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A B S T R A C T

Averaging techniques are used to generate upscaled forms of the shallow water equations for storm surge
including subgrid corrections. These systems are structurally similar to the standard shallow water equations
but have additional terms related to integral properties of the fine-scale bathymetry, topography, and flow. As
the system only operates with coarse-scale variables (such as averaged fluid velocity) relating to flow, these
fine-scale integrals require closures to relate them to the coarsened variables. Closures with different levels
of complexity are identified and tested for accuracy against high resolution solutions of the standard shallow
water equations. Results show that, for coarse grids in complex geometries, inclusion of subgrid closure terms
greatly improves model accuracy when compared to standard solutions, and will thereby enable new classes
of storm surge models.

1. Introduction

Modern storm surge models have been split into two disparate
branches based on their intended uses:

1. Low resolution ensemble forecasts: Using hundreds to thousands of
surge model runs, these models are largely used before tropical
cyclone landfalls or for climatological surge studies (Zachry
et al., 2017). Each realization is typically run on a single compu-
tational core, and uses relatively coarse computational grids to
ensure that they can finish the many runs required within tight
forecast windows.

2. High resolution simulations: These are either performed singly or
in small ensembles in forecasts, or in potentially much larger
quantity for hindcasts or climatological studies. Such simula-
tions are almost invariably run on large parallel computing
systems (Anon., 2015; Hope et al., 2013).

Differences between these two varieties of simulation are characterized
by run times and accuracy: low resolution models are much faster
but have generally lower accuracy and vice versa for high resolution
models (Kerr et al., 2013).

This state of affairs has existed for at least the past decade, but
neither camp is entirely satisfied: the low resolution modelers would
like to increase accuracy, while the high resolution camp often cannot
complete simulations in the times it desires, and also requires expensive
computational hardware that is not readily available to many. Further-
more, extremely high resolution topographic and bathymetric datasets
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are increasingly becoming available in many locations, with detail that
cannot currently be resolved by any large scale surge models (Danielson
et al., 2018).

An intermediate path exists with the use of subgrid models (Defina,
2000; Casulli, 2009; Casulli and Stelling, 2011; Volp et al., 2013). It is
well known that quantities in high resolution models are not completely
independent. For example, nearby surface elevations are very highly
correlated, so knowledge at one location implies a good knowledge of
surface elevations at nearby locations also, even if they lie on a different
computational grid cell. Subgrid models make use of such correlations
to strongly reduce the number of computational degrees of freedom
while retaining their bulk effects in modified sets of equations.

The fundamental assumption of subgrid models, which is not often
stated explicitly, is that subgrid effects are uniquely defined and can
be adequately represented by functions of coarsened (averaged) proper-
ties, such as water levels or velocities, combined with integral functions
of high resolution ground elevations, friction characteristics and so on.
The accuracy of subgrid solutions depends greatly on these coarsened
properties: for many cases, systems display strong correlations that
enable the subgrid system to retain almost all of the accuracy of
the original high-resolution system. In other cases, detailed subgrid
properties may not be unique functions of coarsened properties: a
simple example is shown in Fig. 1 where water levels on either side
of a levee are independent quantities. In this case, one water level is
insufficient to represent important details of the system because the two
water bodies are not connected. However, if the water level were high
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enough to inundate the levee, then a single variable to represent water
levels would become much more viable. Some of these same tradeoffs
are also present, usually unannounced and unevaluated, in standard
storm surge models, where simple velocity, elevation, and bathymetry
distributions within a cell are simply assumed to adequately represent
the processes of interest.

The concept of subgrids is implicit in many aspects of hydrody-
namics: as one example, Manning’s equation used in channel flow
hydraulics (Te Chow, 1982) explicitly constructs a solution with lower
degrees of freedom from higher resolution bathymetry and land cover.
Similarly, Darcy’s law for porous media flow aggregates the effects of
very small scale unresolved features into a coarser scale continuum.
Importantly, it is possible to construct Darcy’s law from first princi-
ples using subgrid physical properties of a porous medium (Whitaker,
1999), which is similar to our intention here.

Subgrids for surge/inundation/circulation modeling have been ex-
plored previously by several groups, but using somewhat different
techniques than will be applied here. Defina (2000) developed a set of
equations that looked much like the conservative form of the shallow
water equations, but with a correction to the mass conservation equa-
tion that accounts for partially wet-partially dry regions, and separate
corrections to momentum and bottom friction arising from non-uniform
spatial velocities. The wet–dry fraction was assumed to have an error-
function variation with surface elevation. Casulli (2009) developed an
elegant theory/numerical technique for subgrid wetting and drying that
guarantees non-negative depths at the shoreline through the solution
of a mildly nonlinear equation. This system again closely resembles
nonlinear shallow water equations with a correction for partially wet el-
ements. In contrast to Defina’s work, Casulli (2009) used lookup tables
derived from high resolution bathymetry to obtain the wet fraction as
a function of surface elevation. Sehili et al. (2014) implemented results
from Casulli (2009) and Casulli and Stelling (2011) to examine storm
surge flooding around Hamburg and found that the subgrid system
delivered similar accuracy to the standard shallow water equations, but
with around 5% of the cost. This, of course, is a huge gain and enables
both new problems to be studied, and existing problems to be examined
either in more detail or at much lower cost.

Such subgrid models have had to make approximations — for
example, bottom friction was computed using mean depth and velocity
in Sehili et al. (2014), rather than as an integral over the detailed
bathymetry. More advanced closures require additional assumptions.
Defina (2000) and Volp et al. (2013, 2016) employed approximations
including a steady friction gradient to obtain closed-form solutions
for integral friction that are exact for special cases such as steady
channel flow, and devised techniques to evaluate subgrid friction along
individual strips of a cell. Wu et al. (2017, 2016) extended Volp’s results
to include the effects of vegetation drag in salt marshes, and applied
the new system to a section of Delaware Bay. D’Alpaos and Defina
(2007) further examined the effect of unresolved momentum mixing
and found that these contributions could in some cases be modeled
by increasing the effective bottom friction for coarse grid solutions.
These previous studies have shown considerable improvements in the
resolution–accuracy tradeoff, but there remain significant uncertainties
in closures and even in the basic forms of the equations to be used.

The present paper develops shallow water subgrid systems for storm
surge using formal averaging methods (e.g. Whitaker, 1999). These
methods produce equations that are similar in many ways to those
found in previous studies, but have additional terms and closures that
had been previously neglected, and arise from the averaging process.
Different levels of closures are identified, as well as the information
required for their implementation. The systems are tested for accuracy
and intercompared at different resolutions. In the remainder of this
paper, Section 2 derives the subgrid theory and discusses the different
levels of closure. Section 3 tests the systems on idealized geometries,
and over the more complex real-world environment of Buttermilk
Bay, Massachusetts, USA. Finally, Section 4 summarizes the present
work and gives a framework for future research, development, and
implementation activities.

Fig. 1. Cross-sectional bed elevation and water levels of a larger grid where (a) At least
two independent surface elevations and velocities are required to represent processes;
(b) It may be possible to represent subgrid quantities using a single bulk surface
elevation and velocity.

2. Theory

High resolution storm surge systems are generally governed by
the depth integrated shallow water equations, to be solved here in
conservative form. The conservation of mass equation is
𝜕𝐻
𝜕𝑡

+ 𝜕𝐻𝑈
𝜕𝑥

+ 𝜕𝐻𝑉
𝜕𝑦

= 0 (1)

where 𝐔 ≡ (𝑈, 𝑉 ) is the depth-averaged horizontal velocity vector, and
the local total water depth is 𝐻 ≡ ℎ + 𝜂 where ℎ is the still water
depth and 𝜂 is the free surface elevation. The conservative form of the
momentum equation is

𝜕𝐻𝑈
𝜕𝑡

+ 𝜕
𝜕𝑥

(𝐻𝑈𝑈 ) + 𝜕
𝜕𝑦

(𝐻𝑈𝑉 ) + 𝑔𝐻
𝜕𝜂
𝜕𝑥

= −
𝜏𝑏𝑥 − 𝜏𝑠𝑥

𝜌
− 1

𝜌
𝜕𝑃𝐴
𝜕𝑥

+ 𝑓𝑐𝐻𝑉 + 1
𝜌

(

𝜕𝐻𝜏𝑥𝑥
𝜕𝑥

+
𝜕𝐻𝜏𝑥𝑦
𝜕𝑦

)

, (2)

𝜕𝐻𝑉
𝜕𝑡

+ 𝜕
𝜕𝑥

(𝐻𝑉 𝑈 ) + 𝜕
𝜕𝑦

(𝐻𝑉 𝑉 ) + 𝑔𝐻
𝜕𝜂
𝜕𝑦

= −
𝜏𝑏𝑦 − 𝜏𝑠𝑦

𝜌
− 1

𝜌
𝜕𝑃𝐴
𝜕𝑦

− 𝑓𝑐𝐻𝑈 + 1
𝜌

( 𝜕𝐻𝜏𝑥𝑦
𝜕𝑥

+
𝜕𝐻𝜏𝑦𝑦
𝜕𝑦

)

(3)

where 𝝉𝑏 = (𝜏𝑏𝑥, 𝜏𝑏𝑦) is the bed stress, 𝝉𝑠 = (𝜏𝑠𝑥, 𝜏𝑠𝑦) is the surface
stress, 𝜏𝑥𝑥, 𝜏𝑥𝑦, and 𝜏𝑦𝑦 are depth-averaged Reynolds stresses, 𝑃𝐴 is
local atmospheric pressure, and 𝑓𝑐 is the Coriolis parameter. When the
topography and bathymetry are represented faithfully at high enough
resolution, and given the appropriate atmospheric forcing and bottom
friction, numerical systems based on these equations have been shown
to provide accurate representations of storm surge for a variety of
situations (see for example Bunya et al., 2010; Dietrich et al., 2010;
Hope et al., 2013).

2.1. Averaging tools

Subgrid equations are derived from the original high resolution
equations (1)–(3) following techniques laid out in Whitaker (1999)
that were originally developed for use in the generation of equations
for flow in porous media. These result in new sets of equations for
coarsened quantities, but with corrections over the subgrid scale. The
averaging scale to be used here is 𝐴𝐺, the so-called grid averaging area.
Numerically, this averaging scale must be at least as large as the coarse
grid size, but may be larger. Computational (coarsened) variables will
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be defined on this grid-averaged scale, with smaller scale variations
smoothed out.

For some dummy quantity, 𝑄, hydrodynamic variables coarsened to
the grid scale are defined as

⟨𝑄⟩𝐺 ≡ 1
𝐴𝐺 ∬𝐴𝑊

𝑄𝑑𝐴 (4)

where 𝐴𝑊 is the wet portion of 𝐴𝐺. This will be called the ‘‘grid
average’’ and is denoted with subscript ‘‘𝐺’’. An alternate average used
here is the ‘‘wet average’’ which uses the wet portion of the averaging
area, and is defined as

⟨𝑄⟩𝑊 ≡ 1
𝐴𝑊 ∬𝐴𝑊

𝑄𝑑𝐴 (5)

This average will be denoted with subscript ‘‘𝑊 ’’. The terms ‘‘grid
average’’ and ‘‘wet average’’ are respectively equivalent to the ‘‘phase
average’’ and ‘‘intrinsic phase average’’ found in, e.g., Whitaker (1999).
For fully inundated (completely wet) grids, these quantities will be
identical.

The volume averaged velocity used here is defined as

⟨𝑈⟩ ≡
∬𝐴𝐺

𝐻𝐔𝑑𝐴

∬𝐴𝐺
𝐻𝑑𝐴

(6)

Because the depth is by definition zero in dry areas, this quantity is
identical if the integration limits are taken as the wet area rather than
the entire grid. Although other definitions of velocity are possible, use
of a volume averaged velocity eliminates the necessity for closures in
some terms.

Often, it is helpful to define coarsened variables in terms of the
wet averages, where integrals are defined only over the wet area. For
example, the grid average of water surface elevation in partially-wet
regions has much less physical meaning than the wet average. If we
define the wet averaging area as

𝐴𝑊 = 𝜙𝐴𝐺 (7)

where 𝜙 is the wet fraction in the averaging area (which may vary
strongly with local surface elevations), then for hydrodynamic quantity
𝑄,

⟨𝑄⟩𝐺 = 𝜙 ⟨𝑄⟩𝑊 (8)

The grid-averaged wet volume per unit area is now

–𝑉𝑊 (⟨𝜂⟩) ≡ ∫

⟨𝜂⟩

−∞
𝜑(𝑧)𝑑𝑧 = ⟨𝐻⟩𝐺 , 𝜑(𝑧) = 1

𝐴𝐺 ∫𝐴𝐺

𝑝(ℎ(𝒙) + 𝑧)𝑑𝐴, (9)

where 𝜑 is a wet fraction for a given value 𝑧 and 𝑝(𝑠) = 1 for 𝑠 > 0 and
0 for 𝑠 ≤ 0. If subgrid bathymetry and topography are known and we
assume that 𝑠𝑡𝑑 ⟨𝜂⟩ ≪ ⟨𝐻⟩𝑊 , then 𝜙 ≡ 𝜑(⟨𝜂⟩) can be defined and used
to develop a lookup table. These are single valued relations and so can
be flipped as desired,

⟨𝜂⟩ = 𝑓 (–𝑉𝑊 ) (10)

where it is understood that the average for ⟨𝜂⟩ is taken over the wet
fraction, not the full averaging area. This can also be implemented as
a lookup table and may be useful numerically.

The development of subgrid equations involves taking grid averages
of the mass and momentum equations (1)–(3), and determining closures
for terms that are not uniquely defined by the coarsened variables, with
details of the averaging techniques given in Whitaker (1999). Two rules
are used repeatedly for translating hydrodynamic quantities between
fine and coarse scales:

⟨∇𝑄⟩𝐺 = ∇ ⟨𝑄⟩𝐺 + 1
𝐴𝐺 ∮𝛤𝑊

𝐧𝑄𝑑𝑠 (11)

⟨

𝜕𝑄
𝜕𝑡

⟩

𝐺
=

𝜕 ⟨𝑄⟩𝐺
𝜕𝑡

− 1
𝐴𝐺 ∮𝛤𝑊

𝑄𝐔𝐵 ⋅ 𝐧𝑑𝑠 (12)

where 𝛤𝑊 is the wet–dry boundary, 𝐧 is the boundary normal, and
𝐔𝐵 is the velocity of the potentially moving boundary. These rules
relate averages of operators acting on fine scale quantities to those
acting on coarse quantities, and introduce additional terms at the wet–
dry boundary. We note that, by averaging the conservative form of
the momentum equation rather than the nonconservative form, all
boundary integral terms that are proportional to the local water depth,
𝐻 , are zero by definition and do not require additional closures for
these terms.

2.2. Averaged mass equation

The averaged mass equation can be written in various interchange-
able forms. Using the definition of volume-averaged velocity, relation-
ships between wet and grid averages, and the coarsening rules (6)–(12),
while averaging to the grid level but using wet-averaged hydrodynamic
variables, the system becomes
𝜕𝜙 ⟨𝐻⟩𝑊

𝜕𝑡
+

𝜕𝜙 ⟨𝐻⟩𝑊 ⟨𝑈⟩

𝜕𝑥
+

𝜕𝜙 ⟨𝐻⟩𝑊 ⟨𝑉 ⟩

𝜕𝑦
= 0. (13)

Again, boundary integrals in (11)–(12) become zero and do not appear
in (13) because 𝐻 is zero at the wet–dry boundary.

Using the definition of grid averaged quantities (8), the mass equa-
tion may be written in terms of the grid-averaged depth as
𝜕 ⟨𝐻⟩𝐺

𝜕𝑡
+

𝜕 ⟨𝑈⟩ ⟨𝐻⟩𝐺
𝜕𝑥

+
𝜕 ⟨𝑉 ⟩ ⟨𝐻⟩𝐺

𝜕𝑦
= 0 (14)

or equivalently as
𝜕–𝑉𝑊
𝜕𝑡

+
𝜕 ⟨𝑈⟩ ⟨𝐻⟩𝐺

𝜕𝑥
+

𝜕 ⟨𝑉 ⟩ ⟨𝐻⟩𝐺
𝜕𝑦

= 0. (15)

From (9) and using Leibniz’s rule, the mass equation can be also written
with a time derivative of ⟨𝜂⟩ as follows

𝜙
𝜕 ⟨𝜂⟩
𝜕𝑡

+
𝜕𝜙 ⟨𝐻⟩𝑊 ⟨𝑈⟩

𝜕𝑥
+

𝜕𝜙 ⟨𝐻⟩𝑊 ⟨𝑉 ⟩

𝜕𝑦
= 0. (16)

which is equivalent to the form presented by Defina (2000), who used
flux as a variable rather than velocity as here.

All of the forms of the mass equation are quite straightforward: if we
can uniquely define water volume per unit area (grid-averaged depth)
as a function of surface elevation as in (10), then the conservation of
mass system is closed and requires no additional manipulation.

2.3. Momentum equations

The averaged momentum equations are derived from (3) using the
volume-averaged velocity (6), the definitions for averaged quantities
and wet averages, the coarsening rules (6)–(12), and the averaged
mass equation (16). Because the conservative form of the momentum
equation has zero depth at the shoreline, boundary terms in (11)–
(12) vanish, simplifying the coarsened equations greatly. Coarsened
equations are given in quasi-conservative form by
𝜕𝜙 ⟨𝑈⟩ ⟨𝐻⟩𝑊

𝜕𝑡
+ 𝜕

𝜕𝑥
(

𝜙 ⟨𝑈𝑈𝐻⟩𝑊
)

+ 𝜕
𝜕𝑦

(𝜙 ⟨𝑈𝑉𝐻⟩𝑊 ) =

− 𝑔𝜙
⟨

𝐻
𝜕𝜂
𝜕𝑥

⟩

𝑊
− 𝜙

⟨

𝜏𝑏𝑥 − 𝜏𝑠𝑥
𝜌

⟩

𝑊
− 𝜙

⟨𝐻⟩𝑊
𝜌

𝜕𝑃𝐴
𝜕𝑥

− 𝜙𝑓𝑐 ⟨𝑉 ⟩ ⟨𝐻⟩𝑊

+ 1
𝜌

(

𝜕
𝜕𝑥

(

𝜙 ⟨𝐻𝜏𝑥𝑥⟩𝑊
)

+ 𝜕
𝜕𝑦

(

𝜙
⟨

𝐻𝜏𝑥𝑦
⟩

𝑊

)

)

(17)

𝜕𝜙 ⟨𝑉 ⟩ ⟨𝐻⟩𝑊
𝜕𝑡

+ 𝜕
𝜕𝑥

(𝜙 ⟨𝑈𝑉𝐻⟩𝑊 ) + 𝜕
𝜕𝑦

(𝜙 ⟨𝑉 𝑉 𝐻⟩𝑊 ) =

− 𝑔𝜙
⟨

𝐻
𝜕𝜂
𝜕𝑦

⟩

𝑊
− 𝜙

⟨ 𝜏𝑏𝑦 − 𝜏𝑠𝑦
𝜌

⟩

𝑊
− 𝜙

⟨𝐻⟩𝑊
𝜌

𝜕𝑃𝐴
𝜕𝑦

+ 𝜙𝑓𝑐 ⟨𝑈⟩ ⟨𝐻⟩𝑊

+ 1
𝜌

(

𝜕
𝜕𝑥

(

𝜙
⟨

𝐻𝜏𝑥𝑦
⟩

𝑊

)

+ 𝜕
𝜕𝑦

(

𝜙
⟨

𝐻𝜏𝑦𝑦
⟩

𝑊

)

)

. (18)

We note that, if it is assumed that the Coriolis parameter, 𝑓𝑐 , varies on
larger spatial scales than velocities and depths, the Coriolis term needs
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no additional closure arising from the definition of volume-averaged
velocity. Making the same assumption for the atmospheric pressure
term leads to terms that similarly do not require additional closures.
However, convective momentum, bottom friction, surface gradients,
and Reynolds stresses all require further assumptions to close the
system.

A quasi-nonconservative form of the momentum equation, gener-
ated by averaging the conservative form of the momentum equation
and then dividing through by the mean depth, is given in Appendix A.
This resembles the nonconservative form of the shallow water momen-
tum equation with additional closure terms arising from the averaging
process, and may be useful for certain numerical schemes. We note that
this is different than if we had simply averaged the nonconservative
form of the momentum equation, which results in difficult boundary
terms and is not shown here.

2.4. Closures

We make closure approximations so that all quantities are written
in terms of the coarsened variables. The closure approximations are
required because subgrid fluctuations in bathymetry and/or land cover
induce fluctuations in velocity, friction, and depth, whose values are
highly correlated and non-negligible. Many of these terms cannot be
evaluated exactly and must be closed. To a large degree, the accuracy
of the subgrid system will depend on both the general form assumed
for the closures, and the specific choices made to close the system.
The general forms for closures are chosen to resemble standard systems
as much as possible in order to enable modification of existing codes,
while retaining the generality to pursue advanced closure options.

For the convective momentum terms, the closure assumption is
made to look like the standard system with additional correction co-
efficients
(

⟨𝑈𝑈𝐻⟩𝑊 ⟨𝑈𝑉𝐻⟩𝑊
⟨𝑉 𝑈𝐻⟩𝑊 ⟨𝑉 𝑉 𝐻⟩𝑊

)

=
(

𝐶𝑈𝑈 ⟨𝑈⟩ ⟨𝑈⟩ ⟨𝐻⟩𝑊 𝐶𝑈𝑉 ⟨𝑈⟩ ⟨𝑉 ⟩ ⟨𝐻⟩𝑊
𝐶𝑉 𝑈 ⟨𝑉 ⟩ ⟨𝑈⟩ ⟨𝐻⟩𝑊 𝐶𝑉 𝑉 ⟨𝑉 ⟩ ⟨𝑉 ⟩ ⟨𝐻⟩𝑊

)
(19)

The general form of this closure is equivalent to that of Defina (2000),
who instead derived the system in flux variables.

Surface gradient terms are approximated as:
⟨

𝐻
𝜕𝜂
𝜕𝑥

⟩

𝑊
= ⟨𝐻⟩𝑊

(

𝐶𝜂,𝑥𝑥
𝜕 ⟨𝜂⟩
𝜕𝑥

+ 𝐶𝜂,𝑥𝑦
𝜕 ⟨𝜂⟩
𝜕𝑦

)

(20)
⟨

𝐻
𝜕𝜂
𝜕𝑦

⟩

𝑊
= ⟨𝐻⟩𝑊

(

𝐶𝜂,𝑦𝑥
𝜕 ⟨𝜂⟩
𝜕𝑥

+ 𝐶𝜂,𝑦𝑦
𝜕 ⟨𝜂⟩
𝜕𝑦

)

(21)

This closure term may be the most surprising, but, as will be shown, it
is clearly needed in some cases because the area averages of gradients
on a grid average may be dominated by a few small subregions. Cross
terms will not be needed in many cases, but may be required in regions
where bottom friction, and thus surface gradients, are anisotropic
because of subgrid features.

The bottom stress closure is given as a quadratic bottom friction
law, generalized to
⟨

𝜏𝑏𝑥
𝜌

⟩

𝑊
=
⟨𝜌𝑐𝑓 |𝑼 |𝑈

𝜌

⟩

𝑊
= |⟨𝑼⟩|

(

𝑐𝑀,𝑓,𝑥𝑥 ⟨𝑈⟩ + 𝑐𝑀,𝑓,𝑥𝑦 ⟨𝑉 ⟩

)

(22)

⟨ 𝜏𝑏𝑦
𝜌

⟩

𝑊
=
⟨𝜌𝑐𝑓 |𝑼 |𝑉

𝜌

⟩

𝑊
= |⟨𝑼⟩|

(

𝑐𝑀,𝑓,𝑦𝑥 ⟨𝑈⟩ + 𝑐𝑀,𝑓,𝑦𝑦 ⟨𝑉 ⟩

)

(23)

where 𝑐𝑀,𝑓𝑥𝑥(⟨𝜂⟩), etc., are to-be-determined equivalent frictional coef-
ficients that may be strong functions of water surface elevation. Other
quadratic frictional closures, e.g., Manning, may be translated into this
form. Once again, cross terms are possible because of anisotropy.

Coarse-scale Reynolds stress terms are approximated as
(

⟨𝐻𝜏𝑥𝑥⟩𝑊
⟨

𝐻𝜏𝑥𝑦
⟩

𝑊
⟨

𝐻𝜏𝑥𝑦
⟩

𝑊

⟨

𝐻𝜏𝑦𝑦
⟩

𝑊

)

= ⟨𝐻⟩𝑊 𝜇𝑡
⎛

⎜

⎜

⎝

2𝜕⟨𝑈⟩

𝜕𝑥

(

𝜕⟨𝑈⟩

𝜕𝑦 + 𝜕⟨𝑉 ⟩

𝜕𝑥

)

(

𝜕⟨𝑉 ⟩

𝜕𝑥 + 𝜕⟨𝑈⟩

𝜕𝑦

)

2𝜕⟨𝑉 ⟩

𝜕𝑦

⎞

⎟

⎟

⎠

(24)

where 𝜇𝑡(𝑥, 𝑦, 𝑡) is a grid scale eddy viscosity. Other Reynolds stress
approximations that do not use eddy viscosity are also possible, but
are not explored here.

After substituting the closure terms into momentum equations (17)–
(18) and canceling some terms using the averaged mass equation, the
momentum equations become

𝜙 ⟨𝐻⟩𝑊
𝜕 ⟨𝑈⟩

𝜕𝑡
− ⟨𝑈⟩∇ ⋅ (𝜙 ⟨𝑼⟩ ⟨𝐻⟩𝑊 )

+ 𝜕
𝜕𝑥

(𝐶𝑈𝑈𝜙 ⟨𝑈⟩ ⟨𝑈⟩ ⟨𝐻⟩𝑊 ) + 𝜕
𝜕𝑦

(𝐶𝑈𝑉 𝜙 ⟨𝑈⟩ ⟨𝑉 ⟩ ⟨𝐻⟩𝑊 )

= −𝑔𝜙 ⟨𝐻⟩𝑊

(

𝐶𝜂,𝑥𝑥
𝜕 ⟨𝜂⟩
𝜕𝑥

+ 𝐶𝜂,𝑥𝑦
𝜕 ⟨𝜂⟩
𝜕𝑦

)

−𝜙| ⟨𝑼⟩ |

(

𝑐𝑀,𝑓,𝑥𝑥 ⟨𝑈⟩ + 𝑐𝑀,𝑓,𝑥𝑦 ⟨𝑉 ⟩

)

−𝜙
⟨𝐻⟩𝑊

𝜌
𝜕𝑃𝐴
𝜕𝑥

− 𝜙𝑓𝑐 ⟨𝑉 ⟩ ⟨𝐻⟩𝑊 +
𝜙𝜏𝑠𝑥
𝜌

+ 1
𝜌

𝜕
𝜕𝑥

(

𝜙 ⟨𝐻⟩𝑊 𝜇𝑡
2𝜕 ⟨𝑈⟩

𝜕𝑥

)

+ 1
𝜌

𝜕
𝜕𝑦

(

𝜙 ⟨𝐻⟩𝑊 𝜇𝑡

(

𝜕 ⟨𝑈⟩

𝜕𝑦
+

𝜕 ⟨𝑉 ⟩

𝜕𝑥

))

(25)

𝜙 ⟨𝐻⟩𝑊
𝜕 ⟨𝑉 ⟩

𝜕𝑡
− ⟨𝑉 ⟩∇ ⋅ (𝜙 ⟨𝑼⟩ ⟨𝐻⟩𝑊 )

+ 𝜕
𝜕𝑥

(𝐶𝑉 𝑈𝜙 ⟨𝑈⟩ ⟨𝑉 ⟩ ⟨𝐻⟩𝑊 ) + 𝜕
𝜕𝑦

(𝐶𝑉 𝑉 𝜙 ⟨𝑉 ⟩ ⟨𝑉 ⟩ ⟨𝐻⟩𝑊 )

= −𝑔𝜙 ⟨𝐻⟩𝑊

(

𝐶𝜂,𝑦𝑥
𝜕 ⟨𝜂⟩
𝜕𝑥

+ 𝐶𝜂,𝑦𝑦
𝜕 ⟨𝜂⟩
𝜕𝑦

)

−𝜙| ⟨𝑼⟩ |

(

𝑐𝑀,𝑓,𝑦𝑥 ⟨𝑈⟩ + 𝑐𝑀,𝑓,𝑦𝑦 ⟨𝑉 ⟩

)

−𝜙
⟨𝐻⟩𝑊

𝜌
𝜕𝑃𝐴
𝜕𝑦

+ 𝜙𝑓𝑐 ⟨𝑈⟩ ⟨𝐻⟩𝑊 +
𝜙𝜏𝑠𝑦
𝜌

+ 1
𝜌

𝜕
𝜕𝑥

(

𝜙 ⟨𝐻⟩𝑊 𝜇𝑡

(

𝜕 ⟨𝑈⟩

𝜕𝑦
+

𝜕 ⟨𝑉 ⟩

𝜕𝑥

))

+ 1
𝜌

𝜕
𝜕𝑦

(

𝜙 ⟨𝐻⟩𝑊 𝜇𝑡
2𝜕 ⟨𝑉 ⟩

𝜕𝑦

)

(26)

In summary, the set of governing equations based on averaging of the
SWE with wet-averaged variables consists of (13), (25), and (26).

In the discretization of the governing equations with a staggered fi-
nite difference (FD) scheme, as described in Appendix B, it is more con-
venient to work with their equivalent form in which the grid-averaged
total depth ⟨𝐻⟩𝐺 is used. By using the fact that ⟨𝐻⟩𝐺 = 𝜙 ⟨𝐻⟩𝑊 , the
momentum equations (25)–(26) can be respectively rewritten as

⟨𝐻⟩𝐺
𝜕 ⟨𝑈⟩

𝜕𝑡
− ⟨𝑈⟩∇ ⋅ (⟨𝑼⟩ ⟨𝐻⟩𝐺)

+ 𝜕
𝜕𝑥

(𝐶𝑈𝑈 ⟨𝑈⟩ ⟨𝑈⟩ ⟨𝐻⟩𝐺) +
𝜕
𝜕𝑦

(𝐶𝑈𝑉 ⟨𝑈⟩ ⟨𝑉 ⟩ ⟨𝐻⟩𝐺)

= −𝑔 ⟨𝐻⟩𝐺

(

𝐶𝜂,𝑥𝑥
𝜕 ⟨𝜂⟩
𝜕𝑥

+ 𝐶𝜂,𝑥𝑦
𝜕 ⟨𝜂⟩
𝜕𝑦

)

−𝜙| ⟨𝑼⟩ |

(

𝑐𝑀,𝑓,𝑥𝑥 ⟨𝑈⟩ + 𝑐𝑀,𝑓,𝑥𝑦 ⟨𝑉 ⟩

)

−
⟨𝐻⟩𝐺
𝜌

𝜕𝑃𝐴
𝜕𝑥

− ⟨𝐻⟩𝐺 𝑓𝑐 ⟨𝑉 ⟩ +
𝜙𝜏𝑠𝑥
𝜌

+ 1
𝜌

𝜕
𝜕𝑥

(

⟨𝐻⟩𝐺 𝜇𝑡
2𝜕 ⟨𝑈⟩

𝜕𝑥

)

+ 1
𝜌

𝜕
𝜕𝑦

(

⟨𝐻⟩𝐺 𝜇𝑡

(

𝜕 ⟨𝑈⟩

𝜕𝑦
+

𝜕 ⟨𝑉 ⟩

𝜕𝑥

))

(27)

⟨𝐻⟩𝐺
𝜕 ⟨𝑉 ⟩

𝜕𝑡
− ⟨𝑉 ⟩∇ ⋅ (⟨𝑼⟩ ⟨𝐻⟩𝐺)
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+ 𝜕
𝜕𝑥

(𝐶𝑉 𝑈 ⟨𝑈⟩ ⟨𝑉 ⟩ ⟨𝐻⟩𝐺) +
𝜕
𝜕𝑦

(𝐶𝑉 𝑉 ⟨𝑉 ⟩ ⟨𝑉 ⟩ ⟨𝐻⟩𝐺)

= −𝑔 ⟨𝐻⟩𝐺

(

𝐶𝜂,𝑦𝑥
𝜕 ⟨𝜂⟩
𝜕𝑥

+ 𝐶𝜂,𝑦𝑦
𝜕 ⟨𝜂⟩
𝜕𝑦

)

−𝜙| ⟨𝑼⟩ |

(

𝑐𝑀,𝑓,𝑦𝑥 ⟨𝑈⟩ + 𝑐𝑀,𝑓,𝑦𝑦 ⟨𝑉 ⟩

)

−
⟨𝐻⟩𝐺
𝜌

𝜕𝑃𝐴
𝜕𝑦

+ ⟨𝐻⟩𝐺 𝑓𝑐 ⟨𝑈⟩ +
𝜙𝜏𝑠𝑦
𝜌

+ 1
𝜌

𝜕
𝜕𝑥

(

⟨𝐻⟩𝐺 𝜇𝑡

(

𝜕 ⟨𝑈⟩

𝜕𝑦
+

𝜕 ⟨𝑉 ⟩

𝜕𝑥

))

+ 1
𝜌

𝜕
𝜕𝑦

(

⟨𝐻⟩𝐺 𝜇𝑡
2𝜕 ⟨𝑉 ⟩

𝜕𝑦

)

(28)

Thus, when using the grid-averaged total depth ⟨𝐻⟩𝐺, the set of gov-
erning equations consists of (14), (27), and (28).

2.4.1. Standard solution
The standard, non-subgrid, solutions may be recovered by using the

closures

• 𝜙 = 0, ⟨𝜂⟩ ≤ − ⟨ℎ⟩𝐺
𝜙 = 1, ⟨𝜂⟩ > − ⟨ℎ⟩𝐺

• 𝐶𝜂,𝑥𝑥 = 𝐶𝜂,𝑦𝑦 = 1, 𝐶𝜂,𝑥𝑦 = 𝐶𝜂,𝑦𝑥 = 0
• 𝐶𝑀,𝑓,𝑥𝑥 = 𝐶𝑀,𝑓,𝑦𝑦 =

⟨

𝐶𝑓
⟩

𝐺 , 𝐶𝑀,𝑓,𝑥𝑦 = 𝐶𝑀,𝑓,𝑦𝑥 = 0
• 𝐶𝑈𝑈 = 𝐶𝑉 𝑉 = 𝐶𝑈𝑉 = 𝐶𝑉 𝑈 = 1

where here the mean bed elevation, − ⟨ℎ⟩𝐺, and the mean friction
coefficients, 𝐶𝑀,𝑓,𝑥𝑥, etc., are computed over the entire grid averaging
area rather than the wet area. The turbulent eddy viscosity, or other
approximation to Reynolds stresses, will use any scheme desired by
the user. These equations exactly revert to standard shallow water
equations as implemented in a particular numerical scheme.

2.4.2. Level 0 closure
A basic subgrid closure is used for determining the wet fraction,

but with very simple assumptions about flow. Essentially, it assumes
that partial wetting and drying within a cell are determined by the
wet fraction as calculated from subgrid data with an assumed near-flat
water surface in the averaging area

• 𝜙(⟨𝜂⟩) = 𝐴𝑊 (⟨𝜂⟩)∕𝐴𝐺

with all other closures the same as in the standard solution. This closure
is similar to that used in Casulli (2009) and Sehili et al. (2014).

2.4.3. Level 1 closure
Level 1 closures use the fractional wetting and drying of Level 0, but

also employ assumptions about the flow structure using canonical or
near-canonical solutions. Defina (2000) and Volp et al. (2013) assumed
a constant friction slope at all points on the subgrid, which may be
thought of as flow in a quasi-1D channel, but with varying depths
across the profile. This assumption defines the overall velocities at
all locations in relation to the averaged velocity. Local velocities and
depths are substituted back into the full equations, and comparison
with the form of the closures yields closure coefficients. This particular
closure can work well for flow that is almost parallel to depth contours,
but is not expected to be as accurate for flow perpendicular to depth
contours. The closure is different depending on which form of the
averaged velocity variable is used. The Level 1 closure can be written
as:

• 𝜙(⟨𝜂⟩) = 𝐴𝑊 (⟨𝜂⟩)∕𝐴𝐺
• 𝐶𝜂,𝑥𝑥 = 𝐶𝜂,𝑦𝑦 = 1, 𝐶𝜂,𝑥𝑦 = 𝐶𝜂,𝑦𝑥 = 0
• 𝐶𝑀,𝑓,𝑥𝑥 = 𝐶𝑀,𝑓,𝑦𝑦 = ⟨𝐻⟩𝐺 𝑅2

𝑣; 𝐶𝑀,𝑓,𝑥𝑦 = 𝐶𝑀,𝑓,𝑦𝑥 = 0, where

𝑅𝑣 =
⟨𝐻⟩𝑊

⟨

𝐻3∕2𝐶−1∕2
𝑓

⟩

𝑊

(29)

is dimensional with units 𝐿−1∕2.
• 𝐶𝑈𝑈 = 𝐶𝑉 𝑉 = 𝐶𝑉 𝑈 = 𝐶𝑈𝑉 = 1

⟨𝐻⟩𝑊

⟨

𝐻2

𝐶𝑓

⟩

𝑊
𝑅2
𝑣,

Again, the turbulent eddy viscosity, 𝜇𝑡, is not uniquely defined by
this closure.

2.4.4. Level 2 closure
The Level 2 closure uses high resolution modeling to evaluate

numerically all closure coefficients, which are then used in the coarse
resolution subgrid system. To accomplish this, a high resolution model
is run, potentially for a variety of water levels and hydrodynamic
conditions, then the values of the closure terms are determined for a
defined averaging area, which may be equal to the coarse grid and retained
as a lookup table. For all closures, we assume 𝐶∗ = 𝑓 (𝑥, 𝑦, ⟨𝜂⟩). If
the forms of the closures are chosen well, and the closure terms have
been accurately evaluated, then the subgrid system should very closely
reproduce the high resolution model.

There are many possible ways that these closures could be com-
puted, and the determination of closure coefficients remains an area
of very active research. Although more sophisticated closures are to
be introduced in future work, this introductory paper uses time- and
water level-invariant closures with coefficients determined using a
least squares regression. For example, the 𝑥-convective momentum
closure chooses 𝐶𝑈𝑈 to minimize least-square error in ⟨𝑈𝑈𝐻⟩𝑊 =
𝐶𝑈𝑈 ⟨𝑈⟩ ⟨𝑈⟩ ⟨𝐻⟩𝑊 and so on. The entire time series of model outputs
is used for the minimization, and different coefficients will be obtained
at each coarse grid cell. Cross terms 𝐶𝜂,𝑥𝑦, 𝐶𝜂,𝑦𝑥, 𝐶𝑀,𝑓,𝑥𝑦, and 𝐶𝑀,𝑦𝑥 are
set to zero: although there has been progress on computing anisotropic
friction (e.g., Viero and Valipour, 2017) and anisotropic resistance due
to obstacles (Viero, 2019) in specific cases, we do not yet have tools to
evaluate anisotropy for general Level 2 closures.

This method of evaluating closure coefficients is not the only pos-
sible solution: coefficients that are water level-dependent will be nec-
essary in regions where wetting and drying dominate. Simplified solu-
tions of flow in subregions may also prove to be a viable methodology
to determine closure coefficients: research into Level 2 closures is likely
a decadal effort, and proper choice of closures may be a controlling
factor for accuracy in many instances.

3. Tests and validation

This section presents several tests that challenge different aspects
of the newly developed system. Tests include idealized scenarios that
isolate specific portions of the system, and flooding cycles in a com-
plex real-world bathymetry. All tests are driven by gravity — neither
atmospheric pressure nor wind stress is applied in this introductory
paper; however, these are not expected to change conclusions greatly
as they are easily closed for use in the subgrid system. Wind-induced
overland flooding may, however, introduce additional complex geome-
tries and wetting/drying considerations for real-world cases. Tests here
are divided into three sections:

1. Flows in quasi-one-dimensional channels,
2. Flows through a two-dimensional bay–channel system,
3. Flows through the complex geometry of Buttermilk Bay, Mas-
sachusetts, USA.

All tests compare standard shallow water solutions with Level 0 and
higher level closures. The two-dimensional bay–channel test also makes
a first attempt at a Level 2 closure. Ground truth for all simulations is
taken to be the high resolution solution of the shallow water equations.

Note that all results presented below use Manning’s formula

𝐶𝑓 =
𝑔n2

𝐻1∕3
, (30)

where n denotes the Manning’s roughness coefficient. Unless otherwise
indicated, the Manning’s roughness coefficient and magnitude of grav-
itational acceleration are set as n = 0.02 m-1/3s and 𝑔 = 9.81 m∕s-2. For
these introductory tests, which are focused in large part on testing fill-
ing and frictional closures, terms accounting for horizontal momentum
diffusion are excluded.
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Fig. 2. Sinuous channel-floodplain geometry for steady flow tests. (a) Overall geometry; (b) Channel cross-section.

3.1. Idealized test: Flow in quasi-one-dimensional channels

In this test, the subgrid system is applied to solve three idealized
quasi-one-dimensional open-channel flow problems: (i) steady flow
through a compound channel, (ii) periodic flow through a channel with
a parabolic cross-section and vertical sidewalls, and (iii) periodic flow
through a compound channel with a parabolic cross-section and flat
floodplain.

These three tests are used to examine the wetting and drying per-
formance of the subgrid system in different channel configurations, and
to demonstrate the importance of corrections even in these seemingly
relatively simple idealized applications. All subgrid calculations in this
section consider geometries where the cross section of the channel re-
sides within one grid cell. These tests explore the feasibility of treating
a simple channel flow entirely at the subgrid level within a framework
of a two-dimensional numerical solver. Here, Levels 0 (partial filling of
cell) and 1 (canonical channel flow closure) closures are considered in
the calculations.

3.1.1. Steady flow in a sinuous compound channel
This first test, which is adapted from Volp et al. (2013), consid-

ers a compound channel consisting of a sinusoidal channel and two
floodplains. The channel geometry and cross section are depicted in
Fig. 2.

The meandering narrow channel has a rectangular cross section of
63 m width and its bed level is 3 m below the adjacent floodplains.
The slope of the compound channel is 0.0001 downhill in the 𝑥-
direction; thus, there is a 1 m change in bed elevation over the channel
length. Constant surface elevations 𝜂𝑐 and 𝜂𝑐 − 1 m are imposed at the
channel inlet and outlet, respectively, which generate steady flow with
a surface elevation parallel to the bed slope. Because flow is quasi-1D,
the advection term is very small, and the solution is largely a balance
between the surface gradient and bottom friction. Here, the numerical
experiment focuses only on the case where the floodplains are fully
flooded, i.e. 𝜂𝑐 is greater than the elevation of the floodplains at the
inlet. In this case, correcting the friction term to account for variations
in the water depth will improve representation of volumetric discharge
values.

The numerical solution computed on the fine grid of 𝛥𝑥 = 𝛥𝑦 =
1 m resolution is used as a reference solution, while the coarse grid
used only one 63 m × 10000 m cell that covered the entire fine grid
domain. Because surface elevations were imposed at the boundaries
and there is only one grid cell, elevations are not an appropriate point
of comparison between standard and subgrid solutions; however, this
is not the case for the discharge, which depends strongly on the bottom
stress and its distribution in space. Fig. 3 shows the relative discharge
error

𝑅 =
(𝑄𝑁 −𝑄ref)

𝑄𝑁
× 100%,

where 𝑄𝑁 is the volumetric discharge across the channel cross sec-
tion (∫ 𝑢𝐻𝑑𝑦) for the subgrid and standard solutions and 𝑄ref is the
discharge of the reference solution. In Fig. 3, the magenta diamonds

Fig. 3. The relative deviation of the discharge in the subgrid solution compared to the
reference solution for steady flow in a sinuous channel. Level 0 (blue star), and Level
1 (magenta diamond).

depict the results from closure Level 1 and the blue stars depict closure
Level 0. It is noted that in this test case, because every computational
cell is completely wet, the subgrid technique with Level 0 closure
and standard method become identical due to the fact that the area
fraction 𝜙 is unity and ⟨𝐻⟩𝑊 is simply 𝜂 + ⟨ℎ⟩𝐺. It can be seen that
the Level 0 closure underpredicts the discharge, especially at low water
levels. Because the advection term is negligible and surface elevations
of the reference solution and coarse grid solution are identical, it can
be concluded that bottom friction is the only term that is not a good
approximation in the coarse grid solution. Because the difference in
water depth between channel and flat floodplains is relatively large for
these low water levels, the Level 0 closure overestimates the bottom
friction and as a consequence underestimates velocity and discharge.
As the water level increases, the relative difference in depth decreases,
and the predicted closure Level 0 discharge value becomes closer to
that of the reference solution. It can be observed that the discharge
obtained from Level 1 is close to that of the reference solution for all
water levels, which is as expected since this closure was derived under
the assumption of uniform channel flow.

3.1.2. Parabolic channel
In this example, quasi-tidal flow in a long parabolic channel is

considered, with a channel cross section as shown in Fig. 4. The channel
length is 5376m and width is 128m. The channel inlet surface elevation
is forced with a tide-like time series 𝜂(𝑡) = sin (2𝜋𝑡∕𝑇 ) (m), where 𝑇
is a varying forcing period to assess sensitivity of the closures. A wall
boundary condition is imposed on the far end of the channel. For this
case, the reference solution uses a grid with 2 m×2 m resolution, while
the coarse simulations use a much coarser 128 m × 128 m grid; the
full channel width is included in one coarse grid cell, but there are 42
coarse cells in the direction of flow. The underlying bathymetric data
employed in the subgrid calculations is identical to that of the reference
solution.
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Fig. 4. Channel cross-section.

Fig. 5. Water surface amplitudes at the far end of the parabolic channel as the forcing
frequency varies. Level 0 (blue star), Level 1 (magenta diamond), standard solution
(red circle), high resolution (black square).

Fig. 5 shows water surface amplitudes (maximum minus minimum
surface elevation) for the subgrid and standard solutions after flow
reaches a periodic steady state at the far end of the channel. In this test
example, portions of the channel are subjected to rising and receding
water. The subgrid systems, which account for the mass correction
through the partial filling of cells that are not fully submerged, can
improve upon the standard solution. Indeed, as can be observed in
Fig. 5, the amplitudes obtained from the subgrid system are in sig-
nificantly better agreement with the reference solution in comparison
to the standard solution. Level 0 closure (blue stars), which includes
only the partial filling, accurately predicts amplitude especially at low
forcing frequencies where the effect of nonlinearity in the system is
low. However, the mass correction alone is insufficient as indicated by
somewhat larger errors in Level 0 closure results for higher frequencies.
These problems stem from inaccurate bottom friction and advection
terms; in this test case, there is an overestimation of friction and an
underestimation of advective stresses.

In contrast, the subgrid system with Level 1 closure, which is
based on a constant frictional slope assumption, yields water surface
amplitudes that match closely to the reference solution. This provides
numerical evidence that, when the proper subgrid correction parame-
ters are used, the system proposed here is able to produce an accurate
solution on the coarse grid.

3.1.3. Compound parabolic channel
In this final quasi-1D example, a compound parabolic channel is

considered for quasi-tidal flow as illustrated in Fig. 6. The channel
has a length of 5376 m and an overall width of 256 m, and a flat
floodplain exists at elevation 𝑧 = 0.25 m. As with the previous example,
the open boundary is forced by the elevation boundary condition

Fig. 6. Channel cross-section of compound parabolic channel.

Fig. 7. Water surface amplitudes at the far end of compound parabolic channel with
varying forcing frequency. Level 0 (blue star), Level 1 (magenta diamond), standard
solution (red circle), high resolution (black square).

𝜂(𝑡) = sin (2𝜋𝑡∕𝑇 ) m with a wall boundary at the far end; thus water
periodically generates overflow from the main channel to the flood
plain. The grid size used in the coarse grid calculations and reference
solution is 256m × 256m, and 2m × 2m, respectively.

Fig. 7 shows the computed coarse grid water surface amplitudes
for subgrid Levels 0 and 1 closures at the closed end of the channel
in comparison to the coarse grid standard solutions, and the high
resolution reference solution. Overall, the results exhibit a pattern
similar to the previous example: the standard solution yields rather
poor amplitudes at all but the lowest forcing frequencies, while both
Level 0 and especially Level 1 closures produce solutions that are in
much better agreement with the reference solution. Solutions for Level
0 closure do show errors increasing with increasing forcing frequency.

Level 0 closure errors for this test are noticeably larger than those
found for the Level 0 closure solution of the parabolic problem as
shown in Fig. 8. This error increase comes from the very large relative
variation in water depth between channel and wet floodplain and con-
sequent variations in friction and convective stresses. Level 0 closures
do not account for the large depth variations in computation of bottom
stresses and convective momentum, and so have much greater error
for this case. In contrast, the Level 1 closure can provide a much more
accurate water surface amplitude as seen in Fig. 7 as it accounts for
the effect of friction and convective stresses, and the channel-floodplain
test closely resembles the assumptions used to derive the Level 1 closure
itself.

3.2. Flow through repeating bay–channel systems

A first test of the Level 2 closure methodology is performed in an
idealized system of bays and channels, which differs strongly from the
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Fig. 8. Percentage error in amplitudes of Level 0 closure solution: parabolic channel
(blue triangle), compound parabolic channel (red cross).

Fig. 9. Bed elevations for a system of repeating bays and channels. The red lines show
coarse grid cell outlines, where a coarse cell consists of a full bay–channel pair.

quasi-1D systems tested previously. In this system, channels enable ex-
change of mass and momentum between subsequent bays. The channel–
bay interface features an abrupt narrowing/expansion, meaning the
characteristic velocity fields of the bays and channels vary greatly. The
chain-like geometry of bays and channels, induces non-linear momen-
tum effects that create challenges in predicting the surface elevations
and velocities in each bay. Simulations of this system are run on a
high resolution grid, where all geometrical descriptions are resolved.
Additionally, simulations are computed on a coarse grid, where each
coarse grid cell spans a single bay–channel pair. With such coarse
resolution, the momentum equations require significant corrections
when the interplay of the channel and bay-scale physics is significant.

3.2.1. Repeating bay–channel system setup
The bathymetry for the system of repeating bays and channels is

shown in Fig. 9. In total, there are 10 bay–channel pairs, with each bay
connected to the subsequent bay by a narrow channel. Wet portions of
the domain (blue) have a bed elevation of 𝑧 = −4 m. The elevation of
the neighboring floodplains (yellow) is 𝑧 = 1 m, sufficiently high that it
remains dry throughout the simulation. Each bay has length 320 m and
width 480 m, where width is in the 𝑦 direction and perpendicular to
the primary flow direction. Each channel has length 192 m and width
32 m.

The seaward boundary borders a longer reservoir with length
1024 m and width 512 m which has a periodic elevation boundary
condition imposed at 𝑥 = 0, driving primary flow. Sinusoidal quasi-
tidal forcing cycles have a varying period 𝑇 with a fixed range of 0.4 m,
which is 10% of the still water depth. The accuracy and robustness of
our initial Level 2 closure is examined by running simulations for vary-
ing forcing frequencies and comparing to high resolution simulations
and other closure levels.

3.2.2. Level 2 corrections
Level 2 corrections are employed on a coarse grid with dimensions

512 m × 512 m: this resolution fits one channel–bay pair exactly into
one coarse cell. In this study, as a first attempt at Level 2 closure,
correction coefficient values are time-independent. Level 2 coefficient
values are selected for each grid cell from high resolution results using
the methods described previously in Section 2.4.4, and we note that
each coarse grid cell has a separate set of time-independent correction
coefficients.

3.2.3. Repeating bay–channel reference case
The reference test case for the bay–channel geometry has period

𝑇 = 3 h; it is selected because the high resolution and standard
coarse grid solutions have significant differences in both the surface
elevation amplitudes and timing. The high resolution simulation used
for comparison and to train the Level 2 closure has 8 m×8 m resolution.

Fig. 10(a) shows the water surface amplitude in each bay for the
high resolution (black), standard (red), Level 0 closure (blue) and Level
2 closure (green) simulations (note that for this particular case, Levels
0 and 1 closures are identical because the wet area of each cell has
uniform depth.) In general, the standard and Level 0 methods overes-
timate the amplitude in each bay. The Level 2 closure more accurately
predicts amplitudes in bays closest to the reservoir, however water
level fluctuations are overestimated in the back bays. The predicted
amplitude by the standard method is always largest.

Fig. 10(b) displays the error in timing of high tide as a fraction
of forcing period [𝑡(peak)N − 𝑡(peak)𝑟𝑒𝑓 ]∕𝑇 , where 𝑡(peak) corresponds
to the time of the fourth high tide event for the high resolution and
coarse simulations and 𝑇 is the forcing period. The standard and Level
0 closure methods predict early arrival of high tide and this error
increases as distance from the reservoir increases; however, including
the Level 2 coefficients significantly reduces the error in arrival of high
water. Specifically, the representative correction coefficients used in
Level 2 closure effectively increase friction while also reducing the sea
surface gradient effect, both of which delay the propagation of the
wave.

As the distance from the reservoir increases, the standard and Level
0 closure methods generally display greater error in predicting the
timing of high and low tide events, as well as the amplitude. Fig. 10(c–
d) displays the time series of surface elevation for the fine and coarse
resolution simulations in the bay farthest from the reservoir and in
the reservoir, respectively. In the reservoir, all coarse simulations show
excellent agreement with the high resolution run, as expected because
this is where forcing is applied. In the back bay, the flow has been
significantly affected by the channels and so the correction terms in
the momentum equations become important. The standard and Level 0
closure simulations yield surface elevations that significantly deviate
from the high resolution benchmark. The Level 2 closure method
sufficiently corrects the timing of the flow; however, the amplitude is
still overestimated.

In the repeating bay–channel system, the channels play an impor-
tant role in transporting momentum through the domain. The narrow-
ing at the bay–channel interface induces an area of high flow velocity
and thus high deviations from the mean coarse cell velocity ⟨𝑈⟩.
These fluctuations manifest as large values of corrections to the friction
and convective terms. Additionally, the channels experience large sea
surface gradients but only comprise a small portion of the overall
grid. Hence, the channel-scale physics must be incorporated into the
momentum equation of the coarse simulations for accurate portrayal of
sea surface evolution. The importance of averaged sea surface gradient
may be seen in Fig. 10(a–b) for the magenta triangles, which represent
sub-Level 2 computations (Level 2 with surface gradient coefficients set
to 𝐶𝜂,𝑥𝑥 = 𝐶𝜂,𝑦𝑦 = 1, 𝐶𝜂,𝑥𝑦 = 𝐶𝜂,𝑦𝑥 = 0). These sub-Level 2 results are
much worse than full Level 2, and are very close to those from Levels
1 and 0 simulations, demonstrating that even if convection and friction
are considered, the new surface gradient average terms introduced here
are needed in some situations to ensure that accurate solutions are
obtained.

Given that primary flow is in the 𝑥 direction, the important closure
coefficients are 𝐶𝑈𝑈 , 𝐶𝜂,𝑥 and n𝑚𝑥. Fig. 11 shows the representative
values of these correction coefficients divided by the coefficients of
the standard solution (𝐶𝑈𝑈 , 𝐶𝜂,𝑥 = 1, 𝑛 = .02). The effective bottom
friction roughness 𝑛𝑚,𝑥 is larger than the local roughness coefficient;
the average effective roughness parameter over all coarse grid points
is 𝑛𝑚,𝑥 = .053, which is 2.6 time greater than the high resolution value.
Increasing the effective bottom friction is important for accurately
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Fig. 10. Sea surface levels and timing of high tide events from the standard (red circles), Level 0 (blue stars), sub-Level 2 (magenta triangles), and Level 2 (green crosses) coarse
simulations are compared with the high resolution simulation (black squares). (a) amplitude in each bay, where bay 1 is closest to the reservoir and bay 10 is farthest. (b) error
in arrival time of high tide in each bay as a fraction of forcing period; the dashed black line indicates zero error. (c–d) Time series of surface elevation in the back bay (bay 10)
and the reservoir.

Fig. 11. Level 2 correction values imposed at each bay. The correction value for bay 𝑖 is enforced at the bay 𝑖 - channel 𝑖 + 1 boundary. 𝐶𝑈𝑈 (stars); 𝐶𝜂,𝑥 (crosses); 𝑛𝑚𝑥∕𝑛 (dots).

capturing event timings in the bays far from the reservoir, as well
as lowering amplitudes in the back bays. Similarly, a large correction
coefficient 𝐶𝑈𝑈 = 8.5 is required in the convective term to account for
the high velocity in the channel. The sea surface gradient on the other
hand requires a reduction by approximately a factor of 10; 𝐶𝜂,𝑥 = 0.10.
Note the surface gradient and convective corrections increased the
accuracy of amplitudes. However, the overestimation of amplitude by
the Level 2 closure suggests that the simple methodology used here:
i.e. choosing one closure value that is independent of water level, may
be too simplistic.

3.2.4. Level 2: Robustness
The sensitivity of Level 2 closure corrections to forcing frequency

is tested by varying the forcing periods to 𝑇 = 1.5, 2, 3, 6 and 12
h, but using the same correction coefficients as were found for 𝑇 =
3 h. Fig. 12 plots the amplitude in the back bay against the forcing
period for the different cases. As the frequency increases, the deviation
in amplitude from the high resolution solution also increases for the
standard and Level 0 methods (see Fig. 12(a)), while the Level 2
closure is considerably more accurate. Similarly, the errors in high tide
arrival time increase with increasing forcing frequency for the standard
and Level 0 methods (see Fig. 12(b)). Again, the Level 2 closure
accounts for channel-scale physics that effectively delay the signal and
therefore predict more accurately the timing of high tide events for

higher frequencies. Sub-Level 2 simulations (without surface gradient
corrections) give results that are much worse than with full Level 2,
almost certainly because of the large differences in surface gradients
between wide bays and narrow channels. At low frequencies, all coarse
methods provide accurate representation of sea surface evolution.

Fig. 12 (c–d) shows the time series of surface elevation in the back
bay for the longest (12 h) and shortest (1.5 h) forcing periods. Using a
12 h period, all coarse simulation methods match the high resolution
run. Using a higher forcing frequency, the errors in both amplitude
and arrival time increase for the standard and Level 0 methods, thus
suggesting the need for significant correction of the momentum equa-
tion. Fig. 12 shows the Level 2 closure can accurately approximate this
correction for all tested forcing frequencies and that the coefficients
needed for such corrections are relatively independent of frequency.
Hence, this suggests that if the appropriate correction coefficients can
be found, they could provide a robust model not only for the case where
they are based on but also over more general conditions.

3.3. Complex test: Buttermilk bay

In this section, the subgrid system is applied to a more realistic
simulation of flooding cycles at Buttermilk Bay, Massachusetts, USA
(41.760N, 70.620W) (see Fig. 13). This multi-bay system has a main
bay connected by a very narrow channel to a secondary bay (Little
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Fig. 12. Bay–channel simulation with varying forcing frequencies. High resolution runs (black square); coarse simulations using the standard solution (red circles), Level 0 (blue
stars) and Level 2 (green crosses), sub-Level 2 (magenta triangles). (a) Back bay water surface amplitudes vs forcing frequency; (b) the relative error in high tide arrival in the
back bay; (c–d) Time series of surface elevation from all coarse simulations with the longest (12 h) and shortest forcing periods (1.5 h), respectively.

Fig. 13. LiDAR elevation map ff the Buttermilk bay area, Massachusetts, USA
(41.760N,70.620W). The red box represents the computational domain.

Buttermilk Bay) that is quite difficult to simulate using standard tech-
niques. A tertiary water body (Queen Sewell Pond) has a slightly higher
elevation than the two main bays, but can be reached by high water
levels.

The computational domain 𝛺 used here has dimensions 3584 m ×
3584 m (red box in Fig. 13; see also Fig. 14). The simulation is driven at
the southern boundary by the tide-like elevation boundary conditions
(see Fig. 14). More specifically, the elevation boundary conditions

𝜂 = 𝑎0 tanh
(

2𝑡
𝑇𝑟

)

cos(𝜔𝑡) (31)

are imposed along (𝑥, 𝑦 = 0), 2224 ≤ 𝑥 ≤ 3234, the portion of the
southern boundary close to the Cohasset Narrows inlet. Note that as
the flow in the Cape Cod canal is not the main interest of this test, zero
elevations are prescribed along the portion of boundaries intersecting
the canal. In (31), 𝑎0 denotes the forcing amplitude, 𝜔 the frequency,
and 𝑇𝑟 the ramping time. The test considered here simulates large
semidiurnal tidal cycles and flow between the different bays. More
precisely, the tidal frequency is set to 𝜔 = 1.4544×10−4 s-1 and 𝑎0 = 2m.
This range is larger than the ∼ 0.8 m total combined semi-diurnal
M2, S2, N2, and K2 tides (see Anon., 0000) in this area. Note that
this unrealistically large tidal amplitude is intentionally employed in
order to test the robustness of the subgrid system in dealing with filling
and draining. The test considers neither wind nor atmospheric pressure
forcing. All simulations are started from a quiescent initial state. The
elevation forcing is gradually ramped from zero with the ramping time
𝑇𝑟 = 0.25 day.

Level 0 and Level 1 closures are considered in the subgrid sys-
tem. The momentum equations in the quasi-non-conservative forms
are employed in the numerical calculations. Six computational coarse
grids are used for intercomparison with resolutions 𝛥𝑥 = 𝛥𝑦 =
(512, 256, 128, 64, 32, 16, 8) m. The staggered FD/FV solution with Ca-
sulli’s subgrid wetting/drying (Casulli, 2009) computed on the 4 m grid
is used as a reference solution (our numerical schemes with Level 0
closure is to large extent very similar to this FD/FV scheme). Here,
the finer grids are obtained successively by dividing each grid cell into
four uniform cells. In all subgrid calculations, 1 m LiDAR elevation
data are used to describe the subgrid bathymetric depth (Danielson
et al., 2018). A standard model, where the bathymetric depth in
each cell is equal to an average of the LiDAR data over the cell, is
also considered for comparison purposes. Fig. 15 illustrates the cell-
averaged bathymetric depth of the area north of the Cohasset narrow
on the grids of successively coarsening resolution. The resolution of
the grid shown in Fig. 15(c) is 64 m, which is slightly coarser than
the typical finest grid size used in the floodplains of state-of-the-art
high-resolution storm surge models, such as ADCIRC (Tanaka et al.,
2011; Hope et al., 2013). It can be noticed that a large amount of
topographical detail is already lost at this level of resolution, and
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Fig. 14. Computational domain with three selected contours of bathymetric depth (contour lines: −2 m ; 0 m ; 2 m ). The location where the elevation
boundary conditions are imposed along the segment 2224 ≤ 𝑥 ≤ 3234, 𝑦 = 0 and is illustrated by a thick black segment. (b) Time-dependent elevation boundary values.

Fig. 15. Cell-averaged bottom elevations on various grids: (a) 𝛥𝑥 = 𝛥𝑦 = 8 m, (b) 𝛥𝑥 = 𝛥𝑦 = 16 m, (c) 𝛥𝑥 = 𝛥𝑦 = 64 m, and (d) 𝛥𝑥 = 𝛥𝑦 = 256 m.

further loss of detail can be clearly observed as the grid resolutions
are further coarsened.

Figs. 16–18 show respectively the surface elevation of the wet area
computed on the grids of 8, 64, 256 m resolution at three specific times
in which the tide at the boundary is rising. In these figures, plots on
the left column show the results from the standard model and the right
column show the results from the subgrid model with Level 0 closure.
It is noted that cells in the standard model are either wet or dry while
in the subgrid model the cells can be partially wet.

When the high resolution 8 m grid is used, i.e. when the topograph-
ical features are sufficiently resolved, the results from the standard
model and the subgrid model are in very good agreement (see Fig. 16).
As can be seen in Fig. 18, the coarse grid 256 m solution of the standard
model completely fails to capture the connections between the bays due
to the loss of topographical details of the averaged topography. It can

be clearly observed that the subgrid model is indeed able to capture all
connections between the inlet, main bay and back bay in the coarse grid
solution. In addition, the passages of water through the small hydro-
connectivity features, i.e. a brook at the northwest of the main bay and
a small channel on the southern end of the back bay, are clearly present
in the subgrid solution. For the 64 m grid (see Fig. 17), although the
connection between the main bay and back bay exists in the solution of
the standard model, it is clearly insufficient as indicated by the time lag
of the response in the back bay. Although not shown in this figure, it
is noted that the numerical solutions of the subgrid model with Level 1
closure are qualitatively and quantitatively very similar to the solution
of the Level 0 closure.

The time series of the surface elevation are recorded at different
locations. Figs. 19–22 plot the time series at stations marked by blue
dots in Fig. 14(a). In these figures, the top panel shows the standard
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Fig. 16. Solutions computed on grid of 𝛥𝑥 = 𝛥𝑦 = 8 m at different time levels. (a) standard model; (b) subgrid model with Level 0 closure.

solution and the bottom panel shows the subgrid solution with Level
0 closure computed on various grids. Note that because the results
from Level 1 closure are virtually identical to that of Level 0, they are
omitted from the plots. From these figures, it can be clearly noticed

that, when using the same resolution, coarse grid solutions obtained
from the subgrid model are always in better agreement with the 4 m
reference solution than the standard model. Indeed, flow does not reach
the main bay and Little Buttermilk Bay when coarse grids are used in
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Fig. 17. Solutions computed on grid of 𝛥𝑥 = 𝛥𝑦 = 64 m at various time level. (a) conventional model; (b) subgrid model with level 0 closure.

the standard solution. At these locations, a much higher resolution is
required in the standard model in order to obtain numerical results
that are comparable to that of the coarse grid subgrid model. Note
that flow from the inlet enters Buttermilk Bay and its back bay through

the channels; both the subgrid and standard solutions show an increase
in grid sensitivity at the stations in the secondary bays in comparison
to those at Station 1. However, the subgrid model is significantly less
sensitive to grid resolution than the standard model.
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Fig. 18. Solutions computed on grid of 𝛥𝑥 = 𝛥𝑦 = 256 m at various time level. (a) conventional model; (b) subgrid model with Level 0 closure.

The usual Root-Mean-Square (RMS) errors over one cycle are given
by

𝐸(𝒙) =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1

(

𝜂(𝒙, 𝑡𝑖) − 𝜂ref (𝒙, 𝑡𝑖)
)2, 𝑡𝑖 = 𝑖𝛿𝑡 + 𝑇𝑎 (32)

where 𝑁 denotes the number of samples over one cycle with 𝛿𝑡 = 5 min
sampling size and 𝑇𝑎 = 1 day denotes an offset constant. These are
given in Table 1 (a–c) for the standard, Level 0 closure, and Level 1
closure solutions, respectively. For the same grid resolution, the RMS
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Fig. 19. Time series of surface elevation 𝜂(𝑡) at Station 1 located near Cohasset Narrows
inlet.

Fig. 20. Time series of surface elevation 𝜂(𝑡) at Station 2 located in the Buttermilk
bay.

errors in the subgrid solution are at worst comparable to one order
of magnitude lower than those of the standard solution at all stations.
As qualitatively observed in the previous plots, the RMS errors in the
coarse grid solution from the subgrid model are directly comparable to
those of the standard solution computed on the higher resolution grid.
For example, at Station 3, the subgrid Level 0 closure solution on 256 m
grid is roughly comparable to the standard solution on 32 m to 64 m
grids. At Station 5, which is located in the wetting/drying areas, the
subgrid solution is comparable to the standard solution on 8 m to 16 m
grids, which are even finer than those seen in Station 3. The results
demonstrate the potential cost savings from employing the subgrid
model, as reasonable results may be obtained with significantly lower
degrees of freedom (approximately one to two orders of magnitude
for this particular test). In comparison to the reference solution used,
errors in the Level 1 closure solution are in overall slightly higher than
those of the Level 0 closure solution; the Level 1 closure solution shows
slightly lower error levels at some grid resolutions especially at Station
1. This is somewhat unexpected, as it would be surmised that Level 1

Fig. 21. Time series of surface elevation 𝜂(𝑡) at Station 3 located in the Little Buttermilk
Bay.

Fig. 22. Time series of surface elevation 𝜂(𝑡) at Station 5.

would be more accurate. The reasons for the difference appear to be
because, for larger grid sizes, a single cell near the connections can
contain both part of the large bay and a narrow channel, much like
in Section 3.2.3. Thus, Level 1 assumptions are not necessarily more
appropriate. A second reason arises from artificial connectivity induced
by two separate water bodies without connectivity appearing in some
of the largest grid cells for both Levels 0 and 1. As it is now, the system
assumes that these bodies are connected at the subgrid level, but this
is not necessarily true. Nevertheless, the differences between the error
levels in the Level 1 and 0 closure solution are negligibly small.

Lastly, it is worthwhile to mention that at these stations, the numer-
ical rates of convergence of both Level 0 and Level 1 closure subgrid
models range approximately from 0.5 to 1 (i.e. 𝐸𝑠 ∼ 𝑂(ℎ𝑝), 𝑝 ≈ 0.5−1.0).
The rates are within the range of values to be generally expected in our
numerical schemes since they are based on the use of the first order
upwind scheme and a fixed mesh solution technique in dealing with
the problem of wetting/drying areas.
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Table 1
Buttermilk bay test case: RMS surface elevation errors 𝐸(𝒙𝑠) (m) at various locations
in: (a) the standard solution, (b) subgrid solution with Level 0 closure, and (c) subgrid
solution with Level 1 closure.
(a) Standard solution

Grid size (m) Station 1 Station 2 Station 3 Station 4 Station 5

512 2.5641 1.2082 1.1968 1.1974 9.0879
256 0.2004 1.1318 1.7982 1.0013 3.3728
128 0.1685 0.7983 1.4457 1.4585 2.1253
64 0.0385 0.1723 0.9981 1.0013 1.0284
32 0.0867 0.2309 0.2912 0.2953 0.4262
16 0.0451 0.0996 0.2056 0.2085 0.1915
8 0.0217 0.0433 0.0971 0.0985 0.1554

(b) Subgrid solution with Level 0 closure

Grid size (m) Station 1 Station 2 Station 3 Station 4 Station 5

512 0.1139 0.3216 0.6156 0.5963 0.2720
256 0.0737 0.1229 0.3974 0.3809 0.0882
128 0.0583 0.0751 0.3013 0.2846 0.0766
64 0.0354 0.0331 0.1537 0.1518 0.0534
32 0.0254 0.0303 0.0453 0.0449 0.0326
16 0.0196 0.0245 0.0192 0.0207 0.0247
8 0.0100 0.0097 0.0086 0.0088 0.0301

(c) Subgrid solution with Level 1 closure

Grid size (m) Station 1 Station 2 Station 3 Station 4 Station 5

512 0.1406 0.3527 0.6278 0.6078 0.2806
256 0.0667 0.1546 0.4281 0.4093 0.1063
128 0.0520 0.0866 0.3302 0.3113 0.0804
64 0.0334 0.0352 0.1666 0.1646 0.0668
32 0.0244 0.0287 0.0507 0.0499 0.0376
16 0.0196 0.0247 0.0206 0.0221 0.0268
8 0.0101 0.0099 0.0092 0.0096 0.0329

4. Discussion and conclusions

When compared to standard shallow water solutions, it is clear
that the use of subgrid corrections derived by a formal averaging
process allows increased accuracy in complex shore regions when using
lower resolution simulations. However, simulation accuracy depends
greatly on the form of closures, and more complex scenarios may
require more complex closures. Most of the closure terms derived
by the averaging process might have been expected from intuition
and some have already been implemented by other researchers; how-
ever, corrections to the gradient of mean water surface elevations
shown in Eqs. (20)–(21) are less obvious but appear quite necessary
in situations where flow characteristics change strongly within an
averaging volume. Determination of closure coefficients remains a
challenging task, and much work will be required to investigate general
closure methodologies. However, the repeating bay–channel test case
showed that even in systems that display complex geometries and
have non-linear effects, a simple coefficient can still effectively capture
much of the subgrid physics at play and significantly improve model
performance. Anisotropy of friction and spatial variability of surface
elevation gradients is another area where further research is needed.
Tensorial Manning’s coefficients have been used by inland flooding
researchers (Viero and Valipour, 2017) but their application to general
inhomogeneous topographies is not yet a solved problem.

One aspect of the subgrid system that was not addressed but is
very important in many coastal regions is flow connectivity through an
averaging area. The work presented here does not yet consider whether
flow at the boundaries has a path to reach other boundaries of a grid
cell or whether it is blocked by land. In some regions, including the
Buttermilk Bay simulations, not accounting for these non-continuous
flow paths may be a limiting factor for simulation accuracy, and as seen
in Fig. 1. Very recently, Casulli (2019) addressed this issue by ‘‘cloning’’
cells and edges based on connectivity, effectively introducing additional
degrees of freedom into a single grid location. Corrections such as this
appear to be necessary when a single degree of freedom is insufficient.

Flow connectivity is an important area of research that continues to be
actively investigated.

All tests considered here were conducted on relatively small regular
grids using a code written specifically for the subgrid system. Most
typical storm surge and circulation simulations use much larger grids
and may have very different grid properties. Efforts are underway to
incorporate the subgrid corrections introduced here into more widely-
used and available models that have a greater impact on the field and
will be reported on in the future.
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Appendix A. Quasi-non-conservative form of subgrid equations

Non-conservative forms of shallow water-like equations are useful
for many numerical schemes. The most obvious subgrid solution is to
perform averaging on the nonconservative form directly and then to de-
velop closures. This naive methodology proves suboptimal, as Whitaker
averaging in this form generates several difficulties to close boundary
integral terms that disappear in the conservative forms because of
the zero depth (and thus momentum) at the wet–dry boundary. An
alternate methodology that removes these forms is to begin with (27)–
(28) and use the product rule to expand the third and fourth terms on
the left hand side of (27) and (28) to arrive at

⟨𝐻⟩𝐺
𝜕 ⟨𝑈⟩

𝜕𝑡
+ ⟨𝑈⟩∇ ⋅

[

((𝐶𝑈𝑈 − 1) ⟨𝑈⟩ , (𝐶𝑈𝑉 − 1) ⟨𝑉 ⟩) ⟨𝐻⟩𝐺
]

+ 𝐶𝑈𝑈 ⟨𝑈⟩ ⟨𝐻⟩𝐺
𝜕 ⟨𝑈⟩

𝜕𝑥
+ 𝐶𝑈𝑉 ⟨𝑉 ⟩ ⟨𝐻⟩𝐺

𝜕 ⟨𝑈⟩

𝜕𝑦

= −𝑔𝐶𝜂,𝑥𝑥 ⟨𝐻⟩𝐺
𝜕 ⟨𝜂⟩
𝜕𝑥

− 𝑔 ⟨𝐻⟩𝐺 𝐶𝜂,𝑥𝑦
𝜕 ⟨𝜂⟩
𝜕𝑦

−𝜙| ⟨𝑼⟩ |

[

𝑐𝑀,𝑓𝑥𝑥 ⟨𝑈⟩ + 𝑐𝑀,𝑓𝑥𝑦 ⟨𝑉 ⟩

]

+𝜙
⟨𝜏𝑠𝑥⟩𝑊

𝜌
−

⟨𝐻⟩𝐺
𝜌

𝜕𝑃𝐴
𝜕𝑥

− 𝑓𝑐 ⟨𝑉 ⟩ ⟨𝐻⟩𝐺

+ 1
𝜌

𝜕
𝜕𝑥

(

⟨𝐻⟩𝐺 𝜇𝑡
2𝜕 ⟨𝑈⟩

𝜕𝑥

)

+ 1
𝜌

𝜕
𝜕𝑦

(

⟨𝐻⟩𝐺 𝜇𝑡

(

𝜕 ⟨𝑈⟩

𝜕𝑦
+

𝜕 ⟨𝑉 ⟩

𝜕𝑥

))

(33)

⟨𝐻⟩𝐺
𝜕 ⟨𝑉 ⟩

𝜕𝑡
+ ⟨𝑉 ⟩∇ ⋅

[

((𝐶𝑉 𝑈 − 1) ⟨𝑈⟩ , (𝐶𝑉 𝑉 − 1) ⟨𝑉 ⟩) ⟨𝐻⟩𝐺
]

+𝐶𝑉 𝑈 ⟨𝑈⟩ ⟨𝐻⟩𝐺
𝜕 ⟨𝑉 ⟩

𝜕𝑥
+ 𝐶𝑉 𝑉 ⟨𝑉 ⟩ ⟨𝐻⟩𝐺

𝜕 ⟨𝑉 ⟩

𝜕𝑦

= −𝑔𝐶𝜂,𝑦𝑥 ⟨𝐻⟩𝐺
𝜕 ⟨𝜂⟩
𝜕𝑥

− 𝑔𝐶𝜂,𝑦𝑦 ⟨𝐻⟩𝐺
𝜕 ⟨𝜂⟩
𝜕𝑦

−

−𝜙| ⟨𝑼⟩ |

[

𝑐𝑀,𝑓𝑦𝑥 ⟨𝑈⟩ + 𝑐𝑀,𝑓𝑦𝑦 ⟨𝑉 ⟩

]

+𝜙

⟨

𝜏𝑠𝑦
⟩

𝑊
𝜌

−
⟨𝐻⟩𝐺
𝜌

𝜕𝑃𝐴
𝜕𝑥

+ 𝑓𝑐 ⟨𝑈⟩ ⟨𝐻⟩𝐺

+ 1
𝜌

𝜕
𝜕𝑥

(

⟨𝐻⟩𝐺 𝜇𝑡

(

𝜕 ⟨𝑈⟩

𝜕𝑦
+

𝜕 ⟨𝑉 ⟩

𝜕𝑥

))

+ 1
𝜌

𝜕
𝜕𝑦

(

⟨𝐻⟩𝐺 𝜇𝑡
2𝜕 ⟨𝑉 ⟩

𝜕𝑦

)

(34)

Note that the above forms offer convenience in numerical realization as
the differences between the implementations of the quasi-conservative
and quasi-non-conservative are only in the discretization schemes for
the advection terms (see Appendix B for more details). Note that the
quasi-non-conservative forms that resemble more to the conventional
non-conservative forms can be obtained by dividing both sides of the
above equations by the grid-average depth.
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Fig. 23. Staggered grid. The surface elevation is located in the cell center; the
horizontal velocity 𝑢 at the midpoint of the cell vertical edges; the vertical velocity
𝑣 at the midpoint of the cell horizontal edges.

Appendix B. FD Scheme on structured staggered grid

This section describes finite difference schemes on a staggered grid
used in numerical discretization of the governing equations (15),(27),
and (28). These finite difference schemes are based in large part
on adaptations of the numerical schemes presented in Casulli (1990,
2009), Stelling and Duinmeijer (2003), Volp et al. (2013) to accom-
modate the proposed subgrid governing equations. Note that although
the mass equations (15) and (16) are equivalent (when –𝑉 is defined
by (9)); (15) is chosen since it leads to a preferable property of mass
conservation at the discrete level. The terms associated with cross-term
closure coefficients 𝐶𝜂,𝑥𝑦, 𝐶𝜂,𝑦𝑥, 𝑐𝑀,𝑓,𝑥𝑦, 𝑐𝑀,𝑓,𝑦𝑥 in the averaged momen-
tum equations are excluded in this study; they will be implemented in
a future study.

Here, the standard 2D Arakawa C grid is adopted. The unknown
flow variables ⟨𝜂⟩, ⟨𝑈⟩, and ⟨𝑈⟩ are placed at the cell-center, and at
the midpoint of the vertical and horizontal cell edges, respectively
(see Fig. 23). The mass (15) and the 𝑥-momentum (27), and the
𝑦-momentum (28) are discretized at the nodes associated with the
discrete variables ⟨𝜂⟩, ⟨𝑈⟩, and ⟨𝑉 ⟩, respectively. To keep the notation
simple, 𝜂, 𝑈 , 𝑉 , and 𝐻 will be used to refer to the averaged variables
⟨𝜂⟩, ⟨𝑈⟩, ⟨𝑉 ⟩, and ⟨𝐻⟩𝐺, respectively. The precise notation will be used
when it is not clear from context. The control volumes

𝛺𝜂𝑖,𝑗 = [𝑥𝑖− 1
2
, 𝑥𝑖+ 1

2
] × [𝑦𝑗− 1

2
, 𝑦𝑗+ 1

2
], 𝛺𝑢

𝑖− 1
2 ,𝑗

= [𝑥𝑖−1, 𝑥𝑖] × [𝑦𝑗− 1
2
, 𝑦𝑖,𝑗+ 1

2
]

𝛺𝑣
𝑖,𝑗− 1

2

= [𝑥𝑖− 1
2
, 𝑥𝑖+ 1

2
] × [𝑦𝑗−1, 𝑦𝑖,𝑗+1].

are assigned to the flow variables 𝜂𝑖,𝑗 , 𝑢𝑖− 1
2
, 𝑗, and 𝑣𝑖,𝑗− 1

2
, respectively.

The averaging area 𝐴𝐺 is assumed to be identical to the grid size
(the control volume size). For a given 𝜂 and bathymetric depth ℎ(𝒙)
(of arbitrarily fine resolution), the value of the averaged water depth
at each node is evaluated from the formula (9) with the integration
defined over its associated control volume. (See Fig. 24.)

B.0.1. Continuity discretization
A semi-implicit finite difference discretization of the continuity

equation (15) for a cell (𝑖, 𝑗)

–𝑉𝑖,𝑗 (𝜂𝑛+1𝑖,𝑗 ) − –𝑉𝑖,𝑗 (𝜂𝑛𝑖,𝑗 )
𝛥𝑡

+
𝑢𝑛+1
𝑖+ 1

2 ,𝑗
𝐻𝑛

𝑖+ 1
2 ,𝑗

− 𝑢𝑛+1
𝑖− 1

2 ,𝑗
𝐻𝑛

𝑖− 1
2 ,𝑗

𝛥𝑥

+
𝑣𝑛+1
𝑖,𝑗+ 1

2

𝐻𝑛
𝑖,𝑗+ 1

2

− 𝑣𝑛+1
𝑖,𝑗− 1

2

𝐻𝑛
𝑖,𝑗− 1

2

𝛥𝑦
= 0

is considered. This scheme is a result of using the Euler backward in
time discretization with the grid-averaged total water depth 𝐻 from

the current time level. By multiplying the above equation by 𝛥𝑥𝛥𝑦, one
has

𝑉𝑖,𝑗 (𝜂𝑛+1𝑖,𝑗 ) − 𝑉𝑖,𝑗 (𝜂𝑛𝑖,𝑗 )

𝛥𝑡
+ 𝑢𝑛+1

𝑖+ 1
2 ,𝑗

𝐴𝑛
𝑖+ 1

2 ,𝑗
− 𝑢𝑛+1

𝑖− 1
2 ,𝑗

𝐴𝑛
𝑖− 1

2 ,𝑗

+ 𝑣𝑛+1
𝑖,𝑗+ 1

2

𝐴𝑛
𝑖,𝑗+ 1

2
− 𝑣𝑛+1

𝑖,𝑗− 1
2

𝐴𝑛
𝑖,𝑗− 1

2
= 0,

(35)

a form reminiscent of the FV scheme, where 𝑉𝑖,𝑗 is the water volume
in the cell, 𝐴𝑛+1

𝑖+ 1
2 ,𝑗

= 𝐻𝑛
𝑖+ 1

2 ,𝑗
𝛥𝑦 and 𝐴𝑛+1

𝑖,𝑗+ 1
2

= 𝐻𝑛
𝑖,𝑗+ 1

2

𝛥𝑥. The grid-averaged
water height 𝐻𝑖+ 1

2 ,𝑗
is determined by

𝐻𝑖+ 1
2 ,𝑗

= 1
𝛥𝑥𝛥𝑦 ∫𝛺𝑢

𝐻𝑑𝑥

= 1
𝛥𝑥𝛥𝑦

(

∫

𝑥𝑖+1∕2

𝑥𝑖
∫

𝑦𝑖+1∕2

𝑦𝑖−1∕2
𝐻(𝜂𝑖,𝑗 )𝑑𝑥𝑑𝑦

+ ∫

𝑥𝑖+1

𝑥𝑖+1∕2
∫

𝑦𝑖+1∕2

𝑦𝑖−1∕2
𝐻(𝜂𝑖+1,𝑗 )𝑑𝑥𝑑𝑦

)

.

(36)

The grid-average at the 𝑣-node 𝐻𝑖,𝑗+ 1
2
is defined in the same manner.

It is noted that the formula (35) is written for any cell having at least
one wet edge. The edge is considered wet when the wet cross-section
area of such edge is greater than a given, small positive tolerance. More
precisely, the edge associated with 𝑢𝑖+ 1

2 ,𝑗
is considered wet when

∫

𝑦
𝑗+ 1

2

𝑦
𝑗− 1

2

𝐻(𝜂𝑖+ 1
2 ,𝑗

)𝑑𝑦 > 𝜀

where

𝜂𝑖+ 1
2 ,𝑗

=
𝜂𝑖,𝑗 + 𝜂𝑖+1,𝑗

2
.

B.0.2. Momentum discretization
For simplicity of presentation, the 𝑥- and 𝑦-directed bottom stresses

𝜏𝑏𝑥 and 𝜏𝑏𝑦 are written as
⟨

𝜏𝑏𝑥
𝜌

⟩

𝑊
= 𝛾 ⟨𝑈⟩ ,

⟨ 𝜏𝑏𝑦
𝜌

⟩

𝑊
= 𝛾 ⟨𝑉 ⟩

Below, the discretization of the 𝑥-momentum equation (27) is de-
scribed. A semi-implicit finite difference scheme on the 𝑢-node is given
by

𝐻𝑛
𝑖+ 1

2

𝑢𝑛+1
𝑖+ 1

2 ,𝑗
− 𝑢𝑛

𝑖+ 1
2 ,𝑗

𝛥𝑡
+𝐹 𝑛

𝑖+ 1
2 ,𝑗

= −𝑔𝐻𝑛
𝑖+ 1

2 ,𝑗
𝐶𝜂,(𝑖+ 1

2 ,𝑗)

𝜂𝑖+1,𝑗 − 𝜂𝑖,𝑗
𝛥𝑥

−𝛾𝑖+ 1
2 ,𝑗

𝑢𝑛+1
𝑖+ 1

2 ,𝑗

(37)

where

𝐹 𝑛
𝑖+ 1

2 ,𝑗
= −𝑢𝑖+ 1

2 ,𝑗

(𝑄𝑢
𝐸 −𝑄𝑢

𝑊
𝛥𝑥

+
𝑄𝑣

𝑁 −𝑄𝑣
𝑆

𝛥𝑦

)

+

𝐶𝑈𝑈,𝐸𝑄𝑢
𝐸𝑢

𝑛
𝐸 − 𝐶𝑈𝑈,𝑊 𝑄𝑢

𝑊 𝑢𝑛𝑊
𝛥𝑥

+
𝐶𝑈𝑉 ,𝑁𝑄𝑣

𝑁𝑢𝑛𝑁 − 𝐶𝑈𝑉 ,𝑆𝑄𝑣
𝑆𝑢

𝑛
𝑆

𝛥𝑦
(38)

is the discretization formula of the advection term. Note that, in this
discretization formula, the bottom friction and the surface gradient
terms are treated implicitly via the Euler-backward scheme while
the advection terms are treated explicitly through the Euler-forward
scheme.

In (38), 𝑄𝑢
𝐸 , 𝑄

𝑢
𝑊 represent the 𝑥-directed mass fluxes at the east

and west edges of the control volume 𝛺𝑢 while 𝑄𝑣
𝑁 and 𝑄𝑣

𝑆 denote the
𝑦-directed mass fluxes at the north and south edges. They are evaluated
through the following formula

𝑄𝑢
𝐸 =

𝑢𝑛
𝑖+ 1

2 ,𝑗
𝐻𝑛−1

𝑖+ 1
2 ,𝑗

+ 𝑢𝑛
𝑖+ 3

2 ,𝑗
𝐻𝑛−1

𝑖+ 3
2 ,𝑗

2
, 𝑄𝑢

𝑊 =
𝑢𝑛
𝑖− 1

2 ,𝑗
𝐻𝑛−1

𝑖− 1
2 ,𝑗

+ 𝑢𝑛
𝑖+ 1

2 ,𝑗
𝐻𝑛−1

𝑖+ 1
2 ,𝑗

2
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Fig. 24. Control volume associated with each flow variable. 𝛺𝜂 control volume for discretizing the continuity equation; 𝛺𝑢,𝑣-control volume for discretizing the 𝑥- and 𝑦-momentum
equations.

𝑄𝑣
𝑁 =

𝑣𝑛
𝑖,𝑗+ 1

2

𝐻𝑛−1
𝑖,𝑗+ 1

2

+ 𝑣𝑛
𝑖+1,𝑗+ 1

2

𝐻𝑛−1
𝑖+1,𝑗+ 1

2

2
,

𝑄𝑣
𝑆 =

𝑣𝑛
𝑖,𝑗− 1

2

𝐻𝑛−1
𝑖,𝑗− 1

2

+ 𝑣𝑛
𝑖+1,𝑗− 1

2

𝐻𝑛−1
𝑖+1,𝑗− 1

2

2
The velocities 𝑢𝐸 , 𝑢𝑊 , 𝑢𝑁 , and 𝑢𝑆 , which are the 𝑥-directed velocity
along the east, west, north, and south edges of the control volume 𝛺𝑢,
respectively, are determined by a first order upwind scheme with an
upwind direction determined by a sign of the flow 𝑄𝑒, more precisely

𝑢𝐸 =

⎧

⎪

⎨

⎪

⎩

𝑢𝑖+ 1
2 ,𝑗

, 𝑄𝑢
𝐸 > 0

𝑢𝑖+ 3
2 ,𝑗

, 𝑄𝑢
𝐸 < 0

, 𝑢𝑊 =

⎧

⎪

⎨

⎪

⎩

𝑢𝑖− 1
2 ,𝑗

, 𝑄𝑢
𝑊 > 0

𝑢𝑖+ 1
2 ,𝑗

, 𝑄𝑢
𝑊 < 0

,

𝑢𝑁 =

⎧

⎪

⎨

⎪

⎩

𝑢𝑖+ 1
2 ,𝑗

, 𝑄𝑣
𝑁 > 0

𝑢𝑖+ 1
2 ,𝑗+1

, 𝑄𝑣
𝑁 < 0

, 𝑢𝑊 =

⎧

⎪

⎨

⎪

⎩

𝑢𝑖+ 1
2 ,𝑗−1

, 𝑄𝑣
𝑆 > 0

𝑢𝑖+ 1
2 ,𝑗

, 𝑄𝑣
𝑆 < 0

. (39)

It can be verified that when 𝐶𝑈𝑈 and 𝐶𝑈𝑉 are set to one, the discrete
advection term is simply an upwind scheme. For example, if the flow
direction is positive (𝑄𝑒 > 0), the discrete advection term at the
𝑢𝑖+ 1

2 ,𝑗
-node corresponds to

𝐹 𝑛
𝑖+ 1

2 ,𝑗
= 𝑄𝑢

𝑊

𝑢𝑖+ 1
2 ,𝑗

− 𝑢𝑖− 1
2 ,𝑗

𝛥𝑥
+𝑄𝑣

𝑆

𝑢𝑖− 1
2 ,𝑗

− 𝑢𝑖− 1
2 ,𝑗−1

𝛥𝑦

By rearranging (37), one has at the (𝑖 + 1
2 , 𝑗) node

𝑢𝑛+1
𝑖+ 1

2 ,𝑗
= 1

𝐻∗
𝑖+ 1

2 ,𝑗

[

𝐻𝑛
𝑖+ 1

2 ,𝑗
𝑢𝑛
𝑖+ 1

2 ,𝑗
− 𝛥𝑡𝐹 𝑛

𝑖+1∕2,𝑗 − 𝑔 𝛥𝑡
𝛥𝑥

𝐻𝑛
𝑖+ 1

2 ,𝑗

(

𝜂𝑛+1𝑖+1,𝑗 − 𝜂𝑛+1𝑖,𝑗

)

]

(40)

where

𝐻∗
𝑖+1∕2,𝑗 =

1
𝐻𝑛

𝑖+1∕2,𝑗 + 𝛾𝑖+ 1
2 ,𝑗

𝛥𝑡
.

A semi-implicit finite difference scheme for the 𝑦-momentum equation
at the 𝑣-node can be devised in a similar way. More specifically, at node
(𝑖, 𝑗 + 1∕2), one has

𝑣𝑛+1
𝑖,𝑗+ 1

2

= 1
𝐻∗

𝑖,𝑗+ 1
2

[

𝐻𝑛
𝑖,𝑗+ 1

2
𝑣𝑛
𝑖,𝑗+ 1

2
− 𝛥𝑡𝐺𝑛

𝑖,𝑗+ 1
2
− 𝑔 𝛥𝑡

𝛥𝑥
𝐻𝑛

𝑖,𝑗+ 1
2

(

𝜂𝑛+1𝑖,𝑗+1 − 𝜂𝑛+1𝑖,𝑗

)

]

(41)

where 𝐺𝑛
𝑖,𝑗+1∕2 represents the explicit discretization scheme of the ad-

vection.
The FD equations for the non-conservative momentum equations

(33) and (34) are identical to (40) and (41) except for 𝐹 𝑛 and 𝐺𝑛. More

precisely, the following scheme

𝐹 𝑛
𝑖+ 1

2 ,𝑗

= 𝑢𝑖+ 1
2 ,𝑗

[ (𝐶𝑈𝑈,𝐸 − 1)𝑄𝑢
𝐸 − (𝐶𝑈𝑈,𝑊 − 1)𝑄𝑢

𝑊
𝛥𝑥

+
(𝐶𝑈𝑉 ,𝑁 − 1)𝑄𝑣

𝑁 − (𝐶𝑈𝑉 ,𝑆 − 1)𝑄𝑣
𝑆

𝛥𝑦

]

+

𝐶𝑈𝑈 𝑢
𝑛
𝑖+1∕2,𝑗𝐻

𝑛
𝑖+1∕2,𝑗

[

𝜆𝑥,−1𝑢𝑛𝑖−1∕2,𝑗 + 𝜆𝑥,0𝑢𝑛𝑖+1∕2,𝑗 + 𝜆𝑥,1𝑢𝑛𝑖+3∕2,𝑗
𝛥𝑥

]

+

𝐶𝑈𝑉 𝑣
𝑛
𝑖+1∕2,𝑗𝐻

𝑛
𝑖+1∕2,𝑗

[

𝜆𝑦,−1𝑢𝑛𝑖+1∕2,𝑗−1 + 𝜆𝑦,0𝑢𝑛𝑖+1∕2,𝑗 + 𝜆𝑦,1𝑢𝑛𝑖+1∕2,𝑗+1
𝛥𝑦

]

,

(42)

is considered in the discretization of the 𝑥-momentum equation. Here,
the value of 𝜆𝑥,𝑙 and 𝜆𝑦,𝑙 depends on the upwind direction, more
precisely,
{

𝜆𝑥,−1 = −1, 𝜆𝑥,0 = 1, 𝜆𝑥,1 = 0 for 𝑢𝑖+1∕2,𝑗 > 0
𝜆𝑥,−1 = 0, 𝜆𝑥,0 = −1, 𝜆𝑥,1 = 1 for 𝑢𝑖+1∕2,𝑗 < 0

{

𝜆𝑦,−1 = −1, 𝜆𝑦,0 = 1, 𝜆𝑦,1 = 0 for 𝑣𝑖+1∕2,𝑗 > 0
𝜆𝑦,−1 = 0, 𝜆𝑦,0 = −1, 𝜆𝑦,1 = 1 for 𝑣𝑖+1∕2,𝑗 < 0

Since 𝑣𝑖+1∕2,𝑗 is not defined on the 𝑢-node where the 𝑥-momentum
is discretized, 𝑣𝑖+1∕2,𝑗 is interpolated from the surrounding 𝑣-nodes
through

𝑣𝑛𝑖+1∕2,𝑗 =
𝑣𝑛𝑖,𝑗+1∕2 + 𝑣𝑛𝑖+1,𝑗+1∕2 + 𝑣𝑛𝑖,𝑗−1∕2 + 𝑣𝑛𝑖+1,𝑗−1∕2

4
.

Note that 𝐺𝑛 for the 𝑦-momentum equation (34) is defined in an
analogous manner.

The discretization formulas (40) and (41) are defined at the wet
edges and the velocity on the dry edges is assumed to be zeros (al-
though this is not strictly true at the wetting/drying front).

B.0.3. Solution algorithm
The solution 𝜂𝑛+1, 𝑢𝑛+1, 𝑣𝑛+1 can be obtained either by (i) solving the

system of nonlinear equations (35), (40), and (40) simultaneously or by
(ii) solving a reduced system of equations arising from the substitution
of (40), and (40) into (35) (Casulli, 2009). Such a reduced system of
nonlinear algebraic equations is given by

𝑉𝑖,𝑗 (𝜂𝑛+1𝑖,𝑗 ) −𝑖+1∕2,𝑗𝜂
𝑛+1
𝑖+1,𝑗 −𝑖−1∕2,𝑗𝜂

𝑛+1
𝑖−1,𝑗 +𝑖,𝑗𝜂

𝑛+1
𝑖,𝑗 −𝑖,𝑗+1∕2𝜂

𝑛+1
𝑖,𝑗+1

−𝑖,𝑗−1∕2𝜂
𝑛+1
𝑖,𝑗−1 = 𝑉 𝑛

𝑖,𝑗 (𝜂
𝑛
𝑖,𝑗 ) − 𝑖+1∕2,𝑗 + 𝑖−1∕2,𝑗 − 𝑖,𝑗+1∕2 + 𝑖,𝑗−1∕2

where

𝑖±1∕2,𝑗 = 𝑔 𝛥𝑡
2

𝛥𝑥

𝐻𝑛
𝑖±1∕2,𝑗

𝐻∗
𝑖±1∕2,𝑗

𝐴𝑖±1∕2,𝑗 , 𝑖,𝑗±1∕2 = 𝑔 𝛥𝑡
2

𝛥𝑦
𝐻𝑖,𝑗±1∕2

𝐻∗
𝑖,𝑗±1∕2

𝐴𝑖,𝑗±1∕2

𝑖,𝑗 = 𝑖+1∕2,𝑗 +𝑖−1∕2,𝑗 +𝑖,𝑗+1∕2 +𝑖,𝑗−1∕2
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𝑖±1∕2,𝑗 =
𝛥𝑡

𝐻∗
𝑖±1∕2,𝑗

𝐴𝑖±1∕2,𝑗

[

𝐻𝑛
𝑖±1∕2,𝑗𝑢

𝑛
𝑖±1∕2,𝑗 − 𝛥𝑡𝐹 𝑛

𝑖±1∕2,𝑗

]

𝑖,𝑗±1∕2 =
𝛥𝑡

𝐻∗
𝑖,𝑗±1∕2

𝐴𝑖,𝑗±1∕2

[

𝐻𝑛
𝑖,𝑗±1∕2𝑣

𝑛
𝑖±1∕2,𝑗 − 𝛥𝑡𝐺𝑛

𝑖,𝑗±1∕2

]

.

A more compact form of the above system of equations is

𝐕(𝜼) + 𝐓𝜼 = 𝐛 (43)

where 𝜼 is a vector of the solution at the next time level {𝜂𝑛+1𝑖,𝑗 }, 𝐓 is the
matrix with  and  as its entries, 𝐕 is the vector of the water volume,
and 𝐛 is the known right hand side vector. Note that 𝐓 is symmetric
with positive diagonal entries and negative off-diagonal entries; it has
at most five nonzero entries for each row (a five-point stencil).

The system of equations (43) is nonlinear and is solved by the
Newton–Raphson method:

𝜻𝑚+1 = 𝜻𝑚 − 𝐉−1[𝐕(𝜻𝑚) + 𝐓𝜻𝑚 − 𝐛] (44)

where 𝑚 is the iteration step, and 𝐉(𝜻𝑚) is the Jacobian matrix of (43)
evaluated at 𝜻𝑚. A good approximation of the Jacobian is

𝐉 = 𝐏(𝜼𝑚) + 𝐓 (45)

where 𝐏 is a diagonal matrix of the wet area of the cell 𝛥𝑥𝛥𝑦𝜙 (Casulli,
2009). The formula (44) is iterated, with the solution at the current
time step as an initial guess 𝜼0 = 𝜻𝑛, until a criterion |𝜻𝑚+1 − 𝜻𝑚| < 𝑡𝑜𝑙
is met and set 𝜼𝑛+1 = 𝜻𝑚. Subsequently, the velocities at the time level
𝑛 + 1 are obtained from (40) and (41) with the now known 𝜻𝑛+1.
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