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The spin distribution of binary black hole mergers contains key information concerning the formation 
channels of these objects, and the astrophysical environments where they form, evolve and coalesce. To 
quantify the suitability of deep learning to estimate the individual spins, effective spin and mass-ratio 
of quasi-circular, spinning, non-precessing binary black hole mergers, we introduce a modified version of
WaveNet trained with a novel optimization scheme that incorporates general relativistic constraints of 
the spin properties of astrophysical black holes. The neural network model is trained, validated and tested 
with 1.5 million ℓ = |m| = 2 waveforms generated within the regime of validity of NRHybSur3dq8, i.e., 
mass-ratios q ≤ 8 and individual black hole spins |s|z{1,2} ≤ 0.8. To reduce time-to-insight, we deployed 
a distributed training algorithm at the IBM Power9 Hardware-Accelerated Learning cluster at 
the National Center for Supercomputing Applications to reduce the training stage from 1 month, using 
a single V100 NVIDIA GPU, to 12.4 hours using 64 V100 NVIDIA GPUs. We have also fully trained 
this model using 1536 V100 GPUs (256 nodes) in the Summit supercomputer at Oak Ridge National 
Laboratory, achieving state-of-the-art accuracy within just 1.2 hours. Using this neural network model, 
we quantify how accurately we can infer the astrophysical parameters of black hole mergers in the 
absence of noise. We do this by computing the overlap between waveforms in the testing data set and 
the corresponding signals whose mass-ratio and individual spins are predicted by our neural network. We 
find that the convergence of high performance computing and physics-inspired optimization algorithms 
enable an accurate reconstruction of the mass-ratio and individual spins of binary black hole mergers 
across the parameter space under consideration. This is a significant step towards an informed utilization 
of physics-inspired deep learning models to reconstruct the spin distribution of binary black hole mergers 
in realistic detection scenarios.

 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Gravitational wave (GW) observations provide unique insights 
into the formation channels of compact binary systems. For in-
stance, it is expected that inferring orbital eccentricity in GW ob-
servations [1–13] may provide the most conclusive evidence for 
the existence of compact binary systems in dense stellar envi-
ronments [14–34]. For instance, in the case of binary black hole 
(BBH) mergers, it is assumed that the spin distribution of BBHs 
formed in dense stellar environments may be distributed isotrop-
ically, whereas BBHs formed through massive stellar evolution in 
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isolation may have spin distributions that are aligned with the bi-
nary’s orbital angular momentum [35,36].

As the number of GW observations of BBH mergers continues 
to grow in years to come [37–39], it will be possible to infer the 
astrophysical properties of these sources and elucidate their for-
mation history.

The goal of this article is to explore how deep learning han-
dles parameter space degeneracies in the signal manifold of quasi-
circular, spinning, non-precessing BBH mergers; and to quantify 
how accurately deep learning may constrain the individual spins, 
effective spin and mass-ratio of these GW sources in the absence 
of noise. We then go on to discuss the computational grand chal-
lenges that naturally arise when one tries to address these prob-
lems: (1) the parameter space that needs to be sampled is very 
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large, requiring the use of TB-size waveform datasets, and thereby 
demanding the development of novel distributed algorithms to use 
many GPUs to fully train deep learning algorithms in a reason-
able amount of time; and (2) the need to incorporate domain 
knowledge into the optimization of deep learning algorithms to 
accelerate their convergence and to ensure that their predictions 
are physically consistent.

In connection to the first challenge mentioned above, we intro-
duce distributed training algorithms that reduces the training stage 
of the neural network model used in this study from one month 
using a single V100 GPU to: (i) 12.4 hours using 64 V100 GPUs 
at the Hardware Accelerated Learning (HAL) cluster at the National 
Center for Supercomputing Applications (NCSA); and (ii) within 1.2 
hours using 1536 V100 GPUs at the Summit supercomputer at Oak 
Ridge National Laboratory. These results establish a record in the 
number of GPUs used to train these types of physics-inspired deep 
learning models.

Regarding the second challenge, we have found that naive 
methods to train deep learning architectures lead to rather sub-
optimal results. However, we show that when we use physics-
inspired optimization algorithms, which incorporate general rela-
tivistic constraints of the spin of BBHs, we are able to accurately 
recover the individual spins and mass-ratio of BBH signals across 
the mass-ratio under consideration. This analysis provides bench-
marks for the performance of deep learning models when applied 
to the reconstruction of these parameters in the absence of noise, 
and provides a baseline of accuracy when real noise from GW ob-
servations is taken into consideration. That study will be presented 
shortly in a follow up paper.

To describe the signal manifold of quasi-circular, spinning, non-
precessing BBH mergers, we use a catalog of over one million 
time-series waveforms that are parameterized in natural units, i.e., 
we use numerical relativity (NR) type waveforms, such that the 
GWs that describe BBH mergers may be fully described in terms of 
mass-ratio, q, and the individual spins of the binary components, 
sz
i
with i = {1, 2}. The neural network will be trained to cover this 

3-D signal manifold (q, sz1, s
z
2), with the aim of accurately infer-

ring these three parameters when unlabelled waveforms are fed 
into the neural network.

This work builds upon an emergent field of deep learning re-
search which has thus far provided new methodologies to do de-
tection and point-parameter estimation for GW sources in the con-
text of simulated noise [40], and real advanced LIGO noise [41,42]; 
detection-only methods in the context of simulated noise [43,44], 
real noise [45]; denoising of GW signals [46–48], among others 
(see [49] and references therein). In the context of other recent 
deep learning studies

• Our work differs from [50] in that they focus on the physics 
of waveform signals during the ringdown phase, whereas we 
are interested in the effective spin or individual spins of BBH 
mergers through the waveform evolution.

• The authors in [51] use conditional variational autoencoders 
to produce fast posterior probability estimates for non-spinning
BBH mergers embedded in simulated noise. Furthermore, the 
authors in [52] introduce the use of auto-regressive normaliz-

ing flows for rapid inference. They use a small data set of spin-
ning BBH mergers, and assume signals with signal-to-noise 
ratios ∼> 20, to produce marginalized posterior distributions 
for a number of parameters, including the individual spins 
and effective spin of non-precessing BBH mergers in the con-
text of simulated noise. In contrast, in this paper we focus on 
the development of physics-inspired neural network models 
that, in the absence of noise, provide insights about how deep 
learning handles parameter space degeneracies and the mea-

surement of individual spins, effective spin and mass-ratio of 

spinning, non-precessing BBH mergers. In brief, herein we de-
velop a computational framework to minimize time-to-insight 
by combining extreme scale computing and physics-inspired 
models. This approach will be exploited in a future study to 
carefully assess how simulated and real noise bias the results 
we present in this article.

The previous list shows that it is timely and relevant to start de-
veloping deep learning models that encapsulate as much physics as 
possible, which may only be accomplished by using larger training 
datasets and developing physics-inspired models and optimization 
schemes. In turn, this demands the development of distributed 
training algorithms in high performance computing platforms to 
reduce time-to-solution. This article is a significant step in that di-
rection.

This study is organized as follows. Section 2 describes the data 
sets used to train, validate and test our neural network model. 
We also describe therein the deep learning model used, and show 
how to build a physics-inspired optimization algorithm that signifi-
cantly improves the predictive accuracy of our neural network. Our 
findings are presented and discussed in Section 3. We summarize 
this work and outline future directions of work in Section 4.

2. Methods

In this section we describe the data sets used to train, validate 
and test our neural network model. We also describe the neural 
network architecture used for this work, and the construction of a 
physics-inspired optimization algorithm that significantly improves 
the ability of our neural network to accurately infer the astrophys-
ical properties of BBH mergers from the time-series NR waveforms 
that describe them.

2.1. Data curation

We generate our training, validation and test sets using NRHyb-
Sur3dq8 [53], a surrogate model for hybridized non-precessing 
NR waveforms. While this surrogate model may be extrapolated 
up to mass-ratio q = 10 and sz

i
= 0.998, with i = {1, 2}, it has only 

been trained with 104 NR waveforms in the parameter range q ≤ 8

and sz
i
≤ 0.8, and hence we restrict our data sets to the same pa-

rameter span. Furthermore, we consider the ℓ = |m| = 2 mode to 
train, validate and test our neural network model. To be consistent 
with the data used to train, validate and test our neural network, 
throughout this paper we use a geometric unit system in which 
G = c = 1.

The signals produced for this analysis are such that the 
amplitude peak occurs at t = 0M , covering a time span t ∈
[−10, 000 M, 130 M] with a time step 1t = 0.1 M. A sample wave-

form is shown in Fig. 1.
The training set is generated by sampling the mass-ratio 

q ∈ [1, 8] in steps of 1q = 0.08; and the individual spins sz
i

∈
[−0.8, 0.8] in steps of 1szi = 0.012. This is equivalent to ∼ 1.5

million waveforms. The validation and test sets are generated by 
alternately sampling the intermediate values, i.e. by sampling q
and sz

i
in steps of 0.16 and 0.024 to lie between training set val-

ues, for a total of ∼ 190, 000 waveforms each respectively. The 
distributions of parameters for training, validation and test sets 
is summarized in Fig. 2. The entire data set is ∼ 1.5 TB in size, 
and we make use of mpi4py [54–56] to parallelize the data gen-
eration using the Campus Cluster at the University of Illinois at 
Urbana-Champaign [57].

2.2. Neural network model architecture and loss function

The neural network architecture consists of two fundamental 
components, a shared base/root consisting of layers slightly mod-
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Fig. 1. Sample waveform for a binary black hole system with mass-ratio q = 7.9, 
and whose binary components have spins sz1 = sz2 = 0.8, respectively. All waveforms 
used in this analysis cover the time range t ∈ [−10, 000 M, 130 M], and are sampled 
with a time step 1t = 0.1 M.

Fig. 2. Sampling of the signal manifold q ∈ [1, 8], sz{1,2} ∈ [−0.8, 0.8] to construct 
the training (light blue dots), validation (dark blue dots) and testing (red dots) data 
sets.

ified from the WaveNet [58] architecture, and two branches con-
sisting of fully connected layers that take in features extracted 
from the root to predict the mass ratio and the individual spins 
of the binary components, respectively.

WaveNet is a probabilistic and auto-regressive model origi-
nally released by DeepMind for generating raw audio waveforms, 
with predictive distribution for each audio sample conditioned 
on all previous ones. Trained on data with tens of thousands 
of samples per second of audio, it exhibited not only state of 
the art performance on text-to-speech, but also showed promis-

ing results in music generation and as a discriminative model for 
phoneme/speech recognition. Additionally WaveNet inspired ar-
chitectures have also been demonstrated to successfully denoise 
recent GW observations [47]. Inspired by such recent successes, 
as well as key architectural features (which we describe in more 
detail below) suited to processing wideband raw waveforms, we 
modify the WaveNet architecture and test it as a discriminative 
model to predict key parameters of GWs from quasi-circular, spin-
ning, non-precessing binary black hole mergers.

The key architectural components of a WaveNet are dilated 
causal convolutions, gated activation units, and the usage of resid-
ual and skip connections, which we describe below.

Fig. 3. Stack of dilated convolutional layers. Zero padding on either side is not 
shown.

2.2.1. Root layers

Dilated causal convolutions. The original WaveNet was used as a 
generative model to predict audio sample xt conditioned on all 
previous timesteps, where the joint probability of the waveform 
x = {x1, x2, ..., xT } is factorized as a product of conditional prob-
abilities p(x) =

∏T
t=1 p(xt |x1, ..., xt−1). Traditionally recurrent neu-

ral networks (RNNs) and Long short-term memory (LSTM) models 
have been used to model conditional probabilities of sequences, 
but they are typically considerably slower than convolutional net-
works and also suffer from vanishing gradient problem for very 
long sequences. WaveNet addressed the aforementioned issues 
using causal convolutions, which are implemented by shifting the 
output of a normal convolution by a few timesteps, and ensur-
ing that the prediction made by the model at time step t does 
not depend on the future timesteps xt+1, ..., xT . Since ours is a 
discriminative model, we turn off the causality of the WaveNet

architecture, so that our model can simultaneously process all time 
steps of the waveform.

A dilated convolution is an effective way to increase the recep-
tive field of a convolutional network by orders of magnitude with 
only a small computational overhead. This is achieved by applying 
a convolutional filter over the input sequence by skipping input 
values with a certain step size (called the ‘dilation’). Fig. 3 shows 
dilated convolutions for dilations of 1, 2, 4, and 8 respectively. Sim-

ilar to the original WaveNet architecture, we double the dilation 
for every layer up to a limit and then repeat the same stack of 
layers, to efficiently capture long range structure of the waveform.

Gated activation units. A potential advantage of using LSTMS is that 
they have multiplicative units (memory gates) that may help with 
modeling complex inter-dependencies between time steps. In the 
original WaveNet architecture, this is amended by replacing the 
rectified linear units (ReLU) between convolutions with the follow-

ing gated activation unit:

z = tanh(W f ,k ∗ x) ⊙ σ (W g,k ∗ x) , (1)

where ∗ is a convolution operator, ⊙ is an element-wise multipli-

cation operator, σ (.) is the sigmoid function, k is the layer index, 
and W f and W g denote filter and gate convolutions, respectively. 
We keep the same gated activation Units in our network.

Residual and skip connections. Similar to the original WaveNet ar-

chitecture, both residual and skip connections are used for fast 
convergence by resolving vanishing gradients when training deep 
neural networks. Fig. 4 shows a residual block of the model, which 
is stacked many times in the network. More in depth discussion of 
the structure of WaveNet may be found in the original paper [59].

2.2.2. Leaf layers
At the end of root layer the model outputs a sequence with the 

same time dimensionality as the input sequence. Since the input 



4 A. Khan et al. / Physics Letters B 808 (2020) 135628

Fig. 4. Network architecture. Residual blocks of Wavenet (left) and leaf layers (right).

sequence has 101, 300 time-steps, we pick the last 10, 000 time-

steps from the output sequence, flatten and feed into two leafs 
of fully connected layers predicting the mass ratio q and spins 
sz
i
respectively, as shown in Fig. 4. Hence the shared root can be 

thought of as a feature extractor, and the leafs as sub-networks 
specializing to predict different parameters from the extracted fea-
tures. The motivation behind this root/leaf structure is two-fold; 
firstly the mass ratio q ∈ [1, 8] and the spins sz

i
∈ [−0.8, 0.8] have 

different numerical ranges, and secondly we performed experi-
ments without a leaf structure and empirically got sub-optimal 
results.

2.2.3. Loss function
We performed several experiments to find an optimal way to 

constrain sz
i
predictions from the second leaf sub-network. In the 

first iteration, we predicted sz
i
directly using mean-squared error as 

the loss function. This resulted in reasonable predictions for sz1 , but 
sz2 predictions could not be constrained with continued training. 
Consequently, we explored the use of effective one-body general 
relativistic dynamics of two spinning black holes as delineated in 
[60]. Specifically, we focus on the derivation of a spin-dependent 
effective one-body Hamiltonian for small and moderate spins as a 
ν-deformation of a Kerr metric of mass M ≡m1 +m2 and effective 
spin

Seff = σ1s
z
1 + σ2s

z
2 , (2)

where σ1 ≡ 1 + 3
4q

and σ2 ≡ 1 + 3q
4
. In addition, we also consider 

the effective spin parameter [35,61]

σeff =
m1s

z
1 +m2s

z
2

m1 +m2
=

qsz1 + sz2
1+ q

. (3)

Predicting Seff and σeff , and using our prediction for q to solve 
Equations (2) and (3), we were able to tightly constrain sz

i
predic-

tions.

3. Results

This section presents our main findings in the following for-
mat: we first discuss specific challenges to be addressed, namely, 
the parameter space degeneracy of the signal manifold under con-
sideration and the need to use a large training data set to densely 
sample this 3-D signal manifold. We then present qualitative re-
sults of the performance of our neural network model, and finalize 
with a quantitative set of results that provide a thorough descrip-
tion of the realm of applicability of our neural network model.

3.1. Parameter space degeneracy and convergence of high performance 
computing with deep learning

Inferring key parameters from the signal manifold of quasi-
circular, spinning, non-precessing, BBH mergers presents a number 
of complications given that different time-series NR waveforms, 
say h(t) and s(t), that describe different astrophysical systems 
are remarkably similar. To illustrate this property we have se-
lected a few astrophysical systems, and then computed the overlap, 
O(h, s), between them and 2-D slices of the signal manifold, de-
termined by the BBH mass-ratio and sz{1,2} , as shown in Fig. 5, 
using the relation

O(h, s) = max
tc φc

(

ĥ|ŝ[tc , φc ]

)

, with ĥ = h (h|h)−1/2 , (4)

where ŝ[tc , φc ] indicates that the normalized waveform ŝ has been 
time- and phase-shifted. Using this metric, Fig. 5 shows that the 
overlap between a given signal and other BBH systems with re-
markably different spin combinations are effectively indistinguish-
able. Other observations we obtain from these results is that infer-
ring the individual spins of near-equal mass-ratio systems is very 
hard given the intrinsic symmetry of the system, i.e., the binary 
components may be interchanged m1 ⇐⇒m2 , as shown in the top 
panels of Fig. 5. Indeed, near equal BBH systems present the largest 
regions of degeneracy across the signal manifold. We also observe 
that systems with small to moderate spins present large regions 
of degeneracy, as shown in the second and third row of panels in 
Fig. 5. These features are also present in BBHs whose binary com-

ponents have large spin values, as shown in the bottom panels of 
Fig. 5. Following [62], we recast the results in Fig. 5 in terms of the 
symmetric mass-ratio, η, and the effective spin, σeff , where

η =
m1m2

(m1 +m2)2
(5)

These results provide a holistic perspective on spin and mass-

ratio degeneracy across the parameter space under consideration 
as shown in Fig. 6. In summary, inferring the individual spins of 
BBH mergers is a rather challenging endeavor.

To try to address these challenges, we begin by densely 
sampling the signal manifold under consideration following the 
methodology described in Section 2.1, which leads to the con-
struction of a data set that includes over 1.5 × 106 waveforms. 
Training the model described in Section 2.2 with this large data 



A. Khan et al. / Physics Letters B 808 (2020) 135628 5

Fig. 5. From top to bottom, each row presents regions of parameter space degeneracy for a random sample of binary black hole mergers with parameters: (i) q = 1.0, sz1 =

0.8, sz2 = −0.8; (ii) q = 6.00, sz1 = 0.40, sz2 = −0.40; (iii) q = 7.12, sz1 = 0.70, sz2 = −0.30; and (iv) q = 7.92, sz1 = −0.70, sz2 = −0.70. The color bar indicates the overlap between 
each of the four aforementioned binary black hole mergers and the three corresponding mass-ratio slices shown on each row.

set using a single V100 GPU would take about 30 days to en-
sure that the model converges and attains optimal performance, 
which is quantified by computing the overlap between ground-
truth signals and signals whose parameters are predicted by the 
neural network. In order to minimize time-to-insight and to test 
multiple, physics-inspired optimization algorithms, we had to de-
sign and deploy a data-parallel distributed training scheme on the 
Hardware-Accelerated Learning (HAL) deep learning cluster at the 
National Center for Supercomputing Applications [63,64]. This clus-
ter has 64 NVIDIA V100 GPUs distributed evenly across 16 nodes, 
and connected by NVLink 2.0 inside the nodes and EDR Infini-
Band across the nodes. As shown in the left panel of Fig. 7, this 
approach reduces the training stage to only 12.4 hours. Addition-
ally, we also scaled the data-parallel distributed training strategy 

up to 6144 NVIDIA V100 GPUs at 80% efficiency on the Sum-

mit supercomputer at Oak Ridge National Laboratory, as shown 
in right panel of Fig. 7. In data-parallel distribution scheme, the 
neural network model is replicated on each individual GPU and 
each replication is fed non-overlapping batches of training data in 
parallel. After each batch, the GPUs communicate to synchronize 
gradients and update model weights. Because this scheme involves 
a linear increase in global batch size with the number of GPUs, 
it has been observed that such scaling leads to a degradation in 
convergence and generalization of the model [65]. To address this 
issue, we employed the layer-wise adaptive large batch optimiza-

tion technique (LAMB) [66], and successfully trained the model 
without degradation in convergence using 1536 NVIDIA V100 GPUs 
within 1.2 hours. We have made the trained model [67] and test-
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Fig. 6. As Fig. 5, but now presenting results in terms of symmetric mass ratio, η, and effective spin, σeff . True parameters are indicated by red stars. The color bar indicates 
the waveform overlap between true parameters (red star) and the rest of the parameter space.

Fig. 7. Left: Speed up in training obtained by designing and deploying a distributed training scheme at the Hardware-Accelerated Learning (HAL) deep learning cluster at the 
National Center for Supercomputing Applications. This approach reduces the training stage from one month (using a single V100 GPU) to 12.4 hours by scaling the training 
to the entire cluster, which consists of 64 NVIDIA V100 GPUs distributed evenly across 16 nodes, and connected by NVLink 2.0 inside the nodes and EDR InfiniBand across 
the nodes [63]. Right: Speed up obtained upon deploying and tuning our distributed training scheme on the Summit supercomputer at Oak Ridge National Laboratory.

ing dataset publicly available at Data and Learning Hub for Science 
(DLHub) [68,69] hosted at Argonne National Laboratory.

3.2. Qualitative analysis

The first assessment we have conducted to examine the perfor-
mance of our fully trained model is presented in Fig. 8. Therein 
we show the absolute errors in the estimation of the mass-ratio 
and individual spins for several fixed, mass-ratio slices of the sig-
nal manifold, where the absolute error 1Q i for any quantity Q i is 
defined as:

1Q i = Q
prediction

i
− Q true

i (6)

The top left panel shows again the degeneracy expected for near 
equal mass-ratio systems. Note that while we can obtain a good 

estimate of the mass-ratio of these systems, it is hard to infer the 
individual spins of the binary components. Once this degeneracy is 
broken, i.e., we consider q > 1 BBH mergers, it is now possible to 
infer the individual spins and the mass-ratio of the BBH mergers 
with the accuracy shown in the top-right and bottom-left panels in 
Fig. 8. As expected, as the mass-ratio of the BBH increases, it be-
comes increasingly difficult to infer the spin of the secondary—see 
bottom right panel of Fig. 8. This is expected, since for asymmet-

ric mass-ratio BBH mergers, the effect of the secondary in the 
dynamics of the binary system becomes less dominant, i.e., for 
a fixed mass-ratio and spin of the primary, it is difficult to tell 
apart signals when we vary the spin of the secondary. We provide 
a summary of these results in Table 1.

The last metric included in Table 1 corresponds to the overlap, 
O (h, s), between every waveform in the testing dataset, h(θ i) with 



A. Khan et al. / Physics Letters B 808 (2020) 135628 7

Fig. 8. Top and middle panels: absolute prediction errors in the recovery of (q, sz1, sz2) for a sample of mass ratios. Bottom panel: absolute prediction errors in the recovery 
of symmetric mass-ratio, effective spin and Hamiltonian effective-spin, (η, σeff, Seff), across the parameter space under consideration.

Table 1

Summary of the distribution of absolute errors in the estimation of mass-ratio and 
individual spins over the entire parameter space under consideration: q ∈ [1, 8], si ∈

[−0.8, 0.8]. We present minimum, median, maximum, first quartile, (Q 1), and third 
quartile, (Q 3), of the error distributions. Note that in addition to (q, sz

i
), we also 

provide error summaries for the effective spin, σeff , Hamiltonian effective-spin, Seff , 
and overlap between ground-truth signals and signals whose parameters are pre-
dicted by our network, O.

Minimum Q 1 Median Q 3 Maximum

1q -0.074 -0.010 -0.004 0.002 0.188

1s1 -0.687 -0.006 0.002 0.009 0.441

1s2 -0.466 -0.010 -0.000 0.009 0.767

1σeff -0.074 -0.004 0.002 0.008 0.098

1Seff -0.516 -0.037 -0.004 0.032 0.493

O 0.278 0.986 0.995 0.999 1.000

ground-truth parameters θ i → (q, sz
i
), and the signal, s, that best 

describes h according to our neural network model, i.e., s(θ̂ i) with 
θ̂ i → (qpredicted, sz,predicted

i
). It is necessary to consider this addi-

tional metric because absolute errors provide partial information 
about the accuracy of our neural network to infer the individ-
ual spins and mass-ratio of BBH mergers. One can only ascertain 
whether these predictions are reliable once we directly compare 
the signals described by the predicted parameters of our neural 
network model, and those that it is aiming to characterize. This is 
the theme of the following section.

3.3. Quantitative analysis

While the preceding qualitative analysis suggests that our neu-
ral network may be correctly inferring parameters for the signal 
manifold under consideration, we have also conducted a quanti-
tative approach, i.e., we collected the predictions of the neural 
network for the mass-ratio and individual spins for each wave-

form in the testing data set. Thereafter, we generated waveforms 
with these predicted parameters using NRHybSur3dq8. Finally, 
we computed the overlap between the ground-truth signals in the 
testing data set, and the waveforms whose parameters are pre-
dicted by our neural network. We summarize the results of this 
analysis for a sample of mass-ratio slices in Fig. 9. These results 
indicate that we are able to accurately infer the mass-ratio and in-
dividual spins over a broad range of the parameter space under 
consideration. Indeed, both the median and mean overlap results 
are above O ≥ 0.99. They only drop below 0.98 for BBH mergers 
at the edge of the signal manifold with q ∼ 8.

We provide a more detailed analysis of the overlap results in 
Fig. 10, where we show overlap results at every single point of the 
testing data set for a number of mass-ratio slices. These results 
show that our neural network model can predict the mass-ratio 
and individual spins of BBH mergers with excellent accuracy. Close 
to the edge of the parameter space under consideration, i.e., q → 8, 
the neural network has a gradual decrease in accuracy. The bottom 
panel in Fig. 10 also presents results for the accuracy with which 



8 A. Khan et al. / Physics Letters B 808 (2020) 135628

Fig. 9. Histograms: waveform matches for a sample of test mass ratios.

our neural network model is able to reconstruct the effective spin, 
σeff , and symmetric mass-ratio, η, of BBH mergers across the pa-
rameter space under consideration.

Fig. 11 presents a visual representation of high, median and low 
overlaps samples, i.e., 2 sigma below the median overlap. These 
random samples from the testing data set show that: (i) our neural 
network can identify signals that reproduce with excellent accu-
racy the dynamics of near-equal BBH mergers. However, given the 
parameter space degeneracy of the signal manifold for q ∼ 1 sys-

tems, it is difficult to accurately recover the individual spins of 
these systems—see left column in Fig. 11; (ii) for BBH systems with 
q 6= 1—middle column in Fig. 11—we notice that our network can 
recover with excellent accuracy both the mass-ratio and individual 
spins; and (iii) systems with asymmetric mass-ratios—right column 
in Fig. 11—can be characterized with different levels of accuracy. 
We notice that even for systems whose overlap is two sigma below 
the median overlap, the neural network is able to tightly constrain 
the estimate of the individual spins of the systems, as already sum-

marized in Table 1.

The quantitative analysis we have conducted indicates that 
deep learning is adequate to reconstruct the mass-ratio and in-
dividual spins of NR-type time-series signals that span the 3-D 
signal manifold q ∈ [1, 8] and sz{1,2} ∈ [−0.8, 0.8]. Our findings are 
in good accord with the expectation that it is hard to estimate 
the individual spins of BBH mergers whose mass-ratios are near 
the edges of the signal manifold, i.e., q ∼ 1 and q ∼ 8. This is ex-
pected given the symmetry of the problem at hand for q ∼ 1, and 
the fact that the spin of the secondary is difficult to reconstruct 
for asymmetric mass-ratio BBH mergers. All these results may be 
interactively perused at [70].

We provide a careful follow up of BBH systems that are not ac-
curately reconstructed by our neural network in Appendix A, which 
tend to be concentrated at the edges of the signal manifold.

While we have found that our deep learning model performs 
very well to characterize q ∼ 1 BBH mergers, as shown in the top 
left panel of Fig. 9, we leave to future work the construction of 
deep learning models that include higher-order modes to explore 
whether spin reconstruction may be improved for the most asym-

metric mass-ratio BBH mergers considered in this study.

4. Conclusion

Inferring the spin distribution of BBH mergers will unveil new 
and detailed information about the formation channels of these 
objects. It is then timely and relevant to design signal-processing 
algorithms that are scalable, and which may readily handle a dense 
sampling of this higher-dimensional signal manifold.

To contribute to this effort, in this paper we introduced a deep 
learning model to estimate the individual spins, effective spin and 
mass-ratio of quasi-circular, spinning, non-precessing, BBH merg-

ers. To do this, we densely sampled the (q, sz1, s
z
2) parameter space 

with over 1.5M waveforms produced with the NRHybSur3dq8

model. We then designed and deployed a distributed training al-
gorithm to reduce the training stage from one month, using a 
single V100 GPU, to just 12.4 hrs using 64 V100 GPUs in the 
HAL cluster at the University of Illinois. The convergence of deep 
learning and high performance computing proved critical to reduce 
time-to-insight, and enabled us to test a variety of optimization 
algorithms that incorporate general relativistic constraints. This ap-
proach enabled us to demonstrate that, in the absence of noise, 
physics-inspired deep learning models can effectively reconstruct 
the mass-ratio and individual spins of the binary components of 
BBH systems.

Our study sheds light on the ability of deep learning to char-
acterize waveform signals that span a degenerate signal manifold. 
For instance, in the case of equal or comparable mass-ratio sys-
tems we showed that our neural network can reconstruct the 
mass-ratio of these systems with excellent accuracy. However, the 
intrinsic symmetry of these systems, i.e., the binary components 
are indistinguishable m1 ↔ m2 , reduces the ability of the neural 
network to provide good estimates of the individual spins of the 
system. Despite these difficulties, we have found that the signals 
predicted by our network reproduce the dynamics of the ground-
truth signals with excellent accuracy, i.e. we observe a median 
overlap of 99.6% between the predicted and the ground-truth sig-
nals for near equal mass ratios. On the other hand, the neural 
network can tightly constrain both the mass-ratio and individual 
spins for asymmetric mass-ratio systems. Near the edge of the 
signal manifold, i.e., q ∼ 8 BBH mergers, the neural network has 
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Fig. 10. Each point in the top and middle panels represents the overlap between a signal in the testing data set and its counterpart whose individual spins and mass-ratio 
are predicted by our neural network model. The mass-ratio slices presented in this figure were randomly selected from the testing data set. The bottom panel summarizes 
the accuracy of our neural network model to infer the effective spin and symmetric mass-ratio, (σeff, η), across the parameter space under consideration.

a drop in accuracy recovering the spin of the secondary. This is 
expected because the spin of the secondary has a less dominant 
effect in the overall dynamics of the waveform signal. We leave 
to future work a systematic assessment of the importance of in-
cluding higher-order modes to better constrain the spin of the 
secondary.

In summary, these results represent a significant step towards 
the design of scalable, physics-inspired neural network models that 
may be used to infer the spin distribution of actual GW observa-
tions. This analysis will enable a firm understanding on the impact 
of real GW noise when deep learning is used to infer the spin 
distribution of BBH mergers. An analysis of this nature will be pre-
sented in a forthcoming publication.
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Fig. 11. Random sample of high (top panel), median (middle panel) and low (bottom panel) overlap O predictions for q = 1.04 (left column), 4.08 (middle column), 7.92 
(right column). Low overlaps are two sigma below mean overlap for each q.

Fig. A.12. Left: all test set points with Overlap < 0.85. Right: overlap distribution for the entire test set.
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Appendix A. Overlap distribution

We have conducted a detailed analysis of the regions of pa-
rameter space where our neural network model does not perform 
optimally. By the numbers, the test data set has 197,516 wave-

forms. Our neural network predicts signals whose overlap with the 
corresponding ground-truth signals in the test set has the follow-

ing distribution:

• Test waveforms with O ≤ 0.97: 18,315
• Test waveforms with O ≤ 0.90: 817
• Test waveforms with O ≤ 0.85: 181

These results are presented at a glance in Fig. A.12. We have 
also found that if we excise the edges of the signal manifold, i.e., 
we consider the ranges q ∈ [1, 8], s{1,2} ∈ (−0.8, 0.8), then most of 
the low overlaps are removed.

The reader may conduct a more detailed inspection of these 
results at [70]. Furthermore, as mentioned in the main body of this 
article, it is worth exploring whether the inclusion of higher-order 
modes may improve the performance of this model for asymmetric 
mass-ratio BBH mergers. Such a study will be pursued in the near 
future.
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