InChI and InChIKey strings.  

The Python Jupyter notebooks used to perform this process, along with the inputs and 

intermediate outputs, are provided in the Supplementary Information files. 

 

Pricing.  Amine pricing information was collected by searching the Sigma-Aldrich website in 

November 2018.  Pricing and sample size data were collected for the smallest sample size 

available, assuming that the sample size was at least 5 g.  Pricing data were collected for all 

amines using the triangle reactions and the test set amines.  No amines were backordered on 

the day data were collected.   

https://dx.doi.org/10.1038/s41586-019-1540-5
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Generation of random reactions.  Randomized reactions were generated by sampling from 

triangular distributions for the reaction pH and amine mole amounts.  The triangular distribution 

for pH was chosen with minimum and maximum values of 1 and 8.49, with a mode of pH 8, and 

then rounded to the nearest integer. (The pH is not easily set below 0 and basic conditions will 

not protonate the amines.)  The triangular distribution for amine mole amounts was chosen with 

minimum and maximum values of 0.5 mmol to 10 mmol, with a mode of 5 mmol.  (Amine 

quantity cannot go below zero and cannot go above a conservative solubility limit chosen for all 

amines.)  Conversion of amine moles to masses was performed using molecular weights from 

PubChem.  The Mathematica notebook used to perform these calculations is provided in the 

Supplementary Information files.   

 

Hydrothermal synthesis.  All reactions were conducted under mild hydrothermal conditions, in 

23-mL poly(fluoroethylene-propylene)-lined pressure vessels. All reactions were specified for 

0.31 g H3BO3, 0.083 g VOSO4 · x H2O, 6.0 g H2O, and the amine mass drawn from the above 

distribution.  The reactions were adjusted to the pH specified by the above distribution using 

either 4 M HCl or 4 M NaOH (as determined by pH paper).  Reaction mixtures were heated to 

90 °C for 24 hours.  Pressure vessels were opened in air after reaction and products were 

recovered through filtration. Objective metrics (measured crystallite size and powder X-ray 

diffraction) were used to score reaction outcomes, as described in the Data Capture section 

above. 

 

Statistical analysis of experimental outcomes.  Standard deviations and p-values were 

assigned by numerical 10,000-sample bootstrapping and permutation.  The Mathematica 

notebook used to perform these calculations is provided in the Supplementary Information files.  

No statistical methods were used to predetermine experimental sample size.   

 

Machine-learning model construction. Only a single set of inorganic reactants were used for 

all reactions in this study, and only a single organic reactant used per reaction.  Therefore, only 

a subset of the reaction descriptors from our previous work6 was used in this study.  These 

three categories include reaction parameters (e.g., temperature, pH), physicochemical and 

structural features of the organic component, and stoichiometric ratios.  Structural and 

physicochemical properties of the organic species were computed using RDKit 2018.03.435 and 

the ChemAxon Calculator Plugins.35 Tables S1-S7 contain a complete description of features.   

 

Feature selection was performed to choose the top 5, 10, and 20 features for both training sets 

using two methods; an F-test-based estimate and a mutual information-based estimate of the 

feature importances.  The feature sets containing all features as well as all features with positive 

variance were also considered.  The full set of considered models were trained on each of these 

feature sets for both the human and the randomly-generated training sets.  As described in the 

main text, the full feature set had the top performance model based on accuracy.  A 5-feature F-

test-based feature set had the highest AUC (0.69), but lower accuracy (0.63), of the human-set-

trained models.  In general, the human-set-trained models performed very poorly: many had an 

accuracy of around 0.5. The full results of the feature selection trials can be found in Extended 

https://dx.doi.org/10.1038/s41586-019-1540-5
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Data Table 3.  All models were implemented in Python 3.7.3 using Scikit-Learn 0.19.1;44 model-

specific details and implementations can be found in the Supplementary Information files. 

 

Direct and indirect feature influence analysis.  The direct influence of each feature, a 

Shapely-value-based approximation of the contribution of a feature to the deviation of 

predictions from the mean, was computed using SHapley Additive exPlanations (SHAP, 

specifically the Kernel SHAP approximation).37,38   The indirect influence of each feature was 

calculated using the BlackBoxAuditing code32, 39 in order to measure each feature’s contribution 

to model accuracy even when it is not directly used in the model.  This influence is estimated by 

obscuring a feature so it cannot be predicted by the other features and measuring the drop in 

model accuracy when the values are obscured in this way. These calculations were performed 

for the most accurate models trained on the human and randomly-generated training sets.  

Comparison plots are shown in Extended Data Figure 5.  

 

Data availability.  The authors declare that all data supporting the findings of this study are 

available within the article and its Supplementary Information files. 

 

Code availability.  The code used for this project is available in the Supplementary Information 

files. 
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Legends for Extended Data Figures 

Extended Data Table 1 | Structure inclusion and exclusion criteria.  Structures were 

identified in the Cambridge Structure Database (CSD) using a combination of inclusion and 

exclusion criteria.   The inclusion criteria, shown above, were created to be inclusive, while still 

returning appropriate structure.  Bond orders were left unspecified to above unintended 

exclusions.  The labels ‘X’ and ‘4M’ represent ‘any atom type’ and ‘any metal’, respectively. The 

three exclusion groups were constructed to exclude more complex structures in the organic 

amines and bonding to the metals centers through atoms other than oxygen.  The structures in 

each compound class (oxides, metal oxides, metal borates) were identified by conducting three 

distinct searches, each of which included the inclusion group and one of the exclusion groups.  

The resulting three datasets were merged so that only the structures present in all three 

datasets were retained.   

 

Extended Data Figure 1 | Cambridge Structural Database (CSD) search results for 

templated metals borates.  a, a plot of the number of unique structures for each amine, 

ordered from the amine with the fewest structures to the most.  b, a plot of cumulative 

probability vs amine proportion.  The grey rectangle represents the Pareto split. 

 

Extended Data Figure 2 | Amine price and availability.  a, Amine price vs quantity for 

randomized reaction amines.  Data are separated by amine popularity (popular, unpopular or 

absent).  Amines used in the test set experiments are also included. b, Amine pricing information 

for randomized reaction amines.  Price per gram values were calculated assuming amine 

densities of 1 g mL-1.  The data presented in the figures above suggest that there is no significant 

different in amine prices between the popular, unpopular and absent amines.  Additionally, the 

amine pricing distribution for the test set amines is similar to the other distributions, suggesting a 

representative sample of amines.  

 

Extended Data Figure 3 | Outcome probabilities for not-popular, unpopular and absent 

organic amines. 

 

Extended Data Figure 4 | Average nearest-neighbor distances in the datasets and 
nearest-neighbor choices on model performance. a, Average distances to the kth nearest 
neighbor within training set. b, Average distances to the kth nearest neighbor within test set. c, 
AUC on kNN classifier for k=1 to 100.  
 

Extended Data Figure 5 | Direct and indirect feature influence comparison. a, Direct 
descriptor influence values in the human reaction test set versus the random reaction test set. 
b, Indirect descriptor influence values in the human reaction test set versus the random reaction 
test set. 
 

Extended Data Table 2 |  Matthews correlation coefficient (MCC), accuracy and AUC 

results for each machine learning algorithm, trained on either the human or triangle test 

set using all features. 
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Extended Data Table 3 | Feature selection comparison.  a, Top 5, b, top 10 and c, top 20 

features using ANOVA F-values for the human and randomized reaction test sets. 

 

Extended Data Table 4 | Comparison of discrepancies between model predictions and 

reaction outcomes.  10,000 random reactions were generated for each amine.  The first 

column in Table S29 indicates the number of discrepancies between the predictions of the two 

models.  Subsequent columns show the number of those discrepancies predicted to be positive 

by the respective model (top line), and of those positive predictions the 10 reactions with the 

lowest model uncertainty were selected and performed in the laboratory.  The successful 

outcomes are indicated as a fraction in parentheses (number successful/number trials). For 

amines where no positive predictions are made, no tests were performed, indicated by (—). 
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Figure 1.  Amine occurrence in reported metal oxide crystal structures.  (a) Number of 

crystals structures observed, sorted by the amine’s rank.  The inset shows the same data as a 

log probability-log rank plot. (b) Cumulative probability of structures as a function of the 

proportion of unique amines, ordered from those with the most structures (and highest 

probability) to the least).  The shaded region represents the Pareto split, in which 17% of 

amines comprise 79% of the structures. 

 

Figure 2. Distribution of reaction parameter choices and outcomes.  The distribution of 
reaction parameters ((a) reaction pH and (b) amine mmol).  Blue indicates the distribution of 
human-selected reactions taken from a historical dataset of 557 reactions; grey indicates the 
triangular distribution defined for generating random experiments; orange indicates the 
distribution of the 548 random reactions performed in this study. Distributions of reaction 
outcomes, based upon (c) reaction pH and (d) amine mmol.  Successful reaction outcomes are 
indicated by green and failure indicated by red, for the randomly generated reactions performed 
in this study. 
 

Figure 3.  Reaction outcomes from randomly-generated experiments, separated by 

‘popular’ and ‘not-popular’ (unpopular and absent) amines.  (a) Probability of each outcome 

on a per reaction basis, using the outcome scale described below.  (b) Probability of observing 

at least one successful reaction (success) or not (failure) for a given amine.  Error bars indicate 

bootstrap estimate of the standard deviation.   
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distribution of the 548 random reactions performed in this study. Distributions of reaction 
outcomes, based upon (c) reaction pH and (d) amine mmol.  Successful reaction outcomes 
are indicated by green and failure indicated by red, for the randomly generated reactions 
performed in this study. 
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Figure 3.  Reaction outcomes from randomly-generated experiments, separated by 
‘popular’ and ‘not-popular’ (unpopular and absent) amines.  (a) Probability of each 
outcome on a per reaction basis, using the outcome scale described below.  (b) Probability of 
observing at least one successful reaction (success) or not (failure) for a given amine.  Error 
bars indicate bootstrap estimate of the standard deviation.  
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Inclusion group 1 Inclusion group 2 Inclusion group 3 
Oxides Metal oxides Metal borates 

 

 
 

 

 

 

 

   
 Exclusion groups  

Group 1 Group 2 Group 3 
4M ··· C O ··· C ··· N O ··· S ··· N 
4M ··· N O ··· C ··· C ··· N O ··· S ··· C 

O ··· C ··· C ··· C O ··· C ··· C ··· C ··· N S ··· C ··· N 
4M ··· 4M O ··· C ··· C ··· C ··· C ··· N P ··· C ··· N 
4M ··· P P ··· C ··· O P ··· C ··· C ···N 

 P ··· C ··· C ··· O P ··· C ··· C ··· C ··· N 
 P ··· C ··· C ··· C ··· O P ··· C ··· C ··· C ··· C ··· N 

 
 
Extended Data Table 1 | Structure inclusion and exclusion criteria. Structures were identified 
in the Cambridge Structure Database (CSD) using a combination of inclusion and exclusion 
criteria.   The inclusion criteria, shown above, were created to be inclusive, while still returning 
appropriate structure.  Bond orders were left unspecified to above unintended exclusions.  The 
labels ‘X’ and ‘4M’ represent ‘any atom type’ and ‘any metal’, respectively. The three exclusion 
groups were constructed to exclude more complex structures in the organic amines and bonding 
to the metals centers through atoms other than oxygen.  The structures in each compound class 
(oxides, metal oxides, metal borates) were identified by conducting three distinct searches, each 
of which included the inclusion group and one of the exclusion groups.  The resulting three 
datasets were merged so that only the structures present in all three datasets were retained.    
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Extended Data Figure 1 | Cambridge Structural Database (CSD) search results for 

templated metals borates.  a, a plot of the number of unique structures for each amine, 

ordered from the amine with the fewest structures to the most.  b,  a plot of cumulative 

probability vs amine proportion.  The grey rectangle represents the Pareto split.  
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Extended Data Figure 2| Amine price and availability.  a, Amine price vs quantity for 

randomized reaction amines.  Data are separated by amine popularity (popular, unpopular or 

absent).  Amines used in the test set experiments are also included. b, Amine pricing information 

for randomized reaction amines.  Price per gram values were calculated assuming amine 

densities of 1 g mL-1.  The data presented in the figures above suggest that there is no significant 

different in amine prices between the popular, unpopular and absent amines.  Additionally, the 

amine pricing distribution for the test set amines is similar to the other distributions, suggesting a 

representative sample of amines.  
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Extended Data Figure 3 | Outcome probabilities for not-popular, unpopular and absent 

organic amines. 
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Extended Data Figure 4 | Average nearest-neighbor distances in the datasets and 
nearest-neighbor choices on model performance. a, Average distances to the kth nearest 
neighbor within training set. b, Average distances to the kth nearest neighbor within test set. c, 
AUC on kNN classifier for k=1 to 100.  
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Extended Data Figure 5 | Direct and indirect feature influence comparison. a, Direct 
descriptor influence values in the human reaction test set versus the random reaction test set. 
b, Indirect descriptor influence values in the human reaction test set versus the random reaction 
test set. 
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 Classifier Logistic 
regression 

kNN        
(k = 
2) 

kNN        
(k = 
5) 

Linear 
SVM 
(C = 1) 

Decision 
tree 

Random 
forest 

Naïve 
Bayes 

MCC Human -0.17 0.31 0.01 -0.02 0.11 -0.01 0.16 
 Triangle 0.25 0.35 0.59 -0.01 -0.04 0.22 0.16 
         
Accuracy Human 0.44 0.69 0.51 0.53 0.50 0.51 0.63 
 Triangle 0.59 0.71 0.79 0.49 0.47 0.61 0.57 
         
AUC Human 0.41 0.64 0.50 0.49 0.55 0.49 0.57 
 Triangle 0.62 0.66 0.80 0.50 0.48 0.61 0.58 

 
Extended Data Table 2 |  Matthews correlation coefficient (MCC), accuracy and AUC 

results for each machine learning algorithm, trained on either the human or triangle test 

set using all features. 

 
 

 

 

   

https://dx.doi.org/10.1038/s41586-019-1540-5


 

Accepted Manuscript for: Anthropogenic biases in chemical reaction data hinder exploratory 
inorganic synthesis” Nature 573, 251-255 (2019) doi:10.1038/s41586-019-1540-5 

a Top 5  
Human  Randomized 
_feat_bpKa1 _rxn_pH 
_feat_bpKa2 _feat_bpKa1 
_feat_RotatableBondCount _feat_donsitecount 
_feat_LengthPerpendicularToTheMinArea _feat_fr_NH2 
_feat_ASA_P _calc_pbKaUnderPhCount 

 

b Top 10  
Human  Randomized 
_feat_bpKa1 _rxn_pH 
_feat_bpKa2 _feat_bpKa1 
_feat_ChiralCenterCount _feat_bpKa2 
_feat_RotatableBondCount _feat_RingAtomCount 
_feat_MaximalProjectionRadius _feat_CyclomaticNumber 
_feat_LengthPerpendicularToTheMinArea _feat_PolarSurfaceArea 
_feat_ASA_P _feat_donsitecount 
_feat_PolarSurfaceArea _feat_fr_NH2 
_feat_donorcount _feat_fr_NH0 
_feat_donsitecount _calc_pbKaUnderPhCount 

 

c Top 20  
Human  Randomized 
_raw_VOSO4xH2O/g _raw_H3BO3/g 
_raw_VOSO4xH2O_Mol _rxn_pH 
_feat_AtomCount_N _feat_bpKa1 
_feat_bpKa1 _feat_bpKa2 
_feat_bpKa2 _feat_AromaticRingCount 
_feat_Aliphatic AtomCount _feat_AromaticAtomCount 
_feat_ChiralCenterCount _feat_ChainAtomCount 
_feat_RotatableBondCount _feat_RingAtomCount 
_feat_HyperWienerIndex _feat_SmallestRingSize 
_feat_WienerIndex _feat_LargestRingSize 
_feat_MaximalProjectionRadius _feat_fsp3 
_feat_LengthPerpendicularToTheMinArea _feat_HeteroaromaticRing Count 
_feat_ASA+ _feat_CyclomaticNumber 
_feat_ASA_P _feat_PolarSurfaceArea 
_feat_PolarSurfaceArea _feat_donorcount 
_feat_acceptorcount _feat_donsitecount 
_feat_Accsitecount _feat_fr_NH2 
_feat_donorcount _feat_fr_NH0 
_feat_donsitecount _feat_fr_pyridine 
_feat_fr_NH2 _calc_pbKaUnderPhCount 

 

Extended Data Table 3 | Feature selection comparison.  a, Top 5, b, top 10 and c, top 20 

features using ANOVA F-values for the human and randomized reaction test sets. 
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Amine Discrepant 
predictions 
(of 10,000) 

Discrepancies 
predicted positive by 
randomly-generated 
data model 

Discrepancies 
predicted positive 
by human-data 
model 

Homopiperazine 
(1,4-diazepane) 

1940 1940 
(1/10) 

0 
(—) 

N, N, N', N'-tetramethyl-1,3,-
diaminobutane 

5404 5190 
(8/10) 

214 
(8/10) 

1,4-Dimethylpiperazine 1390 344 
(4/10) 

1046 
(8/10) 

Ethylenediamine 478 478 
(3/10) 

0 
(—) 

N-(2-aminoethyl)piperidine 3404 3404 
(1/10) 

0 
(—) 

2,2-Dimethylpropane-1,3-
diamine 

0 0 
(—) 

0 
(—) 

2-methyl-1H-imidazole 
 

3088 3088 
(4/10) 

0 
(—) 

4-Methylpiperazin-1-amine 0 0 
(—) 

0 
(—) 

N,N,N',N'-tetramethylhexane-
1,6-diamine 

3373 3373 
(8/10) 

0 
(—) 

1,3-Diiminoisoindoline 1948 1948 
(9/10) 

0 
(—) 

2-Methylpyrazine 0 0 
(—) 

0 
(—) 

 

Extended Data Table 4 | Comparison of discrepancies between model predictions and 

reaction outcomes.  10,000 random reactions were generated for each amine.  The first 

column in Table S29 indicates the number of discrepancies between the predictions of the two 

models.  Subsequent columns show the number of those discrepancies predicted to be positive 

by the respective model (top line), and of those positive predictions the 10 reactions with the 

lowest model uncertainty were selected and performed in the laboratory.  The successful 

outcomes are indicated as a fraction in parentheses (number successful/number trials). For 

amines where no positive predictions are made, no tests were performed, indicated by (—). 
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Figures 

Figure S1.  t-Distributed Stochastic Neighbor Embedding (t-SNE) plot comparing human and 

randomly-generated training set data. 

Figure S2.  t-SNE plot of the expanded test data and predicted outcomes. 

 

 

Tables 

Table S1.  Dataset prefix descriptions. 

Table S2.  Explanation of _raw_ columns. 

Table S3. Explanation of _rxn_ columns. 

Table S4. Explanation of _out_ columns.  

Table S5. Explanation of _feat_ descriptors. 

Table S6.  Explanation of calculated _feat_fr descriptors. 

Table S7. Explanation of _calc_ descriptors. These columns contain descriptors whose values are 

obtained by performing a calculation on the _raw_, _rxn_ or _feat_ descriptors. 

Table S8.  Logistic regression machine learning results for the human test set. 

Table S9.  kNN (N = 2) machine learning results for the human test set. 

Table S10.  kNN (N = 5) machine learning results for the human test set. 

Table S11.  SVC machine learning results for the human test set. 

Table S12.  Decision tree machine learning results for the human test set. 

Table S13.  Random forest machine learning results for the human test set. 

Table S14.  Gaussian NB machine learning results for the human test set. 

Table S15.  Logistic regression machine learning results for the random reaction test set. 

Table S16.  kNN (N = 2) machine learning results for the random reaction test set. 

Table S17.  kNN (N = 5) machine learning results for the random reaction test set. 

Table S18.  SVC machine learning results for the random reaction test set. 

Table S19.  Decision tree machine learning results for the random reaction test set. 

Table S20.  Random forest machine learning results for the random reaction test set. 

Table S21.  Gaussian NB machine learning results for the random reaction test set. 

Table S22.  Observed outcomes on the discrepant laboratory tests based on predicted model 

probabilities.  All performed reactions were predicted by the model to have an outcome of 4 

("success", defined as single crystal product with average crystallite dimensions exceeding 0.01 

mm) 
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Contents of the Electronic Supplementary Information File 

1 Data capture/ 

human_borates_tabdelim_20180904.tsv     

triangle_borates_tabdelim_20181115.tsv 

test_borates_tabdelim_20180904.tsv 

discrepant_borates_20190419.tsv 

 

2 Analysis of published results/ 

01 CCDC Smiles File.html 

01 CCDC Smiles File.ipynb 

01x CCDC Clean Check.html 

01x CCDC Clean Check.ipynb 

02 Popularity Files.html 

02 Popularity Files.ipynb 

03 Outcomes.html 

03 Outcomes.ipynb 

04 Graphs.html 

04 Graphs.ipynb 

Data/ 

Outputs/ 

x Smiles Images.html 

x Smiles Images.ipynb 

 

3 Pricing data/ 

Amine pricing data.xlsx 

 

4 Generation of random reactions/ 

4 Generation of random reactions.nb 

 

5 Statistical analysis/ 

5 Statistical analysis.nb 

 

6 Machine learning/ 

6 Distance data.xlsx 

6 Feature selection summary tables.xlsx 

6 Influence data.xlsx 

human_k2_accuracy_direct.csv 

human_k2_accuracy_indirect.csv 

ml_analysis.py 

ml_analysis_unformatted_output.txt 

ml_preprocessing_notes.txt 

preprocessed_human.csv 

preprocessed_test.csv 

preprocessed_triangle.csv 

triangle_k5_accuracy_direct.csv 

triangle_k5_accuracy_indirect.csv 
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7 Tests of discrepant reactions/ 

Possible Reactions/ 

proposed_experiments_on_most_discrepent_outcomes_20190328.csv 
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Explanation of Dataset Columns 

 

Descriptions for dataset columns, prefixes and descriptors are described below.  Tables are 

provided for each information class. 

 

Table S1.  Dataset prefix descriptions. 

Dataset prefix Description 

_raw_  

 

Raw data associated with the experiment that was performed.  
Combined with the other header prefixes, these columns describe the 
complete set of all data acquired during an experimental run.  

_feat_ ,  _rxn_ , _calc_ 

 

These descriptors describe molecular properties, reaction conditions, 
and derived calculated features (e.g., mole ratios). More elaborated 
descriptions can be found below for individual headers.  

out_ Experimental outcomes.  These are the outputs to predict.   

 

In general, all values should be assumed to be real numbers, unless indicated otherwise. 
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Table S2.  Explanation of _raw_ columns. 

Descriptor name Description 
_raw_Reaction number Reference to (paper) laboratory notebook.  Format:  Initials of 

experimenter, followed by a page number, period delimiter, and 
reaction number written on that page. (string) 
 

_raw_H3BO3/g Mass of boric acid reactant in grams  
 

_raw_VOSO4xH2O/g Mass of vanadyl sulfate hydrate reactant in grams  
 

_raw_Amine/g Mass of amine reactant in grams.  Note that some amines are 
purchased as ammonium salts; this is the mass of the salt used. 

_raw_name Laboratory abbreviation or name of amine (string) 
_raw_SMILES Simplified molecular-input line-entry system (SMILES) string 

describing the amine reactant as used.  This is used for 
computation of molecular weights and resulting computations of 
mole amounts. (string) 

_raw_SMILES.nosalt SMILES string containing only the organic component, with 
counterions removed.  This is used for computing amine 
cheminformatic properties (string) 

_raw_Amine_Mol Moles of amine reactant 
_raw_VOSO4xH2O_Mol Moles of vanadyl sulfate hydrate, obtained by assuming a nominal 

molecular weight of 181.011 g/mol.  (This is sold without a 
specification of the precise degree of hydration) 

_raw_H3BO3_Mol Moles of boric acid  
_raw_Types of Experiment 
(Human; Triangle; etc...) 

Categories used to separate data.  “Human” are historical 
reactions devised by humans.  “Triangle” are random reactions 
generated according to the triangular probability distribution 
described in the Methods section. (string) 

_raw_Notes Comments about performance of the reaction. (string) 
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Table S3. Explanation of _rxn_ columns. 

Descriptor name Description 
_rxn_H2O/g Mass of water reactant added in grams  
_rxn_pH pH of reaction, as described in the Methods section.  (integer) 
_rxn_Synthesis_Method Description of synthesis method.  All reactions considered in this 

study were performed under “Hydrothermal” conditions. (string) 
_rxn_Oven 
Temperature/C 

Temperature used for the reaction in Celsius.  All new reactions 
performed in this study were performed at 90 °C, as described in the 
Methods section.  Historical reactions may contain other values. 
(integer) 

_rxn_Aging Time/hrs Duration of the heating in hours. All new reactions performed in this 
study were performed for 24 hours, as described in the Methods 
section. Historical reactions may contain other values.  (integer)   

_rxn_Vessel Size/mL Volume of the reaction vessel used in milliliters.  All reactions 
considered this study were performed using 23 mL PTFE sleeves, as 
described in the Methods sections.   (integer) 

 

Table S4. Explanation of _out_ columns.  

Descriptor name Description 
_out_Outcome Crystal size and quality outcome score, as described in the 

Methods section.  This is the target variable predicted by the 
machine learning models created in this study. (integer) 

_out_Purity Denotes whether the solid product produced contains one phase 
or more than one phase.  This data was recorded but was not used 
in this study.  (integer) 
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Explanation of _feat_ descriptors 

The _raw_, _rxn_, and _out_ columns described above describe the laboratory process and its 

observable outcomes.  In contrast, the _feat_ descriptor columns are computed properties of 

the amines.   

The following descriptors were computed using the cxcalc 5.2.0 JChem calculators.  Unless 

noted otherwise, the suffix corresponds to the name of the descriptor used by cxcalc, as 

described in the online documentation: 

https://docs.chemaxon.com/display/docs/cxcalc+calculator+functions 

Table S5. Explanation of _feat_ descriptors. 

Descriptor name Description 
_feat_Mass Molecular mass of _raw_SMILES (possibly a salt)  
_feat_Mass_Nosalt Molecular mass of _raw_SMILES.nosalt (amine 

only as neutral species without counterions)  
_feat_AtomCount_C 
(atomcount -z 6) 

Number of carbon atoms.  (integer) 

_feat_AtomCount_N 
(atomcount -z 7) 

Number of nitrogen atoms.  (integer) 

_feat_AvgPol Average molecular polarizability (at _rxn_pH)   
_feat_MolPol Molecular polarizability (at _rxn_pH)  
_feat_Refractivity Computed refractivity  
_feat_isoelectric 
(isoelectricpoint) 

Isoelectric point of the molecule  

_feat_apKa1 
(pka –a 2) 

First acidic pKa value.  Subsequent columns are 
the subsequent entries in the returned list.  

_feat_apKa2 
 

Second acidic pKa value… 

_feat_bpKa1 
(pka –b 4) 

First basic pKa value. Subsequent columns are the 
subsequent entries in the returned list.  

_feat_bpKa2 Second basic pKa value… 
_feat_bpKa3 Third… 
_feat_bpKa4 Fourth… 
_feat_AliphaticRingCount Number of aliphatic rings (integer) 
_feat_AromaticRingCount Number of aromatic rings (integer) 
_feat_Aliphatic AtomCount Number of aliphatic atoms in the molecule 

(integer) 
_feat_AromaticAtomCount Number of aromatic atoms in the molecule 

(integer) 
_feat_BondCount Number of bonds in the molecule (integer) 
_feat_CarboaliphaticRingCount Number of aliphatic rings comprised solely of 

carbon atoms (integer) 
_feat_CarboaromaticRingCount Number of aromatic rings comprised solely of 

carbon atoms (integer) 
_feat_CarboRingCount Number of rings comprised solely of carbon atoms 

(integer) 
_feat_ChainAtomCount Number atoms that are part of chain (not part of a 

ring) (integer) 
_feat_ChiralCenterCount Number of tetrahedral stereogenic centers 

(integer) 
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_feat_RingAtomCount Number of atoms that are part of a ring (not part 
of a chain) (integer) 

_feat_SmallestRingSize Number of members in the smallest ring (integer) 
_feat_LargestRingSize Number of members in the largest ring (integer) 
_feat_fsp3 Fraction of sp3 carbons (Fsp3 value)  
_feat_HeteroaliphaticRingCount Number of heteroaliphatic rings (integer) 
_feat_HeteroaromaticRingCount Number of heteroaromatic rings (integer) 
_feat_RotatableBondCount Number of rotatable bonds (integer) 
_feat_BalabanIndex Balaban molecular graph index 
_feat_CyclomaticNumber Cyclomatic number of molecular graph 
_feat_HyperWienerIndex Hyper Wiener Index of molecular graph 
_feat_WienerIndex Wiener Index of molecular graph 
_feat_WienerPolarity Wiener Polarity of molecular graph 
_feat_MinimalProjectionArea Minimal projection area 
_feat_MinimalProjectionRadius Minimal projection radius 
_feat_MinimalProjectionRadius Minimal projection radius 
_feat_MaximalProjectionRadius Maximal projection radius 
_feat_LengthPerpendicularToTheMinArea 
(minimalprojectionsize) 

Length perpendicular to the minimal projection 
area 

_feat_LengthPerpendicularToTheMaxArea 
(maximalprojectionsize) 

Length perpendicular to the maximum projection 
area 

_feat_VanderWaalsVolume 
(volume) 

van der Waals volume of the molecule 

_feat_VanderWaalsSurfaceArea 
(vdwsa) 

van der Waals surface area of the molecule 

_feat_ASA 
(asa -H  _rxn_pH) 

Water accessible surface area of the molecule, 
computed at _rxn_pH 

_feat_ASA+ 
(molecularsurfacearea -t ASA+ -H _rxn_pH) 

Water accessible surface area of all atoms with 
positive partial charge,computed at _rxn_pH 

_feat_ASA- 
(molecularsurfacearea -t ASA- -H _rxn_pH) 

Water accessible surface area of all atoms with 
negative partial charge,computed at _rxn_pH 

_feat_ASA_H 
(molecularsurfacearea -t ASA_H -H 
_rxn_pH) 

Water accessible surface area of all hydrophobic 
atoms with positive partial charge,computed at 
_rxn_pH 

_feat_ASA_P 
(molecularsurfacearea -t ASA+P -H 
_rxn_pH) 

Water accessible surface area of all polar atoms 
with positive partial charge,computed at _rxn_pH 

_feat_PolarSurfaceArea 
(polarsurfacearea -H  _rxn_pH) 

2D Topological polar surface area, computed at 
_rxn_pH 

_feat_acceptorcount 
(acceptorcount -H _rxn_pH) 

Hydrogen bond acceptor atom count in molecule, 
computed at _rxn_pH 

_feat_Accsitecount 
(acceptorsitecount -H _rxn_pH) 

Hydrogen bond acceptor multiplicity in molecule, 
computed at _rxn_pH 

_feat_donorcount 
(donorcount -H _rxn_pH) 

Hydrogen bond donor atom count in molecule, 
computed at _rxn_pH 

_feat_donsitecount Hydrogen bond donor multiplicity in molecule, 
computed at _rxn_pH 

_feat_sol 
(solubility -H _rxn_pH) 

Aqueous solubility (logS) computed at _rxn_pH 
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In addition, a series of descriptors describing the number of functional-group fragments _feat_fr_ 

were computed.  Because of the strict definition of amines described in the Methods section, only 

functional groups related to amines are considered.  These are determined from the molecular 

graph, using the SMARTS patterns described in  RDKit 2018.03.4.  These are all integer values. 

 

http://www.rdkit.org/Python_Docs/rdkit.Chem.Fragments-module.html 

 

https://dx.doi.org/10.1038/s41586-019-1540-5
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Table S6.  Explanation of calculated _feat_fr descriptors. 

 

Descriptor name Description 
_feat_fr_NH2 Number of primary amines  
_feat_fr_NH1 Number of secondary amines 
_feat_fr_NH0 Number of tertiary amines 
_feat_fr_quatN Number of quaternary amines 
_feat_fr_ArN Number of N functional groups attached to aromatics 
_feat_fr_Ar_NH Number of aromatic amines 
_feat_fr_Imine Number of imines 
_feat_fr_amidine Number of amidine groups 
_feat_fr_dihydropyridine Number of dihydropyridines 
_feat_fr_guanido Number of guanidine groups 
_feat_fr_piperdine Number of piperidine rings 
_feat_fr_piperzine Number of piperzine rings 
_feat_fr_pyridine Number of pyridine rings 

 

 

Table S7. Explanation of _calc_ descriptors. These columns contain descriptors whose values 

are obtained by performing a calculation on the _raw_, _rxn_ or _feat_ descriptors. 

Descriptor name Description 
_calc_Amine_H3BO3_MolRatio Amine:boric acid mole ratio 

_raw_Amine_Mol / _raw_H3BO3_Mol 
_calc_VOSO4xH2O_H3BO3_MolRatio Vanadyl sulfate hydrate:boric acid mole ratio,  

(_raw_VOSO4xH2O_Mol) / (_raw_H3BO3_Mol) 
_calc_VOSO4xH2O_H3BO3_MassRatio Vanadyl sulfate hydrate:boric acid mass ratio 

(_raw_VOSO4xH2O/g) / (_raw_H3BO3/g)  
_calc_AmineConc Amine concentration (as molarity) computed by 

moles  Amine divided by volume of water. 
(1000*raw_Amine_Mol / _rxn_H2O/g) 

_calc_avgNitrogenVDWVol van der Waals volume per nitrogen atom  
( _feat_VanderWaalsVolume / _feat_AtomCount_N ) 

_calc_avgNitrogenVDWSurface van der Waals surface area per Nitrogen atom 
( _feat_VanderWaalsSurfaceArea / 
_feat_AtomCount_N ) 

_calc_CarbonNitrogenRatio C:N atom count ratio,  
(_feat_AtomCount_C / _feat_AtomCount_N ) 

_calc_avgNitrogenWaterAssessSurface Water accessible surface area per Nitrogen atom 
(_feat_ASA / _feat_AtomCount_N ) 
  

_calc_pbKaUnderPhCount Number of pKb values that are less than _rxn_pH 
(integer) 
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Human data 

Table S8.  Logistic regression machine learning results for the human test set. 

 Precision Recall f1-score Support 
False 0.56 0.51 0.53 69 
True 0.28 0.32 0.30 41 

average/ total 0.45 0.44 0.44 110 
     
 TN 35 FN 28 
 TP 13 FP 34 
     

Accuracy 0.44    
AUC 0.41    
MCC -0.17    

 

 

Table S9.  kNN (N = 2) machine learning results for the human test set. 

 Precision Recall f1-score Support 
False 0.72 0.83 0.77 69 
True 0.61 0.46 0.53 41 

average/ total 0.68 0.69 0.68 110 
     
 TN 57 FN 22 
 TP 19 FP 12 
     

Accuracy 0.69    
AUC 0.64    
MCC 0.31    

 

 

Table S10.  kNN (N = 5) machine learning results for the human test set. 

 Precision Recall f1-score Support 
False 0.63 0.52 0.57 69 
True 0.38 0.49 0.43 41 

average/ total 0.54 0.51 0.52 110 
     
 TN 36 FN 21 
 TP 20 FP 33 
     

Accuracy 0.51    
AUC 0.50    
MCC 0.01    

 

 

Table S11.  SVC machine learning results for the human test set. 

 Precision Recall f1-score Support 
False 0.62 0.64 0.63 69 
True 0.36 0.34 0.35 41 

average/ total 0.52 0.53 0.52 110 
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 TN 44 FN 27 
 TP 14 FP 25 
     

Accuracy 0.53    
AUC 0.49    
MCC -0.02    

 

 

Table S12.  Decision tree machine learning results for the human test set. 

 Precision Recall f1-score Support 
False 0.71 0.35 0.47 69 
True 0.41 0.76 0.53 41 

average/ total 0.59 0.50 0.49 110 
     
 TN 24 FN 10 
 TP 31 FP 45 
     

Accuracy 0.50    
AUC 0.55    
MCC 0.11    

 

 

Table S13.  Random forest machine learning results for the human test set. 

 Precision Recall f1-score Support 
False 0.62 0.55 0.58 69 
True 0.37 0.44 0.40 41 

average/ total 0.53 0.51 0.52 110 
     
 TN 38 FN 23 
 TP 18 FP 31 
     

Accuracy 0.51    
AUC 0.49    
MCC -0.01    

 

 

Table S14.  Gaussian NB machine learning results for the human test set. 

 Precision Recall f1-score Support 
False 0.68 0.78 0.72 69 
True 0.50 0.37 0.42 41 

average/ total 0.61 0.63 0.61 110 
     
 TN 54 FN 26 
 TP 15 FP 15 
     

Accuracy 0.63    
AUC 0.57    
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MCC 0.16    
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Triangle data 

Table S15.  Logistic regression machine learning results for the random reaction test set. 

 Precision Recall f1-score Support 
False 0.77 0.49 0.60 69 
True 0.47 0.76 0.58 41 

average/ total 0.66 0.59 0.59 110 
     
 TN 34 FN 10 
 TP 31 FP 35 
     

Accuracy 0.59    
AUC 0.62    
MCC 0.25    

 

 

Table S16.  kNN (N = 2) machine learning results for the random reaction test set. 

 Precision Recall f1-score Support 
False 0.73 0.86 0.79 69 
True 0.66 0.46 0.54 41 

average/ total 0.70 0.71 0.70 110 
     
 TN 59 FN 22 
 TP 19 FP 10 
     

Accuracy 0.71    
AUC 0.66    
MCC 0.35    

 

 

Table S17.  kNN (N = 5) machine learning results for the random reaction test set. 

 Precision Recall f1-score Support 
False 0.90 0.75 0.82 69 
True 0.67 0.85 0.75 41 

average/ total 0.81 0.79 0.79 110 
     
 TN 52 FN 6 
 TP 35 FP 17 
     

Accuracy 0.79    
AUC 0.80    
MCC 0.59    

 

 

Table S18.  SVC machine learning results for the random reaction test set. 

 Precision Recall f1-score Support 
False 0.62 0.48 0.54 69 
True 0.37 0.51 0.43 41 

average/ total 0.53 0.49 0.50 110 
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 TN 33 FN 20 
 TP 21 FP 36 
     

Accuracy 0.49    
AUC 0.50    
MCC -0.01    

 

 

Table S19.  Decision tree machine learning results for the random reaction test set. 

 Precision Recall f1-score Support 
False 0.61 0.45 0.52 69 
True 0.36 0.51 0.42 41 

average/ total 0.51 0.47 0.48 110 
     
 TN 31 FN 20 
 TP 21 FP 38 
     

Accuracy 0.47    
AUC 0.48    
MCC -0.04    

 

 

Table S20.  Random forest machine learning results for the random reaction test set. 

 Precision Recall f1-score Support 
False 0.73 0.59 0.66 69 
True 0.48 0.63 0.55 41 

average/ total 0.64 0.61 0.62 110 
     
 TN 41 FN 15 
 TP 26 FP 28 
     

Accuracy 0.61    
AUC 0.61    
MCC 0.22    

 

 

Table S21.  Gaussian NB machine learning results for the random reaction test set. 

 Precision Recall f1-score Support 
False 0.70 0.55 0.62 69 
True 0.45 0.61 0.52 41 

average/ total 0.61 0.57 0.58 110 
     
 TN 38 FN 16 
 TP 25 FP 31 
     

Accuracy 0.57    
AUC 0.58    
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MCC 0.16    
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Table S22.  Observed outcomes on the discrepant laboratory tests based on predicted model 

probabilities.  All performed reactions were predicted by the model to have an outcome of 4 

("success", defined as single crystal product with average crystallite dimensions exceeding 0.01 

mm) 

 Predicted Model Probability 

 
 

Observed 
Outcome 

 
0.6 

 
0.8 

 
1 

 
1 2 0 0 
 

2 15 3 2 
 

3 5 17 2 
 

4 8 30 16 

 
Total 30 50 20 

 
Percent 4 

 
27% 

 
60% 

 
80% 
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Figure S1.  t-Distributed Stochastic Neighbor Embedding (t-SNE) plot of the human (pink) and 

randomly-generated (cyan) training set data.  The t-SNE dimensionality reduction function was 

constructed to reduce the dataset to two dimensions using the randomly-generated dataset, 

using the default settings of the Mathematica 11.3.0.0 (DimensionReduction[#, 2, 

Method->"TSNE"]&) function. The resulting dimension reducer function was applied to both 

datasets to generate the plot above.  The axes do not have a direct physical meaning or 

dimensional units.    
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Figure S2.  t-SNE plot of the expanded test data and predicted outcomes. The 110,000 

randomly generated test reactions (gray) and the subset of these predicted to be successful by 

the human-data trained model (red) and randomly-generated reaction trained model (blue) are 

shown in a reduced two-dimensional form, using the same dimensionality reduction function 

used in the previous figure.  The training data for both models (shown by itself in the previous 

figure) is indicated in pink and cyan, respectively.  The general proximity of the expanded test 

points (gray, red, and blue) to the training data (pink and blue) indicates that neither model is 

unreasonably being expected to extrapolate beyond its training data.  The general proximity of 

the predicted successes (red and blue) to the failures (gray) in the expanded test set indicates 

that neither model is simply accepting or rejecting on the basis of outliers.   
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