Anthropogenic biases in chemical reaction data hinder exploratory
inorganic synthesis

Xiwen Jia1, Allyson Lynch1, Yuheng Huang1, Matthew Danielson1, Immaculate Lang’at,
Alexander Milder1, Aaron E. Ruby1, Hao Wang1, Sorelle A. Friedlerz, Alexander J. Norquisti,
Joshua Schrier13

1 Department of Chemistry, Haverford College, Haverford, PA, USA
2 Department of Computer Science, Haverford College, Haverford, PA, USA

3 Department of Chemistry, Fordham University, The Bronx, NY, USA

Summary

Most chemical experiments are planned by human scientists and thus are subject
to a variety of human cognitive biases,1 heuristics,2 and social influences.: These
anthropogenic reaction data are widely used to train machine learning modelss used to
predict organics and inorganice,7 synthesis. However, it is known that societal biases,
encoded in datasets, are perpetuated in machine learning models.s Here we identify
unacknowledged anthropogenic biases in both the reagent choices and reaction
conditions of chemical reaction datasets using a combination of data-mining and
experiments. The amine choices in reported crystal structures of hydrothermal synthesis
of amine-templated metal oxidess follow a power-law distribution where 17% of amine
reactants comprise 79% of reported compounds, consistent with social influence
models.10-12 Analysis of unpublished historical laboratory notebook records shows
similarly biased distributions of reaction condition choices. By performing 548 randomly
generated experiments, we demonstrate that popularity of the reactants or reaction
condition choices is uncorrelated to the reaction success. Randomly generated
experiments better illustrate the range of parameter choices compatible with crystal
formation. Machine learning models trained on the smaller randomized reaction dataset
outperform models trained on larger human-selected reaction datasets, demonstrating
the importance of identifying and addressing anthropogenic biases in scientific data.
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Scientific publications do not provide a representative dataset.12 Confirmation bias favors
publishing positive results, yet the missing “failures” are essential for modeling chemical
reactions.s Scientific attention is skewed by biases such as the “Matthew Effect’, in which
eminent individuals are given disproportionate credit.10 Self-reinforcing preferential graph
attachment ("rich get richer") mechanisms result in power law distributions of citations, resulting
in disproportionately popular articles.10,11 The emerging "Science of Science" attempts to
quantify the role of social interactions on problem selection, career trajectory, and citations.1
Studies of scientific decision errors have tended to focus on individual-specific causes, such as
differences in the classification variability and decision inconsistency.14,15 Such error processes
produce uncorrelated individual-specific noise in the resulting dataset. However, systematic
errors in scientific experiment planning have not been studied. In general, social influences such
as knowledge about others' choices can cause popularity to diverge from the underlying quality
of the item.3 Socially-influenced scientific decision errors have been widely speculated, but
never explicitly confirmed. The distribution of reported medicinal chemistry compounds is
unrelated to the intended application, cost, or reaction difficulty.1s Disproportionately few drug
scaffolds comprise the majority of antimalarial1iz and other drug-candidate molecules,1s and
popularity is uncorrelated to synthetic feasibility or biological activity. Medicinal chemists make
new pharmaceutical molecules resembling those they have synthesized in the past,19 using a
limited set of reactions,20 whose choice is uncorrelated to cost, estimated synthetic ease, or
properties of the reactants or products.21 However, an over-representation of a particular
experimental choice need not be irrational. For example, 36% of entries in the Protein Data
Bank (PDB) report using polyethylene glycol (PEG) additives, which under-represents the true
success rate of 59%, including many proteins that cannot be crystallized using other additives.22
This suggests that lack of crystallization additive diversity in the PDB stems from sub-optimal
novelty seeking. Excessively consistent or inconsistent experimental choices that do not mimic
the natural distribution of the underlying problem are signatures of anthropogenic influence.

What is the evidence of bias in reactant choices for organically templated metal oxides
synthesis? Incorporating different organic amines results in compounds with diverse
composition, local and extended connectivity, and functionality,s so one expects to see the
broadest possible range of amine choices. The discipline defines "success" as formation of a
crystal of sufficient size and quality to yield a stable single-crystal X-ray diffraction refinement.
Publishers require structures to be deposited in the Cambridge Structural Database (CSD). The
number of reported compounds is a proxy for experimental effort and success for a particular
amine. The CSD contains 5010 amine-templated metal oxides structures, containing 415 unique
amines. The 17% most observed amines (70 individual molecules) are found in 79% of the
structures (3947 distinct CSD entries), whereas the remaining 83% (345) of the amines are
found in just 21% of the structures (1063 entries), see Figure 1. (Structures containing multiple
amines preclude an even split.) The gini coefficient is 0.654. A log probability-log rank plot
(Figure 1a inset) is consistent with a single power-law generation process, consistent with a
preferential attachment mechanism.10,11 Similar distributions are observed in the subset of
metal borates (Extended Data Figure 1). Unpublished experimental records provide evidence of
bias in attempted reaction conditions, such as pH and reactant quantities. Our dark reactions

database (http://darkreactions.haverford.edu) contains 557 hydrothermal vanadium borate
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reactions (inspired by the first report in the literature2s) consisting of three years of work by three
students prior to the start of this study. Human reactions are almost exclusively conducted at
pH=8, (Figure 2a) with unevenly distributed amine quantities (Figure 2b). These results are
consistent with previous work showing that humans often use a one-variable-at-a-time strategy
to explore reaction conditions, which is both inefficient and is easily trapped in local optima. 24

The skewed distributions discussed above are consistent with anthropogenic attention
heuristics,2 in which experimenters select reactants and reaction conditions that they “know” to
work from (personal, supervisor, literature) experience. The interplay of shorter-timescale
communicative memory and longer-timescale cultural memory,11 results in power law
distributions like Figure 1. The precise nature of the underlying psychological process is an
active area of debate,12and distinguishing between competing models is challenging even in
highly controlled psychological experiment settings.2s For example, aesthetic biases linking
symmetry with positive affect,2s result in "irrational" affective criterion favoring experimentation
with symmetric molecules. Alternatively, humans more easily discriminate and recall symmetric
three-dimensional objects,27 favoring symmetrical molecules in recall and attention heuristics
used to create new experiments.2 Both scenarios yield unrepresentative datasets (i.e., datasets
that are "biased"), despite radically different mechanisms. Given the many possible types of
anthropogenic influence and the difficulty of distinguishing them experimentally,2s we instead
demonstrate the presence of an anthropogenic influence, without assigning a specific
psychosocial origin, by eliminating alternative explanations.

Non-anthropogenic factors can be classified following a classical four-fold theory of
causes.zs Efficient causes are the technical ability to perform the experiments. Hydrothermal
syntheses have been conducted for over 50 years,s and the reagent and reaction condition
choices present no pressure or corrosion resistance challenges. Final causes favor particular
product materials having desired technological properties. Because functional diversity follows
from structural diversity,s one expects the broadest diversity in the public databases. Material
causes, specifically reagent availability, were excluded by considering a structurally diverse
(primary through tertiary amines, and linear, branched, cyclic, and aromatic molecules) set of 55
commercially available amines containing 27 popular, 16 unpopular, and 12 absent from the
CSD. All selected amines are commercially available in 5-gram quantities from major suppliers,
and there is no significant difference in cost (Extended Data Figure 2).

The only remaining non-anthropogenic cause is eliminated by experiment. The formal
cause is the intrinsic propensity of some reactants and reaction condition choices to yield
crystals. For an unbiased assessment, we generated 10 random reactions for each of the 55
amines described above, by selecting random pH and amine quantities using two independent
triangular distributions, with the literature precedent as the peak, and physically motivated upper
and lower bounds. See Methods section. The goal is not to efficiently explore the chemical
space, but rather to establish a neutral estimate of the “reaction cross section” for each amine
revealing systematic reactivity differences between popular and not-popular amines centered
around where humans are likely to have attempted to search. However, we note that random
choices are often better than human expertise and comparable to more sophisticated numerical
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methods in fields as diverse as oil exploration,2s chemical reaction discovery,so and numerous
social and financial applications.31

Randomized reaction outcomes for popular and not-popular (unpopular and absent)
amines were ranked using the four-class crystal scoring system described in the Methods
section, with the stringent criterion where “success” consists only of crystals comparable to
those used for the CSD data. All four reaction outcomes occur nearly equally in randomly
chosen reactions for popular and not-popular amines (Figure 3a; similar plots separating
unpopular and absent outcomes are shown in Extended Data Figure 3). Therefore, any single
randomly chosen reaction is equally likely to be successful regardless of popularity. A typical
exploratory synthesis campaign will test several variations of a reaction until success is
achieved or one decides to stop. Publishable data require only a single success. We modeled
this as the observation of success (score = 4) at least once in the set of 10 random experiments
conducted for each of the 55 amines. At least one success is observed in 17 (63 £ 9%) of the 27
popular amines and 21 (75 £ 8%) of the 28 not-popular amines (Figure 3b). There is no support
for intrinsic reaction propensity difference between popular and not-popular amines. In fact,
popular amines were less likely to successfully form crystals than not-popular amines in our
experiments, but this (one-sided) success rate difference occurs with p = 0.26 in a random
permutation. Having excluded non-anthropogenic material, efficient, formal, and final causes,
only an anthropogenic explanation for the observed reactant choice distribution remains.

The random reaction outcomes also expose anthropogenic influence in reaction
condition choices. Human-selected reactions are biased to lower amine amounts and peaked
around the literature precedent (Figure 2c¢). In contrast, we find limited dependence of the
reaction outcome on amine choice, as the distribution for successful (outcome = 4) and failed
(outcome = 3, 2, 1) reactions mimics the triangular distribution that generate them. Human pH
choices are almost exclusively based on a literature precedent of pH 8. (Figure 2d) Our random
reactions indicate that although higher pH is (ceteris paribus) more likely to be successful,
reactions can be successful over a wide range of pH.

Correcting anthropogenic bias improves machine learning models. We compared
machine learning models trained on the complete set of (both successful and failed) human-
selected reactions to models trained on these randomly-generated (unbiased) reactions,
evaluated on a true time-separated holdout test set of 110 additional vanadium borate
experiments, consisting of 10 randomly-generated reaction conditions for each of 11 amines.
No test amines were present in either training set. For the purposes of training, only the
subsets of the human-generated and random datasets containing the 37 amines common to
both sets were used, reducing the training set sizes to 467 and 370 reactions, respectively.
(Our human-generated training set has more diverse amine choices than typically present in the
literature, as it used amines from our previous diversity-oriented studies.s) Restricting the
dataset in this way means differences are solely due to reaction condition choices. To give each
training set the best chance to succeed, a variety of classifiers were tested (logistic regression,
k nearest neighbors, support vector machines, decision trees, random forests, and Gaussian
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naive Bayes) and the best performing classifier for each training set was considered. A detailed
analysis of results is presented in Tables S8-S21, and summarized in Extended Data Table 2.
The best classifier trained on the human-generated dataset was a k nearest neighbors (k=2)
with an accuracy of 69% and an AUC of 0.64 on the held-out test set. The best classifier
trained by the randomly generated training set was k nearest neighbors (k=5) with an accuracy
of 79% and an AUC of 0.80. Thus, the randomly-generated training set outperforms the human-
generated set by all metrics, despite containing 20% fewer reactions.

The performance gain results from better reaction condition sampling, which can be
established by the average nearest-neighbor distance between reactions (Extended Data Figure
4). The average distance to the k-th nearest neighbor within a given training set is greater for
the randomly generated training set for k>10, indicating that it more comprehensively samples
the chemical space. Furthermore, the average distance from an experiment in the training set to
the k-th nearest neighbor in the fest set is smaller for the randomly-generated training set for k <
60, indicating that it allows for better generalization to the test set. Both factors contribute to the
randomly-generated experiments being more informative than the human-selected reactions.

Anthropogenic dataset bias obscures chemical insights. Because the two training sets
contain the same amines, the dependence of reaction outcomes on amine structural and
physicochemical property features should be equally well described. Indeed, the direct
influence of the features, the contribution of a feature to the difference between the given
predictions and a mean result,s2 is comparable for models built on the different training sets. In
contrast, the indirect influence of a feature, estimated by computing the degradation in model
accuracy when the ability of the model to predict it from the other features is removed,s2 is
linearly correlated, with the exception of 6 features describing the amine properties of solvent
accessible polar surface area, presence of rings, rotatable bonds, and presence of amidine
moieties in the organic molecules. (Extended Data Figure 5) Computationally obscuring these
features in random-reaction-trained model degrades the model performance, but
computationally obscuring them in the human-reaction-trained model does not, because
anthropogenic reaction selection has implicitly obscured these feature contributions.

Anthropogenic bias hinders the discovery of new materials. Only 41/110 test reactions
successfully produced a sufficient quality and size crystalline product, and the positive recall
scores were 46% and 85% for the human- and randomly-generated data models, respectively.
(Tables S9 & S17) The two models disagree for 23/110 test outcomes, and in every case the
human model predicts failure whereas the random model predicts success. The "pessimism" of
the former is consistent with loss-aversion bias in the human experimental choices.1 When the
models disagree, it is preferable to trust the model trained on randomly-generated data (which
correctly predicts 16 frue positives) rather than the model trained on human data (which
correctly predicts 7 frue negatives). Furthermore, only 7/11 amines in the test set had at least
one successful reaction outcome sufficient for discovery of a new material. The human model
failed to identify 2/7 of these compounds, whereas the random-data model found at least one
successful reaction for all 7/7 compounds. Therefore, models trained on the unbiased dataset
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are both quantitatively and qualitatively better at identifying reaction conditions, and find
compounds that would otherwise remain undiscovered.

Models trained on anthropogenic data less effectively select new experiments. We
generated 10,000 random reactions for each of the 11 test amines. Predictions by the two
models agree on 81% of these reactions, including all generated experiments for 3/11 amines.
For the 8 amines where the models have any disagreement, the human-data model makes
unique predictions of success for only 2/8 amines, whereas the model trained on unbiased data
identifies unique positive predictions for all cases. As a test, we conducted additional laboratory
syntheses of 10 discrepant positive predictions made by each model for each amine (totaling
100 additional reactions). For the two amines where both models made different positive
predictions, the anthropogenic data model was slightly more successful (16/20 positives found)
than the model trained on random experiments (12/20). However, for the other 6 amines in
which only the randomly-generated data model made unique positive predictions, at least one
successful reaction was observed in all cases. The relatively low (43%) aggregate precision is
because these are more speculative reactions where the models are less confident about the
outcome; precision increases with the predicted model probability and is as high as 80%.
(Extended Data Table 4 and Supplementary Tables S22 and Figures S1-S2 contain a complete
analysis of the laboratory and computational results.) This confirms that models trained on data
without anthropogenic bias better identify reaction success over a broader range of reactant and
reaction condition choices.

Our results indicate the importance of including reactions that humans ordinarily do not
choose, for example by designing experiments with structured randomness. A simple process of
(i) listing all experimental options, (ii) defining distributions that exclude impossible (based on
known physical considerations such as solubility or protonation state) or or practically infeasible
(e.g., costs and safety) choices, and then (iii) randomly sampling from those distributions
removes anthropogenic bias, is at least as successful as human choices, and greatly improves
the value of the resulting datasets for machine learning. Ongoing efforts using anthropogenic
data to plan chemical synthesess-7 should consider this potential limitation.
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Methods

Data capture from experiment. Data capture from historical notebooks and from new
experiments conducted in this study follows the procedure described in our previous work,s and
includes compositional information (reactant identities and quantities), categorized by type
(organic/inorganic/solvent), reaction conditions (e.g., pH, temperature, time), and reaction-
outcome. Reaction outcomes are coded qualitatively based on crystal size, using labels 1 for
no solid product, 2 for an amorphous solid, 3 for a polycrystalline sample or 4 for single crystals
with average crystallite dimensions exceeding approximately 0.01 mm. This size corresponds to
the general requirements for standard single-crystal X-ray diffraction data collection. To
eliminate measurement bias, students performing reactions and scoring crystal outcomes were
unaware of whether the reagents were "popular” or "not popular". A machine readable collection
of all experimental data is provided in the Supplementary Information files.

Analysis of published crystal structure. Amine-templated metal oxides were extracted from
the Cambridge Structural Database (CSD)ss by stipulating both inclusion and exclusion criteria.
The inclusion criteria were used to dictate the presence of an oxide, metal oxide or metal borate
substructure, in addition to an organic amine. (Defined in Extended Data Table 1.) The
exclusion criteria were used to remove structures with bonding motifs that fall outside the
targeted family of compounds for this work. This results in 7630 oxides, 4870 metal-oxides, and
115 metal borates. Analysis of the metal-oxides data is presented in the article; parallel
analysis of the metal borates is described in the Extended Data Figure 1. We initially attempted
to extract the organic components from the 3D structure, but the presence of structural disorder
makes this ambiguous. The 2D structure diagrams are not publicly available through the CSD
API. Therefore, we parsed the systematic names to identify the amine component. Excluded
names were manually curated, and 43 typographical errors in the CSD entries were
communicated to the maintainers. A strict definition of “organic amines” was used, which
includes only molecules comprised of solely C, H, and N, and no nitriles, azo, diazo, or
diazonium compounds. After performing these exclusions, 6458 oxides, 4152 metal-oxides,
and 109 metal borate structures remained. The amine names were resolved to canonical
SMILES strings using the CACTUS Chemical Identity Resolver
(https://cactus.nci.nih.gov/chemical/structure), and then converted to neutral molecules and
canonicalized using RDKit.3a CACTUS was also used to generate InChl and InChlKey strings.
The Python Jupyter notebooks used to perform this process, along with the inputs and
intermediate outputs, are provided in the Supplementary Information files.

Pricing. Amine pricing information was collected by searching the Sigma-Aldrich website in
November 2018. Pricing and sample size data were collected for the smallest sample size
available, assuming that the sample size was at least 5 g. Pricing data were collected for all
amines using the triangle reactions and the test set amines. No amines were backordered on
the day data were collected.
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Generation of random reactions. Randomized reactions were generated by sampling from
triangular distributions for the reaction pH and amine mole amounts. The triangular distribution
for pH was chosen with minimum and maximum values of 1 and 8.49, with a mode of pH 8, and
then rounded to the nearest integer. (The pH is not easily set below 0 and basic conditions will
not protonate the amines.) The triangular distribution for amine mole amounts was chosen with
minimum and maximum values of 0.5 mmol to 10 mmol, with a mode of 5 mmol. (Amine
quantity cannot go below zero and cannot go above a conservative solubility limit chosen for all
amines.) Conversion of amine moles to masses was performed using molecular weights from
PubChem. The Mathematica notebook used to perform these calculations is provided in the
Supplementary Information files.

Hydrothermal synthesis. All reactions were conducted under mild hydrothermal conditions, in
23-mL poly(fluoroethylene-propylene)-lined pressure vessels. All reactions were specified for
0.31 g H3BO3, 0.083 g VOSOs4 - x H20, 6.0 g H20, and the amine mass drawn from the above
distribution. The reactions were adjusted to the pH specified by the above distribution using
either 4 M HCI or 4 M NaOH (as determined by pH paper). Reaction mixtures were heated to
90 °C for 24 hours. Pressure vessels were opened in air after reaction and products were
recovered through filtration. Objective metrics (measured crystallite size and powder X-ray
diffraction) were used to score reaction outcomes, as described in the Data Capture section
above.

Statistical analysis of experimental outcomes. Standard deviations and p-values were
assigned by numerical 10,000-sample bootstrapping and permutation. The Mathematica
notebook used to perform these calculations is provided in the Supplementary Information files.
No statistical methods were used to predetermine experimental sample size.

Machine-learning model construction. Only a single set of inorganic reactants were used for
all reactions in this study, and only a single organic reactant used per reaction. Therefore, only
a subset of the reaction descriptors from our previous worke was used in this study. These
three categories include reaction parameters (e.g., temperature, pH), physicochemical and
structural features of the organic component, and stoichiometric ratios. Structural and
physicochemical properties of the organic species were computed using RDKit 2018.03.435 and
the ChemAxon Calculator Plugins.ss Tables S1-S7 contain a complete description of features.

Feature selection was performed to choose the top 5, 10, and 20 features for both training sets
using two methods; an F-test-based estimate and a mutual information-based estimate of the
feature importances. The feature sets containing all features as well as all features with positive
variance were also considered. The full set of considered models were trained on each of these
feature sets for both the human and the randomly-generated training sets. As described in the
main text, the full feature set had the top performance model based on accuracy. A 5-feature F-
test-based feature set had the highest AUC (0.69), but lower accuracy (0.63), of the human-set-
trained models. In general, the human-set-trained models performed very poorly: many had an
accuracy of around 0.5. The full results of the feature selection trials can be found in Extended
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Data Table 3. All models were implemented in Python 3.7.3 using Scikit-Learn 0.19.1;44 model-
specific details and implementations can be found in the Supplementary Information files.

Direct and indirect feature influence analysis. The direct influence of each feature, a
Shapely-value-based approximation of the contribution of a feature to the deviation of
predictions from the mean, was computed using SHapley Additive exPlanations (SHAP,
specifically the Kernel SHAP approximation).s7,3s The indirect influence of each feature was
calculated using the BlackBoxAuditing codesz, 39 in order to measure each feature’s contribution
to model accuracy even when it is not directly used in the model. This influence is estimated by
obscuring a feature so it cannot be predicted by the other features and measuring the drop in
model accuracy when the values are obscured in this way. These calculations were performed
for the most accurate models trained on the human and randomly-generated training sets.
Comparison plots are shown in Extended Data Figure 5.

Data availability. The authors declare that all data supporting the findings of this study are
available within the article and its Supplementary Information files.

Code availability. The code used for this project is available in the Supplementary Information
files.
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Legends for Extended Data Figures

Extended Data Table 1 | Structure inclusion and exclusion criteria. Structures were
identified in the Cambridge Structure Database (CSD) using a combination of inclusion and
exclusion criteria. The inclusion criteria, shown above, were created to be inclusive, while still
returning appropriate structure. Bond orders were left unspecified to above unintended
exclusions. The labels ‘X’ and ‘4M’ represent ‘any atom type’ and ‘any metal’, respectively. The
three exclusion groups were constructed to exclude more complex structures in the organic
amines and bonding to the metals centers through atoms other than oxygen. The structures in
each compound class (oxides, metal oxides, metal borates) were identified by conducting three
distinct searches, each of which included the inclusion group and one of the exclusion groups.
The resulting three datasets were merged so that only the structures present in all three
datasets were retained.

Extended Data Figure 1 | Cambridge Structural Database (CSD) search results for
templated metals borates. a, a plot of the number of unique structures for each amine,
ordered from the amine with the fewest structures to the most. b, a plot of cumulative
probability vs amine proportion. The grey rectangle represents the Pareto split.

Extended Data Figure 2 | Amine price and availability. a, Amine price vs quantity for
randomized reaction amines. Data are separated by amine popularity (popular, unpopular or
absent). Amines used in the test set experiments are also included. b, Amine pricing information
for randomized reaction amines. Price per gram values were calculated assuming amine
densities of 1 g mL-1. The data presented in the figures above suggest that there is no significant
different in amine prices between the popular, unpopular and absent amines. Additionally, the
amine pricing distribution for the test set amines is similar to the other distributions, suggesting a
representative sample of amines.

Extended Data Figure 3 | Outcome probabilities for not-popular, unpopular and absent
organic amines.

Extended Data Figure 4 | Average nearest-neighbor distances in the datasets and
nearest-neighbor choices on model performance. a, Average distances to the kth nearest
neighbor within training set. b, Average distances to the kth nearest neighbor within test set. ¢,
AUC on kNN classifier for k=1 to 100.

Extended Data Figure 5 | Direct and indirect feature influence comparison. a, Direct
descriptor influence values in the human reaction test set versus the random reaction test set.
b, Indirect descriptor influence values in the human reaction test set versus the random reaction
test set.

Extended Data Table 2 | Matthews correlation coefficient (MCC), accuracy and AUC
results for each machine learning algorithm, trained on either the human or triangle test
set using all features.
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Extended Data Table 3 | Feature selection comparison. a, Top 5, b, top 10 and ¢, top 20
features using ANOVA F-values for the human and randomized reaction test sets.

Extended Data Table 4 | Comparison of discrepancies between model predictions and
reaction outcomes. 10,000 random reactions were generated for each amine. The first
column in Table S29 indicates the number of discrepancies between the predictions of the two
models. Subsequent columns show the number of those discrepancies predicted to be positive
by the respective model (top line), and of those positive predictions the 10 reactions with the
lowest model uncertainty were selected and performed in the laboratory. The successful
outcomes are indicated as a fraction in parentheses (number successful/number trials). For
amines where no positive predictions are made, no tests were performed, indicated by (—).
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Figure 1. Amine occurrence in reported metal oxide crystal structures. (a) Number of
crystals structures observed, sorted by the amine’s rank. The inset shows the same data as a
log probability-log rank plot. (b) Cumulative probability of structures as a function of the
proportion of unique amines, ordered from those with the most structures (and highest
probability) to the least). The shaded region represents the Pareto split, in which 17% of
amines comprise 79% of the structures.

Figure 2. Distribution of reaction parameter choices and outcomes. The distribution of
reaction parameters ((a) reaction pH and (b) amine mmol). Blue indicates the distribution of
human-selected reactions taken from a historical dataset of 557 reactions; grey indicates the
triangular distribution defined for generating random experiments; orange indicates the
distribution of the 548 random reactions performed in this study. Distributions of reaction
outcomes, based upon (c) reaction pH and (d) amine mmol. Successful reaction outcomes are
indicated by green and failure indicated by red, for the randomly generated reactions performed
in this study.

Figure 3. Reaction outcomes from randomly-generated experiments, separated by
‘popular’ and ‘not-popular’ (unpopular and absent) amines. (a) Probability of each outcome
on a per reaction basis, using the outcome scale described below. (b) Probability of observing
at least one successful reaction (success) or not (failure) for a given amine. Error bars indicate
bootstrap estimate of the standard deviation.
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Figure 1. Amine occurrence in reported metal oxide crystal structures. (a) Number of
crystals structures observed, sorted by the amine’s rank. The inset shows the same data as a
log probability-log rank plot. (b) Cumulative probability of structures as a function of the
proportion of unique amines, ordered from those with the most structures (and highest
probability) to the least). The shaded region represents the Pareto split, in which 17% of
amines comprise 79% of the structures.
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Figure 2. Distribution of reaction parameter choices and outcomes. The distribution of
reaction parameters ((a) reaction pH and (b) amine mmol). Blue indicates the distribution of
human-selected reactions taken from a historical dataset of 557 reactions; grey indicates the
triangular distribution defined for generating random experiments; orange indicates the
distribution of the 548 random reactions performed in this study. Distributions of reaction
outcomes, based upon (c) reaction pH and (d) amine mmol. Successful reaction outcomes
are indicated by green and failure indicated by red, for the randomly generated reactions
performed in this study.

Accepted Manuscript for: Anthropogenic biases in chemical reaction data hinder exploratory
inorganic synthesis” Nature 573, 251-255 (2019) doi:10.1038/s41586-019-1540-5


https://dx.doi.org/10.1038/s41586-019-1540-5

0.5 - (a) . ‘Popular’ amines -
D ‘Not-popular’ amines
0.4 - -
2
= 0.3 4 o
0
@©
0
© 02- 4
l <
0.1 -
0.0 v r 1 :
1 2 3 4
Reaction outcome
0.8+
- 0.6
%
o 0.41
4
o
0.2+
0.0

failure success
Amine performance

Figure 3. Reaction outcomes from randomly-generated experiments, separated by
‘popular’ and ‘not-popular’ (unpopular and absent) amines. (a) Probability of each
outcome on a per reaction basis, using the outcome scale described below. (b) Probability of
observing at least one successful reaction (success) or not (failure) for a given amine. Error
bars indicate bootstrap estimate of the standard deviation.
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Extended Data Table 1 | Structure inclusion and exclusion criteria. Structures were identified
in the Cambridge Structure Database (CSD) using a combination of inclusion and exclusion
criteria. The inclusion criteria, shown above, were created to be inclusive, while still returning
appropriate structure. Bond orders were left unspecified to above unintended exclusions. The
labels ‘X’ and ‘4M’ represent ‘any atom type’ and ‘any metal’, respectively. The three exclusion
groups were constructed to exclude more complex structures in the organic amines and bonding
to the metals centers through atoms other than oxygen. The structures in each compound class
(oxides, metal oxides, metal borates) were identified by conducting three distinct searches, each
of which included the inclusion group and one of the exclusion groups. The resulting three
datasets were merged so that only the structures present in all three datasets were retained.
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Extended Data Figure 1 | Cambridge Structural Database (CSD) search results for
templated metals borates. a, a plot of the number of unique structures for each amine,
ordered from the amine with the fewest structures to the most. b, a plot of cumulative
probability vs amine proportion. The grey rectangle represents the Pareto split.
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Extended Data Figure 2| Amine price and availability. a, Amine price vs quantity for
randomized reaction amines. Data are separated by amine popularity (popular, unpopular or
absent). Amines used in the test set experiments are also included. b, Amine pricing information
for randomized reaction amines. Price per gram values were calculated assuming amine
densities of 1 g mL-1. The data presented in the figures above suggest that there is no significant
different in amine prices between the popular, unpopular and absent amines. Additionally, the
amine pricing distribution for the test set amines is similar to the other distributions, suggesting a
representative sample of amines.
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Extended Data Figure 3 | Outcome probabilities for not-popular, unpopular and absent
organic amines.
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AUC on kNN classifier for k=1 to 100.
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b, Indirect descriptor influence values in the human reaction test set versus the random reaction
test set.
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Classifier Logistic kNN kNN Linear Decision Random Naive
regression (k= (k= SVM tree forest Bayes
2) 5) (C=1)

MCC Human -0.17 031 0.01 -0.02 0.11 -0.01  0.16
Triangle 0.25 035 0.59 -0.01 -0.04 0.22 0.16

Accuracy Human 0.44 0.69 0.51 0.53 0.50 0.51 0.63
Triangle 059 071 0.79 0.49 0.47 0.61 0.57

AUC Human 041 064 0.50 0.49 0.55 049  0.57
Triangle 0.62 066 0.80 0.50 0.48 0.61 0.58

Extended Data Table 2 | Matthews correlation coefficient (MCC), accuracy and AUC

results for each machine learning algorithm, trained on either the human or triangle test

set using all features.
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aTop5

Human Randomized
_feat_bpKal _rxn_pH
_feat_bpKa2 _feat_bpKal
_feat_RotatableBondCount _feat_donsitecount
_feat_LengthPerpendicularToTheMinArea _feat_fr NH2

_feat_ASA_P

_calc_pbKaUnderPhCount

b Top 10

Human Randomized
_feat_bpKal _rxn_pH
_feat_bpKa2 _feat_bpKal
_feat_ChiralCenterCount _feat_bpKa2

_feat_RotatableBondCount
_feat_MaximalProjectionRadius
_feat_LengthPerpendicularToTheMinArea
_feat_ASA P

_feat_PolarSurfaceArea
_feat_donorcount

_feat_donsitecount

_feat_RingAtomCount
_feat_CyclomaticNumber
_feat_PolarSurfaceArea
_feat_donsitecount
_feat_fr_NH2

_feat_fr_ NHO
_calc_pbKaUnderPhCount

¢ Top 20

Human Randomized
_raw_V0S04xH20/g _raw_H3B0O3/g
_raw_VOS04xH20_Mol _rxn_pH
_feat_AtomCount_N _feat_bpKal
_feat_bpKal _feat_bpKa2
_feat_bpKa2 _feat_AromaticRingCount

_feat_Aliphatic AtomCount
_feat_ChiralCenterCount
_feat_RotatableBondCount
_feat_HyperWienerindex
_feat_WienerIndex
_feat_MaximalProjectionRadius
_feat_LengthPerpendicularToTheMinArea
_feat_ASA+

_feat_ASA_P
_feat_PolarSurfaceArea
_feat_acceptorcount
_feat_Accsitecount
_feat_donorcount
_feat_donsitecount
_feat_fr_NH2

_feat_AromaticAtomCount
_feat_ChainAtomCount
_feat_RingAtomCount
_feat_SmallestRingSize
_feat_LargestRingSize
_feat_fsp3

_feat_HeteroaromaticRing Count

_feat_CyclomaticNumber
_feat_PolarSurfaceArea
_feat_donorcount
_feat_donsitecount
_feat_fr_NH2
_feat_fr_NHO
_feat_fr_pyridine
_calc_pbKaUnderPhCount

Extended Data Table 3 | Feature selection comparison. a, Top 5, b, top 10 and c, top 20
features using ANOVA F-values for the human and randomized reaction test sets.
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Amine Discrepant Discrepancies Discrepancies
predictions  predicted positive by predicted positive
(0of10,000) randomly-generated by human-data

data model model
Homopiperazine 1940 1940 0
(1,4-diazepane) (1/10) (—)
N, N, N', N'-tetramethyl-1,3,- 5404 5190 214
diaminobutane (8/10) (8/10)
1,4-Dimethylpiperazine 1390 344 1046
(4/10) (8/10)
Ethylenediamine 478 478 0
(3/10) (=)
N-(2-aminoethyl)piperidine 3404 3404 0
(1/10) (=)
2,2-Dimethylpropane-1,3- 0 0 0
diamine (—) (—)
2-methyl-1H-imidazole 3088 3088 0
(4/10) (=)
4-Methylpiperazin-1-amine 0 0 0
(—) (=)
N,N,N',N'-tetramethylhexane- 3373 3373 0
1,6-diamine (8/10) (—)
1,3-Diiminoisoindoline 1948 1948 0
(9/10) (=)
2-Methylpyrazine 0 0 0
(=) (=)

Extended Data Table 4 | Comparison of discrepancies between model predictions and
reaction outcomes. 10,000 random reactions were generated for each amine. The first
column in Table S29 indicates the number of discrepancies between the predictions of the two
models. Subsequent columns show the number of those discrepancies predicted to be positive
by the respective model (top line), and of those positive predictions the 10 reactions with the
lowest model uncertainty were selected and performed in the laboratory. The successful
outcomes are indicated as a fraction in parentheses (number successful/number trials). For
amines where no positive predictions are made, no tests were performed, indicated by (—).
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Figures

Figure S1. t-Distributed Stochastic Neighbor Embedding (t-SNE) plot comparing human and
randomly-generated training set data.
Figure S2. t-SNE plot of the expanded test data and predicted outcomes.
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Table S3. Explanation of _rxn_ columns.
Table S4. Explanation of _out_ columns.
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Table S7. Explanation of _calc_ descriptors. These columns contain descriptors whose values are

obtained by performing a calculation on the _raw_, _rxn_ or _feat_descriptors.

Table S8. Logistic regression machine learning results for the human test set.
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SVC machine learning results for the human test set.

Decision tree machine learning results for the human test set.

Random forest machine learning results for the human test set.

Gaussian NB machine learning results for the human test set.

Logistic regression machine learning results for the random reaction test set.
kNN (N = 2) machine learning results for the random reaction test set.

kNN (N = 5) machine learning results for the random reaction test set.

SVC machine learning results for the random reaction test set.

Decision tree machine learning results for the random reaction test set.
Random forest machine learning results for the random reaction test set.
Gaussian NB machine learning results for the random reaction test set.
Observed outcomes on the discrepant laboratory tests based on predicted model

probabilities. All performed reactions were predicted by the model to have an outcome of 4
("success", defined as single crystal product with average crystallite dimensions exceeding 0.01
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Contents of the Electronic Supplementary Information File
1 Data capture/

human_borates_tabdelim_20180904.tsv
triangle_borates_tabdelim_20181115.tsv
test_borates_tabdelim_20180904.tsv

discrepant_borates_20190419.tsv

2 Analysis of published results/
01 CCDC Smiles File.html

01 CCDC Smiles File.ipynb
01x CCDC Clean Check.html
01x CCDC Clean Check.ipynb
02 Popularity Files.html

02 Popularity Files.ipynb

03 Outcomes.html

03 Outcomes.ipynb

04 Graphs.html

04 Graphs.ipynb

Data/

Outputs/

x Smiles Images.html

x Smiles Images.ipynb

3 Pricing data/
Amine pricing data.xlsx

4 Generation of random reactions/
4 Generation of random reactions.nb

5 Statistical analysis/
5 Statistical analysis.nb

6 Machine learning/

6 Distance data.xlsx

6 Feature selection summary tables.xIsx
6 Influence data.xlsx
human_k2_accuracy_direct.csv
human_k2_accuracy_indirect.csv
ml_analysis.py
ml_analysis_unformatted_output.txt
ml_preprocessing_notes.txt
preprocessed_human.csv
preprocessed_test.csv
preprocessed_triangle.csv
triangle_k5_accuracy_direct.csv
triangle_k5_accuracy_indirect.csv
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7 Tests of discrepant reactions/
Possible Reactions/
proposed_experiments_on_most_discrepent_outcomes_20190328.csv
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Explanation of Dataset Columns

Descriptions for dataset columns, prefixes and descriptors are described below. Tables are
provided for each information class.

Table S1. Dataset prefix descriptions.

Dataset prefix Description

Raw data associated with the experiment that was performed.
Combined with the other header prefixes, these columns describe the

_raw
complete set of all data acquired during an experimental run.

These descriptors describe molecular properties, reaction conditions,
feat , rxn_, calc and derived calculated features (e.g., mole ratios). More elaborated
descriptions can be found below for individual headers.

out_ Experimental outcomes. These are the outputs to predict.

In general, all values should be assumed to be real numbers, unless indicated otherwise.
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Table S2. Explanation of _raw_ columns.

Descriptor name

Description

_raw_Reaction number

_raw_H3BO03/g
_raw_V0S04xH20/g
_raw_Amine/g

_raw_name
_raw_SMILES

_raw_SMILES.nosalt

_raw_Amine_Mol
_raw_V0S04xH20_Mol

_raw_H3B03_Mol
_raw_Types of Experiment
(Human; Triangle; etc...)

_raw_Notes

Reference to (paper) laboratory notebook. Format: Initials of
experimenter, followed by a page number, period delimiter, and
reaction number written on that page. (string)

Mass of boric acid reactant in grams
Mass of vanadyl sulfate hydrate reactant in grams

Mass of amine reactant in grams. Note that some amines are
purchased as ammonium salts; this is the mass of the salt used.
Laboratory abbreviation or name of amine (string)

Simplified molecular-input line-entry system (SMILES) string
describing the amine reactant as used. This is used for
computation of molecular weights and resulting computations of
mole amounts. (string)

SMILES string containing only the organic component, with
counterions removed. This is used for computing amine
cheminformatic properties (string)

Moles of amine reactant

Moles of vanadyl sulfate hydrate, obtained by assuming a nominal
molecular weight of 181.011 g/mol. (This is sold without a
specification of the precise degree of hydration)

Moles of boric acid

Categories used to separate data. “Human” are historical
reactions devised by humans. “Triangle” are random reactions
generated according to the triangular probability distribution
described in the Methods section. (string)

Comments about performance of the reaction. (string)
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Table S3. Explanation of _rxn_ columns.

Descriptor name

Description

_rxn_H20/g

_rxn_pH
_rxn_Synthesis_Method
_rxn_Oven
Temperature/C

_rxn_Aging Time/hrs

_rxn_Vessel Size/mL

Mass of water reactant added in grams

pH of reaction, as described in the Methods section. (integer)
Description of synthesis method. All reactions considered in this
study were performed under “Hydrothermal” conditions. (string)
Temperature used for the reaction in Celsius. All new reactions
performed in this study were performed at 90 °C, as described in the
Methods section. Historical reactions may contain other values.
(integer)

Duration of the heating in hours. All new reactions performed in this
study were performed for 24 hours, as described in the Methods
section. Historical reactions may contain other values. (integer)
Volume of the reaction vessel used in milliliters. All reactions
considered this study were performed using 23 mL PTFE sleeves, as
described in the Methods sections. (integer)

Table S4. Explanation of _out_ columns.

Descriptor name

Description

out_Outcome

_out_Purity

Crystal size and quality outcome score, as described in the
Methods section. This is the target variable predicted by the
machine learning models created in this study. (integer)
Denotes whether the solid product produced contains one phase
or more than one phase. This data was recorded but was not used
in this study. (integer)
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Explanation of _feat_descriptors

The _raw_, _rxn_, and _out_ columns described above describe the laboratory process and its
observable outcomes. In contrast, the _feat_ descriptor columns are computed properties of
the amines.

The following descriptors were computed using the cxcalc 5.2.0 JChem calculators. Unless
noted otherwise, the suffix corresponds to the name of the descriptor used by cxcalc, as
described in the online documentation:

Table S5. Explanation of _feat_ descriptors.

Descriptor name Description

_feat_Mass Molecular mass of _raw_SMILES (possibly a salt)

_feat_Mass_Nosalt Molecular mass of _raw_SMILES.nosalt (amine
only as neutral species without counterions)

_feat_AtomCount_C Number of carbon atoms. (integer)

(atomcount -z 6)

_feat_ AtomCount_N Number of nitrogen atoms. (integer)

(atomcount -z 7)

_feat_AvgPol Average molecular polarizability (at _rxn_pH)

_feat_MolPol Molecular polarizability (at _rxn_pH)

_feat_Refractivity Computed refractivity

_feat_isoelectric Isoelectric point of the molecule

(isoelectricpoint)

_feat_apKal First acidic pKa value. Subsequent columns are

(pka -a 2) the subsequent entries in the returned list.

_feat_apKa2 Second acidic pKa value...

_feat_bpKal First basic pKa value. Subsequent columns are the

(pka -b 4) subsequent entries in the returned list.

_feat_bpKa2 Second basic pKa value...

_feat_bpKa3 Third...

_feat_bpKa4 Fourth...

_feat_AliphaticRingCount Number of aliphatic rings (integer)

_feat_AromaticRingCount Number of aromatic rings (integer)

_feat_Aliphatic AtomCount Number of aliphatic atoms in the molecule
(integer)

_feat_AromaticAtomCount Number of aromatic atoms in the molecule
(integer)

_feat_BondCount Number of bonds in the molecule (integer)

_feat_CarboaliphaticRingCount Number of aliphatic rings comprised solely of
carbon atoms (integer)

_feat_CarboaromaticRingCount Number of aromatic rings comprised solely of
carbon atoms (integer)

_feat_CarboRingCount Number of rings comprised solely of carbon atoms
(integer)

_feat_ChainAtomCount Number atoms that are part of chain (not part of a
ring) (integer)

_feat_ChiralCenterCount Number of tetrahedral stereogenic centers
(integer)
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_feat_RingAtomCount Number of atoms that are part of a ring (not part
of a chain) (integer)

_feat_SmallestRingSize Number of members in the smallest ring (integer)

_feat_LargestRingSize Number of members in the largest ring (integer)

_feat_fsp3 Fraction of sp3 carbons (Fsp3 value)

_feat_HeteroaliphaticRingCount Number of heteroaliphatic rings (integer)

_feat_HeteroaromaticRingCount Number of heteroaromatic rings (integer)

_feat_RotatableBondCount Number of rotatable bonds (integer)

_feat_BalabanIndex Balaban molecular graph index

_feat_CyclomaticNumber Cyclomatic number of molecular graph

_feat_HyperWienerIndex Hyper Wiener Index of molecular graph

_feat_WienerIndex Wiener Index of molecular graph

_feat_WienerPolarity Wiener Polarity of molecular graph

_feat_MinimalProjectionArea Minimal projection area

_feat_MinimalProjectionRadius Minimal projection radius

_feat_MinimalProjectionRadius Minimal projection radius

_feat_MaximalProjectionRadius Maximal projection radius

_feat_LengthPerpendicularToTheMinArea Length perpendicular to the minimal projection

(minimalprojectionsize) area

_feat_LengthPerpendicularToTheMaxArea Length perpendicular to the maximum projection

(maximalprojectionsize) area

_feat_VanderWaalsVolume van der Waals volume of the molecule

(volume)

_feat_VanderWaalsSurfaceArea van der Waals surface area of the molecule

(vdwsa)

_feat_ASA Water accessible surface area of the molecule,

(asa-H _rxn_pH) computed at _rxn_pH

_feat ASA+ Water accessible surface area of all atoms with

(molecularsurfacearea -t ASA+ -H _rxn_pH)  positive partial charge,computed at _rxn_pH

_feat_ASA- Water accessible surface area of all atoms with

(molecularsurfacearea -t ASA- -H _rxn_pH)  negative partial charge,computed at _rxn_pH

_feat ASA_H Water accessible surface area of all hydrophobic

(molecularsurfacearea -t ASA_H -H atoms with positive partial charge,computed at

_rxn_pH) _rxn_pH

_feat_ASA_P Water accessible surface area of all polar atoms

(molecularsurfacearea -t ASA+P -H with positive partial charge,computed at _rxn_pH

_rxn_pH)

_feat_PolarSurfaceArea 2D Topological polar surface area, computed at

(polarsurfacearea -H _rxn_pH) _rxn_pH

_feat_acceptorcount Hydrogen bond acceptor atom count in molecule,

(acceptorcount -H _rxn_pH) computed at _rxn_pH

_feat_Accsitecount Hydrogen bond acceptor multiplicity in molecule,

(acceptorsitecount -H _rxn_pH) computed at _rxn_pH

_feat_donorcount Hydrogen bond donor atom count in molecule,

(donorcount -H _rxn_pH) computed at _rxn_pH

_feat_donsitecount Hydrogen bond donor multiplicity in molecule,
computed at _rxn_pH

_feat_sol Aqueous solubility (logS) computed at _rxn_pH

(solubility -H _rxn_pH)
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In addition, a series of descriptors describing the number of functional-group fragments _feat_fr_
were computed. Because of the strict definition of amines described in the Methods section, only
functional groups related to amines are considered. These are determined from the molecular
graph, using the SMARTS patterns described in RDKit 2018.03.4. These are all integer values.

http://www.rdkit.org/Python_Docs/rdkit.Chem.Fragments-module.html
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Table S6. Explanation of calculated _feat_fr descriptors.

Descriptor name Description

_feat_fr NH2 Number of primary amines
_feat_fr_ NH1 Number of secondary amines
_feat_fr_ NHO Number of tertiary amines
_feat_fr_quatN Number of quaternary amines
_feat_fr_ArN Number of N functional groups attached to aromatics
_feat_fr_Ar_NH Number of aromatic amines
_feat_fr_Imine Number of imines
_feat_fr_amidine Number of amidine groups
_feat_fr_dihydropyridine Number of dihydropyridines
_feat_fr_guanido Number of guanidine groups
_feat_fr_piperdine Number of piperidine rings
_feat_fr_piperzine Number of piperzine rings
_feat_fr_pyridine Number of pyridine rings

Table S7. Explanation of _calc_ descriptors. These columns contain descriptors whose values
are obtained by performing a calculation on the _raw_, _rxn_ or _feat_ descriptors.

Descriptor name Description
_calc_Amine_H3B0O3_MolRatio Amine:boric acid mole ratio
_raw_Amine_Mol / _raw_H3B03_Mol
_calc_VOS04xH20_H3B0O3_MolRatio Vanadyl sulfate hydrate:boric acid mole ratio,
(_Lraw_V0S04xH20_Mol) / (_Lraw_H3B03_Mol)
_calc_VOS04xH20_H3B03_MassRatio Vanadyl sulfate hydrate:boric acid mass ratio
(Lraw_V0S04xH20/g) / (_raw_H3B03/g)
_calc_AmineConc Amine concentration (as molarity) computed by

moles Amine divided by volume of water.
(1000*raw_Amine_Mol / _rxn_H20/g)

_calc_avgNitrogenVDWVol van der Waals volume per nitrogen atom
( _feat_VanderWaalsVolume / _feat_ AtomCount_N )
_calc_avgNitrogenVDWSurface van der Waals surface area per Nitrogen atom

( _feat_VanderWaalsSurfaceArea /
_feat_ AtomCount_N )

_calc_CarbonNitrogenRatio C:N atom count ratio,
(_feat_AtomCount_C / _feat_AtomCount_N )
_calc_avgNitrogenWaterAssessSurface Water accessible surface area per Nitrogen atom

(_feat_ASA / _feat_ AtomCount_N )

_calc_pbKaUnderPhCount Number of pKb values that are less than _rxn_pH
(integer)
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Human data
Table S8. Logistic regression machine learning results for the human test set.

Precision Recall f1-score Support
False 0.56 0.51 0.53 69
True 0.28 0.32 0.30 41
average/ total 0.45 0.44 0.44 110
TN 35 FN 28
TP 13 FP 34
Accuracy 0.44
AUC 0.41
MCC -0.17

Table S9. kNN (N = 2) machine learning results for the human test set.

Precision Recall f1-score Support

False 0.72 0.83 0.77 69

True 0.61 0.46 0.53 41

average/ total 0.68 0.69 0.68 110

TN 57 FN 22

TP 19 FP 12
Accuracy 0.69
AUC 0.64
MCC 0.31

Table $10. kNN (N = 5) machine learning results for the human test set.

Precision Recall f1-score Support

False 0.63 0.52 0.57 69

True 0.38 0.49 0.43 41

average/ total 0.54 0.51 0.52 110

TN 36 FN 21

TP 20 FP 33
Accuracy 0.51
AUC 0.50
MCC 0.01

Table S11. SVC machine learning results for the human test set.

Precision Recall f1-score Support
False 0.62 0.64 0.63 69
True 0.36 0.34 0.35 41
average/ total 0.52 0.53 0.52 110
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TN 44 FN 27

TP 14 FP 25
Accuracy 0.53
AUC 0.49
MCC -0.02

Table S12. Decision tree machine learning results for the human test set.

Precision Recall f1-score Support
False 0.71 0.35 0.47 69
True 0.41 0.76 0.53 41
average/ total 0.59 0.50 0.49 110
TN 24 FN 10
TP 31 FP 45
Accuracy 0.50
AUC 0.55
MCC 0.11

Table $13. Random forest machine learning results for the human test set.

Precision Recall f1-score Support
False 0.62 0.55 0.58 69
True 0.37 0.44 0.40 41
average/ total 0.53 0.51 0.52 110
TN 38 FN 23
TP 18 FP 31
Accuracy 0.51
AUC 0.49
MCC -0.01

Table S14. Gaussian NB machine learning results for the human test set.

Precision Recall f1-score Support
False 0.68 0.78 0.72 69
True 0.50 0.37 0.42 41
average/ total 0.61 0.63 0.61 110
TN 54 FN 26
TP 15 FP 15
Accuracy 0.63
AUC 0.57
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MCC 0.16
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Triangle data
Table $15. Logistic regression machine learning results for the random reaction test set.

Precision Recall f1-score Support
False 0.77 0.49 0.60 69
True 0.47 0.76 0.58 41
average/ total 0.66 0.59 0.59 110
TN 34 FN 10
TP 31 FP 35
Accuracy 0.59
AUC 0.62
MCC 0.25

Table $16. kNN (N = 2) machine learning results for the random reaction test set.

Precision Recall f1-score Support
False 0.73 0.86 0.79 69
True 0.66 0.46 0.54 41
average/ total 0.70 0.71 0.70 110
TN 59 FN 22
TP 19 FP 10
Accuracy 0.71
AUC 0.66
MCC 0.35

Table $17. kNN (N = 5) machine learning results for the random reaction test set.

Precision Recall f1-score Support
False 0.90 0.75 0.82 69
True 0.67 0.85 0.75 41
average/ total 0.81 0.79 0.79 110
TN 52 FN 6
TP 35 FP 17
Accuracy 0.79
AUC 0.80
MCC 0.59

Table $18. SVC machine learning results for the random reaction test set.

Precision Recall f1-score Support
False 0.62 0.48 0.54 69
True 0.37 0.51 0.43 41
average/ total 0.53 0.49 0.50 110
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TN 33 FN 20

TP 21 FP 36
Accuracy 0.49
AUC 0.50
MCC -0.01

Table $19. Decision tree machine learning results for the random reaction test set.

Precision Recall f1-score Support
False 0.61 0.45 0.52 69
True 0.36 0.51 0.42 41
average/ total 0.51 0.47 0.48 110
TN 31 FN 20
TP 21 FP 38
Accuracy 0.47
AUC 0.48
MCC -0.04

Table $20. Random forest machine learning results for the random reaction test set.

Precision Recall f1-score Support
False 0.73 0.59 0.66 69
True 0.48 0.63 0.55 41
average/ total 0.64 0.61 0.62 110
TN 41 FN 15
TP 26 FP 28
Accuracy 0.61
AUC 0.61
MCC 0.22

Table S21. Gaussian NB machine learning results for the random reaction test set.

Precision Recall f1-score Support
False 0.70 0.55 0.62 69
True 0.45 0.61 0.52 41
average/ total 0.61 0.57 0.58 110
TN 38 FN 16
TP 25 FP 31
Accuracy 0.57
AUC 0.58

Accepted Manuscript for: Anthropogenic biases in chemical reaction data hinder exploratory
inorganic synthesis” Nature 573, 251-255 (2019) doi: -019- -


https://dx.doi.org/10.1038/s41586-019-1540-5

MCC 0.16
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Table S22. Observed outcomes on the discrepant laboratory tests based on predicted model
probabilities. All performed reactions were predicted by the model to have an outcome of 4
("success", defined as single crystal product with average crystallite dimensions exceeding 0.01
mm)

Predicted Model Probability

0.6 0.8 1
Observed
Outcome
1 2 0 0
2 15 3 2
3 5 17 2
4 8 30 16
Total 30 50 20
Percent 4 27% 60% 80%
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Figure S1. t-Distributed Stochastic Neighbor Embedding (t-SNE) plot of the human (pink) and
randomly-generated (cyan) training set data. The t-SNE dimensionality reduction function was
constructed to reduce the dataset to two dimensions using the randomly-generated dataset,
using the default settings of the Mathematica 11.3.0.0 (DimensionReduction[#, 2,
Method->"TSNE" ] &) function. The resulting dimension reducer function was applied to both
datasets to generate the plot above. The axes do not have a direct physical meaning or
dimensional units.
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Figure S2. t-SNE plot of the expanded test data and predicted outcomes. The 110,000
randomly generated test reactions (gray) and the subset of these predicted to be successful by
the human-data trained model (red) and randomly-generated reaction trained model (blue) are
shown in a reduced two-dimensional form, using the same dimensionality reduction function
used in the previous figure. The training data for both models (shown by itself in the previous
figure) is indicated in pink and cyan, respectively. The general proximity of the expanded test
points (gray, red, and blue) to the training data (pink and blue) indicates that neither model is
unreasonably being expected to extrapolate beyond its training data. The general proximity of
the predicted successes (red and blue) to the failures (gray) in the expanded test set indicates
that neither model is simply accepting or rejecting on the basis of outliers.
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