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Andreas Züfle1, Goce Trajcevski2, Dieter Pfoser1, and Joon-Seok Kim1

1Dep. of Geography and Geoinformation Science, George Mason University, {azufle,dpfoser,jkim258}@gmu.edu
2Department of Electrical and Computer Engineering, Iowa State University, gocet25@iastate.edu

Abstract—Our ability to extract knowledge from evolving
spatial phenomena and make it actionable is often impaired by
unreliable, erroneous, obsolete, imprecise, sparse, and noisy data.
Integrating the impact of this uncertainty is a paramount when
estimating the reliability/confidence of any time-varying query
result from the underlying input data. The goal of this advanced
seminar is to survey solutions for managing, querying and mining
uncertain spatial and spatio-temporal data. We survey different
models and show examples of how to efficiently enrich query
results with reliability information. We discuss both analytical
solutions as well as approximate solutions based on geosimulation.

I. INTRODUCTION

As the volume, variety and velocity (in terms of the rate
of recorded values) of evolving spatial data has increased
sharply over the last decades, the impact of uncertainty on
all the aspects of data management – i.e., representation,
storage, query processing – has increased as well. Until the late
20th century, spatial data available for geographic information
science (GIS) was mainly collected, curated, standardized [15],
and published by authoritative sources such as the United
States Geological Survey (USGS) [64], and data was col-
lected by sensors with known locations (e.g., roadside sensors,
sensor stations, etc.) [44, 65]. More recently, data is often
obtained from sources of volunteered geographic information
(VGI) [16, 57, 46]. Consequentially, our ability to unearth
valuable knowledge from large sets of such spatial data is often
impaired by the uncertainty of the data which geography has
named the “the Achilles heel of GIS” [18] for many reasons:
• Imprecision is caused by physical limitations of sensing
devices and connection errors, e.g., using cell-phone GPS [10].
• Data records may be obsolete. In geo-social networks and
microblogging platforms such as Twitter, users may update
their location infrequently, yielding uncertain location infor-
mation in-between data records [37].
• Data can be obtained from unreliable sources, such as vol-
unteered geographic information like data in Open-Street-Map
obtained from individual users, which may incur inaccurate or
plain wrong data, either deliberately or due to human error
[21, 16].
• Data sets pertaining to specific questions may be too small
to answer questions reliably. Proper statistical inference is
required to draw significant conclusions from the data and to
avoid basing decisions upon spurious mining results [23, 6].

The main objective of this advanced seminar is to present to
the audience the spectrum of effective and efficient solutions to
various problems related to modeling, querying and mining of
uncertain evolving geo-spatial data, which have been published
in the recent years – and, more importantly, place them into
proper context in terms of their applicability, existing tools,
and various trade-offs.
After a discussion of motivational scenarios, the first part of
this advanced seminar will surveys discrete and continuous
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Fig. 1: Ride-hailing Geosimulation in New York City
uncertainty models, as well as the most common approach to
interpret an uncertain database using possible worlds seman-
tics. We will describe computational challenges of possible
worlds semantics and show examples of efficient algorithm to
deal with these challenges. This part will also show how query
and mining results on possible worlds can be aggregated into
representative results and how these results can be enriched
with probabilistic guarantees and solutions for probabilistic
graph will be surveyed. From a complementary, geostatistical
view, we will introduce kriging approaches for spatial inter-
polation, as well as the impact of evolution of the spatial
phenomena, in the context of handling attribute uncertainty.
The second part of the tutorial will address uncertainty in
spatio-temporal data, centered around three basic themes: (i)
infrequently sampled trajectory data for moving point-objects;
(ii) discrete sampling and impact on representing deformable
continuous phenomena (e.g., shapes of flood); and (iii) com-
bining data from different sources (e.g., location sensors and
social networks). We will show what is the impact of rele-
vant parameters changing over time, and how to predict and
interpolate such parameters through time and space. We will
discuss solutions based on different paradigms – e.g., using
space-time geometric models, and fitting stochastic processes
on training data of the past, to obtain a model describing the
current and the future values of the attributes of interest and
queries’ answers.
In the third part of the tutorial we will survey geosimulation
approaches to approximately query and mine uncertain data.
We will show how geosimulation approaches such as Monte-
Carlo sampling and agent-based modeling can be leveraged
to obtain possible worlds, and how results on possible worlds
can be aggregated to provide probabilistic guarantees. As a
case study, we will explain the geosimulation approach for
improving ride-hailing systems which won ACM SIGSPATIAL



Cup 2019 [31]. Figure 1 shows a screenshot of this system
that will be demonstrated to explain the uncertainty in ride-
hailing systems. This system shows drivers as pink dots and
unassigned passengers as blue dots in New York City. This
system will be used to demosntrate how geosimulation can
be used to calibrate a ride-hailing system to achieve better
assignments between drivers and users. For all of the presented
state-of-the-art solutions, we will discuss both the challenges
of: (i) effectiveness in uncertain data – which is, to correctly
determine the set of possible results, each associated with
the correct probability of being a result, in order to give a
user a confidence about the returned results; and (ii) efficiency
– which is, to enable fast computations for these results
and corresponding probabilities, allowing reasonable querying
times, even for large uncertain databases. The main objectives
of this tutorial are:
• Provide an introduction to research issues and solutions

addressing uncertainty in spatial and spatio-temporal data.
This overview is aimed at students with no prior experience
in the field, as well as at attendants with some background.
• Extend this overview from spatial data to spatio-temporal

data, which is particular for the MDM community often
using volunteered or crowd-sourced mobility data.
• Provide examples of techniques in the field of efficient man-

agement of geo-spatial data, catering to a broad audience.
The aim is to teach the background necessary for researchers
to contribute to the field of uncertain data management.
• Provide practitioners with examples and use-cases showing

how to leverage uncertain data management for better deci-
sion making.

Several tutorials on managing, querying and mining uncertain
data have been presented in the recent past [53, 48, 72],
touching some of the topics of this tutorial (some of them
by the proposers). However, the large parts of this tutorial
(constituting at least 40% of the content) have not been
presented at any previous tutorial, including:

•Novel solutions for handling uncertain spatial data published
since 2014, including the generating functions technique for
efficiently answering spatial queries on uncertain data.
• a focus towards approximate solutions that allow to quickly

derive confidence intervals to bound the true but unknown
query or mining result. Previous tutorials focused on exact
solutions, which will be surveyed in less details and consti-
tute no more than 25% of the total tutorial material;
• Solutions for handling uncertain spatial using geosimula-

tion, including recent approaches using Monte-Carlo sim-
ulation [55, 71, 56];
• Solutions based on geosimulation [29] to quantify uncer-

tainty in complex spatial systems, including a new case-study
leveraging geosimulation for optimizing ride-sharing systems
as used by the winner of SIGSPATIAL GIS Cup 2019 [31].

While not mentioned explicitly in the MDM 2020 Call
for Research Papers, the management of uncertainty in spatio-
temporal data is an aspect paramount to researchers working
with personal location data. The techniques presented in this
tutorial will provide MDM attendees with an overview of the
techniques and tools to understand and explain the uncertainty
in their data, and to leverage this uncertainty to provide their
results with probabilistic guarantees, i.e., measures to estimate
the reliability of these results.

II. TUTORIAL OUTLINE

The tutorial will be presented jointly by all four authors
having complementary backgrounds in handling uncertainty
in spatial data. Dr. Trajcevski is an expert in managing uncer-
tainty in moving object databases [62] introduced solutions
to spatio-temporal uncertainty using geometric approxima-
tions [63]. Dr. Pfoser is an expert in handling uncertainty in
spatio-temporal data for trajectory modeling [49] and map-
construction [2]. Dr. Züfle has an extensive publication record
in querying and mining uncertain data [13, 12, 56] including
recent work on Monte-Carlo sampling based approaches to
extract representative query results from uncertain data[71, 55].
Dr. Kim is an expert in using geosimulation to model and
predict complex spatio-temporal systems [29, 27, 30]. To keep
the tutorial vivid an interactive, the four presenters will take
turns in presenting sections of the tutorial based on their
expertise. We propose a 1.5 hours duration for this advanced
seminar. Sections and their presenters are described in the
following.

A. Motivation and Application Settings

Living in a world of data-driven science, Dr. Pfoser will
kick off the tutorial by introducing examples of uncertainty
in modern sources of spatial data, such as Open Street
Map[22, 17] and location-based social network data [8]. We
briefly introduce spatial and spatio-temporal data and give an
overview of existing work that has been done on managing
such data, ignoring uncertainty.

B. Part I: Geo-Spatial Uncertainty

Uncertainty Models and Possible World Semantics – In
the first main part of the tutorial, Dr. Pfoser will continue to
introduce the formal categorization of models for uncertain
geo-spatial data: discrete uncertainty models [32] and con-
tinuous ones [58, 47], along with attribute [9, 41, 24] and
existential [67] uncertainty. The concept of Possible World
Semantics, widely used by the data-science community, will
be discussed as a mathematically sound and intuitive inter-
pretation of uncertain spatial databases. Additionally, a survey
of the Equivalent Worlds Paradigm will be given, to tame the
exponential number of possible worlds [33, 1, 54] and #P hard
query processing [40]. This paradigm allows to answer a large
number of spatial query predicates efficiently. To illustrate this
paradigm, Dr. Züfle will take over and survey the technique
of using generating functions [41] to efficiently answer range
queries and k-NN queries on uncertain spatial data [4].

Representative Querying and Mining of Uncertain Spatial
Data using Monte-Carlo Sampling Dr. Züfle will proceed
to give a tutorial to efficiently gain approximation of spatial
query and mining results using the concept of representa-
tive worlds [55, 71]. For this purpose, techniques to draw
unbiased samples from the uncertainty models presented in
Section II-B will be given, and solutions will be discussed
to aggregate query and mining results from sampled worlds
into representative results. Solutions to derive probabilistic
guarantees such as using Chernoff bounds will be touched
upon. This part will also survey computational challenges and
approximate solutions for probabilistic networks, having each
edge associated with an existential probability [52, 14].



C. Part II: Uncertainty and Evolving Spatial Data

Interpolation, Uncertainty and Evolution: Approaching un-
certainty from the perspective of geoinformation-science, Dr.
Trajcevski will discuss kriging interpolation methods [45] that
explicitly measure uncertainty in the interpolation output. Con-
trary to previous deterministic methods, Kriging’s regression-
based methodology includes elements of uncertainty in both
the prediction of the final surface as well as in the estimated
error surface of the predictions [42, 59, 19]. An implemen-
tation with Esri’s geostatistical analyst ([36, 26]) will be
demonstrated and a multi-variogram approach called Empirical
Bayesian Kriging ([20]) will be shown that differs in ac-
counting for the error introduced by estimating the underlying
semivariogram and selecting the best fit ([34]). The impact
of the temporal dimension and the consequences of using
discrete-location samples to represent continuous phenomena
will also be discussed [3, 70].

Motion and Sensing: As we will have discussed, the com-
plexity of querying uncertain geo-spatial data is exponential.
Considering time, this problem becomes even more complex.
Consequently, the main scope of this part of the tutorial
is to explore approximate solutions for handing uncertain
spatio-temporal data such as trajectory data. Dr. Trajcevski
will introduce this part of the tutorial by providing use-cases
and examples of uncertain trajectory data in indoor settings
and map matching settings. Traditional models to cope with
these new challenges will be reviewed (e.g., bounding the
possible locations of objects over time by spatio-temporal
cylinders [61, 62], diamonds [43] or beads [35, 60]). Based on
these models/types, corresponding algorithms for processing
certain query categories have been proposed, e.g. range queries
[50, 62], kNN queries [61, 7], etc. which will be overviewed.
Additionally, some foundational works on location dependency
will be reviewed [7, 61, 43, 66] in order to motivate the use of
more advanced models. State-of-the-art approaches for query-
ing traffic network data will also be discussed, along with the
issues related to spatio-temporal data compression [5, 39, 51],
fusion of heterogeneous uncertain location data [68], and the
impact of uncertainty on the quality of learning/prediction [69].

D. Part III: Geospatial Simulation
One of the popular techniques to understand and predict

uncertain complex phenomena such as social networks, natural
disaster, epidemic, etc. – is geospatial modeling and simulation
(M&S). Unlike black-box machine learning algorithms, since
well-defined geospatial models are an abstractions of the real
world, geospatial simulation is understandable and enables to
experience diverse what-if scenarios such as spreading of sea-
sonal flu [29]. Plausible scenarios with deliberate policies by
domain experts have aided policy makers’ decision for uncer-
tain future events such as disaster response (i.e., hurricane and
earthquake) [11]. Dr. Kim will introduce a fundamental con-
cept of M&S and exhibit examples of geospatial simulations
including epidemic simulations [30], ride-haling [31], collision
prediction at intersection [38], sensor network routing, city
network generation [28], synchronized world [25], location-
based social network [27] and urban patterns of life [29].
The examples will be used to show how repeated simulations
can be leverage to estimate the likelihood of events, and how
parameters of a system can be adjusted to achieve a desired
result such as optimizing ride-hailing algorithms.
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