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ABSTRACT
Location-based social networks (LBSNs) have been studied exten-
sively in recent years. However, utilizing real-world LBSN datasets
in such studies has severe weaknesses: sparse and small datasets,
privacy concerns, and a lack of authoritative ground-truth. Our vi-
sion is to create a large scale geo-simulation framework to simulate
human behavior and to create synthetic but realistic LBSN data
that captures the location of users over time as well as social inter-
actions of users in a social network. While existing LBSN datasets
are trivially small, such a framework would provide the first source
of massive LBSN benchmark data which would closely mimic the
real world, containing high-fidelity information of location, and
social connections of millions of simulated agents over several
years of simulated time. Therefore, it would serve the research
community by revitalizing and reshaping research on LBSNs by
allowing researchers to see the (simulated) world through the lens
of an omniscient entity having perfect data. These evaluations will
guide future research enabling us to develop solutions to improve
LBSN applications such as user-location recommendation, friend
recommendation, location prediction, and location privacy.

CCS CONCEPTS
•Human-centered computing→ Social networks; •Comput-
ingmethodologies→Agent / discretemodels; • Information
systems → Location based services.
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1 INTRODUCTION
A social network is a social structure consisting of individual users
connected by a social relationship such as friendship. Social net-
working services build on real-world social networks through on-
line platforms, providing ways for users to share ideas, activities,
events, and interests. For example, users can: share location-tagged
images with their friends (e.g., in Flickr), rate restaurants and bars
and recommend them to their friends (e.g., in Foursquare), or log
jogging and bicycle trails for sports analysis and experience sharing
(e.g., in Bikely). This dimension of location bridges the gap between
the physical world and online social networking services. As the
location is one of the most important components of user context,
extensive knowledge about an individual’s interests, behaviors, and
relationships with others can be learned from their locations. These
kinds of location-embedded and location-driven social structures
are known as location-based social networks (LBSNs).

Publicly available real-world datasets have been the driving force
for LBSN research in recent years, but such datasets exhibit certain
weaknesses:

• Data sparsity: LBSN data exhibits an extreme long-tail distribu-
tion of user behavior. In all existing datasets, the vast majority
of users has less than ten check-ins [12]. Besides, the number of
locations visited by a user is usually only a small portion of all
locations. The density of the data used in experimental studies
on LBSNs is usually around 0.1% [12].

• Small datasets: Existing datasets used to train models are small,
as detailed in Section 3. They cover only a short period, a small
number of users, or a small number of check-ins. Thus, model
overfitting becomes a severe concern.

• Privacy Concerns: Most LBSN data was published by users
and consented for public use. However, some users may revoke
this consent, for instance, by deleting their LBSN account. Such
changes will not be reflected in existing LBSN datasets, creating
severe privacy concerns.

• No ground-truth: There is no way to assess whether a user
visited a location or if the social network is correct and com-
plete. Thus, it is difficult to assess the accuracy and robustness
of existing experimental results using LBSN data.

The vision described in this work is to employ geospatial simulation
to create artificial, but socially plausible LBSN datasets. Such large
and dense datasets would allow the broad research community to
test research hypotheses without any privacy concern. Therefore,
the synthetic datasets would enable us to investigate what would
be possible if we had such high-fidelity LBSN data of the real world.
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Figure 1: LBSN Overview.

2 LOCATION-BASED SOCIAL NETWORKS:
AN OVERVIEW

Users [26] and locations [27] are the twomajor subjects that interact
with each other in an LBSN.We can observe three types of networks
that constitute an LBSN, (i) a user-user social network, (ii) a location-
location spatial network, and (iii) a user-location bipartite network.
Figure 1 gives a schematic overview of these networks and their
interaction. Like in a traditional social network, users are connected
via relationships such as friend, family, or co-worker. A spatial
network defines proximity in terms of path distance, but may also
introduce connections between locations that have similar semantic
properties, e.g., of the same location type. Finally, the core feature
of a location-based social network is the user-location network,
which bridges users and locations (Figure 1). This bipartite network
between users and locations captures events of users visiting a
physical location. Such so-called “check-ins” may be enriched with
qualitative information, such as user recommendations, which may
be explicit, e.g., on a scale from one to five stars, or implicit, e.g.,
by observing that a user frequently checks-in at the same location.

LBSN data can be used in a plethora of beneficial applications.
Initial LBSN work focused on modeling and describing Human
Mobility Patterns [23], and explainingwhy users choose locations
and how social ties affect this choice. Then Location Recommen-
dation tries to predict edges of the user-location check-in network
[24]. Closely related, Check-in Prediction [16] tries to predict
future check-ins, which is useful in marketing applications. An-
other research field is LBSN-based Friend Recommendation or
Social Link Discovery [21], which suggest new friends to users
that have a similar interest at similar locations, while also having
similar social connections. Other research topics include finding
communities [25] and efficient query processing [10] in LBSNs.
To sum up, there has been a plethora of diverse LBSN research.
However, the impact of LBSN research relies on the quality of
data, and the next section will show that there is a considerable
shortage of rich datasets. The datasets used in experiments are
small, lack sufficient sample size for individual users, and cannot
provide authoritative ground-truth knowledge for a meaningful
evaluation of all these methods.

3 EXISTING LBSN DATASETS
Meaningful real-world LBSN datasets are a scarce resource consid-
ering the privacy implications of making such data public. Also,
service providers consider such datasets invaluable when it comes
to providing a competitive product and are thus somewhat unwill-
ing to provide researchers even with sizable datasets.

Dataset #Users #Locations #CheckIns #Links
Gowalla 319K 2.8M 36M 4.4M
BrightKite 58K 971K 4.49M 214k
Foursquare 2.7M 11.1M 90M 0
Yelp 1.00M 144K 4.10M 0

Table 1: Publicly Available Real-World LBSN Datasets

Table 1 summarizes publicly available datasets that are inten-
sively used by the LBSN research community.
Gowalla: Collected by the authors of [11] and retrieved from the
LBSN Gowalla, which launched in 2007 and closed in 2012. This
dataset has the largest social network of any public LBSN dataset
while the majority of users are inactive. After removing users with
less than 15 check-ins and removing locations with less than ten
visitors, more than half of the visitors are eliminated [11]. A similar
dataset is Brightkite, which is available at SNAP [1]. It is smaller
than the Gowalla data in every aspect.
Foursquare: In terms of the number of users and check-ins, the
largest publicly available LBSN dataset was collected from Foursquare
[22]. However, no social network data is available. The Foursquare
dataset suffers from the same user-inactivity problem. A recent
study [9] has shown that the lower bound of predictability of the
human spatiotemporal behavior (defined in [9]) is as low as 27%.
They conclude that “Researchers working with LBSN datasets are
often confronted by themselves or others with doubts regarding the
quality or the potential of their datasets.” and that “it is reasonable
to be skeptical, indeed”.
Yelp:A large dataset is published by Yelp as part of the Yelp Dataset
Challenge [2]. This dataset provides additional information, such
as user-location ratings, user comments, user information, and
location information. However, no social network is known and the
social connections can only be estimated, e.g., by similar check-ins
at the same time. There is no authoritative ground-truth to validate
these connections.
Synthetic Data: The problem of using sparse and noisy real-world
LBSN data has already been identified in previous work [4, 5, 8].
However, none of these works proposed a way to obtain plausible
check-in data. The authors of [8] generate user-location check-
ins uniformly random without considering the semantics of the
movement. Armenatzoglou et al. [4, 5] create check-ins randomly
following a simple distance-based power-law distribution.

In summary, the experimental results of existing work on LBSNs
may be considered inconclusive, both in terms of scalability and
effectiveness due to a lack of available datasets. This vision paper
aims at closing this gap by proposing the means to generate large
scale and ground-truth based synthetic datasets through simulation.
Synthetic datawould allow insights intowhat is possible concerning
new and improved geoinformation systems, but also in terms of
privacy and anonymization research without having to raise any
privacy concerns.

4 LOCATION-BASED SOCIAL SIMULATION
Our vision is to create a geo-simulation framework to generate
high-quality LBSN data. The framework will model users living and
traveling in an urban environment, going home at night, working
during work days, and visiting recreational locations. Individual
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Figure 2: LBSN Check-in Data Simulation Framework: Overview.

user preferences will guide the choice of locations. Simulated indi-
viduals co-locating in space and time may become friends, depend-
ing on the type of place where they meet. Following this underlying
social network, friends will travel and visit locations together. Based
on psychology and social science theories [3, 14], individuals will
exhibit a socially plausible behavior. Simulation parameters will
be calibrated to create scenarios similar to the real world, thus al-
lowing us to create massive sets of simulated LBSN data, capturing
all individuals of our simulated world with a valid ground-truth
(having no uncertainty) and without impacting the privacy of any
human subject in the real world. As a deliverable, this research will
yield synthetic LBSN data sets of hundreds of thousands of users,
scaling to years of observed user data, and thus creating gigabytes
of meaningful check-in and social interaction data.

4.1 Challenges
The first challenge in this vision is to enrich the simulation with
plausible human behavior by integrating psychological/social the-
ories such as Maslow’s hierarchy of needs [14] and the theory of
planned behavior [3]. As such, individuals’ actions are driven by
their needs, e.g., physiological needs such as food, financial needs,
and social needs to meet friends and family. More importantly, such
actions should align statistically with real-world measurements.

The second challenge is the creation of a scalable and efficient
geo-simulation design to accommodate millions of individuals to
be simulated simultaneously. At each decision point, individuals
need to efficiently decide when and where to move based on limited
information about their environment. Using pruning techniques,
we plan to avoid evaluating predicates that did not change between
decision points. At the same time, navigation on a spatial network
needs to be efficient. Pre-computing and preferentially caching
shortest paths will speed up the spatial network-related operations.
Parallelization of the simulation is challenging, since social and
spatial networks are not independent and social networks may
change dynamically.

4.2 Agent-Based Modeling Approach
One possible approach to implement the envisioned framework
is to employ agent-based modeling. The main idea is to create a
massively scalable implementation of the agent-based model based
on algorithmic innovation. There are many agent-based modeling
platforms; one example is the MASON (Multi-Agent Simulation of
Neighborhoods) open-source simulation toolkit [13] and its GIS
extension, GeoMASON [20]. MASON has been used in the past to

develop agent-based models to describe complex social interaction
that is based on the agent’s location in space and time, including
models for riot prediction [19], simulating the spread of disease [6],
and the emergence of slums in urban environments [18]. These sim-
ulations consider a limited number of agents, over only a few days
of simulation time. One of the main challenges to be addressed in
such an agent-based simulation is to scale the system, including spa-
tial properties, by using efficient resource distribution algorithms
and index structures to avoid computational bottlenecks.

The envisioned simulation framework will create simulated
worlds in which virtual individuals (agents) move and interact
with the environment and with each other. A sketch of this sim-
ulation framework is illustrated in Figure 2. Each simulation will
be based on (real or synthetic) spatial networks with locations and
social networks of users. Agents will have home and work locations,
which may change over time. They will follow daily patterns of life
such as going to work and visiting recreational places. Agents may
aim to maximize attributes such as “happiness” and “cash” over
years of simulation time. Different agents may have different goals,
thus maximizing different attributes. Each agent will have choices,
such as preferring a certain type of restaurant, cafe, or bar. The
simulation will store spatial and social information of agents into
log-files and use Google BigTable for distributed and compressed
storage once the files become too large.

4.3 Research Applications
The envisioned simulation would directly benefit many research
endeavors using location-based social simulation, including social
link discovery, location recommendation, community detection,
and others, as described in the following.
Social Link Prediction. Traditionally, the quality of existing link
prediction methods is evaluated by removing a fraction of links
from the social network, and testing howwell existing solutions can
predict these links using the remaining links for training. A major
problem with this approach is that it is unclear how accurately
the LBSN social network reflects the real world. Are there missing
links? Are there false links? How much correct signal per noise do
these datasets yield? Are existing solutions overfitting to this noise?
Unfortunately, these questions are challenging to answer, as there
is no way to validate whether two friends that are reported in any
of the real-world LBSN datasets (see Section 3) are actual friends.
We can fill this gap by exploiting the fact that our agents are real
friends, who have deliberately chosen to visit a location together,
and which agents are sharing the same location coincidentally.
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Location Recommendation. To recommend locations, we have
simulated individuals rate locations (on a five “star” scale - as illus-
trated in Figure 1). This rating will be determined by a deterministic
function of the agents’ preferences and the locations’ attributes.
The result will be obfuscated by random noise (of parameterizable
degree). Then, we can evaluate how existing methods, such as re-
gression models and matrix factorization models can exploit the
(latent) agent preferences and location attributes for prediction.
Unlike in real-world recommendation systems where the recom-
mendation matrix is sparse, we can simulate restaurant visits and
ratings. Such ground-truth data would enable us to answer the
question of recommendation systems’ generalizability to the whole
population, or if they overfit their models towards a sub-population
of individuals that use the recommendation service.
CommunityDetection. For the tasks of community detection and
social network clustering, we can impose circles of friends (strongly
connected groups) in our social network. Then, by observing co-
locations from the data, we can see which existing solutions are
able to best approximate the imposed ground truth social networks.
Thus, we can obtain a ground-truth of communities to evaluate the
accuracy of algorithms against.
Other Applications. For all LBSN problems mentioned, an addi-
tional application that simulated data will allow evaluating whether
existing algorithms able to scale to large and dense datasets. Such
results may reveal computational bottlenecks that were invisible
on small and sparse real-world datasets. Another application is the
simulation and analysis of traffic solutions. We can examine traffic
solutions with centralized control, which is a realistic scenario of
the autonomous vehicle future, as envisioned by Bryan Mistele of
INRIX [15]. This will allow to evaluate different fleet-based routing
strategies and compare them to traditional self-optimizing driving
strategies. Finally, synthetic LBSN datasets will benefit research to-
wards location privacy. Existing work [7, 17] points out the sensitive
location privacy aspect of LBSN datasets. Recent work [17] shows
that an in-depth study requires much larger datasets. Given the
general lack of such data, synthetic data will include high-fidelity
trajectories of individual users and help show how location privacy
is even more at a risk if more user data was available.

5 CONCLUSIONS
Our vision is to employ geo-simulation to generate large-scale and
high-fidelity location-based social network datasets. We see this
as an open problem, as existing real-world LBSN datasets are in-
sufficient in terms of size and data reliability, which inhibits the
broader impacts of data-driven research using LBSN data. Towards
the vision of location-based social simulation, we identify two main
challenges: (i) plausibility, in terms of generating data that exhibits
realistic social behavior, in order to make inductions from results
on the simulated data onto the real world, and (ii) scalability, to
simulate millions of agents over years of simulation time, thus po-
tentially generating LBSN data of whole generations. Once such
a location-based social simulation framework has been developed,
research on LBSN, including link prediction, next-location predic-
tion, location recommendation, and community detection, will be
revitalized given the availability of massive datasets and by having
an authoritative ground-truth pertaining to the correctness of data.
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