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Hardness, or the quantitative value of resistance to permanent or plastic
deformation, plays a crucial role in materials design for many applications, such
as ceramic coatings and abrasives. Hardness testing is an especially useful method
because it is nondestructive and simple to implement and gauge the plastic
properties of a material. In this study, I proposed a machine, or statistical, learning
approach to predict hardness in naturally occurring ceramic materials, which
integrates atomic and electronic features from composition directly across a wide
variety of mineral compositions and crystal systems. First, atomic and electronic
features, such as van der Waals, covalent radii, and the number of valence
electrons, were extracted from composition. The results showed that this proposed
method is very promising for predicting Mohs hardness with F1-scores >0.85.
The dataset in this study included modeling across a larger set of materials and
hardness values, which have never been predicted in previous studies. Next,
feature importances were used to identify the strongest contributions of these
compositional features across multiple regimes of hardness. Finally, the models
that were trained on naturally occurring ceramic minerals were applied to

synthetic, artificially grown single crystal ceramics.

Introduction

Hardness plays a key role in materials design for many industrial applications, such as drilling
(1, 2), boring (3, 4), abrasives (5-7), medical implants (8-10), and protective coatings (11-13).
Increased manufacturing demand fuels the drive for new materials of varying hardnesses, which
makes the fundamental understanding of the physical origin of this property necessary. Hardness
testing is a nondestructive measurement of a material’s resistance to permanent or plastic
deformation. One such hardness test is the Mohs scratch test, in which one material is scratched with
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another of a specified hardness number between 1 and 10. Materials that are easily scratched, such
as talc, are given a low Mohs number (talc’s is 1) while materials that are highly resistant to plastic
deformation and difficult to scratch, such as diamond, are given a high Mohs number (diamond’s is
10).

In the 1950s, Tabor established that Mohs scratch hardness is associated with deformation
during the plastic indentation process and found that indentation hardness rises monotonically about
60% for each increment of the Mohs scale (14, 15). With this correlation, Tabor identified a
relationship between Mohs hardness and Vickers and Knoop indentation hardness. Tabor then
correlated the stress-strain characteristics of a material to the stress that produces plastic flow (16).

The relationship between indentation hardness (H) and Mohs scratch-hardness number (M) is
InH = kM

where k=1.6, based on experimental data comparing the indentation hardness numbers found by
Vickers or Knoop measurements to the Mohs hardness value. It is unclear which atomic, electronic,
or structural factors contribute to k or hardness as a whole. So, identifying the key features of a
material that are involved in hardness can broaden our understanding of the mechanism of plastic
deformation, and therefore guide the design of novel materials.

The Mohs hardness of a material is influenced by many factors. Material hardness for single-
crystal brittle materials like minerals can depend on the type of chemical bonding, which can affect
a material’s ability to start dislocations under stress (17-19). Materials low on the Mohs scale, such
as talc (M = 1) and gypsum (M = 2), exhibit van der Waals bonding between molecular chains or
sheets. Materials with ionic or electrostatic bonding have a larger Mohs hardness. Materials at the
top of the Mohs scale, such as boron nitride (M = 9) and diamond (M = 10), have large covalent
components. Covalent bonding restricts the start of dislocations under stress, producing a resistance
to plastic deformation. Hardness is also related to the correlation of composition and bond strength
(20-24). Light elements have extremely short and strong bonds, as do transition metals which have a
high number of valence bonds. Higher Mohs hardness is correlated to high average bond length, high
number of bonds per unit volume, and a higher average number of valence electrons per atom.

Typically, calculations of hardness include multiple length scales to account for atomic
interactions that contribute to intrinsic hardness and microstructure which in turn contribute to
extrinsic hardness. Computational methodologies combined with high-performance computing
methods have been utilized to see deformation and compositional factors for hardness on multiple
length scales (25). Specific methodologies include molecular dynamics (MD), density functional
theory, and machine learning (ML). MD to compute indentation hardness involve the evolution
of atomic configuration over an atomistic system of millions of atoms. By calculating the evolution
of the system to observe the nucleation of dislocations, MD allow the investigation of the relation
between mechanical properties and microstructure. Recently, deformation processes are commonly
due to dislocation generation with respect to grain sizes (26, 27) . This gives great insight into
how atomic interactions and microstructure contribute to deformation, however there is a major
challenge with respect to how that translates into indentation hardness. Specifically, atomic
relaxations calculated using MD happen faster than experimental indentation rates. This is due to a
lack of force fields, which produce unreliable interatomic potentials. To address these issues, MD
approaches have previously been combined with ML to compute more accurate atomic forces and

interatomic potentials (28-31). Even so, there would still be the major challenge of the
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computational cost to implement a molecular dynamic methodology across hundreds of materials in
avaried chemical and structural space.

Modeling hardness has been proven difficult since hardness is not a fundamental property of a
material and cannot be directly evaluated from quantum mechanics across all crystal systems with
one model. Complications previously found in energy-based calculations of other properties include
sensitivity to bond length, overestimation in density functionals (20), finite-size supercell effects (32,
33), and choice of exchange-correlation function (32, 33), which leads to multiple issues in large-
scale implementation across different crystal structures and varied chemical spaces. Issues include
large computational costs when considering several materials at a time, especially when considering
the costs of optimization and of energy determination of multiple deformations across one material
class.

There have been multiple computational approaches to connect hardness to bond behavior.
For instance, Gao et al. introduced the concept that hardness of polar covalent crystals is related to
three factors (23): bond density or electronic density, bond length, and degree of covalent bonding.
This approach utilized first principles calculations to uncover a link between hardness and electronic
structure with multiple semiempirical relationships depending on the type of bonding in the
material. The advantage of this approach is that this link that was demonstrated for 29 polar and
nonpolar covalent solids could be extended across a broad class of materials. One disadvantage of this
approach is that there are different semiempirical relationships of microhardness depending on if the
material is a pure covalent, polar covalent, or a multicomponent solid.

Siméinek and Vackii extends this concept of expressing the hardness of covalent and ionic
crystals through the bond strength (24), which is determined by the number of valence electron
in the component atoms, crystal valence electron density, the number of bonds, and bond length
between pairs of atoms. They predicted the hardness of 30 covalent and ionic crystals including
binary AM-BY and A-BVI compounds and nitride spinel crystals (C3Ny4 and SizN4). While their

results were close to experimental values for nitride spinels and A'-BY materials, there was deviation

from experiment for the A-BVI materials reported. One drawback of both methods is that they
depend on first principles calculations, which can become computationally expensive when
expanded to calculate all the bonds for hundreds of materials.

Mukhanov et al. circumvented ab initio calculations by utilizing thermodynamic properties to
find a simple quantitative dependence of hardness and compressibility of 9 materials (34). They
employ the standard Gibbs energy of formation and the Gibbs energy of atomization of elements
in the material. In addition, they introduce the factors of bond rigidity and bond covalency, which
are based on the electronegativites of the elements, as well as the ratio between the mean number
of valence electrons per atom and the number of bonds with neighboring atoms. One advantage is
that this method can be applied to a large number of compounds with various types of chemical
bonding and structures. The hardness predictions for refractory crystalline compounds agree within
7% of experimental values. Another advantage is the flexibility of this method to calculate hardness
as a function of temperature. However, there are factors that are estimated from experimental values
of hardness of other materials. For instance, the coeflicient of relative plasticity varies for elementary
substances, compounds of second period elements, and compounds for period elements greater than
3. This coefficient is attributed to reflect the difference in bond strength depending on the elements
of different periods, but it is unclear as to how directly atomic radii relates to this coefficient. While
these relationships hold for superhard high-pressure phases, it may not hold true for softer materials.
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Li et al. also circumvented ab initio calculations by using chemophysical parameters to predict
the hardness of ionic materials (35, 36). The chemophysical parameters of electronegativity values of
elements in different valence states were used to relate the stiffness of the atoms, the electron-holding
energy of an atom, and bond ionicity indicators to hardness in 8 superhard materials. The calculated
hardness values are in good agreement with experimental data. However, it remains unclear if this
relationship of electronegativity and hardness is only applicable for superhard materials or if it can be
expanded to understand softer materials as well.

The thrust of this study is to combine all of these factors that have been theoretically connected
to hardness and understand how they may interact with each other and contribute to the hardness
of crystalline ceramic materials. Previously, these factors have been used to explain hardness across
a small range of crystal structures, bonding frameworks, and hardness values. In this study, I look
to expand these concepts to a large number of compounds with various types of chemical bonding
types, structures, and compositions. These chemophysical parameters may interact with each other
to predict a range of hardness values. These factors, specific to superhard bonding, may or may not
equally apply to other bonding frameworks, which are either noncubic or not purely covalent.

To circumvent the issues found in solely energy-based calculations, machine or statistical
learning offers a less computationally expensive method to improve predictions of material properties
and accelerate the design and development of new materials. Recently, ML methods applied to
existing data have been proven effective for predicting hard-to-compute material properties at
reduced time, cost, and effort (37-43). Predictive models based on experimental data have proven
to be extremely powerful in materials research. Examples include the prediction of the intrinsic
electrical breakdown field of insulators in extreme electric fields (44, 45), the crystal structure
classification of binary sp-block transition metal compounds (46—48), the prediction of Heusler
structures based on compositional features (49), and the prediction of band gaps of insulators
(50-54). A major advantage of ML methods for rapid material property prediction on past data
is their power to uncover quantitative structure-property relationships across varied compositional
spaces.

Previous studies predicting various properties of materials with ML have used a broad range
of chemo-structural descriptor fingerprints. Typically, the approach is to map a unique set of
descriptors that act as fingerprints connecting a material to a property of interest. These descriptors
range from composition to quantities based on quantum mechanical calculations. A set of materials
informatics methods built strictly on compositional descriptors and experimental hardness data may
be more effective at determining relationships concerning the hardness of materials than previous
approaches. This study implements an approach to establish a set of ML algorithms to uncover
connections between calculable atomic parameters and the Mohs hardness of single crystalline
ceramic materials.

The application of ML requires a dataset of feature descriptors that relate the chemical
composition of diverse crystals to their physical properties. In this study, the database is based
on compositional quantities. The aim of this study is to predict mechanical properties from
compositional features without the need for computationally heavy energy-based modeling. Along
this line, I wanted to test how well ML models can be utilized to predict a comparative material
property, such as Mohs hardness. Can one improve the prediction of hardness at a less computational
expense and with greater fidelity than current methods? Are there identifiable atomic factors that
contribute to plastic deformation that can be applied across a variety of crystal structures and
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compositions? Is there a simple formalism that allows one to track the importance of atomic
mechanisms as a function of hardness irrespective of the chemical complexity of the material?

In this study, ML is used to predict the hardness-related plastic properties of naturally occurring
ceramic minerals. Using compositional-based features, the ML approach is able to predict Mohs
hardness across a broad structural and chemical space. Specifically, 622 naturally occurring ceramic
minerals were screened using the random forests (RFs) ensemble-based ML method, as well as
support vector machines (SVMs). The results show that ML based purely on compositional features
of crystalline ceramics gives better results across a more varied chemical space than previous
methods. Moreover, the influence of atomic and electronic compositional features on the resulting
Mohs hardness prediction is evaluated. Finally, to demonstrate the efficiency of this model, it was
used to predict the Mohs hardness of 52 synthetic crystals with similar atomic and structural
characteristics. The resulting classification models accurately differentiate regimes of hardness by
identifying relevant and significant features that affect hardness, suggesting a connection between the
existence of a common panel of compositional markers and material hardness or resistance to plastic

deformation.
Methods

Datasets

In this study, the author trained a set of classifiers to understand whether compositional features
can be used to predict the Mohs hardness of minerals with different chemical compositions, crystal
structures, and crystal classes. The dataset for training and testing the classification models used
in this study originated from experimental Mohs hardness data, their crystal classes, and chemical
compositions of naturally occurring cermamic minerals reported in the Physical and Optical
Properties of Minerals CRC Handbook of Chemistry and Physics and the American Mineralogist
Crystal Structure Database (S5, 56). The database is composed of 369 uniquely named minerals.
Due to the presence of multiple composition combinations for minerals referred to by the same
name, the first step was to perform compositional permutations on these minerals. This produced
a database of 622 minerals of unique compositions, comprising 210 monoclinic, 96 rhombohedral,
89 hexagonal, 80 tetragonal, 73 cubic, 50 orthorhombic, 22 triclinic, 1 trigonal, and 1 amorphous
structure. An independent dataset was compiled to validate the model performance. The validation
dataset contains the composition, crystal structure, and Mohs hardness values of 52 synthetic single
crystals reported in the literature. The validation dataset includes 15 monoclinic, 8 tetragonal, 7
hexagonal, 6 orthorhombic, 4 cubic, and 3 rhombohedral crystal structures. Both datasets were
processed by in-house Python scripts. The datasets for model development, evaluation, and
validation have been uploaded as a dataset onto Mendeley Data (57). Histograms of the distributions

indicating hardness values for both datasets are presented in Figures 1a and 1b.

Classes

The classification bins used in this study are based on relationships previously seen in the

literature from the studies of Gao et al. and Siminek and Vackat calculations of Vickers hardness
(58, 59). Gao et al. showed a correlation of calculated bond lengths to calculated Vickers hardness

values for binary and multicomponent oxides ($8). The multicomponent oxides were broken down

into systems of pseudobinary compounds to reflect the nature of bonding in the material. These
calculations contain three groupings of hardness and bond length. For materials with bond lengths
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greater than 2.5 1&, the Vickers hardness values were calculated to be under 5 GPa (Mohs value
(0.991, 4]). For materials with bond lengths between 2 and 2.5 A, the Vickers hardness values were
calculated to be between 5 GPa and 12 GPa (Mohs value (4, 7]). For materials with bond lengths less
than 2 A, the Vickers hardness values were calculated to be between 12 GPa and 40 GPa (Mohs value
(7, 10]). Similarly, Siméinek and Vackat showed a correlation between bond length and calculated
Vickers hardness (59). However, it was more binarized. For materials with bond lengths greater than
2.4 1&, the Vickers hardness values were calculated to be less than 6.8 GPa (Mohs value (0.991, 5.5]).
For materials with bond lengths less than 2.4 A, the Vickers hardness values were calculated to be
greater than 6.8 GPa (Mohs value (5.5, 10]).
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Figure 1. Histogram of the Mohs hardnesses of the datasets of (a) 622 naturally occurring mineral and (b)
52 artificially grown single crystals.

Based on these groupings, the calculated Vickers hardness values from both studies were
converted to approximate Mohs hardness values and used as bins in this study. Minerals were
grouped according to their Mohs hardness values as shown in Table 1. Separate binary and ternary
classification groups were established as follows: Binary 0 (0.991, 5.5], Binary 1 (5.5, 10.0], Ternary
0 (0.991, 4.0], Ternary 1 (4.0, 7.0], and Ternary 2 (7.0, 10.0]. Thus, minerals of Mohs hardness
between 0.991 and 5.5 were assigned to the Binary 0 group, minerals with hardness between 5.5 and
10 were assigned to the Binary 1 group, and so on.

Features

In this study, the author constructed a database of compositional feature descriptors that
characterize naturally occurring materials, which were obtained directly from the Physical and
Optical Properties of Minerals CRC Handbook (55). This comprehensive compositional-based
dataset allows us to train models that are able to predict hardness across a wide variety of mineral
compositions and crystal classes. Each material in both the naturally occurring mineral and artificial
single crystal datasets was represented by 11 atomic descriptors, numbered 0 to 10, listed in Table 2

below. The elemental features are number of electrons, number of valence electrons, atomic number,
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Pauling electronegativity of the most common oxidation state, covalent atomic radii, van der Waals
radii, ionization energy (IE) of neutral atoms in the ground state (also known as the first IE), the
atomic number (Z) to mass number (A) ratio, and density. These features were collected for all
elements from the NIST X-ray Mass Attenuation Coeflicients Database and the CRC Handbook of

Chemistry and Physics (55, 60).

Table 1. Binary and Ternary Classes in This Study Based on Mohs Hardness Values

Classes

Binary (2-Class) Classification

empirical chemical formula, or

The atomic averages of nine features were calculated for each mineral. The atomic average is the
sum of the compositional feature (f;) divided by the number of atoms (1) present in the mineral’s

Mohs Hardness
0 (0.991, 5.5]
1 (5.5,10.0]
Ternary (3-Class) Classification
0 (0.991, 4.0]
1 (4.0,7.0]
2 (7.0,10.0]
Table 2. List of All Primary Features
1D Name Feature Description
0 allelectrons_Total Total number of electrons
1 density_Total Total elemental density
2 allelectrons_Average Atomic average number of electrons
3 val_e_Average Atomic average number of valence electrons
4 atomicweight_Average Atomic average atomic weight
S ionenergy_Average Atomic average first IE
<
§ 6 el_neg chi_Average Atomic average Pauling electronegativity of the most common
= oxidation state
g 7 R_vdw_element_Average Atomic average van der Waals atomic radius
7%? 8 R_cov_element_Average Atomic average covalent atomic radius
o
(%]
8 9 zaratio_Average Atomic average atomic number to mass number ratio
£
Q
é 10 density_Average Atomic average elemental density
@
K
£
<
[«
S
e
5
5
g

1
AL =30,

Machine Learning in Chemistry: Data-Driven Algorithms, Learning Systems, and Predictiogs,edited by Edward O. Pyzer-Knapp, and Teodoro Laino,
American Chemical Society, 2019. ProQuest Ebook Central, http://ebookcentral.pro t.com/lib/vand/detail.action?docID=6005061.

Created from vand on 2020-08-27 08:34:17.



Copyright © 2019. American Chemical Society. All rights reserved.

Two additional feature descriptors were added based on the total number of electrons and the
total of the elemental densities for each compound, for a total of 11 features listed in Table 2 below.

The features for this study were chosen based on factors implemented in previous methods to
predict material hardness. The related factors from these studies were included as features that are
easily calculated from the number of atoms in the empirical formula and elemental characteristics.
The number of valence electrons per bond was included as a factor in Gao et al. (23), Simtnek
et al. (24), and Mukhanov et al. (34). In this study, the effect of valence electrons on hardness is
considered by a simplified feature of atomic average of valence electrons. Atomic weight was included
in this study since it is used to calculate molar volume, which was a factor in the Mukhanov et al.
study as well (34). Atomic radii (covalent and van der Waals) were included as features in this study
since they are related to the bond length factor in Gao et al. and the molar volume in Mukhanov
et al. (23, 34). Electronegativity was included in the feature set as the atomic average of Pauling
electronegativity for all elements in a material’s empirical formula. This atomic average is a simplified
version of the electonegativity-derived factors of bond electronegativity, stiffness of atoms, and bond
ionicity factors in Li et al. used to predict hardness (35, 36).

In addition to features based on characteristics previously utilized in hardness calculations, three
more features are also included: the first IE, the total number of all electrons, and the atomic number
to mass ratio for each compound. Each of these have a connection to either the atomic radii or the
strength of bonds of these materials. The first IE, or the amount of energy to remove the most loosely
bound valence electron, is directly related to the nature of bonding in a material (61, 62). According
to Dimitrov and Komatsu (61), bond strength can be modeled as an electron binding force related to

first IE through a Hooke’s law potential energy relationship,
k = IE/ZTerf

where "eff is the effective ionic radii. This has not been previously connected to hardness, so it is
included as a novel feature in this study. Since hardness has been previously connected to bond
strength, it makes sense that this could also be a related factor to mechanical properties like hardness.

The total number of electrons (both bonding and nonbonding) are also included in this study
as a feature due to their contribution to atomic radii. As the number of electrons in inner shells
increases, the repulsive force acting on the outermost shell electrons in a process known as shielding.
This repulsive force increases the atomic radius, which could directly affect the bond length of a
material. The atomic number to mass number ratio (Z/A) is directly related to the total electron cross-
section, or the effective electronic energy-absorption cross section of an individual element. While it
is commonly used to describe X-ray attenuation, it may also help in this case to describe an effective
area of electronic activity that can contribute in a different context.

ML Models

In this study, nine supervised learning models were built and trained to classify hardness values
in naturally occurring minerals and artificial single crystals. Specifically, I implemented RF and SVMs
to predict Mohs hardness. This section reviews the models, optimization schema, feature importance
calculations, and evaluation criteria utilized in this study.
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RFs and Gini Feature Importance

Decision trees use decision-making rules implemented on features or attributes of the data to
predict target properties. Major issues with decision trees are that they can be highly variable and
sensitive to overfitting. To resolve this issue, one can employ ensemble methods, which implement
multiple decision trees. Such methods include extremely randomized trees (extra trees) and RFs,
which is one of the methods employed in this study. In a RFs ensemble, each tree is built on a
bootstrap sample from the training dataset. At each node, a set of attributes is randomly selected
from among all possible attributes to test the best split. For RF classifiers, the best split is chosen by
minimizing variance, which leads to a reduction in misclassification. In the end, the value of a target
property is the average of all of the predictions for that property.

This study not only predicts Mohs hardness based on feature descriptors, but also identifies
which of these descriptors are most important to making the predictions for several RF models.
To do this, the variable importance metric called Gini importance is employed to find the relative
importances of a set of predictors based on the Gini index. The Gini index is commonly used as
the splitting criterion in tree-based classifiers, as a function to measure the quality of a split. The
reduction of the Gini index brought on by a feature is called the Gini importance or the mean

decrease impurity. This decrease in node impurity is given by the equation

J
F© =) §,O0-§ )

j=1

where @ () is the class frequency for class j in node £ (63, 64).

To summarize, the Gini importance for a feature indicates that feature’s overall discriminative
value during the classification. If the decrease is low, then the feature is not important. An irrelevant
variable has an importance of zero. The sum of the importances across all features is equal to 1. In
this study, Gini feature importance is used to gauge the relative importance of a set of compositional-
based features on binary and ternary RF classifications of Mohs hardness values.

SVMs

A SVM is a supervised ML method that fits a boundary or separating hyperplane around

elements with similar features. The input features are mapped to a high-dimension feature space to
produce a linear decision surface or hyperplane. This decision surface is based on a core set of points
or support vectors. An SVM finds the linear hyperplane with the maximum margin in the higher-
dimensional feature space.

Considering a training dataset of n input feature-label pairs (x;, y;), i = 1...n, the SVMs require

the solution of the following optimization problem:

l
VIE&ZW w + ;
i=1

subject to

edited by Edward O. Pyzer-Knapp, and Teodoro Laino,

Created from vand on 2020-08-27 08:34:17.



Copyright © 2019. American Chemical Society. All rights reserved.

yiwTep(x) +b)=>1- ¢,

¢G=0

where w is the set of weights for each feature or the weight vector, ¢ is the radial function that maps
the data into a higher-dimensional space, b is bias, {iis a slack variable to allow some misclassifications
while maximizing the margin and minimizing the total error, and C is the soft margin cost function
that controls the influence of each support vector (65, 66). Due to the construction of the hyperplane
on these support vectors, it is not sensitive to small changes to the data. This robustness to data
variation means the SVM can generalize quite well. Also, the construction of the hyperplane results
in complex boundaries, which resists overfitting. The SVM algorithms utilized in this study were
implemented by the Scikit-Learn Python package (67).

Feature spaces are not always readily linearly separable. In order to improve separability within
the feature space, one can map the feature space onto a higher dimensional space. By applying
a nonlinear kernel mapping function, SVMs are more easily able to be applied to classification
problems with this type of feature space. One common kernel function K that is utilized for feature
space transformation is the radial basis function (RBF) shown in the equation below. This study uses
the radial basis kernel function kygp given in the equation

krsr(xi, %) = exp (—y|xi - xj|2),y <0

where ¥ is the parameter for the Gaussian RBF (65).

However, not all feature spaces are smooth. For data that may have discontinuities in the feature
space, a better option is to include a variable to adjust for the possible lack of smoothness of the
data. A generalization of the RBF called Matérn includes a variable v to adapt to data roughness. This
variable increases the flexibility of the kernel by allowing adaptation of the kernel to properties of the
true underlying functional relation that may not be smooth. In addition to the RBF kernel, this study
employs the Matérn kernel function given in the equation

217V (Vav(i-xp\” V2v(xi-xj)
ke (%1 %7) = r(v)zv‘i( 1 ) Ky 1

where I is the gamma function (68, 69), is a scalar length-scale parameter for amplitude, v is the
roughness factor, and Ky is the modified Bessel function of the second kind. As v approaches infinity,
the Matérn kernel converges with the RBF kernel, which is smooth due to its infinite differentiability.
This lack of smoothness is relevant to the feature space in this study. Mohs is not a linear scale,
but it is an ordinal that jumps in Vickers hardness. It is entirely possible that there are jumps or
discontinuities in feature contributions to the physical phenomena between adjacent Mohs hardness
values. To account for this possibility, RBF and Matérn kernels are employed separately as kernels in
SVMs to observe if there is a difference in performance and the underlying nature of the continuity of
the feature space.

Classifiers built with a SVM are referred to in this work as support vector classifiers (SVCs). The
support vector machine model in this study that was applied to the ternary classification problem
was constructed with a One-vs-One (OVO) decision-making function. An OVO classifier develops
multiple binary classifiers, one for each pair of classes. Specifically, it trains N(N-1)/2 binary
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classifiers for an N-way classification problem. In the case of the ternary (3-way) classification
problem, three binary classifiers are generated: Class 0 versus 1, 1 versus 2, and 0 versus 2, each of
which would only distinguish between two classes at a time. To classify a given material, the material
is presented to all three classifiers and majority voting is used to assign a label to the material.

Each feature was standardized by individually centering to the mean and scaling to unit variance
or standard deviation. While RFs are less sensitive to absolute values, SVMs are sensitive to feature
scaling. This is due to the construction of the hyperplane on the distance between the nearest data
points with different classification labels, or support vectors. If one of the dimensions have a
drastically larger value range, it may influence this distance and thereby affect the hyperplane. For
consistency, all models in this study used this standardized feature space.

Study Models

Nine ML models were implemented, which are listed in Table 3 below. Models 1 and 2 are
RBF-kernel SVMs applied to the binary and ternary classifications outlined in Table 1, respectively.
Models 3 and 4 are RFs applied to the binary and ternary classifications, respectively. Model S is
a binary RF in which Class 0 (0.991, 4.0] is classified against a combined superclass of Classes
1 (4.0, 7.0] and 2 (7.0, 10.0]. This model is employed to separate materials with low hardness
values from the rest of the dataset. Model 6 is similarly constructed in that it is a binary RF that
separates the medium hardness Class 1 (4.0, 7.0] against the superclass of Classes 0 and 2, (i.e.,
low and high hardness values). Model 7 is similarly constructed to classify materials with high Mohs
hardness values from the combined superclass of low and medium Mohs hardness values. Models
8 and 9 are Matérn-kernel SVMs applied to the binary and ternary classifications, respectively. The
implementations from Scikit-learn were used for all models.

Table 3. The Nine ML Models Utilized in This Study. The Acronyms Following a Class Type
Indicate the Type of Model Used

ID Model

1 Binary RBF SVC

Ternary RBF SVC - OVO

Binary RF

Ternary RF — multiclass

Ternary RF — OVR: O versus 1, 2

Ternary RF — OVR: 1 versus 0, 2

Ternary RF — OVR: 2 versus 0, 1

0| NN | W]

Binary Matérn SVC

\O

Ternary Matérn SVC — OVO

These nine models allow several comparisons. First, we can compare the effectiveness of the
OVO nature of RBF-kernel SVCs (RBF SVCs) and Matérn-kernel SVCs (Matérn SVCs) to the
inherently multiclass decision-making scheme of RF ensemble methods for binary (Models 1, 3,
and 8) and ternary classifications (Models 2, 4, and 9). Second, we can compare the effectiveness
of an inherently multiclass RF scheme to the One-vs-Rest (OVR) ternary RF classification scheme
for Models 4-7 and determine the best way to classify materials as having low, medium, and high
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Mohs hardness values. Finally, comparing feature importances for Models 5-7 tells us which features
contribute most to the classification between low, medium, and high Mohs hardness. This
information can highlight which material properties are most important for low, medium, and high
resistance to plastic deformation.

Grid Optimization for Binary and Ternary SVC: Models 1,2, 8,and 9

The hyperparameters C and ¥ for RBF-based SVMs can drastically affect the performance of
a classifier. The hyperparameter of C is the cost function that implements a penalty for
misclassification. If C is too low for the dataset, then a simpler decision function is applied to the
model, but it may underfit the data. This represents a soft margin, which may allow training points to
either be ignored or misclassified. If C is too high for the dataset, then a more complicated decision
function is applied to the model, but it may overfit to the training data.

The hyperparameter ¥ in the RBF is connected to the spread of influence of a single training
point. If ¥ is too low, the decision boundary is too broad and does not separate the data well. If
Y is too high, the RBF overfits to the training data by forming decision boundary islands. For any
dataset to be classified, a balance exists between these two hyperparameters. The hyperparameters
C and v for Matérn-kernel SVM parameters can drastically affect the performance of a classifier.
The hyperparameter C performs similarly for SVCs with a Matérn kernel or RBF kernel. The
hyperparameter v in the Matérn kernel is connected to the smoothness of the function to the data. If
v is too high, the kernel may be too smooth to capture any underlying discontinuities in the feature
space.

For any dataset to be classified, a balance exists between these hyperparameters. One approach
to find optimal values for these hyperparameters is a grid search method. In a grid search, each
possible hyperparameter combination is applied to the dataset and the accuracy is reported to find
the combination that produces the highest accuracy without overfitting. To optimize the parameters
for the four SVC models in this study, a grid search was performed exploring the effects that various
hyperparameters have on model performance. For the binary and ternary SVCs built with RBF
kernel, combinations of the hyperparameters C and ¥ were tested to observe their effects on accuracy.
For the binary and ternary SVCs built with the Matérn kernel, combinations of the hyperparameters
C and v were tested to observe their effects on accuracy. The ranges for the RBF SVC used in this

paper is C between 102 and 10'3 and ¥ between 10~ and 10'3. The ranges for the Matérn SVC

hyperparameters used in this paper is C between 102 and 10'3 and v between 0.5 to 6.0. These
should be adequate to find a suitable combination to prevent both under- and over-fitting.

For each classifier undergoing grid optimization, the mineral dataset of 622 minerals (each
having 11 feature descriptors) was split into two shuffled stratified subsets: a development set
(66.7%) and an evaluation set (33.3%). These datasets were rearranged to ensure each subset was
representative of the whole with respect to the distribution of Mohs hardness values. The
development subset was used for training while the evaluation subset was used to test each classifier.
This process was repeated for all hyperparameter combinations to perform the two-dimensional grid
optimization.

Evaluation Criteria

In this study, all nine ML models are trained to predict Mohs hardness through binary or
ternary classification methods. Their performance is evaluated with four metrics based on the true
positives (Tp), true negatives (T,), false positives (Fp), and false negatives (F,) predicted by a given
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classification model. The metrics used in this study are accuracy, specificity, precision, recall, and
F1-scores. Accuracy (A) gives the proportion of true positive results in a population. Precision (P)
describes how many of true positive predictions are actually positive. Specificity (S) is the probability
that a classification model will identify true negative results. The higher the specificity, the lower
the probability of false negative results. Recall (R) or sensitivity indicates the proportion of actual
positives that were predicted as positive. R is the probability that a classification model will identify
true positive results. The higher the recall, the lower the probability of false positive results. Typically,
precision and recall are considered together through the Fl-score (FI). FI is the harmonic average
of precision and recall and gives equal importance to both. It is an important metric for datasets
with uneven class distribution. The closer FI is to 1, the closer the model comes to perfect recall
and precision. Overall these five metrics give great insight into the performance of the classification
models, and their equations are as follows:

T,+T,

A=
T, +To+E, +F,

go_In
T,+F

T
pP=——
T, +F,

R=—o
T, + F,
2(P xR
F1=¥
P+R

Results and Discussion

In this study, several machine or statistical learning approaches are presented to quantitatively
study the relationship between material composition and Mohs hardness values, which is a complex
property relating to elasticity and plastic deformation of a material.

Grid Optimization Results for Binary and Ternary SVCs: Models 1, 2, 8,and 9

In this study, grid search optimization on the binary and ternary Matérn and RBF SVC models
was performed. For each classifier undergoing the grid optimization scheme, the mineral dataset of
622 minerals was split into two stratified subsets: a development set (66.7%) and an evaluation set
(33.3%). For the RBF SVC models (Models 1 and 2), grid search optimization was performed by
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methodically building and evaluating a model for each hyper-parameter combination of C between
10-2and 1013 and ¥ between 10~ and 10'3. For the Matérn kernel SVC models (Models 8 and 9), grid
search optimization was performed by methodically building and evaluating a model for each hyper-
parameter combination of C between 10-2 and 103 and v between 0.5 to 6.0.

The binary RBF SVC classifier Model 1 achieved an accuracy of 86.4% with C=10and¥ =1,
as shown in Figure 2a. The ternary RBF SVC Model 2 achieved an accuracy of 85.0% with C = 10
and ¥ = 1, as shown in Figure 2b. The binary Matérn SVC Model 8 achieved an accuracy of 86.4%
with hyperparameters C = 10 and v = 2.5, as shown in Figure 2c. The ternary Matérn SVC Model
9 achieved an accuracy of 87.4% with hyperparameters C = 1 and v = 1, as shown in Figure 2d.
There is a moderate gain in accuracy in classifiers employing the Matérn kernel compared to the RBF
kernel, but they are both close. This may suggest that discontinuities that may exist in the feature
space may be small enough to approximate with a smooth function like RBF. For the remainder
of the study, these grid-optimized hyperparameters were utilized for Models 1, 2, 8, and 9. These
prediction accuracies suggest that binary and ternary SVCs built on either RBF or Matérn kernels to

classify the Mohs hardness of ceramics can be helpful in materials discovery and development.

(a) (b)
1072 0.85
0.80 0.80
, 0.75 0.75
o 10 0.70 0.70
0.65 0.65
0.60 :
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gamma (y) gamma (y)
(c) (d)
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Figure 2. The cross-validation grid optimization accuracies for the (a) binary and (b) ternary RBF SVCs,
Models 1 and 2, respectively. The y axis is the value of C, or the soft margin cost function. The x axis is the
value of ¥, or the parameter for the Gaussian RBF. The cross-validation grid optimization accuracies for the
(¢c) binary and (d) ternary Matérn SVCs, Models 8 and 9, respectively. The color represents the model
accuracy.
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Figure 3. Performance from models trained under S00 stratified train-test splits (a) workflow of model
performance. (b) The specificity and recall scores from for all binary models. (c) The recall scores for ternary
models. (d) The specificity scores for ternary models. The bar height corresponds to the average respective
score. The black error bars correspond to the standard deviation of the respective metric.

Model Performance on Naturally Occurring Minerals Dataset

To determine the performance of the models utilized in this study, all models were constructed
with the naturally occurring mineral dataset, which was split 500 times into three-fold training and
test subsets. The workflow is shown in Figure 3a. Upon completion of all 500 splits, the F1-score,
precision, recall, specificity, and accuracy were calculated based on the predicted and known values
of the test subsets. Figure 3b shows the weighted F1, precision, and accuracy scores for all nine

Copyright © 2019. American Chemical Society. All rights reserved.

models over 500 splits, along with their standard deviations. For Figure 3b and 3c, the hashed bars
represent the same performance metric across each model. For Figure 3d and 3e, the hashed bars
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represent the same class across each model. The height of the bars is the magnitude of the respective
metric for that attribute. The x-axis labels for Figure 3b—3e correspond to the Model ID in Table 3.

All of the classifiers were able to classify the vast majority of Mohs hardness values with weighted
F1, precision, and accuracy scores of 0.79 or higher. The ternary Matérn SVC (Model 9)
underperforms its ternary RBF SVC (Model 2) and ternary multiclass RF (Model 4) counterparts.
Also, the ternary OVR RF models (Models 5-7) appear perform similarly to or better than the
ternary multiclass RF model (Model 4) with scores >0.82. For the specificity and recall for the binary
models shown in Figure 3c, the scores are good (>0.7) in all models except 7. In Model 7, there is a
drastic decrease in specificity to 0.2. This suggests that the model overclassified false positives. This
is unlikely due to the model predicting based on the features themselves but to the model predicting
based on the bias in the training data. Materials in Class 2 (7.0, 10.0] are underrepresented, only
counting toward 6% of the entire dataset. This is due to the natural rarity of materials in that range.

Overall, Models 5 and 6 had the strongest prediction performance across all 5 metrics. Model S
is a binary RF in which Class 0 (0.991, 4.0] is classified against a combined superclass of Classes 1
(4.0, 7.0] and 2 (7.0, 10.0]. This model is employed to separate materials with low hardness values
from the rest of the dataset. Model 6 is similarly constructed in that it is a binary RF that separates
the medium hardness Class 1 (4.0, 7.0] against the superclass of Classes 0 and 2 (i.e., low and high
hardness values). These one-vs-rest binary classification of ternary bins best captured the underlying
patterns of material hardness for naturally occurring ceramic minerals. However, given the small
size of the population in the Class 2 classification bins, both of these models could condense into a
pseudobinary classification task of Class 0 (0.991, 4.0] and Class 1 (4.0, 10.0], where the separation
is at Mohs value 4.0 instead of 5.5 as in the true binary bins in this study. The effect of data bias t
plagued Model 7 is less pronounced in Models 5 and 6, due to their population sizes closer to parity.

Models S and 6 may correspond more to the grouping presented in the correlation between
the Gao calculated bond lengths and calculated hardness values than Siméinek and Vackai’s more
binarized grouping found in Model 3 on this dataset of naturally occurring minerals. Model 3 is a
binary RF in which Class 0 (0.991, 5.5] is classified against a combined superclass of Class 1 (5.5,
10.0]. This model is also employed to separate materials with low hardness values from the rest of
the dataset. Even with a specificity is closer to 0.74, Model 3 still performs well with a recall score +
std. dev. 0of 0.8633 + 0.02024. Overall, these models yield insight into the connection between bond
characteristics and hardness. According to the Gao et al. study (23), the three factors connecting the
hardness of polar covalent crystals to bond behavior are the bond density or electronic density, bond
length, and degree of covalent bonding. According to the Simtnek and Vacké study (59), the factors
connecting the hardness of binary covalently bonded solids are crystal valence electron density,
number of bonds, and bond length between pairs of atoms. From the performance of Models 3, S,
and 6, all of these factors are closely related to the hardness of naturally occurring ceramic minerals.
To further understand the impact of these factors in these RF models, feature importances can be
used to gauge their relative importances and increase understanding of the physical basis in the
hardness regimes of these ceramic minerals.

Next, the effectiveness of several binary classifiers was evaluated using the quantitative variables
of true positive rate, which represents the total number of correctly classified Mohs hardness values
in the positive class, and the false positive rate, which represents the total number of incorrectly
classified Mohs hardness values assigned to the positive class. With these variables, the receiver
operating characteristic (ROC) curves were calculated. ROC curves plot the true positive rate for a
binary classifier as a function of its false positive rate to gauge model performance. The area under the
curve (AUC) is a quality measure of the classifier’s ability to correctly classify a given material. The
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ideal AUC is unity, or 1. To compare the effectiveness of the binary (Models 1, 3, and 8) and OVR
(Models 3, 6, 7) superclass classifiers used in this study, the author implemented ROC curves and
calculated the areas under the curves. These curves, are given in Figure 4 below.

0.8 0.8

o
o
e
o

S
IS
o
>

True Positive Rate
True Positive Rate

57 47 =& micro-average ROC curve (area = 0.96)
0.2 ’/ === Chance 0.2 »” = =  macro-average ROC curve (area = 0.92)
//’ ~#— Binary RBF SVC ROC (AUC = 0.90) ’/’ —— ROC curve of class 0 (area = 0.95)
’/’ —— Binary Matern SVC ROC (AUC = 0.91) P == ROC curve of class 1 (area = 0.92)
- ,/’ = Binary RF ROC (AUC = 0.91) &b P == ROC curve of class 2 (area = 0.88)
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
False Positive Rate False Positive Rate

Figure 4. ROC plots using the false positive ratio and false negative ratio are used to evaluate the ability of

classifiers to predict Mohs hardness values. (a) Comparison of binary RBF SVC, RF, Matérn SVC, Models

1, 3, and 8, respectively. (b) Comparison of the ternary OVR classifiers, Models S, 6, and 7, which predict
low, medium, and high hardness values, respectively.

Both the binary and ternary OVR superclass classifiers were able to discriminate the vast
majority of naturally occurring minerals with an AUC of 0.88 or greater. The ROC plots in Figure
4b illustrate the similar performance of ternary OVR superclass classifiers when applied to the same
set of compositional features. This appears to reflect the This suggests that compositional predictors
developed for these materials can be generally applied with reasonable reliability to other single

crystalline materials across a wide-ranging compositional and structural space.

Feature Importances

To determine feature importance for the RF-based models utilized in this study (Models 3-7),
10,000 trees were constructed for a single forest. Upon completion of each forest, the list of input
features with their representative Gini importances was returned. Figure Sa shows the relative
importance of different atomic features for binary (Model 3) and ternary (Model 4) RFs constructed
as inherently multiclass. Figure Sb shows the relative importances of different atomic features for
ternary RFs constructed as OVR classifiers (Models 5-7). The x-axis labels correspond to the feature
ID outlined in Table 3. The heights of the color bars in Figures Sa and Sb indicate the Gini importance
of each feature. The colors represent the different models.

The most important features vary on three points: (1) whether the model is binary or ternary,
(2) whether the model is constructed as multiclass or binary OVR, and (3) the regime of hardness
classified. For the binary RF model (Model 3) in Figure Sa, the four most important features are
Features S, 0, 3, and 6 with feature importances of 0.124, 0.129, 0.120, and 0.111, respectively.
These features correspond to the atomic average of IE, the total of the number of electrons in the
empirical formula, the atomic average of the valence electrons, and the atomic average of the Pauling
electronegativities, respectively. For the ternary multiclass model (Model 4) in Figure Sa, the four
most important features are Features 7, 8, 3, and 5 with feature importances 0f 0.129, 0.113, 0.112,
and 0.111, respectively. These features correspond to the atomic average of the van der Waals atomic
radii, the atomic average of the covalent atomic radii, the atomic average of the valence electrons, and
the atomic average of IE, respectively.
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Figure S. The Gini feature importances of a 10,000 tree RF for (a) binary (Model 3) and ternary multiclass
(Model 4) models and (b) OVR binary REF classifiers (Models 5-7) with low, medium, and high hardness
ternary class as a positive class, respectively.

For the ternary-bin, OVR binary RF in which Class 0 (0.991, 4.0] is classified against a
combined superclass of Classes 1 (4.0, 7.0] and 2 (7.0, 10.0] (Model 5) in Figure Sb, the four
most important features are Features S, 8, 3, and 7 with feature importances 0£0.118, 0.118, 0.116,
and 0.113, respectively. These features correspond to the atomic average of IE, the atomic average
of the covalent atomic radii, the atomic average of the valence electrons, and the atomic average
of the van der Waals atomic radii, respectively. For the ternary-bin, OVR binary RF in which the
medium hardness Class 1 (4.0, 7.0] against the superclass of Classes 0 and 2 (Model 6) in Figure
5b, the four most important features are Features 7, 8, 3, and S with feature importances of 0.140,
0.117,0.111, and 0.110, respectively. These features correspond to the atomic average of the van der
Waals atomic radii, the atomic average of the covalent atomic radii, the atomic average of the valence
electrons, and the atomic average of IE, respectively. For the ternary-bin, one-vs-rest binary RF in
which the medium hardness Class 2 (7.0, 10.0] against the superclass of Classes 0 and 1 (Model 7) in
Figure 5b, the four most important features are Features 10, 1, 0, and S with feature importances of
0.121,0.108, 0.106, and 0.101, respectively. These features correspond to the atomic average of the
densities of the elements found in the empirical formula, the total densities, and the atomic average
of IE, respectively.

Earlier in Figures 3b—3e, it was shown that Models S and 6 are similar and perform well on the
dataset of naturally occurring crystalline ceramic minerals. Here in Figure Sb, it can be found that
these two models share the top 4 features: 7, 8, 3, and 5. These features correspond to the atomic
average of the van der Waals atomic radii, the atomic average of the covalent atomic radii, the atomic
average of the valence electrons, and the atomic average of IE, respectively. The related factors from
these studies directly correspond to material characteristics previously attributed as contributors to

material hardness. The number of valence electrons per bond was included as a factor in Gao et al.

Machine Learning in Chemistry: Data-Driven Algorithms, Learning Systems, and Predictions, edited by Edward O. Pyzer-Knapp, and Teodoro Laino,

American Chemical Society, 2019. ProQuest Ebook Central, http://ebookcentral.pro t.com/lib/vand/detail.action?docID=6005061.

Created from vand on 2020-08-27 08:34:17.



Copyright © 2019. American Chemical Society. All rights reserved.

Machine Learning in Chemistry: Data-Driven Algorithms, Learning Systems, and Predictions
American Chemical Society, 2019. ProQuest Ebook Central, http://ebookcentral.pro lst.com/lib/vand/detail.action?docID=6005061.

(23), Simanek et al. (24), and Mukhanov et al. (34). Atomic radii (both covalent and van der Waals)
are related to the bond length factor in Gao et al. and the molar volume in Mukhanov et al. (23,
34). The first IE is related to the bond strength of the material (61, 62), which Simtinek and Vacka
attribute as a major factor in hardness (59). Three of the four importances (Features 8, 3, and 5) are
the same between Models S and 6. However, Feature 7, or the atomic average of the van der Waals
atomic radii, varies greatly between the two models. For Model 5, the importance of Feature 7 is
0.118. For Model 6, the importance of Feature 7 is 0.140. From Model 5 to Model 6, the importance
of this feature drops 15.7%. Therefore, it may then follow that a major difference in performance
between these models on a validation dataset would likely depend on this feature.

Model Validation with Validation Set

To determine the generalizability of the models to artificial ceramic crystals, all models were
trained with the naturally occurring mineral dataset and tested on a validation dataset. The validation
dataset consists of 52 artificial single crystals, with 15 monoclinic, 8 tetragonal, 7 hexagonal, 6
orthorhombic, 4 cubic, and 3 rhombohedral crystal structures. The F1, precision, recall, specificity
and accuracy scores were calculated based on the validation set. This workflow is diagrammed in
Figure 6a. Figure 6b shows the weighted F1, precision, and accuracy scores for all nine models. For
Figure 6b and 6c, the hashed bars represent the same performance metric across each model. For
Figure 6d and 6e, the hashed bars represent the same class across each model. The height of the
bars is the magnitude of the respective metric for that attribute. The x-axis labels for Figure 6b—6e
correspond to the Model IDs in Table 3.

All models in Figures 6b—6e shown have similar trends as in the naturally occurring dataset but
with lower performance values. Such a dip in performance can be expected. In the growth of artificial
crystals, different crystal phases can be created that may produce crystals with higher or lower Mohs
hardness values than would occur naturally. Growth conditions were not factored into the feature set
in this study. To address this experimental intervention, it may be useful to include crystal growth
conditions as a feature in future ML models.

According to Figure 6b, all models have F1, precision, and accuracy scores greater than 0.70.
Model S is the strongest performing model with F1, precision, and accuracy scores around 92%.
Model 7 also shows strong performance metrics. However, this model is affected by data bias due to
the small number in the positive class. This is also seen by the low recall score in Figure 6¢c. Model 5
is a stronger than Model 7 due to the reduced data bias from the more evenly matched populations
of the positive and negative classes. Therefore, the author has strong confidence that the models are
predicting on the feature set instead of data bias of imbalanced classes.

As discussed earlier, Models S and 6 are basically pseudo-inverses of each other due to the
underrepresentation of naturally occurring ceramic minerals with Mohs hardness values greater than
7.0. In this case, both of these models could condense into a pseudobinary classification task of Class
0(0.991, 4.0] and Class 1 (4.0, 10.0], where the separation is at Mohs value 4.0 instead of 5.5 as
in the true binary bins in this study. However, on the validation dataset, Model 6 performs much
better than Model S. A major reason for this could reflect back to the feature importance analysis.
Feature 7, or the atomic average of the van der Waals atomic radii, decreases around 15.7% between
Models 5 and 6. Model 5 appears to have enough importance on that factor to produce reasonable
predictions. For Model 6, there appears to be an important overreliance on the atomic average van
der Waals atomic radius in predicting hardness values for man-made artificial materials. This may be
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due to the sensitivity of van der Waals bonding interactions at the solid-liquid interface to growth
conditions during the crystallization process, such as temperature and solvents (70, 71).
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Figure 6. (a) Workflow of performance testing for model validation. (b) The specificity and recall scores for
all binary models. (c) The recall scores for ternary models. (d) The specificity scores for ternary models. The
bar height corresponds to the average respective score. All models were trained on the naturally occurring
mineral dataset and validated with the artificial single crystal dataset.

Note that the prediction models in this study have only considered a small number of

composition-based factors and other easily accessible attributes for an extremely varied chemical

space. This is a reasonable first screening step that allows us to efficiently gauge important factors that
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may contribute to material hardness. However, to make larger generalizations about the nature of
hardness, more features would have to be considered and then narrowed down with feature selection
methods. Specifically, feature selection methods such as principal component analysis, univariate
selection, and recursive feature elimination across a larger set of features would yield a deeper
understanding about the nature of factors that contribute to material hardness.

In addition, predicting the hardness of superhard (M > 9) materials would be particularly
problematic with the current dataset. Materials with a Mohs hardness less than 2 and greater than
9 are not equally represented, which leads to an imbalanced dataset. The implementation of data
handling methods specifically constructed for handling imbalanced datasets, such as oversampling,
undersampling, or synthetic minority oversampling technique, may allow more accurate prediction
of the Mohs hardness in those regimes. This effect extends to ceramic materials in the 7-10 Mohs
range. While there are more minerals included in this range, there is still a great imbalance that
produces a data bias in the training of statistical and ML models. Therefore, to extend this application
to predict minerals in the 7-10 Mohs range in the future, more artificial materials would need to be
included. These approaches would allow possible design and prediction of novel superhard crystal
ceramics.

Please note that our prediction models have only considered single crystalline materials. For
other types of materials, different factors affect hardness. For metals, hardness is affected by structural
factors like dislocation entanglements (16). Also in metals, there is a connection between bulk
modulus, shear modulus, hardness, and ductility. This connection has previously been referenced by
Chen (72), Tabor (73), and Pugh among others (74). Due to the delocalized nature of the bonding
in metals, plastic deformations locally accumulate before fracture, resulting in ductility and reduced
hardness. To explore this effect, the inclusion of metals that stretch across the ductile-to-brittle
transition into the feature set could offer insight into the connection due to the nature of bonding
strength in these materials.

For plastics, elastic and plastic properties depend on chain length, degree of cross-linking, and
the degree of crystallinity of the material. Inclusion of nanomaterials into single-crystalline matrices
has also been shown to increase hardness. Those were ignored in this study but may also be an avenue
to consider in future studies. The continued growth of data repositories based on experimental
characterization of materials is expected to enable the development of models for mechanical and
microstructural material properties not covered in this study, specifically fracture toughness, thermal
stability, bulk modulus, shear modulus, and work hardening, among others.

Conclusions

This study shows that comparative material properties like Mohs hardness can be modeled with
ML algorithms using features based solely on material composition. The results show that RFs and
SVMs are able to produce reasonable predictions of materials property. They also show that different
features are relatively important for predicting Mohs hardness values. These features include the
atomic average of the van der Waals atomic radii, the atomic average of the covalent atomic radii, the
atomic average of the valence electrons, and the atomic average of IE among others. These features
were previously included in separate studies but were combined into this study to further understand
their interrelated physical contributions to materials hardness (23, 34, §9). In conclusion, I have
demonstrated that a ML model can be useful in classifying comparative material properties. The
methodology described in this study could be applied to other types of materials for accelerated

design and materials science discovery of novel materials.
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