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Abstract
Popular feature importance techniques compute
additive approximations to nonlinear models by
first defining a cooperative game describing the
value of different subsets of the model’s features,
then calculating the resulting game’s Shapley val-
ues to attribute credit additively between the fea-
tures. However, the specific modeling settings
in which the Shapley values are a poor approx-
imation for the true game have not been well-
described. In this paper we utilize an interpreta-
tion of Shapley values as the result of an orthog-
onal projection between vector spaces to calcu-
late a residual representing the kernel component
of that projection. We provide an algorithm for
computing these residuals, characterize different
modeling settings based on the value of the residu-
als, and demonstrate that they capture information
about model predictions that Shapley values can-
not.

1. Introduction
There have been many recent efforts to quantify the impor-
tance of features to a model (Ribeiro et al., 2016; Datta
et al., 2016; Adler et al., 2018; Marx et al., 2019; Lundberg
and Lee, 2017; Lundberg et al., 2018a). Many of these
determine the importance through estimating the Shapley
value of a game designed to assign importance to sets of
features (Datta et al., 2016; Lundberg and Lee, 2017; Frye
et al., 2019; Lundberg et al., 2018a;b; Dhamdhere et al.,
2019). These Shapley-value-based feature importance meth-
ods have been used widely in practice (e.g., (Lundberg et al.,
2018b), and survey / analysis (Bhatt et al., 2020)). At the
same time, there have been increasing concerns that these
game theoretic values may not completely capture human or
technical notions of feature importance (Kumar et al., 2020;
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Slack et al., 2020; Sundararajan and Najmi, 2019). One of
these concerns is that the Shapley value is only a summary
of the cooperative game which describes a model’s dynam-
ics, and does not fully describe that game (Kumar et al.,
2020).

In this work, we introduce Shapley Residuals, vector-
valued objects that capture information lost by Shapley
values. Shapley residuals can be associated with individ-
ual variables, as well as with sets of variables. When the
residual of a feature exhibits a large norm, the associated
Shapley value should be taken with skepticism: the resulting
importance is not just due to the variable acting by itself.
On the other hand, if a residual is small, most of the effect
of the variable on the model is explainable by the variable
acting independently (we make these statements precise in
Section 3).

Consider the following two motivating scenarios. First, sup-
pose a practitioner uses Shapley values to determine the
effect of data interventions on model outcomes. Consider
two models f1 and f2. In a real-world scenario, the practi-
tioner will often only have black-box access to such models,
and the models will often be significantly more complex.
Here, we use these simple models:

f1(x1, x2, x3) = x1 + x2 + x3

f2(x1, x2, x3) = x1 + 2x2x3

Suppose the practitioner seeks to explain the output
f1(1, 1, 1) = 3 or f2(1, 1, 1) = 3, using Ker-
nelSHAP (Lundberg and Lee, 2017) to compute local fea-
ture importances. For both models, the Shapley values of x1,
x2, and x3 are all 1. Despite that, intervening by increasing
the value of x2 changes f2 more than increasing the value
of x1; in f1, this clearly does not happen. The Shapley
residuals for all variables in f1 are zero, indicating that vari-
ables in f1 do not interact (as we prove in Section 4.1). The
Shapley residuals for x2 and x3 in f2, on the other hand, are
nonzero, while the Shapley residual of x1 is still zero. Fi-
nally, the Shapley residual for the set of variables {x2, x3}
is also zero.

In the second scenario, consider a data generating distribu-
tion where α controls the correlation between two features
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in X and a regression target y:

(X, y) ∼
(︃
N

(︃
(0, 0),

[︃
1 α
α 1

]︃)︃
, ⟨X, (3, 1)⟩

)︃
.

We examine a regression model f(x1, x2) = β1x1 + β2x2

determined via linear least squares. Assume access to
infinitely many IID samples from (X, y), β = (3, 1).
Suppose a practitioner wanted to explain the output of
f(1, 1) = β1 + β2, this time using Conditional Expecta-
tion SHAP (Sundararajan and Najmi, 2019). The Shapley
values are β1+α(β2−β1)/2 for x1 and β2+α(β1−β2)/2
for x2. When α ≈ 0, Shapley values correspond to model
weights β1, β2, and support a (valid) interventional interpre-
tation that changing x1 yields a larger change to the output
of f than does x2. However, if α ̸= 0, Shapley values do
not support this interpretation. A practitioner employing
Shapley values alone lacks the information to distinguish
these scenarios. Shapley residuals provide useful diagnos-
tic information; the norm of the residuals for x1 and x2 is
exactly linearly proportional to α.

In these simple scenarios, it is clear that Shapley residuals
capture, respectively, variable interactions and mismatches
between dependent features in the data and independent
variables in the model. As we show in Section 5, these
observations apply to real-world scenarios as well.

In summary, we:

• introduce Shapley residuals (Section 3), which char-
acterize the limits of Shapley values as explanatory
mechanisms for cooperative games,

• study the properties of Shapley residuals both in gen-
eral and in context of existing formulations for explana-
tory games (Sections 3 and 4.1),

• show via a number of experiments that Shapley residu-
als capture meaningful information for model explana-
tions in realistic scenarios (Section 5), and

• place Shapley residuals in context of the broader discus-
sion of the goals of model interpretability, and caution
against overinterpreting them (Section 6).

2. Preliminaries
Let V be a vector space and let L be a linear mapping from
V to V . We denote R(L) = {w | ∃v ∈ V,L(v) = w} as
the range space of L and Null(L) = {v|L(v) = 0} as the
null space of L.

Games. A cooperative game consists of d players and
a value function v : 2[d] → R where as usual [d] =
{1, . . . , d}. The quantity v(S) represents the value of the

game for a coalition of players S ⊂ 2[d] ≜ N . Without loss
of generality we will assume that v(∅) = 0, and that we can
identify the game with v. Let the space of games be denoted
by G.

Definition 1 (Shapley values(Shapley, 1952)). The Shapley
values ϕi(v), i ∈ [d] are the unique values satisfying the
properties

Efficiency:
∑︁d

i=1 ϕi(v) = v(N).

Dummy: If v(S ∪ {i}) = v(S) for all S ⊂ N \ {i}, then
ϕi(v) = 0.

Symmetry: If v(S ∪ {i}) = v(S ∪ {j}) for all S ⊂ N \
{i, j}, then ϕi(v) = ϕj(v).

Linearity: If v, v′ are two games on d players, then ϕi(αv+
α′v′) = αϕi(v) + α′ϕi(v

′).

The Shapley values are given by the equation

ϕv(i) =
∑︂
S⊆[d]

|S|!(d− |S| − 1)!

d!
(v(S ∪ i)− v(S)) (1)

Let I denote the space of games v such that for all S ⊆ N ,
v(S) =

∑︁
i∈S v({i}). I is called the space of inessential

games. Note I is a subspace of G. Intuitively an inessential
game is one in which the player interactions are simple
and additive: every player adds a fixed value v({i}) to a
coalition S independent of the composition of S.

We can define a local variant of inessentiality. We say that
the game v is inessential relative to S if v(C) = v(S) +
v(C \ S) for all S and C such that S ⊂ C ⊂ N . That
is, each coalition containing S obtains a value equal to
the subcoalition S working separately from C \ S. An
interesting special case is when the set S is the singleton
{i} – in this case we say that v is inessential relative to i.

Gradients on the hypercube. We can think of the set N
as the d-dimensional hypercube G = (V = N,E) with
each vertex labeled by a set S ⊆ N and edges between sets
S and S ∪ {i} for all i ∈ [d], S. The differential operator
d : ℓ2(V ) → ℓ2(E) is then defined as

du(S, S ∪ {i}) = u(S ∪ i)− u(S)

Essentially d is a discrete gradient operator on G, with a
corresponding adjoint operator d∗. Finally, we will define a
partial gradient di : ℓ2(V ) → ℓ2(E):

diu(S, S ∪ {j}) =

{︄
u(S ∪ j)− u(S) i = j

0 otherwise
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Figure 1. The decomposition of a game proposed by Stern and
Tettenhorst (2019)

Intuitively, di only evaluates a gradient for edges corre-
sponding to the insertion of i.

A key insight of Stern and Tettenhorst (2019) was to ex-
press inessentiality of games in terms of gradients on the
hypercube.
Proposition 1 ((Stern and Tettenhorst, 2019, Prop 3.3)).
The game v is inessential if and only if div ∈ R(d) for all
i ∈ N .

We can extend their result to relative inessentiality.
Proposition 2. The game v is inessential relative to S if
and only if dSv ∈ R(d), where dS =

∑︁
i∈S di

2.1. Characterizing Shapley values

The main result by Stern and Tettenhorst (2019) is a decom-
position of an arbitrary game v into games that are “close to
being inessential” and allow extraction of Shapley values.
Since v is not inessential, we cannot be sure to find vi such
that div = dvi, but we can find the “closest” such vi. By
the fundamental theorem of linear algebra, we can write

div = dvi + ri

where ri ∈ Null(d∗) and dvi ∈ R(d). Moreover, ri is
orthogonal to R(d) and so we can write vi as the solution
to the least squares problem

min
x∈ℓ2(V )

∥dx− div∥

Stern and Tettenhorst (2019) show that for vi defined as
above, vi(N) is the ith Shapley value of v. We illustrate the
construction in Figure 1.

3. Shapley Residuals
We are now ready to introduce our main contribution. Note
that inessentiality of a game is key to having meaningful

Figure 2. The construction of Shapley residuals

Shapley values. This is because when a game is inessential,
each player i contributes precisely v({i}) to each coalition
it is part of, and therefore ϕi(v) = v({i}). This is true
even locally: if v is inessential with respect to S, then S
always contributes v(S) to any coalition it participates in.
Therefore, to understand the limits of Shapley values, we
must quantify the degree of deviation from inessentiality.

Definition 2 (Shapley Residuals). We call ri = div − dvi
the Shapley Residual of player i. Analogously, rS =∑︁

i∈S ri is the Shapley Residual of set S.

Shapley Residuals are a novel diagnostic tool for feature im-
portance, and enjoy a number of relevant properties (which
we prove in the supplementary material):

• v is inessential iff ri = 0 for each i ∈ N or, equiva-
lently, iff ||ri||2 = 0 for each i ∈ N . We use

∑︁
i ||ri||2

to characterize how far v is from being inessential.

• v is inessential relative to a set S iff rS = 0 or, equiv-
alently, iff ||rS ||2 = 0. We use ||rS ||2 to characterize
how far v is from being inessential relative to S.

•
∑︁

i∈N ri = 0. In words, v is always inessential relative
to N and (vacuously) also always inessential relative
to ∅.

Inessentiality implies inessentiality relative to all players
and subsets, but the converse does not hold. If rS = 0 for
some subset S, this merely implies that players in S do
not interact with players in N \ S. Figure 2 illustrates the
construction of residuals.

4. Feature Importance and Residuals
We now apply this geometric framework to the problem of
attributing feature importance via Shapley values. As has
been noted, the different methods for Shapley value-based
explanation (whether local or global) all reduce to a specific
choice for the game v, at which point the Shapley values



Shapley Residuals: Quantifying the limits of the Shapley value for explanations

of v are estimated and returned (Sundararajan and Najmi,
2019; Kumar et al., 2020; Merrick and Taly, 2019).

We will show that the notion of relatively inessential games
has a natural interpretation in the context of the two most
popular forms of Shapley-based feature importance, Ker-
nelSHAP and SHAP, and show that the residuals capture
information about the structure of a model that the Shapley
value cannot.

4.1. Feature Importance Methods

The definitions of Shapley sampling values (Štrumbelj and
Kononenko, 2014), as well as SHAP values (Lundberg and
Lee, 2017), are derived from defining v as the conditional
expected model output on a data point when only the fea-
tures in S are known:

vCond
f,x (S) = E[f(X)|XS = xS ]

We call this Conditional Expectation SHAP after Sundarara-
jan and Najmi (2019).

KernelSHAP is derived from defining v by taking an expec-
tation of f over S̄’s joint marginal distribution while fixing
the feature values from S:

vKernel
f,x (S) = E[f([xS ,XS̄ ])]

Notably, the two values are the same if the features in S̄ are
independent from those in S.

4.2. KernelSHAP Residuals

The behavior of residuals on KernelSHAP can be described
with respect to the presence of interaction terms in a model.
Lemma 1. Let f : X = {X1, X2, ..., Xd} → Y be a
multivariate function. Suppose f can be decomposed as
f(x) = g(xS) + h(xS̄), for some functions g : {Xj :
j ∈ S} → Y and h : {Xj : j ̸∈ S} → Y . Let z =
{z1, z2, ..., zn} ∈ X . Then vKernel

f,z is relatively inessential
with respect to the set S.

This is important because if the model really does decom-
pose additively for a certain variable i, the practitioner un-
derstands what to expect when variable i is perturbed. The
KernelSHAP residuals thus quantify the extent to which the
SHAP values describe interventional effects of the model.

4.3. Conditional Expectation SHAP Residuals

Just as the residual for KernelSHAP can be thought of as
detecting feature interactions in a model, the residuals of
Conditional Expectation SHAP can detect feature interac-
tions in the data.
Lemma 2. Let f : X = {X1, X2, ..., Xd} → Y be a
multivariate function. Suppose f can be decomposed as

f(x) = g(xS) + h(xS̄), for some functions g : {Xj :
j ∈ S} → Y and h : {Xj : j ̸∈ S} → Y . Let z =
{z1, z2, ..., zn} ∈ X . Suppose further that all Xj : j ∈ S
are distributed independently from all Xj : j ̸∈ S. Then
vCond
f,z is relatively inessential with respect to set S.

The residual on SHAP thus quantifies the extent to which
SHAP values can be interpreted interventionally, because
depending on the causal structure of the data, correlated
features could imply that perturbing a feature i could result
in the perturbation of a different feature as well and therefore
the SHAP values cannot be interpreted interventionally.

5. Experiments
Given the theoretical justification presented in the previous
sections for Shapley residuals, we focus here on examining
what these residuals can help us understand about models
on real-world data. Throughout, we use our own implemen-
tation of KernelSHAP to calculate the exact Shapley values
and residuals.1

5.1. Occupancy Detection

We consider the Shapley values and residuals for an oc-
cupancy detection dataset2 with 20,560 instances used to
predict whether an office room is occupied. The 7 attributes
include a date stamp which is preprocessed to refer to an
hour and day of the week. A decision tree model with a
maximum depth of 3 is trained on 75% of this data using
only the features light and hour. When evaluated on the
remaining test set, the ROC-AUC for this decision tree is
0.991.

We calculate the Shapley values and residuals (using 50
randomly sampled background rows from the test set) for
1000 randomly sampled test instances. The results for the
variable “light" are shown in Figure 3.

The reason that the cluster of points in the middle has a
high residual is illustrated in Figure 3(c). Calculating the
expected prediction while fixing a light value of 320, unlike
most other possible values, results in a mix of low and high
predictions. These average to 0.4, while both the overall ex-
pectation and particular prediction for occupancy probabil-
ity for those points are 0.25. Specifically, the KernelSHAP
game for f(H,L) = P (occupant = T ) for L = 320 and
H = 10 is shown in the inset diagram. L = 320 is a posi-
tive indicator of occupancy if H is unknown (+.16) but is
a “negative” indicator of occupancy is H is known to be
10 (-.24), due to the interactions in the model in this area
of the feature space. The light Shapley value is close to 0

1Code is provided in the supplementary material
2https://archive.ics.uci.edu/ml/datasets/

Occupancy+Detection+

https://archive.ics.uci.edu/ml/datasets/Occupancy+Detection+
https://archive.ics.uci.edu/ml/datasets/Occupancy+Detection+
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(a) KernelSHAP values (b) KernelSHAP residuals

(c) KernelSHAP sampling for
(10,320)

Figure 3. Shapley values and residuals on a decision tree for the
Occupancy Detection task

E[f(H,L)] = .24 E[f(10, L)] = .25

E[f(H, 320)] = .40 f(10, 320) = .01

+.01

+.16 −.24

−.39

for points in this range, then, because it is the average of
a positive and negative number – not because it is of “low
importance” – and the non-inessentiality of this feature is
what is being captured by the residual.

5.2. NHANES

The NHANES data, made available via the SHAP package3,
contains 9,932 instances of right-censored mortality data.
We use the preprocessing of the data from the SHAP pack-
age and train an XGBoost Cox survival model with 5000
estimators on 7 variables (‘Age’, ‘Diastolic BP’, ‘Sex’, ‘Sys-
tolic BP’, ‘Poverty index’, ‘White blood cells’, and ‘BMI’).
The resulting Harrell’s C-statistic on the test set is 0.825.
We then explain its marginal predictions on 1000 randomly
chosen test instances with KernelSHAP on 100 background
samples. The resulting KernelSHAP values and residuals
for some features are given in Figures 4 and 5.

Considering the feature importance of blood pressure (Fig-
ure 4(a)), we find (as also found in Lundberg and Lee
(2017)) that as blood pressure increases, the importance
of blood pressure to mortality also increases, and this effect

3https://slundberg.github.io/shap/
notebooks/NHANES%20I%20Survival%20Model.
html

(a) KernelSHAP values

(b) KernelSHAP residuals

Figure 4. Shapley values and residuals on an XGBoost mortality
model for Systolic blood pressure and age.

(a) KernelSHAP values

(b) KernelSHAP residuals

Figure 5. Shapley values and residuals on an XGBoost mortality
model for age and sex.

https://slundberg.github.io/shap/notebooks/NHANES%20I%20Survival%20Model.html
https://slundberg.github.io/shap/notebooks/NHANES%20I%20Survival%20Model.html
https://slundberg.github.io/shap/notebooks/NHANES%20I%20Survival%20Model.html
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(a) KernelSHAP values

Figure 6. Shapley values and residuals on a random forest income
model

is correlated with an increase in age. Examining the resid-
uals (Figure 4(b)) additionally allows us to see that there
is a missing importance associated with blood pressure for
middle aged people across all blood pressure readings, per-
haps indicating that blood pressure acts in combination with
other variables to impact mortality for this age range.

When we consider the KernelSHAP feature importance of
sex on mortality within this model (Figure 5(a)) we find
the importance to be remarkably stable across age ranges,
such that being male consistently has a much larger predic-
tive impact on mortality risk. However, the residuals for
these features and instances (Figure 5(b)) show that middle
aged men may have many other interacting and contributing
factors for predicting mortality. These two residual charts
taken together (Figures 4(b) and 5(b)) may indicate that
blood pressure, sex, and age interact within the model to
increase the importance of both sex and blood pressure for
mortality predictions of middle aged men.

5.3. Adult Income

The Adult Income dataset4 contains 48,842 instances of peo-
ple’s census information from 1994, including 14 attributes
describing their education, job, marital status, etc., and with
the goal of predicting whether the person makes more or
less than $50,000 per year. We preprocess the data by re-
moving rows with missing values and train a random forest
with 10 trees on all the variables (except fnlwgt) on 80%
of the data. The ROC-AUC of the model evaluated on the
remaining 20% is .857. We calculate the Shapley values and
residuals using 1000 test instances and KernelSHAP with
25 background samples. The results for features sex and
marital status are shown in Figure 6.

For both men and women, the distribution of Shapley values
indicating the importance of sex to the income prediction

4http://archive.ics.uci.edu/ml/datasets/
Adult

model is close to a Shapley value of 0. However, in addition
the Shapley values for women having a larger variance, we
see with Shapley residuals that residuals for some women
are also much higher than those for men. Specifically,
while essentially all men have low residuals, essentially
only women who are also married to civilian non-absent
spouses have low residuals. This indicates that sex and mar-
ital status interact in more complex ways with the income
prediction model for women than they do for men.

6. Discussion
Much of the motivation in interpretable machine learning,
and especially within Shapley-value-based feature impor-
tance, is to give a rigorous theoretical foundation to inter-
pretability notions so that practitioners can better understand
the impacts of their models. This is especially important in
societal contexts where models make high-stakes decisions
about people, e.g., via criminal risk assessments and inter-
view screening algorithms. We believe people have the right
to understand those decisions, and particularly which fea-
tures were important for the decision. Putting such feature
importance measurements on solid theoretical grounds is
important for the validity of these feature importance claims.
Their validity is an important part of the ethics of algorithms
as societal interventions.

Our motivation for this work is to contribute further to the
theoretical foundation of Shapley-value-based feature im-
portance measures and, critically, to quantify any missing
importance via our introduced Shapley residuals. We believe
that these Shapley residuals could have a positive societal
impact by alerting practitioners to model complexities and
importances that have previously gone unattended. One
societal concern is that the meaning of these residuals may
be hard for practitioners to understand and that errors in the
interpretation of these residuals may cause unanticipated
negative consequences. We encourage further research on
how to best present these residuals for human understanding
and interaction, and hope that even if they are only under-
stood as a warning attached to specific Shapley values that
may be useful for practitioners.

Additionally, we warn against Shapley residuals further
encouraging the unskeptical use of Shapley values for fea-
ture importance. Previous research has shown that Shapley
values are not well-aligned with the human understanding
goals of feature importance (Kumar et al., 2020), as well
as suffering from technical issues such as susceptibility to
adversarial attacks (Slack et al., 2020). Given the already
widespread use of Shapley values for feature importance, we
felt that the increased scrutiny enabled by Shapley residuals
outweighs the risk of further increased popularity.

http://archive.ics.uci.edu/ml/datasets/Adult
http://archive.ics.uci.edu/ml/datasets/Adult
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7. Appendix
7.1. Proofs from Section 3

Stern and Tettenhorst define Cσ,i = {j ∈ N : σ(j) < σ(i)}. We will need the slight extension to sets Cσ,S =
⋂︁

i∈S Cσ,i.
Stern and Tettenhorst define and prove their main claims in Definition 3.1, 3.2, and Proposition 3.3. We generalize them to
the many-player setting, providing Definition 3.1S , 3.2S , and Proposition 3.3S .

Definition 3.1S. For a subset S ⊂ N , let dS : ℓ2(V ) → ℓ2(E) be the operator dS =
∑︁

i∈S di, or

dSu(C,C ∪ {j}) =
{︃

du (C,C ∪ {i}) if i = j and i ∈ S,
0 otherwise.

Therefore, dSv ∈ ℓ2(E) encodes the marginal value contributed by the player subset S to the game v. For any permutation
σ of N, which defines a path from ∅ to N , the marginal value contributed by subset S along this path is

∑︂
j∈N

dSv(Cσ,j , Cσ,j ∪ {j}) =
∑︂
i∈S

div(Cσ,j , Cσ,j ∪ {j}) =
∑︂
i∈S

v(Cσ,i ∪ {i})− v(Cσ,i),

which can also be interpreted as a discrete “line integral” of dSv along the path.

Definition 3.2S. The game v is inessential relative to S if v(C) = v(S) + v(C \ S) for all S and C such that S ⊂ C ⊂ N .
That is, each coalition containing S obtains a value equal to the subcoalition S working separately from C \ S. In addition,
inessentiality relative to a single player i is the same as inessentiality relative to the singleton set {i}.

Stern and Tettenhorst’s 3.2 is a stronger condition than 3.2i which in turn is stronger than 3.2S. In other words, v being
inessential implies that v is inessential relative to all i ∈ N and all subsets S ⊂ N . v being inessential with respect to each
player of i, j, . . . z implies that v is inessential relative to the set {i, j, . . . , z}. The converses, on the other hand, do not
generally hold.

Proof. We need to show that the different paths that can be taken through the nonzero entries of dS sum to the same value.
But if dSv ∈ R(d), then the right-hand side of the result in the sum defined in 3.1S telescopes to v(Cσ,S ∪ S)− v(Cσ,S),
since dSv ∈ R(d) implies path independence inside S. As a result, the marginal value v (S ∪ C)− v(S) is the same for all
coalitions C ⊂ N \ S. Taking C = ∅, we see that this value is precisely v(S), and we conclude that v is inessential relative
to S. Conversely, suppose that v is inessential relative to S, and define the game

vS(C) =

{︃
v (S ∩ C) if S ∩ C ̸= ∅,
0 if S ∩ C = ∅.

It follows immediately that
(︁∑︁

i∈S di
)︁
v = dvS ∈ R(d), which completes the proof.

Corollary 1: v is inessential iff ri = 0 for each i ∈ N .
∑︁

i∈N ||ri||2 characterizes the deviation from inessentiality of v.

Corollary 1S: v is inessential relative to S iff rS =
∑︁

i∈S ri = 0. ||
∑︁

i∈S ri||2 characterizes the deviation from
inessentiality of game v relative to S.

Lemma:
∑︁

i∈N ri = 0. Proof: by definition,
∑︁

i di = d. Since we also know that
∑︁

i vi = v, summing dvi + ri = div
over all i directly yields the result.

7.2. Proofs from Section 4

Lemma 1:

Proof. Using the linearity of expectation, we can rewrite this game as

vKernel
f,z (T ) = E[f([zT ,XT̄ ])] =

{︄
g(zS) + E[h([zT\S ,XT̄ ])] S ⊆ T

E[g(XS)] + E[h([zT ,XT̄\S ])] T ∩ S = ∅
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Now we can write the nonzero elements of the partial derivative dSv
Kernel
f,z as

vKernel
f,z (T ∪ S)− vKernel

f,z (T ) = g(zS) + E[h([z(T∪S)\S ,XT∪S¯ ])]−
(︁
E[g(XS)] + E[h([zT ,XT̄\S ])]

)︁
= g(zS) + E[h([zT ,XT̄\S ])]−

(︁
E[g(XS)] + E[h([zT ,XT̄\S ])]

)︁
= g(zS)− E[g(XS)]

regardless of T , as long as T ∩ S = 0.

Lemma 2:

Proof. Using the linearity of expectation, we can rewrite this game as

vCond
f,z (T ) = E[f(X)|XT = zT ]

= E[g(XS)|XT = zT ] + E[h(XS̄)|XT = zT ]

=

{︄
g(zS) + E[h(XS̄)|XT\S = zT\S ] S ⊆ T

E[g(XS)] + E[h(XS̄)|XT = zT ] T ∩ S = ∅

Now we can write the nonzero elements of the partial derivative dSv
Kernel
f,z as

vKernel
f,z (T ∪ S)− vKernel

f,z (T ) = g(zS) + E[h(XS̄)|XT = zT ]− (E[g(XS)] + E[h(XS̄)|XT = zT ])

= g(zS)− E[g(XS)]

regardless of T , as long as T ∩ S = 0.
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