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Abstract—We propose a generalized optimization framework
for detecting anomalous patterns (subgraphs that are interesting
or unexpected) in interdependent networks, such as multi-layer
networks, temporal networks, networks of networks, and many
others. We frame the problem as a non-convex optimization
that has a general nonlinear score function and a set of block-
structured and non-convex constraints. We develop an effective,
efficient, and parallelizable projection-based algorithm, namely
Graph Block-structured Gradient Projection (GBGP), to solve
the problem. It is proved that our algorithm 1) runs in nearly-
linear time on the network size, and 2) enjoys a theoretical
approximation guarantee. Moreover, we demonstrate how our
framework can be applied to two very practical applications, and
we conduct comprehensive experiments to show the effectiveness
and efficiency of our proposed algorithm.

Index Terms—subgraph detection, sparse optimization, inter-
dependent networks

I. INTRODUCTION

Anomalous pattern detection in network data has aroused

many interests in recent years because of many real-world

applications, such as disease outbreak detection [1], intrusion

detection in computer networks, event detection in social

networks [2], congestion detection in traffic networks, etc.

However, most of existing works investigate the subgraph

mining on static, isolated networks, and such a problem

involving interdependent networks has not been well studied.

Interdependent networks are comprised of multiple networks

{G1,G2, . . . ,Gk, . . . } and edges E
0 interconnected among

networks, where G
k = (Vk,Ek). Vk and E

k are vertex set

and edge set of kth network G
k respectively. Some nodes in

different networks exhibit node-node dependencies that could

be captured by explicit edges or implicit correlation on node

attributes (implicit edges). For instance, a temporal network

can be viewed as multiple temporal-dependent networks, in

which each network represents a snapshot of the temporal net-

work at a specific time stamp, where current node’s attributes

depend on attributes in the previous time-stamp implicitly [3]

(Figure 1a). A web-scale social network comprised of many

communities is a network of networks (a trivial interdependent

networks) with explicit connections, where communities can

T=1 T=2 T=3

(a) Temporal Networks (b) Network of Networks

Fig. 1: Examples of Interdependent Networks. (a) Temporal Net-
works: black dashed lines capture implicit temporal dependencies or
consistencies. (b) Network of Networks: black solid lines are bridges
across networks.

be viewed as small networks or blocks that interconnect with

each other (Figure 1b).

Anomalous pattern detection in multiple interdependent

networks can be formulated as a block-structured optimization

problem with multiple topological constraints on blocks,

min
S1⊆V1,...,SK⊆VK

F (S1, · · · , SK)

s.t. Sk satisfies a pre-defined topological constraint,
(1)

where F is a user-specified cost function regularized by block

dependencies, for example, F could be f(S1, · · · , SK) +
g(S1, · · · , SK), where f is used to capture signals in inter-

dependent networks and g models the dependencies between

networks. Sk is a subset of nodes in kth network G
k, k =

1, ...,K. Vanilla subgraph detection problem is a special case

of problem (1) when number of networks (blocks) is 1.

To the best of our knowledge, most of related studies

on anomalous pattern detection in interdependent networks

only focus on specific applications and are lack of generality.

Furthermore, they are heuristic-driven with no theoretical

guarantee. Therefore, we propose a general framework that

leverages graph structured sparsity model [4] and block coor-

dinate descent method [5] to solve this problem which can be

modeled as a block-structured optimization problem.

The contributions of our work are summarized as follows:
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• Design of an efficient and scalable approximation al-
gorithm. We propose a novel generic framework, namely,

Graph Block-structured Gradient Projection, for block struc-

tured non-convex optimization, which can be used to ap-

proximately solve a broad class of anomalous pattern de-

tection problems in interdependent networks.

• Theoretical guarantees. We present a theoretical analysis

of the proposed GBGP algorithm and show that it enjoys a

good convergence rate and a tight error bound on the quality

of the detected subgraphs.

• Comprehensive empirical anlaysis. We demonstrate how

our framework can be applied to two practical applica-

tions: 1) anomalous evolving subgraph detection in temporal

networks; 2) anomalous subgraph detection in network of

networks. We conduct comprehensive experiments on both

synthetic and real networks to validate the effectiveness and

efficiency of our proposed algorithm.

II. METHODOLOGY

A. Problem Formulation

First, we reformulate the combinatorial problem (1) in dis-

crete space as a non-convex optimization problem in continu-

ous space. Interdependent networks can be viewed as one large

network G = (V,E), where V = {1, · · · , N} could be cut into

{V1, · · · ,VK} and E could be split into {E0,E1, · · · ,EK}.
Each pair of (Vk,Ek) forms a small network G

k for k =
1, · · · ,K, and E

0 are edges interconnected among different

small networks. Edges in E
0 should be treated differently with

the edges in each E
k, since they models the dependencies

among different networks. W = [w1, · · · ,wN ] ∈ R
P×N is

the feature matrix, and wi ∈ R
P is the feature vector of vertex

i, i ∈ V. Nk = |Vk| is the size of the subset of vertices V
k.

The general subgraph detection problem in interdependent

networks can be formulated as following general block-

structured optimization problem with topological constraints:

min
x=(x1,...,xK)

F (x1, . . . ,xK)

s.t. supp(xk) ∈M(Gk, s), k = 1, · · · ,K
(2)

where the vector x ∈ R
N is partitioned into multiple disjoint

blocks x1 ∈ R
N1 , · · · ,xK ∈ R

NK , and xk are variables

associated with nodes of network G
k. The objective function

F (·) is a continuous, differentiable and convex function, which

will be defined based on the feature matrix W. In addition,

F (·) could be decomposed as f(x) + g(x), where f is used

to capture signals on nodes in interdependent networks and g
models the dependencies between networks. supp(xk) denotes

the support set of vector xk, M(Gk, s) denotes all possible

subsets of vertices in G
k that satisfy a certain predefined

topological constraint. One example of topological constraint

for defining M(Gk, s) is connected subgraph, and we can

formally define it as follows:

M(Gk, s) := {S|S ⊆ V
k; |S| ≤ s;Gk

S is connected.} (3)

where s is a predefined upperbound size of S, S ⊆ V
k ,

and G
k
S refers to the induced subgraph by a set of vertices

S. The topological constraints can be any graph structured

sparsity constraints on G
k
S , such as connected subgraphs,

dense subgraphs, compact subgraphs [6]. Moreover, we do not

restrict all supp(x1), · · · , supp(xK) satisfying an identical

topological constraint.

Algorithm 1 Graph Block-structured Gradient Projection

Input: {G1, . . . ,GK}
Output: x1,t, · · · ,xK,t

Initialization, i = 0, xk,i = initial vectors, k=1,. . . , K

1: repeat
2: for k = 1, · · · ,K do
3: Γxk = H(∇xkF (x1,i, . . . ,xK,i))
4: Ωxk = Γxk ∪ supp(xk,i)
5: end for
6: Get (bi

x1 , . . . ,b
i
xK ) by solving problem (6)

7: for k = 1, · · · ,K do
8: Ψi+1

xk = T (bi
xk)

9: xk,i+1 = [bi
xk ]Ψi+1

xk

10: end for
11: i = i+ 1
12: until

∑K
k=1

∥∥xk,i+1 − xk,i
∥∥ ≤ ε

13: C = (Ψi
x1 , . . . ,Ψ

i
xk)

14: return (x1,i, · · · ,xK,i), C

B. Head and Tail Projections on M(G, s)

• Tail Projection (T (x)): is to find a subset of nodes S ⊆ V

such that

‖x− xS‖2 ≤ cT · min
S′∈M(G,s)

‖x− xS′‖2, (4)

where cT ≥ 1, and xS is a restriction of x on S such that:

(xS)i = (x)i if i ∈ S, and (xS)i = 0 otherwise. When

cT = 1, T (x) returns an optimal solution to the problem:

minS′∈M(G,s) ‖x − xS′‖2. When cT > 1, T (x) returns an

approximate solution to this problem with the approximation

factor cT .

• Head Projection (H(x)): is to find a subset of nodes S
such that

‖xS‖2 ≥ cH · max
S′∈M(G,s)

‖xS′‖2, (5)

where cH ≤ 1. When cH = 1, H(x) returns an optimal

solution to the problem: maxS′∈M(G,s) ‖xS′‖2. When cH <
1, H(x) returns an approximate solution to this problem

with the approximation factor cH .

Although the head and tail projections are NP-hard when

we restrict cT = 1 and cH = 1, these two projections can

still be implemented in nearly-linear time when approximated

solutions with cT > 1 and cH < 1 are allowed.

C. Algorithm Details

We propose a novel Graph Block-structured Gradient Pro-

jection, namely GBGP, to approximately solve the problem

(2) in nearly-linear time on the network size. The key idea
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is to alternatively search for a close-to-optimal solution by

solving easier sub-problems for graph Gk in each iteration i
until converged. The pseudo-code of our proposed algorithm is

described in Algorithm 1. Our algorithm can be decomposed

into three main steps, including:

• Step 1: alternatively identify a subset of nodes in each

block Ωxk , in which pursuing the minimization will be most

effective (Line 2 ∼ 5).

• Step 2: identify the intermediate solution (bi
x1 , . . . ,b

i
xK )

that minimizes the objective function in intermediate space

∪K
k=1Ωxk (Line 6);(

bi
x1 , . . . ,b

i
xK

)
= argmin

x1,...,xK

F (x1, . . . ,xK)

s.t. supp(xk) ⊆ Ωxk

(6)

• Step 3: alternatively apply tail projections on the interme-

diate solution (bi
x1 , . . . ,b

i
xK ) to the feasible space defined

by constraints: “supp(xk) ∈M(Gk, s)” (Line 7 ∼ 10).

We utilize the block-coordinate descent method with proxi-
mal linear update [7], [8] to solve the problem (6) (Algorithm

2). In addition, proximal linear update is used to ensure the

convergence of the algorithm on convex problems with convex

constraints “supp(xk) ⊆ Ωxk”. The proximal linear update in

our scenario is defined by:

xk,t+1 =argmin
xk

F (x̂t) + 〈∇xkF (x̂k,t, x̂ �=k,t),xk − x̂k,t〉

+
1

2αk,t
‖xk − x̂k,t‖22 s.t. supp(xk) ⊆ Ωxk

(7)

where αk,t serves as a step size and can be set as the reciprocal

of the Lipschitz constant of∇xkF (x̂k,t, x̂ �=k,t), and x̂k,t (Line
4) is an extrapolated point that helps accelerate the conver-

gence of the proximal point update scheme. The overall block

coordinated gradient projection method on convex function

with convex constraint (i.e. Algorithm 2) has a sublinear rate

of convergence [8].

Algorithm 2 Block-Coordinate Descent Method with Proxi-

mal Linear Update to Solve Problem (6)

Input: {G1, . . . ,GK}
Output: x1,t, · · · ,xK,t

Initialization: t = 0, ε = 10−3, ρ0 = 1.
1: repeat
2: Choose index k ∈ {1, · · · ,K}
3: ωt = (ρt − 1)/ρt,
4: x̂k,t = xk,t + ωt(x

k,t − xk,t−1)
5: Update xk,t+1 ← x̂k,t − 1

αk,t∇xkF (x̂k,t, x̂ �=k,t)
6: Project xk,t+1 to feasible space by setting entries of

xk,t+1 to zero if index of entry not in set Ωxk .

7: Keep xj,t+1 = xj,t, for all j �= k
8: ρt+1 = (1 +

√
1 + 4ρ2t )/2,

9: Let t = t+ 1
10: until

∑K
k=1 ‖xk,t − xk,t−1‖ ≤ ε

11: return {x1,t, · · · ,xK,t}

III. THEORETICAL ANALYSIS

In order to demonstrate the accuracy and efficiency of

GBGP, we require that the objective function F (x) satisfies the

Weak Restricted Strong Convexity (WRSC) condition, which

is a variant of the Restricted Strong Convexity/Smoothness

(RSC/RSS) [9]:

Definition 1 (Weak Restricted Strong Convexity (WRSC)). A
function F (x) has condition (ξ, δ,M)-WRSC, if ∀x,y ∈ R

N

and ∀S ∈ M with supp(x) ∪ supp(y) ⊆ S, the following
inequality holds for some ξ > 0 and 0 < δ < 1:

‖x− y − ξ∇SF (x) + ξ∇SF (y)‖2 ≤ δ‖x− y‖2 (8)

where x = (x1, . . . ,xK),y = (y1, . . . ,yK),xk,yk ∈
R

Nk , k = 1, . . . ,K, topological constraint M can be ex-
pressed as M(G, s) =

⋃K
k=1 M(Gk, sk), s =

∑K
k=1 sk, and

the subgraph in kth block (i.e., G
k) is Sk, which satisfies

|Sk| ≤ sk, Sk ⊆ V
k, S =

⋃K
k=1 Sk, |S| ≤ s. Here, since

constraints on blocks are independent, we use union sign “
⋃

”
to denote combined model M, in which x ∈ M = {x|xk ∈
M(Gk, sk), k = 1, . . . ,K}.
Theorem 1. Consider the graph block-structured constraint
with K blocks M(G, s) =

⋃K
k=1 M(Gk, sk) and a cost

function F : RN → R that satisfies condition (ξ, δ,M(G, 8s))-
WRSC. If η = cH(1− δ)− δ > 0, then for any true x∗ ∈ R

N

with supp(x∗) ∈M((G, s), the iteration of algorithm obeys

‖xi+1 − x∗‖2 ≤ α‖xi − x∗‖2 + β‖∇IF (x
∗)‖2 (9)

where cH = mink=1,...,K{cHk
}, cT = maxk=1,...,K{cTk

},
I = argmaxS∈M ‖∇SF (x)‖2, α = 1+cT

1−δ

√
1− η2, and

β = ξ(1+cT )
1−δ

[
1+cH

η + η(1+cH)√
1−η2

+ 1

]
. cHk

and cTk
denote

head and tail projection approximation factors on kth block.

Theorem 2. Let x∗ ∈ R
N be a true optimum such that

supp(x∗) ∈ M(G, s), and F : RN → R be a cost function
that satisfies condition (ξ, δ,M(G, 8s))-WRSC. Assuming that
α < 1, GBGP returns an x̂ such that, supp(x̂) ∈ M(G, 5s)
and ‖x∗ − x̂‖2 ≤ c‖∇IF (x

∗)‖2, where c = (1 + β
1−α ) is a

fixed constant. Moreover, GBGP runs in time

O

((
T +

K∑
k=1

|Ek| log3 Nk

)
log

( ‖x∗‖2
‖∇IF (x∗)‖2

))
(10)

where |Ek|, Nk denote edge and node size of kth block and
T is the time complexity of one execution of the subproblem
in line 6 of Algorithm 1. In particularly, if T scales linearly
with N and |E|, then GBGP scales nearly linearly with N
and |E|.

Note that the proofs of Theorem 1 and Theorem 2 are

omitted due to space limitation.

IV. EXAMPLE APPLICATIONS

In this section, we show how to formulate two subgraph de-

tection applications: 1) anomalous evolving subgraph detection

and 2) subgraph detection in network of networks as problem
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(2) with specific objective function F and topological con-

straints. For these two applications, we leverage the Elevated
Mean Scan (EMS) statistics, which is defined as: c�x/

√
x�1,

where x ∈ {0, 1}N , c denotes the feature vector of all

nodes, and ci ∈ R denotes the uni-variate feature for node i.
Assuming S is some unknown anomalous cluster which forms

a connected component, S ⊆ V. Empirically, maximizing

the score of EMS leads to discovering significant nodes in

the network precisely. Instead of maximizing the EMS in

the domain {0, 1}N , we relax EMS to continuous space and

minimize the relaxed negative EMS in our applications, which

can be defined as:

− (c
�x)2

x�1
+
1

2
‖x‖22 where x ∈ [0, 1]N (11)

Most importantly, the relaxed negative EMS satisfies the

RSC/RSS condition when c is normalized, which implies the

WRSC condition [6], [9].

A. Anomalous Evolving Subgraphs Detection

We can leverage the relaxed EMS and mathematically for-

mulate the anomalous evolving subgraphs detection problem

as non-convex optimization with convex objective function and

block-structured constraints:

min
x1,··· ,xK

K∑
k=1

(
− (ck

�
xk)2

xk�1
+

1

2
‖xk‖22

)
+ λ ·

K∑
k=2

‖xk − xk−1‖22

s.t. supp(xk) ∈ M(Gk, s)

(12)

where the first term is the summation of relaxed negative EMS,

and the second term is soft constraints on xk and xk−1 to

ensure temporal consistency on detected subgraphs, and λ > 0
is a trade-off parameter. The connected subset of nodes at time

stamp k can be found as Sk = supp(xk), i.e., the support set

of the estimated xk that minimizes the objective function.

B. Subgraph Detection in Network of Networks

Our proposed framework is also applicable to subgraph

detection in network of networks. For subgraph detection

in network of networks, we can also leverage the relaxed

negative EMS and formulate the detection problem in large-

scale networks as follows:

min
x1,··· ,xK

K∑
k=1

(
− (ck

�
xk)2

xk�1
+

1

2
‖xk‖22

)
+ λ ·

∑
i,j

eij · (xi − xj)
2

s.t. supp(xk) ∈ M(Gk, s)

(13)

where the first term is the summation of relaxed negative

EMS, the second term is soft constraints on bridge nodes

of two partitions to ensure dependencies; eij = 1 if node i
and node j are connected but in two different partitions (in

other words, edge (i, j) is a graph cut), otherwise eij = 0,

xi and xj are ith and jth entries of x, and λ > 0 is a trade-

off parameter. In addition, we propose a parallel version of

our algorithm to speed up the computation by integrating the

APPROX algorithm, a randomized coordinate descent method

proposed in [5].

V. EXPERIMENTS

A. Anomalous Evolving Subgraph Detection

a) Synthetic Dataset: We generate networks using

Barabási-Albert preferential attachment model [10]. The

evolving true subgraphs spanning within 7 time stamps are

simulated from node size 100 to 300, and the true subgraphs

in two consecutive time stamps have 50% of node overlap. The

univariate feature values of background nodes and true nodes

are randomly generated in N(0, 1) and N(μ, 1) distributions,

respectively. We generate 50 temporal networks for each

setting of μ = [3, 4, 5].
b) Real-world Datasets: 1) Water Pollution Dataset: a

real world sensor network [11]. For each hour, each vertex has

a sensor that reports 1 if it is polluted; otherwise, reports 0.

2) Washington D.C. Road Traffic Dataset: a traffic dataset

of Washington D.C from INRIX 1. 3) Beijing Road Traffic
Dataset: the dataset contains the real-time traffic conditions of

Beijing city. [12]. For both traffic datasets, the node attribute is

the difference between reference speed and current speed, and

the true congested roads are provided. Statistics of all datasets

are provided in Table II.

c) Performance Metrics: Precision, Recall, and F-

measure are deployed to evaluate the quality of detected

subgraphs by different methods. Higher F-measure reveals

better overall performance. For synthetic data, we use the

averaged precision, recall, and f-measure over 50 simulated

examples.

d) Comparison Methods and Results: We compare our

algorithm with two state of the art baseline methods: Meden
[13] and NetSpot [14], which were designed specifically for

detecting significant anomalous region in dynamic networks

and provide implementations. The comparison of results are

reported in Table I and Table III. As you can see, our method

outperforms these two baseline methods on both synthetic data

and real-world data. Both of baselines are heuristic, which

can not guarantee the quality of results and cause worse

performance than ours.

e) Robustness Validation: Except for measuring the ac-

curacy of subgraph detection, we also test the robustness

of subgraph detection method on water pollution dataset as

[15], [16]. P percent of nodes are selected randomly, and

their sensor binary values are flipped in order to test the

robustness of methods to noises, where P ∈ {2, 4, 6, 8, 10}.
Figure 2 shows the precision, recall, and f-measure of all the

comparison methods on the detection of polluted nodes in the

water pollution dataset with respect to different noise ratios.

The results indicate that our proposed method GBGP has the

best overall performance for all of the settings, which verifies

the robustness of our method.

B. Subgraph Dectection in Network of Networks

a) Synthetic Datasets: We generate several networks

with different network sizes using Barabási-Albert model, and

then apply random walk algorithm to simulate the ground-truth

1http://inrix.com/publicsector.asp.
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TABLE I: Results on synthetic datasets with different μ. It shows that GBGP is more robust than Meden and Netspot.

Methods
μ = 3 μ = 4 μ = 5

Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure
Meden 0.7588 0.7342 0.7453 0.8836 0.8591 0.8709 0.9646 0.9145 0.9388

NetSpot 0.6658 0.7267 0.6947 0.7615 0.7922 0.7763 0.7956 0.8185 0.8068
GBGP 0.6468 0.8899 0.7489 0.8487 0.9674 0.9041 0.9553 0.9914 0.9730

(a) Precision vs Noise Level (b) Recall vs Noise Level (c) F-measure vs Noise Level

Fig. 2: Precision, Recall, and F-measure curves on Water Pollution dataset with respect to different noise ratios.

TABLE II: Statistics of Datasets for the 1st Application.

Datasets
Statistics

Node Edge Timestamp Resolution
Synthetic 3,000 11,984 7 NA

Water Pollution 12,527 14,831 8 60 min.
Washington D.C. 1,188 1,323 17 60 min.

Beijing 59,000 70,317 12 10 min.

TABLE III: Results on Washingtong D.C. and Beijing datasets.

Methods
Washington D.C. Beijing

Precision Recall F-measure Precision Recall F-measure
Meden 0.7076 0.7662 0.7342 0.6424 0.7509 0.6882

NetSpot 0.5823 0.7098 0.6367 0.6789 0.7351 0.6973
GBGP 0.7049 0.9192 0.7853 0.6627 0.9634 0.7788

subgraph with size as 10% of network size. The nodes in true

subgraph have features following normal distribution N(5, 1),
and the features of background nodes follow distribution

N(0, 1). The synthetic datasets are used for scalability analysis

in terms of size of nodes and size of edges, which we denote

them as SynNode and SynEdge respectively.
b) Real-world Datasets: 1) Beijing Road Traffic

Dataset: we use static network data per time stamp from

5PM. to 7PM. in previous application. 2) Wikivote Dataset2:

the network contains all the Wikipedia voting data from

the inception of Wikipedia till January 2008. 3) CondMat
Dataset2: the collaboration network is from the e-print arXiv

and covers scientific collaborations between authors of papers

submitted to Condense Matter category. For Wikivote and

CondMat datasets, we simulate the true subgraphs of size

1, 000 using random walk, and the node attribute in true

subgraphs follows distribution N(5, 1), otherwise N(0, 1). 4)

DBLP3: the collaboration graph of authors of scientific papers

from DBLP computer science bibliography. An edge between

two authors represents a common publication, and node at-

tribute is the number of publications. We extract a subset

of the dataset ranging from year 1995 to 2005. We apply

random walk to get subgraphs with size 20,000 and inject the

anomalies as our true subgraph as suggested by [14]. Statistics

of all datasets are provided in Table IV.

2https://snap.stanford.edu/data/
3http://konect.uni-koblenz.de/networks/dblp coauthor

(a) Run Time vs Nodes (b) Run Time vs Edges

Fig. 3: Comparison of run time on synthetic datasets. Figure (a) shows
our method runs in nearly-linear time w.r.t to the network size, where
|E| = 3|V|. Figure (b) shows that our algorithm can be easily scaled
up to 1, 000, 000 edges with node size |V| = 100, 000, by contrast,
the AdditiveGraphScan runs over 10, 000 seconds on all cases.

TABLE IV: Statistics of Datasets for the 2nd Application.

Datasets
Statistics

Node Edge Blocks Processors
SynNode 1,000∼10,000 3,000∼30,000 10 10
SynEdge 100,000 300,000∼1,000,000 100 50
Beijing 59,000 70,317 100 50

Wikivote 7,115 103,689 10 10
CondMat 23,133 93,497 100 50

DBLP 329,404 1,082,106 100 50

c) Performance Metrics: Except for metrics (precision,

recall and f-measure) used for evaluating the detection per-

formance, we also compare and report the run time among

different methods in this application to evaluate the scalability.

d) Comparison Methods and Results: We compare our

method with three baselines: 1) EventTree [2], 2) Additive-
GraphScan [17], and 3) LTSS [18], which were designed

specifically for event detection on static networks. The average

precision, recall, f-measure, as well as run time on all methods

are reported in Table V. Our method outperforms the baselines

in terms of f-measure by the compromise on a small amount

of run time. All of baselines have their own shortcomings.

Despite AdditiveGraphScan can get comparable performance

as our method on some datasets, it is a heuristic algorithm

without theoretical guarantees and not scalable for large scale

networks. We do not report the result of AdditiveGraphScan

on DBLP dataset, since it takes over one day to run and is

infeasible to tune the parameters. EventTree and LTSS are

scalable, but their performances are not as good as our method.
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TABLE V: Results on Beijing, Wikivote, CondMat and DBLP datasets. The run time is measured in seconds.

Method
Beijing Wikivote CondMat DBLP

Precision Recall F-measure Run Time Precision Recall F-measure Run Time Precision Recall F-measure Run Time Precision Recall F-measure Run Time
AddtivegGraphScan 0.4295 0.6884 0.5192 10846.94 0.9543 0.9959 0.9747 249.97 0.9753 0.9900 0.9826 1188.33 / / / /

EventTree 0.5547 0.5577 0.5369 90.68 0.9088 0.9654 0.9360 80.99 0.8623 0.9204 0.8902 100.23 0.8213 0.1922 0.3113 1961.58
LTSS 0.5144 0.8333 0.6320 7.56 0.9543 0.9959 0.9747 1.72 0.5174 1.0000 0.6819 3.85 0.3910 1.0000 0.5622 533.13

GBGP(Serial) 0.9166 0.7286 0.8057 843.37 0.8287 0.9908 0.90254 610.54 0.9132 0.9859 0.9479 1243.71 0.4701 0.9672 0.6354 13497.50
GBGP(Parallel) 0.9105 0.7283 0.8028 154.12 0.9637 0.9888 0.9761 171.98 0.9423 0.9835 0.9624 113.08 0.4683 0.9672 0.6311 567.20

e) Scalability Analysis: We evaluate the scalability of

different methods in terms of the sizes of nodes and edges.

Figure 3 reports the run time of our methods compared with

the baseline methods. In order to run our algorithm, we

partition the static network into multiple blocks with METIS

[19], and run the parallel algorithm with multiple processors.

Our method is able to get comparable performance as those

customized algorithms of this specific problem, and it is more

scalable if we properly utilize the computing resource based

on network properties.

VI. RELATED WORK

a) Subgraph Detection. Subgraph detection methods mainly

find subgraphs that satisfy some topological constraints, such

as connected subgraphs, dense subgraphs and compact sub-

graphs, including EventTree [2], NPHGS[1] for static graphs,

Meden [13], NetSpot[14], and AdditiveGraphScan [17] for

dynamic graphs, which are all heuristic. b) Structured Sparse
Optimization. The seminal work on general approximate

graph-structured sparsity model is [4]. General structured

optimization methods on single graph was proposed to do

subgraph [6], [16] or subspace [20] detection.

VII. CONCLUSION AND FUTURE WORK

This paper presents a general framework, GBGP, to solve

a non-convex optimization problem subject to graph block-

structured constraints in nearly-linear time with a theoretical

approximation guarantee. We evaluate our model on two

applications, and results of both experiments show that the

algorithm enjoys better effectiveness and efficiency than state

of the art methods while our work is a general framework

and can be used in more scenarios. For future work, we will

extend the work on network data with high-dimensional node

attributes and different graph topological constraints.
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