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ABSTRACT
Fixed-route bus systems are an important part of the urban trans-
portation mix. A considerable disadvantage of buses is their slow
speed, which is in part due to frequent stops, but also due to the lack
of segregation from other vehicles in traffic. As such, assessing bus
routes is an important aspect of route planning, scheduling, and the
creation of dedicated bus lanes. In this work, we use bus tracking
data from the Washington Metropolitan Area Transit Authority
to discover speed patterns in relation to bus stops throughout the
day. This gives us an insight on whether the routes are affected by
traffic congestion or more random events such as traffic lights. We
first employ a macro-level qualitative analysis to identify patterns
across different trips. A micro-level quantitative analysis further
refines this approach by analyzing the speed patterns around bus
stops. Our analysis is based on bus odometer data, which is a one-
dimensional representation of trips that has considerable accuracy
when looking at speed patterns. Exploiting route metadata in rela-
tion to stops, we use Dynamic Time Warping to cluster different
stops based on their speed profiles throughout the day. The cluster-
ing can be used to generate a spatiotemporal route profile and we
show how such a profile provides actionable intelligence for route
planning purposes.
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1 INTRODUCTION
The National Transit Database which is maintained by the United
States Department of Transportation provides a yearly data report
on “National Transit Summary and Trends” [14]. This report shows
that more than 16 billion passenger miles were travelled in the US
in 2017, and more than 4.5 billion unique trips were taken. It also
shows that more than 150 million bus hours were in service in 2017,
making fixed-route bus transportation the “most common form of
public transportation service provided in the United States” [14].

While the research community has thoroughly researched public
train transportation [12, 21], and road traffic [17, 23, 26, 27], contri-
butions towards a better understanding of traffic in relation to bus
routes have been widely neglected. A considerable disadvantage of
fixed-route buses is their slow speed due to frequent stops, but also
due to the lack of segregation from other vehicles in traffic. At a
single stop, we often observe buses stopping multiples times due to
adjacent traffic lights, or due to being located on roads with heavy
traffic. As such, assessing bus stops that are prone to such issues is
an important aspect of route planning and scheduling.

A typical approach to analyzing traffic is the use of GPS tracking
data, e.g., [17]. In urban areas, GPS signals are often affected by high
rise buildings (“urban canyons”) [5], and the related GPS error can
be observed in Figure 1(a), which shows the GPS locations of buses
as recorded in relation to the station locations. We can see that
for some stations, the resulting positioning error is considerable,
randomly distributing the location of a bus by hundreds of meters.

Although map-matching methods (cf. [3]) can be used to align
GPS trajectories to road networks, the significant (two-dimensional)
measurement error results in uneven travel time distributions along
the projected route. In the case of our bus tracking, odometers mea-
sure progress of the vehicle along a fixed one-dimensional route.
Figure 1(b) shows odometer readings of different buses mapped to
their location. While we still observe a similar uncertainty of the
true stop location as we observed using GPS, much of this uncer-
tainty is removed by aligning the starting points of the odometer
readings of different trips of the same route. In our work, we re-
duce this uncertainty even further by not considering the entire
trajectory, but only segments of it around bus stops as delineated
by geofences (GPS coordinates) around bus stops, which are part
of the collected metadata (cf. Figure 2).

Specifically, this work focuses on odometer data recorded by
an Automatic Vehicle Location (AVL) system for fixed-route buses
in the Washington D.C. area, which was made available by the
Washington Metropolitan Area Transit Authority (WMATA). We
use these readings to find spatiotemporal speed patterns in relation
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to bus stops. These speed patterns are used to categorize bus stops
into different types, with the goal to possibly identify problematic
stops, i.e., stops affected by traffic and/or their location in relation
to road infrastructure such as traffic lights and stops.

The data comprises trips of the same route during different times
of the day. Each trip consists of a time series of odometer readings
from a specific bus, with sampling intervals ranging from 1 to 10s .
An odometer reading consists of a timestamp and the distance cov-
ered from the beginning of the route up to that point. Since the
route of a bus is immutable, this absolute location on the route al-
lows us to uniquely infer the absolute location of a bus. To align and
verify the results of our approach, we exploit additional metadata
in relation to odometer readings, such as (i) entry and exit markers
when a bus enters or leaves a prescribed geofence around a bus
stop, (ii) GPS locations, and (iii) door open and close information.

As a first step towards the analysis of this enriched odometer data,
we have to account for the varying sampling rate. Here we discretize
the route into constant length intervals and calculate the average
bus speed over those specific periods for each trip. Even so, the
odometer readings between trips are not aligned spatially, e.g., two
buses may be at different locations after 1,000 odometer-measured
feet. The reasons for this are not properly calibrated devices, differ-
ent devices and bus types, tire pressure, and buses moving in traffic
by switching lanes. As a result, bus stops as recorded in the data are
not always assigned to the same interval bucket. To address this,
we propose an alignment algorithm not for the entire trajectories,
but for segments around bus stops. Here we utilize the geofencing
metadata that records when a bus enters end exits the area around a
bus stop. Using this so-called bus stop speed signatures and aligning
them using DTW, we can cluster them and identify different stop
categories. Our goal is to discover if there are underused stops that
may need to be moved to a more popular location, or stops that due
to their location on the road network significantly contribute to
delays. Using this unsupervised learning approach, public transit
authorities are able to make informed decisions with respect to
route re-design, or to propose infrastructure modifications such as
dedicated bus lanes.

To summarize, the contributions of this work are as follows:

• Analyzing bus routes to identify delays.
• Odometer alignment based on cross-correlation of the bus
trips.

• Unsupervised learning approach to cluster route segments,
i.e., bus stop categorization.

• Spatiotemporal profiling of bus stops using speed segment
clusters.

The remainder of the paper is structured as follows. An overview
of the related work is presented in Section 2. Then, Section 3 de-
scribes the specifics of odometer data and provides a qualitative and
visual analysis of bus trips using fixed-route bus odometer data. In
Section 4 we focus our analysis on individual bus stops (rather then
whole bus trips) and describe a micro-level unsupervised approach
to find similar bus stop speed profiles over space and time. Our
experimental results are presented in Section 5. Finally, in Section 6
we discuss our conclusions and directions of future work.

2 RELATEDWORK
Traditional solutions for traffic estimation employ floating car data
(FCD) and individual GPS data to analyze traffic conditions. FCD
is data generated by cell-phones in vehicles used to determine
the traffic speed and probe overall traffic conditions. A number
of studies have explored FCD for estimating travel times [16, 19,
23], traffic conditions [1, 9], and traffic speed [15]. While FCD can
be used for our task of analyzing traffic conditions at bus stops,
odometer data is much more easily accessible, as it does not require
to access to private phones of individuals.

GPS trajectories generated by taxis are being used in literature
for traffic analysis [17, 23, 26, 27] and transportation networks im-
provement [28]. An overview of challenges and solutions of mining
GPS trajectories is found in [29]. For the purpose of analyzing bus
routes, buses can be easily equipped with GPS. However, this ap-
proach suffers from uncertainty due to signals blocked by buildings
[5]. While it has been shown that this uncertainty can be overcome
for the purpose of mapping signals to trajectories [13], it remains
a challenging problem to accurately measure speed of individual
vehicles using GPS [25]. In contrast, there are solutions to accu-
rately measure the speed of traffic using GPS in urban areas [20] by
averaging over many individual vehicles. However, such approach
is inappropriate to estimate the speed of fixed-route buses, which
must make a stop at bus stops. Using odometer data, we can exploit
the fixed-route property of buses for highly accurate positioning,
independent of buildings and signal strength.

As a traditional means of transportation, buses can collect a large
amount of urban traffic data on a daily basis. The collected data
have gained considerable attention for estimating traffic conditions.
Bus-related studies are mainly focused on travel time prediction and
traffic pattern analysis. By examining the relation between travel
times of a transit vehicle and of an automobile, [4] shows that buses
with AVL systems can be used as a probe to collect travel time data
at regular intervals cost effectively. Kumar et al.[11] developed a
bus arrival time prediction systemwhich considers spatial-temporal
variations, using a time-space discretization approach. Bai et al.[2]
predicted bus travel time from both the offline prediction made by
SVM using historical travel data and the dynamic adjustment made
with Kalman Filter. Wang et al.[22] proposed a bus management
system to analyses bus delay based on GPS and Automatic Fare
Collection (AFC) system data. However, none of these works tackles
the problem of finding spatio-temporal traffic patterns on bus routes
for the purpose of planing better bus routes.

The exploration of bus stops has also been the focus of several
works. Koshy and Arasan[10] studied the influence of bus stops
on traffic flow under heterogeneous traffic conditions through a
simulation technique. Yonezawa et al. [24] performed Random For-
est classification of bus operation states by using bus sensor data,
through which three states in services including “Stopping at bus
stop” and “Arriving or departing at bus stop” are able to be distin-
guished. Yet, this approach does not consider traffic conditions and
speed. By combining feature mining with SVM and Random Forest
classification algorithms,[8] classified bus stops and non-bus-stop
automatically from bus GPS trajectories based on speed-based fea-
tures (speed and acceleration) and histogram-based features. While
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(a) Measured GPS Locations (b) Measured Odometer-based Locations

Figure 1: Example of unaligned bus data. Each group (color) of points corresponds to different locations of the same bus stop,
using GPS locations and odometer readings from different bus trips.

Figure 2: Geo-fenced bus stops and corresponding trajectory segments of part of the route.

(a) Original trips (b) Aligned trips

Figure 3: Odometer alignment based on bus stops.

this approach has a similar goal, they are using GPS trajectories
only, whose uncertainty can be limited in urban areas.

Wang et al.[22] clustered bus stops according to the number of
passengers who boarded, but did not consider traffic conditions.
Fei et al.[7] used speed patterns of bus routes from AVL to identify

different categories of route segments which include bus stop loca-
tions. This preliminary approach prescribes first ideas to analyze
the traffic at bus stops, but does not have ground-truth data to eval-
uate their results. Delmelle et al. [6] integrated location coverage
model within a GIS environment to identify bus stop redundancy
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for transit planning optimization, which is an approach orthogonal
to ours.

Finally, a lot of previous works have studied traffic conditions
in metro and train networks Metro/Train traffic papers [12, 21].
However, such networks do not commonly exhibit traffic delays,
nor can routes be redesigned to circumvent traffic.

3 MACRO-LEVEL QUALITATIVE ANALYSIS
The objective is to employ odometers instead of GPS devices to
track location and speed of fixed-route buses. We argue that in
this fixed-route case, odometer data has a smaller error, as it mea-
sures the location in a one-dimensional space (distance from origin)
rather than a two-dimensional space. We know that there is a vast
difference between the two data types (as illustrated in Figure 1) and
we ran experiments to compare GPS (the buses we are studying also
provide GPS data) and odometer data. We decided not to include
these experiments, as is hard to experimentally assess the quality
of the two without any authoritative ground truth. Thus, instead
of measuring the average distance between odometer and GPS lo-
cations, we provided Figure 1, to give a qualitative intuition that
odometer data is more accurate, by showing that GPS frequently
puts the buses location off-road and inside buildings.

In our work, we use fixed-route odometer data of the X201 bus
route of the Washington D.C. Metropolitan Area. Our dataset con-
sists of 80 trips made on 10/04/2016. In the following, we describe
the data that we use for our analysis, explain the preprocessing
steps we applied to align different bus trips on the same route, and
show a first qualitative analysis of spatial-temporal patterns in this
data.

3.1 Fixed-Route Odometer Data
Table 1 presents a small sample of the data. Each line is a reading
that includes the trip id, the GPS coordinates (Latitude, Longitude),
the door status (O: open or C: closed), the bus status (M: moving
or S: stopped), the odometer reading in feet from the origin of the
trip, the timestamp in seconds from the beginning of the trip, and a
geofence tag when entering (E) or exiting (X) a bus stop geofence.
This specific sample contains readings from trip #24 around the
area of a bus stop. The third line of the sample has the indication
‘E’, which signals that the bus entered the geofence of the 15th bus
stop at time = 1310s . At that point the doors are still closed (C) and
the bus is moving (M). A few lines later at time = 1319s (the full
record was omitted to save space), the bus stops (S) and the door
opens (O). At time = 1366s , there is a corresponding indication ‘X’
for exiting the geofence of this bus stop.

3.2 Data Preprocessing
During data cleaning, we removed any bus trips that significantly
deviated from the examined route. This resulted in a set of 58 trips
travelling in the same direction.

Furthermore, we preprocessed the data by aligning the corre-
sponding bus stops from different bus trips to each other. As we
have seen in Figure 1(b), odometer readings of different trips may
be significantly misaligned, due to buses starting their odometer
early/late, longer travel due to frequent lane changes, or even due
to varying tire pressure. To illustrate this problem in more detail,

consider Figure 3(a), which shows the location of bus stops for
each of the 58 trips of the X201 route. The stops are identified as
metadata tags in the odometer data. Each trip is depicted with a
different color and the trips are ordered by time starting with the
earliest in the day. We clearly observe a misalignment between
the stop locations. A first observation that we had was that this
misalignment is often due to an initial offset.

To align bus stops between different trips, we used metadata that
marks when a bus enters a geofence around a bus stop. We create
a boolean vector with elements that are set to 1 whenever the bus
enters the bus stop area, and set to 0 otherwise. This results in a
time series of 0s and 1s for each trip. We use the cross-correlation
between two series, t and t ′, to find their best alignment. The max-
imum of the cross-correlation function indicates the point where
the series are best aligned, i.e., the delay between the two series is
determined by the argmax of the Pearson correlation coefficient
between the two times series:

delay(t , t ′) = argmax
d

(

∑n
i=1(ti − t̄)(t ′i+d − t̄ ′)√∑n

i=1(ti − t̄)2 ·
√∑n

i=1(t
′
i+d − t̄ ′)2

), (1)

where ti corresponds to 1 if time series t had a geofence entering
event during it’s ith 10f t odometer interval and n is the number of
interval of time series t . The parameterd specifies an offset between
the two time series, and the offset yielding the highest correlation
between the two time series is returned by Equation 1. For this
alignment, we chose 10f t segments and consider them neither too
small to be noisy, nor large enough such that several bus stops
and/or traffic lights would be contained within any single segment.

Since Equation 1 only aligns a pair of time series, we arbitrarily
select one trip as a reference trip, then calculate its cross-correlation
to any other trip, and the adjust the latter by moving it forward
or backwards according to the calculated delay. The result of this
alignment can be seen in Figure 3(b). We visually observe an im-
proved alignment of bus stops for most trips. For some trips, we
still observe a misalignment due to the whole trip being consis-
tently shorter or longer. This may be due to an badly calibrated

Table 1: Sample from Fixed-Route Bus Odometer data.

Trip Latitude Longitude Door Status Odom. Time E/X
Id (ft) (sec)
24 38.900248 -77.012113 C M 19298 1309
24 38.900253 -77.012217 C M 19327 1310
24 38.900253 -77.012217 C M 19336 1310 E
24 38.900258 -77.012318 C M 19356 1311
...
24 38.900265 -77.012625 C M 19439 1315
24 38.900267 -77.012682 C M 19453 1317
24 38.900267 -77.012688 O S 19454 1319
24 38.900267 -77.012688 O S 19454 1338
24 38.900267 -77.012688 C S 19454 1357
24 38.900268 -77.012732 C M 19467 1362
...
24 38.900265 -77.012898 C M 19516 1365
24 38.900265 -77.012898 C M 19537 1366 X
24 38.900262 -77.013072 C M 19566 1367
24 38.900260 -77.013170 C M 19595 1368
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Figure 4: Modelling traffic patterns of the bus route over odometer space and time. High values of speed are depicted as green
in the original data plots (a) and (b), while slower speed is depicted as red. The centered data plots (c) and (d) show high values
of speed in blue color and lower ones with red respectively.

odometer, or due to different tire pressure, which causes more (or
less) distance to be measured per trip. Finding a solution to account
for such trends is beyond the scope of this paper and part of our
future work.

3.3 Visualizing Spatio-Temporal Patterns in
Fixed-Route Bus Odometer Data

Following this preprocessing, our first approach is to provide a
qualitative analysis of the bus routes using spatial interpolation to
discover trends of low traffic speed in either space or time. For this
purpose, we first estimate the average speed (in km/h) of a bus in
each 200f t (61m) long road segment using the time stamps of a bus
entering (tenter) and exiting (texit) that segment:

v =
200f t

(texit − tenter)

Figure 4(a) presents a visualization of our bus speed calcula-
tions. Every row corresponds to a 200f t route segment ordered by
odometer distance from the origin. Every column represents a trip,
with all trips being ordered by time. Trips take place approximately
every 20mins , so the x-axis is an indication of the time of the day.
The speed values are depicted in color, ranging from red (slow) to
green (high). The original data seems noisy, but we can observe

parts of the route that are faster overall, and other parts being
slower. Yet, it is hard to observe any temporal (vertical) patterns.
These can be better observed in Figure 4(b) where we smoothed
this two-dimensional speed map using Gaussian process regression
(Kriging) having a Radial-Basis-Function kernel. We can see very
clearly a region of free-flow towards the beginning of the bus route,
and regions of lower speed towards the destination. This result is
due to the direction of this bus route, which originates outside the
DC city center and has its destination close to the center. Figure 4(b)
helps us identify traffic patterns along the segments of the route,
but it is hard to draw any conclusions about patterns based on the
time of the day. For this reason, we centered every row of the speed
matrix around its mean, by subtracting the row mean from each
value. The result is shown in Figure 4(c) with relative faster times
of the day depicted as blue, and relative slower ones as red. Kriging
on the centered data is depicted in Figure 4(d), where two patterns
of heavy congestion are evident around the morning and afternoon
rush hours.

To summarize, the qualitative evaluation in Figure 4 presented
in this section shows global spatial and temporal patterns of slow
traffic. While this evaluation shows global trends over space in time,
it does not allow to find local patterns and trends such as individual
bus stations experience slow traffic at certain times of the day. We
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(a) Euclidean distance pairs (b) DTW distance pairs

Figure 5: Example of the Euclidean vs. the DTW distance
between two bus stop speed signatures, shown in blue and
in red color respectively, with two slowdowns each. Each
dashed line indicates the matching between a point in the
first time series and its match in the second time series.

are more interested in finding spatiotemporal patterns, i.e., patterns
of (location, time) pairs of slow traffic. Such results would not only
indicate problematic bus stops, but also show us problematic bus
stops that are impacted by traffic and/or infrastructure problems.
For this purpose, we split each bus trip into smaller sections that
each correspond to a single bus stop. We obtain these sections by
using geofences around bus stations to ensure alignment. In the
following, we propose an unsupervised approach of finding unusual
and problematic (location, time) pairs by clustering the these speed
time-series of buses inside the geofences.

4 MICRO-LEVEL QUANTITATIVE ANALYSIS
Our goal is to find spatiotemporal traffic patterns of the areas at and
around each bus stop. Bus stops are of great importance for route
planning purposes and while an adequate geographic coverage
based on demand is of primary importance, the specific placement
within limits can greatly affect the overall travel time and trip du-
ration. By more closely analyzing bus speeds in relation to stops,
we will be able to identify bottlenecks, such as many buses simulta-
neously clogging a bus stop, or the impact of congestion and traffic
lights on stop duration. For this reason, we isolate those parts of
each trip that are within a distance d around a bus stop. Again we
utilize the geofence as recorded in the metadata to extract such
segments from the overall trajectory. This results in n×m segments
of length 2d in the odometer space, where n is the number of bus
trips andm is the number of bus stops of the route. Each of these
segments corresponds to a (bus stop, trip) pair. As these segments
have significantly smaller lengths than the full length of the trip, We
discretize them using a more refined granularity of 15 feet ( 4.6m).
Within each 15ft segment, we compute the average speed v . We
term the resulting sequence as the traffic signature of each (bus
stop, trip) pair.

To find a clustering of speed signatures, we also use, alternatively
to the original speed valuesv , the inverse of the average speed (v−1),
as well as a 3-level discretizing of the speed values in buckets of
slow, moderate and average speed.

The reason for experimenting with all the above options is that
we try to capture the local traffic behavior within bus stops, and
distinguish those where bus drivers have a normal behavior (single
slow down per stop) from those with irregular patterns where there

are multiple slow downs per stop due to traffic lights or congestion.
Such insight could result in bus stops being moved , e.g., to after
the traffic light, or in creating dedicated bus lanes assigned to the
corresponding road segments during rush hour. We are also able to
identify groups of stops with no slowdowns, indicating unpopular
locations where bus stops may not be necessary. Those bus stops
may be moved to other more appropriate locations, potentially
serving more passengers.

We use hierarchical agglomerative clustering to find categories
of bus stops across time (different trips taking place at different
times of the day) and space (different locations). As a distance met-
ric, we DTW distance, which can capture the signal of one, none, or
multiple drops of speed (slowdowns) in the speed signatures. The
signatures of two bus stops with the same number of slowdowns
or stops will have a smaller DTW distance than any two signatures
having a different number of slowdowns. Further, the location of
these slowdowns with respect to the bus stop area does not affect
the distance significantly. Consider for example the two traffic sig-
natures of Figure 5. Both have two major slowdowns at different
locations with respect to the start and end of the bus stop area. The
grey dashed lines of Figure 5(a) indicate which pairs of speed values
(one from each signature) will be used to calculate the Euclidean
distance. Since the slowdowns are not aligned, the Euclidean dis-
tance will be quite large. On the other hand, Figure 5(b) shows
that DTW tries to match each slowdown of the first signature to
the corresponding slowdown of the second signature. Thus, the
distance will be much smaller.

The reason that we choose this distance metric is that we are not
interested in finding groups of speed signatures that slow down
and speed up exactly at the same relative location. Rather, we are
interested in creating groups of bus stops having identical number of
slow downs in their speed pattern, regardless of where exactly the
slowdown occurred. Normally, buses are expected to slow down
and stop once per bus stop. Multiple stops or multiple consecutive
slowdown-speedup patterns at a bus stop area indicate a potential
problem that the bus driver had to stop the vehicle multiple times.
On the other hand, bus stop areas with no slowdown patterns
(free flow) indicate that the bus driver did not have to stop since
no passenger wanted to disembark and/or nobody was waiting to
board on the bus.

5 EXPERIMENTAL EVALUATION
In the following experiments, the focus is on detecting groups of
bus stops, based on similar speed profiles. We use the data of 58 bus
trips for route X201 collected on 10/04/2016 in Washington, D.C.
Metropolitan Area. The trips in terms of their speeds are visualized
in Figure 4(a). Each column corresponds to an individual bus trip,
and each row corresponds to a 200f t long segment of the fixed-
route.

As stated previously, our goal is to find “similar” bus stops. In
this section, we evaluate our spatiotemporal clustering approach
of bus stops as described in Section 4 using geofence metadata to
identify bus stop areas in the trip data.
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(a) v (b) v−1 (c) 3-Level v (d) 3-Level v−1

Figure 6: Speed signatures of each (bus stop, trip) pair and its corresponding cluster label for each of the four examined cases
of speed-based features.

5.1 Evaluation of Different Speed Signatures
Figure 6 shows the resulting speed signatures using different speed-
based features as described in Section 4. Each row corresponds to
one (bus stop, trip) pair. All but the last column of each chart corre-
spond to the feature values of the speed signature, while the color of
the last (magnified) column indicates the cluster membership of the
(bus stop, trip) pair. Each image uses a different speed feature trans-
formation. To find similar speed patterns, we first use the raw speed
values depicted in Figure 6(a). In this case, we observe four major
clusters of comparable sizes emerge. However, they do not seem to
distinguish well between multi-stop and single stop patterns (and
corresponding drops in speed). Instead, it seems that the overall
average speed of a signature is the most common characteristic
of each cluster member. Also, it appears that the low/high speed
locations within a bus stop area (beginning, middle, end) also affect
the clustering result. Cluster 0 (blue label) has moderate speeds
overall, Cluster 1 (red label) has lower speed at the beginning of
the stop, Cluster 2 (green label) has lower speeds towards the end,
Cluster 3 (yellow label) has lower average overall speeds, while
the smaller Clusters 4 (magenta label) and 5 (indigo label) seem to
capture the free-flow speed signatures, i.e, buses not stopping at
all.

The main problem of this approach is the usage of raw speed val-
ues using DTW distance (Section 4), which ignores the magnitude
of speed values. For example, the difference between 40 and 50km/h
is the same as between 0 and 10km/h, thus discriminating clusters
by their free-flow speeds rather than by the, more interesting, lower
speed sections.

In an attempt to address this issue, Figure 6(b) presents the
result using the inverse speed (v−1) as signatures of the (bus stop,
trip) pairs. As can be observed, this approach actually confuses
the clustering algorithm, as 89.53% of (bus stop, trip)-pairs (1001
out of 1118) belong to one big heterogeneous cluster. The problem

Table 2: Representative values per speed category

category v (km/h) v−1 3-Lvl v 3-Lvl v−1

slow < 1.75 > 0.57 0.87 1.15
moderate 1.75 − 15 0.067 − 0.57 8.5 0.118

fast > 15 < 0.067 37.5 0.027

here is that only very small speed values can be discriminated by
the clustering algorithm. A speed change from 0km/h to 10km/h
yields a reduction of inverse speed from 1

1 = 1 to 1
10 = 0.1, while

any further speed increase cannot contribute more than another
0.1 reduction of inverse speed. Thus, this approach discriminates
between different cases of consistently low speed, but considers
higher speeds as too similar.

These first two experiments pointed us as a problem: It is difficult
to define a function that maps speed values to perceived traffic
speeds tailored to the Washington D.C. area. In our next approach,
we help the clustering algorithm by manually defining traffic speed
categories. Specifically, we discretize the speed values into three
categories: slow (below 1.75km/h), moderate (1.75-15km/h), and
fast (above 15km/h). The reason for this choice is that, in this
way, we distinguish between segments of a bus stop where the
vehicle actually stopped, segments where buses move very slowly
possibly due to congestion, but do not actually make a stop, and free
flow segments. We replace any speed value within a range –slow,
medium, or fast– by the median value of the corresponding range,
i.e., 0.87, 8.5, and 37.5km/h, respectively. Note that we experimented
with different numbers of speed categories and concluded that the
3-level discretization yields more discriminative clustering results.
The cut-off and the representative values of our speed categories
are summarised in Table 2.
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Table 3: Cluster size distributions for each clustering result,
based on the speed signature of each (bus stop, trip)-pair, for
each case of speed signature features.

Cluster size distributions using
original values of 3-Level discrete values of

cluster speed speed inverse speed speed inverse
0 312 1001 700 600
1 297 70 173 392
2 255 23 124 116
3 185 19 88 5
4 53 4 23 3
5 16 1 10 2

Figure 6(c) includes the clustering results using the 3-Level dis-
cretized speed values. This approach proves much better capability
in distinguishing between signatures of free flow (Cluster 1 de-
picted with a red label), and clusters with at least one stop (Cluster
0 - blue label). We also observe Clusters 3 (green) and 4 (yellow),
which seem to have more than one stop and differing only when the
major slowdown occurred, i.e., beginning vs. end of the stop area.
However, there are several signatures with high to moderate speed
values (i.e., the bus did not stop there), and they were grouped into
Cluster 0 together with the single-stop signatures. To distinguish
better between these two categories, we inverse the 3-level speed.
As such, the difference between moderate and high speed values is
smaller, compared to the distance between the moderate and slow
speed values. The result of this experiment is shown in Figure 6(d).
The majority of the speed signatures in first large cluster (blue)
have 1 main stop, which indicates the expected behavior. Whereas,
the signatures of the second cluster (red) show either free flow or
moderate slowdowns, but no stops. This could indicate that the bus
slowed down due to moderate congestion, or to check if a passenger
was waiting at the bus stop. These signatures correspond to the
(bus stop, trip) pairs when no passenger boarded or disembarked
the vehicle. We can also observe that, in the third cluster (green
label), there are mainly 2-stop traffic signatures, whereas the three
smaller clusters capture outliers of multiple (more than two) stops
per bus stop area.

5.2 Spatiotemporal Bus Stop Profiling
Having used speed signatures to derive bus stop categories, we can
now map them back to actual bus stop locations and see whether
any trends emerge. Here, Figure 7 shows the clustering results
for the case of the inverse 3-Level speed as a two dimensional
array. Each column corresponds to a bus stop on our route. Each
row of this matrix corresponds to a bus trip ordered by time, with
the earliest trip at 0:12am on top and the latest at 11:57pm at the
bottom. The cell color corresponds to one of the clusters shown in
Figure 6(d). The blue arrows below each column point to the actual
location of the corresponding bus stop. The travel direction is from
east to west, thus the numbering of stops is ordered from right to
left (1-20). For comparison, we also present the mean bus speed
values per (bus stop, trip) pair in Figure 8.

In Figure 7, we can clearly distinguish the underused cases of
bus stops 3 and 12, with no stops during most of the day. Stops 4
and 14 are not used half of the time. Using only the average speeds
shown in Figure 8 these stops look different, because the average
speed is affected by congestion, which is more common towards
the end of the route closer to the city center. Even though Stop 14
has lower average speeds than Stop 4, they both have a similar stop
rate (about 50%). In fact, Stop 14 has a similar traffic pattern as Stop
8, which is a perfect example of a normal stop where most buses
stop exactly once at that bus stop area, for most trips of the day.
The traffic speed pattern of Stop 8 in Figure 8 would indicate that
it may be a candidate for multiple slowdowns around the middle
of the day, this is not the case however, as we can see from the
corresponding column of Figure 7.

We can also see that at the beginning and end of the route, Stops
1 and 20 frequently experience multiple stops throughout the day
(orange and red cells). This is not easy to infer from the speed values
of Figure 8, as their speed patterns are similar to other bus stops
such as 18, where we observe overall much fewer multi-stops.

The bus stops that experience at least some multi-stops belong
to two major categories: stops where the problems occur during
certain hours of the day (traffic), and stops which experience such
problems at random times throughout the day (traffic lights). Ex-
amples of the former are Stops 1, 13, 18, and 20. Stop 13 seems to be
particularly affected by traffic in the morning. On the other hand,
Stops such as 7, 11, 15, and 17 have multiple stops that seem to
happen randomly throughout the day, possibly due to traffic lights
and/or other buses clogging the stop.

To summarize, our approach of clustering bus stops based on
speed patterns throughout the day allows us to identify related
operational challenges that need to be addressed. For stops that
are affected by traffic, the bus operator could request dedicated bus
lanes. Further, a disadvantageous bus stop location and configu-
ration (next to a light, small stop area, multiple vehicles clogging
stop) could be changed, and underutilized stops could be relocated.

6 CONCLUSIONS
This paper focuses on identifying and profiling bus stops to identify
operational problems along a route. In an initial phase, we discretize
the bus trajectory and use cross-correlation to align different trips
of the same route. Using mean speed values, we model and visualize
the speed patterns of the trips along the route and over time. Using
various modeling techniques, we are able to identify parts of slow
speed along the route throughout the day. To complement this
macro-level analysis and to gain further insight into speed patterns
that characterize bus stops, we create traffic signatures for each
(bus stop, trip) pair and use them to cluster the stops over time.
This results in three bus stop profiles: (i) expected behavior - the
bus slows down, stops once and continues, (ii) underused bus stops
- the bus slows down but does not stop, and (iii) cases which exhibit
a bus stopping multiple times at the same stop. We show that our
multi-dimensional clustering approach can provide better insight
into this profiling problem rather than a baseline approach that
simply looks at average speeds.

We see this work as a first step towards a comprehensive data-
driven spatiotemporal pattern mining framework for fixed-route
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Figure 7: Spatiotemporal clustering of (bus stop, time) pairs.

public transport systems. In future work, we will look at ground-
truth data such as driver feedback in relation to problems identified
in this approach, e.g., do specific bus stop configurations lead to
multiple stops. This will allow us to reformulate the problem of
bus stop profiling as a supervised classification problem. Another
direction of future work is to work with the bus operators and
recommend changes of bus routes, bus stop configuration, and
the creation of bus lanes to mitigate the effects of traffic. While
this direction would require ubiquitous traffic data, as well as the
power to adjust bus routes and traffic lanes, we can employ traffic
simulation frameworks, such as the SMARTS Traffic Simulator [18]
to perform this research in a sandbox.
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