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We explore the suitability of deep learning to capture the physics of subgrid-scale ideal magnetohy-

drodynamics turbulence of 2D simulations of the magnetized Kelvin-Helmholtz instability. We produce

simulations at different resolutions to systematically quantify the performance of neural network models to

reproduce the physics of these complex simulations. We compare the performance of our neural networks

with gradient models, which are extensively used in the magnetohydrodynamic literature. Our findings

indicate that neural networks significantly outperform gradient models in accurately computing the

subgrid-scale tensors that encode the effects of magnetohydrodynamics turbulence. To the best of our

knowledge, this is the first exploratory study on the use of deep learning to learn and reproduce the physics

of magnetohydrodynamics turbulence.
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I. INTRODUCTION

In astrophysical simulations of magnetohydrodynamics

(MHD) such as magnetized binary neutron star (BNS)

mergers, we confront turbulent phenomena in the limit of

an infinite Reynolds number Re [1]. While these turbulent

effects are often ignored, ultrahigh-resolution simulations

of magnetized BNS mergers have demonstrated that MHD

turbulence can amplify the magnetic field by several orders

of magnitude and occur only at resolutions that are too

computationally expensive to run in bulk [2,3]. This

amplification is due to the magnetized Kelvin-Helmholtz

instability (KHI), which occurs when two fluids flow past

each other in opposite directions. In order to help resolve

turbulence originating from the KHI, we examine the

methods employed in more traditional hydrodynamical

turbulence.

To resolve turbulent effects, the computational fluid

dynamics community uses several classes of simulations

that provide varying degrees of accuracy. Direct numerical

simulations (DNSs) provide the most accurate results by

capturing all the effects at all scales relevant to the problem

being studied. To resolve the turbulent effects of these

simulations, DNSs require extremely high resolutions that

scale as the cube of Re. This resolution requirement renders

DNSs feasible only for a small number of simulations.

Moreover, our problems of interest has an extremely high

Re, resulting in DNSs becoming too computationally

expensive for our work.

The other prominent techniques, Reynolds-averaged

Navier-Stokes (RANS) and large eddy simulations

(LESs), employ subgrid-scale (SGS) models to reproduce

the most important effects of DNSs such as the energy

transfer rate at much lower resolutions. RANS is the most

widely used but is best suited for steady state phenomena.

For an instability such as the KHI, LESs serve as the

preferred approach. The goal behind LESs is to evolve the

equations with sufficient resolution to resolve the largest

eddies and rely on the SGS model to compute the

contribution of the smaller eddies.

Recent work has sought to develop SGS models of MHD

turbulence using traditional LES models [4–15]. However,

MHD turbulence presents some unique challenges not

observed in standard hydrodynamical turbulence.

Although the boundary conditions for problems of interest

are typically much simpler, the equations are more com-

plex. These complexities include a dynamo mechanism for

the conversion between kinetic and magnetic energy as

well as anisotropies arising from the magnetic field [15–

17]. Moreover, there exists a much weaker understanding

of MHD turbulence compared to the hydrodynamical

variety.

To resolve these complexities without exerting signifi-

cant efforts studying the intricacies of MHD turbulence, we

explore the use of artificial neural networks (ANNs) to act

as SGS models. Significant work has been done in

examining and evaluating ANN models of hydrodynamical

turbulence for both RANS and LESs in recent years [18–

26]. These studies indicate that ANNs may outperform

traditional approaches used to model turbulence.

In this article, we develop a proof-of-concept neural

network model to quantify the performance of deep-

learning algorithms to reproduce the true dynamics of
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turbulent magnetic field amplification at manageable res-

olutions of MHD simulations of the KHI in the LES

formalism. We use as a driver for this study 2D MHD

simulations and compare the performance of our neural

networks to traditional models, such as the a priori study

introduced in Ref. [13]. For reference, an a priori study

involves evaluating the performance of the models in how

closely they reproduce the SGS effects compared to the

filtered DNS data. In contrast, an a posteriori study would

implement these models in an actual simulation to observe

how the SGS models compare to the higher-resolution DNS

simulations. We leave the more computationally expensive

3D case as well as the implementation of these neural

network models, and subsequent a posteriori comparison

of the models, to future work. Herein, we will perform a

more in-depth analysis of the conditions each model

performs best in our a priori study to gain as much insight

as possible before moving to the more complicated tests.

This article is organized as follows: Sec. II provides an

overview of the LES formalism and its application to the

MHD equations. In Sec. III, we describe the SGS models

used in this work, including our proposed ANN model and

the traditional gradient model. Section IV describes the

simulations used to train and evaluate our SGS models. We

describe the methods in which those simulations were

employed to train the ANN model in Sec. V. In Sec. VI, we

define the metrics used to evaluate the SGS models. We

provide the results of our a priori study of the ANN SGS

turbulence model and compare its performance with that of

the gradient model. Section VIII summarizes our findings

and outline future directions of work.

II. LES FORMALISM

In this section, we introduce the mathematical formal-

isms that wewill use throughout the article. We describe the

LES formalism and briefly describe the compressible MHD

equations, which will be used as the science driver of our

analysis.

A. Filtering

In the LES formalism, one views the grid resolution as a

spatial filter applied to a continuous variable. In this

approach, the size of the grid Δ corresponds to the size

of the filter. Typically, we start with very-high-resolution

data taken from DNS or experimental results and apply a

filter with a cutoff size Δf, where Δf > Δ is the lower-

resolution grid on which we want to perform our simu-

lation. We apply the kernel G to a field f as

f̄ðx; tÞ ¼
Z

∞

−∞

Gðx − x
0Þfðx0; tÞdx0: ð1Þ

For implicit LES simulations which are employed in this

work, the filtering operator of sizeΔf is applied to the high-

resolution simulation of grid size Δ when calibrating SGS

models. In turn, this filtering provides insight into the effect

of moving to a lower to a lower grid resolution. The choice

of filter depends on the numerical method employed. For

finite volume schemes like those used in this work, a box or

top-hat filter is used to simulate the spatial averaging that

occurs during such schemes. This filter kernel is given in

real space for D spatial dimensions as

Gðjx − x
0jÞ ¼

YD

i¼1

Giðjxi − x0ijÞ; ð2Þ

where

Giðjxi − x0ijÞ ¼
#
1=Δf if jxi − x0ij ≤ Δf=2;

0 otherwise:
ð3Þ

Filtering operators commute with linear terms. However,

nonlinearities in the MHD equations fail to commute with

the filtering operator. This results in a residual term known

as the SGS tensor. We will provide examples of these SGS

tensors in the next section.

For compressible fluids, we use a specific type of

filtering called Favre or density weighted to simplify our

problem by eliminating the SGS tensor in the continuity

equation. For some quantity f weighted by some density ρ,

we define the Favre filtered quantity f̃ as

f̃ ¼ ρ̄f

ρ̄
: ð4Þ

This also gives us the identity ρf ¼ ρ̄ f̃.

B. Compressible MHD equations

1. Unfiltered MHD equations

For the evolution of our system, we used the conservative

form of the ideal compressible Newtonian MHD equations.

Each equation continuity, momentum, induction, and

energy evolution, respectively, represents the local evolu-

tion of a globally conserved quantity. The equations are

given by

∂tρþ ∂i½ρvi( ¼ 0; ð5Þ

∂tðρvjÞ þ ∂i

$
ρvivj − BiBj þ δij

%
pþ B2

2

&'
¼ 0; ð6Þ

∂tB
j þ ∂i½viBj − vjBi( ¼ 0; ð7Þ

∂tuþ ∂i½ðuþ pþ B2Þvi − ðvjBjÞBi( ¼ 0; ð8Þ

where the total energy density u is defined as
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u ¼ eþ ρv2

2
þ B2

2
: ð9Þ

Here, the indices are spatial components assuming the

Einstein summation convention, δij is the Kronecker delta,

ρ is the mass density, p is the pressure, e is the internal

energy density, vi is the velocity, and Bi is the magnetic

field. The units of this expression are such that the speed of

light c and the magnetic permeability μ0 are c ¼ μ0 ¼ 1.

For this system, we used an ideal gas equation of state

(EOS) to define p as

p ¼ ðγ − 1Þe; ð10Þ

where γ is the adiabatic index set to γ ¼ 4=3 for a

relativistic gas in this work. We note that we intentionally

did not exploit any simplifications made using the fact that

we have an ideal gas EOS to ensure that our ANN

turbulence model can be used for any generic EOS. This

is done to ensure that the model can be easily employed by

BNS simulations where the EOS is a variable parameter.

2. Filtered MHD equations

To derive the filtered equations, we apply Eq. (2) to

Eqs. (5)–(8) [13]. We find these equations become

∂tρ̄þ ∂i½ρ̄ṽi( ¼ 0; ð11Þ

∂tðρ̄ṽjÞ þ ∂i

$
ρ̄ṽiṽj − B̄iB̄j þ δij

%
p̃þ B̄2

2

&'
¼ −∂iτ

ij
mom;

ð12Þ

∂tB̄
j þ ∂i½ṽiB̄j − ṽjB̄i( ¼ −∂iτ

ij
ind; ð13Þ

∂tūþ ∂i½ðūþ p̃þ B̄2Þṽi − ðṽjB̄jÞB̄i( ¼ −∂iτ
i
eng þ Σeng;

ð14Þ

where the merged SGS tensor terms are given by

τ
ij
mom ¼ ρ̄τ

ij
kin − τ

ij
mag þ δij

%
1

2
δklτ

kl
mag þ ðp̄ − p̃Þ

&
; ð15Þ

τieng ¼ τienth þ τ
ij
momṽj þ τ

ij
indB̄j; ð16Þ

and the scalar SGS tensor terms denoted by Σ are given by

Σeng ¼ Σpres þ Σmom þ Σind; ð17Þ

Σpres ¼ vi∂ip − ṽi∂ip̃; ð18Þ

Σmom ¼ 1

2
ð∂iṽj þ ∂jṽiÞτijmom; ð19Þ

Σind ¼
1

2
ð∂iB̄j − ∂jB̄iÞτijind: ð20Þ

In the above expressions, we have defined

ẽ ¼ ū −
ρ̄ṽ2

2
−
B̄2

2
; ð21Þ

p̃ ¼ ðγ − 1Þẽ ð22Þ

and will define the enthalpy h and its filtered version h̃ as

h ¼ ρþ eþ p; ð23Þ

h̃ ¼ ρ̄þ ẽþ p̃; ð24Þ

respectively.

For modeling the SGS terms in Eqs. (11)–(14), we care

only about τkin describing turbulent motion, τmag describing

the contribution of the turbulent magnetic field to the

motion, τind describing the turbulent amplification of the

magnetic field, and τenth describing the effect of turbulence

on the energy transfer. We neglect the terms (p̄ − p̃) and
Σpres, as we expect their contributions to be small and EOS

dependent, which reduces the robustness of our models.

The rest of the terms in Eqs. (11)–(14) are combinations of

the aforementioned terms. The four SGS tensors we want to

model are defined formally as

τ
ij
kin ¼ gvivj − ṽiṽj; ð25Þ

τ
ij
mag ¼ BiBj − B̄iB̄j; ð26Þ

τ
ij
ind ¼ ðviBj − vjBiÞ − ðṽiB̄j − ṽjB̄iÞ; ð27Þ

τienth ¼ hvi − h̃ṽi: ð28Þ

The astute reader may notice that τienth is actually a vector,

but we will refer to it as an SGS tensor throughout this work

for the sake of conciseness.

III. MODELING SGS TENSORS

In this section, we introduce the gradient model, which

currently represents the state of the art in the LES MHD

literature, and our deep-learning algorithm. In what fol-

lows, we will present direct comparisons between these two

methodologies to highlight their key differences and to

furnish evidence that deep learning outperforms the gra-

dient approach.

A. Gradient model

The gradient model is extensively used in the LES MHD

literature [13,15]. The prevalence of this model in other

LES MHD turbulence studies promotes it as a good

baseline to test the performance of our neural network

model. The gradient model is derived using the Taylor
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expansion of the SGS stress tensor under a particular

filtering operator. Here we use the leading-order expansion

of our box filtering operator which is also valid for a

Gaussian filter [15] to obtain

fg ≃ f̄ ḡþ
Δ

2

f

12
∂if̄∂iḡ; ð29Þ

ffg ≃ f̃ g̃þ
Δ

2

f

12
∂if̃∂ig̃; ð30Þ

fg ≃ f̃ ḡþ
Δ

2

f

12
∂if̃

%
∂iḡ −

∂iρ̄

ρ̄
ḡ

&
; ð31Þ

for regular filtered terms, Favre filtered terms, and mixed

filtered terms, respectively [13]. This results in the follow-

ing expressions for the SGS tensors [13]:

τ
ij
kin ¼ C

ij
kin

Δ
2

f

12
∂kṽ

i∂kṽj; ð32Þ

τ
ij
mag ¼ C

ij
mag

Δ
2

f

12
∂kB̄

i∂kB̄j; ð33Þ

τ
ij
ind ¼ C

ij
ind

Δ
2

f

12

$
∂kṽ

i

%
∂kB̄j −

∂kρ̄

ρ̄
B̄j

&

− ∂kṽ
j

%
∂kB̄i −

∂kρ̄

ρ̄
B̄i

&'
; ð34Þ

τienth ¼ Ci
enth

Δ
2

f

12

γ

γ − 1

$
∂jp̃ − p̃

∂jρ̄

ρ̄

'
∂jṽi: ð35Þ

The coefficient Cij is determined by the best fit of the

data to a time slice of filtered DNS data for each component

of τ
ij
grad independently. The fitting is determined by

Cij ¼
P

xf
(τijDNSðxfÞτ

ij
gradðxfÞ)P

xf
τ
ij
gradðxfÞ

; ð36Þ

where τ
ij
grad is the SGS tensor calculated by the gradient

model in Eqs. (32)–(35), τ
ij
DNS is the true SGS tensor

computed directly from the DNS data, xf represents the

filtered grid, and Einstein summation notation is not used.

When employing this model in an a posteriori test, one

would estimate Cij with a secondary filter [22,27]. In the

LES literature, this is known as a dynamical model.

However, we do not use a secondary filter for our a priori

study and instead filter the DNS data directly. We acknowl-

edge that this may overestimate the performance of the

gradient model compared to an a posteriori study.

B. Neural network model

ANNs are the building blocks of deep neural networks.

The basic units of calculation in ANNs are called neurons,

which are connected via weighted inputs that resemble

synapses. These biologically inspired models have the

proven capability of learning from data, which has accel-

erated the data-driven discovery revolution over the past

decade [28–32].

As shown in Fig. 1, a neural network creates a relation-

ship between the inputs and outputs. This relation uses

multiple layers of neurons connected through a series of

linear or nonlinear functions. The input layer takes the input

data and applies these operations to calculate its outputs X1
i

for each input i. Then, each of the ANN’s subsequent layers

l takes the outputs of the previous layer Xl−1
j of layer l − 1

and applies this same calculations to calculate the outputs

Xl
i of each of is neurons. The calculation is performed as

Xl
i ¼ gðsli þ bliÞ; ð37Þ

sli ¼
X

j

Wl
ijX

l−1
j ; ð38Þ

where g is a nonlinear function known as an activation

function, and the parameters to be tuned during training are

the weightsWl
ij and biases b

l
i. The values ofW

l
ij and b

l
i are

continually adjusted during the training stage until training

data with the same labels consistently yield similar results

in the output layer XL
i . In our case, the output of the neural

network model corresponds to the SGS tensor components.

For the activation function of the hidden layers, we selected

the rectified linear unit (ReLU), which is common in

machine learning for its fast training speed. The ReLU

is defined as gðxÞ ¼ maxð0; xÞ. For the output layer,

we used a linear activation function, defined simply as

gðxÞ ¼ x.

FIG. 1. Schematic illustration of a neural network. A multilayer

perceptron with two hidden layers is presented. Circles represent

neurons, whereas arrows correspond to weights.
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Most ANN models of turbulence use a multilayer

perception (MLP) network [19,21,22] or some slight

variation of an MLP [18,20]. In this work, we also employ

an MLP network to implement our model. The network

acts on individual grid cells. The network configuration

used in this work had an input layer with NI inputs, a

hidden layer with 64 neurons followed by another hidden

layer with 32 neurons, and finally an output layer with NO

outputs.

There is some variation in the literature in selecting the

input features for ANN models of hydrodynamical turbu-

lence [18–23,25]. The inputs for ANN model τANN were all

quantities defined for the SGS tensors in Eqs. (25)–(28),

the first and second derivatives of those quantities, and the

value of all aforementioned terms in cells adjacent to the

cell of interest. All derivatives were computed using fourth-

order centered finite differencing. For the mixed filtered

quantities τind and τenth, we add the mass density ρ to our

collection of variables that we include in the inputs in the

same manner described above. The inputs to each ANN are

explicitly given in Appendix A.

In our case, the outputs are all unique components of the

desired SGS tensor which vary depending on the tensor of

interest. Thus, we have NO ¼ 3 for τkin and τmag, NO ¼ 1

for τind, and NO ¼ 2 for τenth. This differs from most of the

literature, where a different ANN is used to find each

individual component of the SGS tensor [19,21–23]. By

computing all components of the SGS tensor, we hope to

incorporate physical symmetries and constraints into future

models of τANN such as Galilean invariance, though we do

not attempt to do so in this work.

For reference, we have chosen mean-squared error as the

loss function to optimize the performance of our neural

network model. We describe in detail the high-resolution

simulations of the magnetized KHI used to train and test

our models in Sec. IV. The hyperparameters of our neural

network model are presented in Sec. V.

IV. SIMULATION

To train and evaluate the model, we ran 2D magnetized

KHI simulations. As described above, the KHI instability

occurs when two fluids are moving in opposite directions.

When magnetic fields are included, the instability accel-

erates and the magnetic fields are amplified throughout the

process. The KHI was selected because BNS mergers, the

targeted application of this work, experience a KHI-like

process during the merger phase.

The simulations were run using the open-source

SIMFLOWNY code [33,34]. For these simulations, the grid

was a Cartesian square with x; y ∈ ½−L=2; L=2(, with

length L ¼ 1. These simulations were performed at three

grid sizes with the number of pointsN ¼ 5122,N ¼ 10242,

and N ¼ 20482 for the low, medium, and high resolutions,

respectively. The boundary conditions were chosen to be

periodic in all directions. We evolved the equations for ten

units of time. Using a RK4 time integration scheme, we

evolved the MHD equations in Eqs. (5)–(8) with time steps

of Δt ¼ 0.25ffiffiffi
N

p . We show density plots of these simulations in

Figs. 2 and 3.

To assist in triggering the instability, we add velocity

perturbations to the system in both coordinate directions.

The specific setup for the initial conditions for the grid

functions in this simulation is given by

ρ ¼ ρ0 þ sgnðyÞ
$
δρ tanh

%jyj − yl
al

&'
; ð39Þ

vx ¼ sgnðyÞ
$
vx0 tanh

%jyj − yl

al

&'
þ δvx sinð2πnxyÞ; ð40Þ

FIG. 2. Plots of the mass density distribution ρ time slices at t ¼ 1.5, 5, 10 of our magnetized KHI simulations with a resolution of

N ¼ 20482. On the left, we have the t ¼ 1.5 time slice, in which we can observe vortexes begin to form between the two fluids. The

number and size of these vortexes are controlled by an initial sinusoidal perturbation of the fluid velocity in the y direction. The center

plot at t ¼ 5 occurs after many of the aforementioned vortexes have merged together, at which point the flow has become unsteady. This

unsteady flow manifests itself in the high-density fluid beginning to break apart. The rightmost plot at t ¼ 10 depicts the fluids in a

turbulent mixing process with two low-density vortexes helping to drive this mixing.
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vy ¼ sgnðyÞ
#
δvy sinð2πnyxÞ exp

$
−

%jyj − yl

σ

&
2
'-

; ð41Þ

Bx ¼ Bx0; ð42Þ

By ¼ By0; ð43Þ

p ¼ p0: ð44Þ

In the above expressions, ρ0 ¼ 1.5 and δρ ¼ −0.5 are the

average and difference of the low-density region ρ1 ¼ 1

and high-density region ρ2 ¼ 2, respectively. yl ¼ 0.25 is

the y coordinate where the transition from ρ1 to ρ2 occurs.

al ¼ 0.01 is the characteristic size of this transition region,

providing a smooth transition that mitigates some of the

numerical instabilities of the transition between the differ-

ent density regions. vx0 ¼ 0.5 is the initial velocity of the

fluid in the x direction. δvx ¼ 0.01 is a sinusoidal pertur-

bation of vx0 with nx ¼ 4 periods going along the y
direction. δvy ¼ 0.2 is a sinusoidal perturbation of the y

component of the velocity with ny ¼ 7 periods along the x

direction. σ ¼ 0.1 is the characteristic Gaussian falloff of

δvy away from yl. We note that, for jyj > 0.45, δvy is set

to 0. Bx0 ¼ 0.001, By0 ¼ 0, and p0 ¼ 1 are the initial x

component of the magnetic field, initial y component of the

magnetic field, and initial pressure, respectively.

Like Ref. [13], we desired to evolve with similar

numerical methods to those used in numerical relativity

simulations of BNS mergers. We employed the method of

lines to discretize our system of equations. We used a finite

volume scheme with MP5 reconstruction and local lax

Friedrichs flux splitting for the evolution of our system,

which provides numerical stability even in the presence of

shocks. This scheme views the ideal MHD equations in

Eqs. (5)–(8) as

∂tU þ ∂iF
i ¼ S; ð45Þ

where U ¼ fρ; ρvj; Bj; ug are our conserved quantities, F

are the fluxes for those conserved fields, and S ¼
f0; 0; 0; 0g are the source terms. The source term is set

to zero in our case but is nonzero, in general, if, say, an

external force like gravity is applied to the fluid. F is

allowed to depend on the conserved variables but not on

their derivatives. The SGS tensors, which depend on

derivatives of the conserved variables, would be placed

in S rather than F when implementing one of the afore-

mentioned SGS models in a simulation.

To preserve the divergence-free condition on the mag-

netic field, we used a hyperbolic divergence cleaning [35].

This divergence cleaning adds another evolution equation

to our system for ϕ to ensure the magnetic field divergence

decays to 0 and is defined as

∂tϕþ c2h∂iB
i ¼ −

ch

cr
ϕ; ð46Þ

where ch ¼ 1 and cr ¼ 0.18.

V. TRAINING

The KHI simulation data were filtered using a box filter

with filter sizes f ¼ 2, 4, 8, 16, where f is defined as

f ¼ Δf

Δ
. For each of the filter sizes and resolutions, SGS

tensors and inputs to the ANNs were calculated after t ¼ 1

every ∼0.1 time units until the simulation ended at t ¼ 10.
1

The test data evaluated these same quantities at t ≈ 9.25.

FIG. 3. Plots of the density distribution ρ of the test dataset at time slices t ¼ 9.25 for resolutions N ¼ 5122, 10482, and 20482 in the

left, middle, and right image, respectively. All three datasets appear to be undergoing a turbulent mixing process at t ¼ 9.25. We observe

that, while the N ¼ 10242 and N ¼ 20482 runs appear to share many of the same general characteristics, the N ¼ 5122 run fails to

reproduce these same features. This failure implies that N ¼ 5122 is not enough to capture the turbulent effects of the magnetized KHI

without a SGS model. We note that the testing time slice is of particular importance, because it was used to evaluate the SGS models.

1
Because of memory-consumption issues, we used less data to

train the N ¼ 10242 f ¼ 2 and N ¼ 20482 f ¼ 2; 4 models.
Specifically, the N ¼ 10242 f ¼ 2 and N ¼ 20482 f ¼ 4 models
sampled training data every ∼0.5 time units. The N¼20482 f ¼ 2

model sampled training data every ∼1 time units.
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This approach ensures that even models that are trained

with low-resolution simulations are exposed to data with

sufficient size and variety. We found that this approach

prevents overfitting. In 3D, we expect to use fewer time

slices, as each time slice contains significantly more

samples than in 2D. Another observation is that we

experimented with data augmentation methods, as those

described in Ref. [19], which consist of augmenting the

data by providing multiple copies of each time slice but

choosing a different point after filtering [19]. However, we

found that this approach does not generalize well during

testing. To address that problem, we chose multiple time

slices during training.

After calculating the SGS tensors and the necessary

inputs to the ANN models, we exported the data to train the

model in TensorFlow [36]. The data were normalized to have

zero mean and unit standard deviation. We used 10% of the

simulated data for validation purposes. For the training of

the neural network model, we used an ADAM optimizer

with early stopping [37]. The maximum number of epochs

was 100. A batch size of 1000 was used during training.

VI. METHODOLOGY

In this section, we describe quantities that we will use to

test our neural network model and metrics to assess its

ability to correctly reproduce true features and properties of

the testing dataset.

A. Spectra calculation

The energy spectrum EðkÞ represents the spatial scale at
which the energy is distributed in a given process. For low

wave number k, we see the large-scale features of the

energy spectrum. On the other hand, high k values give the
small-scale features of the spectrum. The ultimate goal of

the large eddy simulation is to reproduce the energy

spectrum of the DNS simulations as closely as possible.

Appendix B describes how to compute these quantities.

In MHD turbulence, we are concerned about the energy

spectra of the kinematic motion EkinðkÞ and the magnetic

field EmagðkÞ. We note that these energy spectra have a

different expected distribution. The kinetic energy spec-

trum falls off as EkinðkÞ ∝ k−5=3 at high wave numbers.

However, the magnetic energy spectrum rises as EmagðkÞ ∝
k3=2 at large k values [13]. Thus, we expect the small-scale

behavior will be especially significant in the overall

magnetic energy contribution and must be modeled

carefully.

Moreover, we are interested in the total energy obtained

by integrating over all the spectra. By examining how the

total energy changes over time, we can extract useful

information about characteristics of the simulation. In

particular, we would like to measure how the kinetic energy

Ekin and magnetic energy Emag change through the effect of

the KHI.

B. Model performance criteria

To quantify the performance of our models, we will use

several common turbulence statistics. The first of these

statistics is the correlation coefficient C, which shows how

well the data and the model follow one another. We define

C as

C ¼ hðτDNS − hτDNSiÞðτmodel − hτmodeliÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðτDNS − hτDNSiÞ2ihðτmodel − hτmodeliÞ2i

p ; ð47Þ

where τDNS is the SGS tensor computed from filtering the

high-resolution data, τmodel is the SGS tensor computed

from the SGS model we are testing, and hxi is the

volumetric average of the quantity x. C can range from

−1 to 1 with values near to −1 being anticorrelated, values

near to 0 being uncorrelated, and values near to 1 being

well correlated. Simply put, the closer C is to 1, the better

the model. We use C as our primary measure of perfor-

mance for our models. We will also look at the relative error

between the model and the simulation denoted by E. E is

defined as

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðτDNS − τmodelÞ2i

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hτ2DNSi

p ; ð48Þ

with all quantities defined in the same manner as in

Eq. (47). We note that the lower the value of E is for a

model, the better the model. The root mean square (rms) of

the model tells us the degree to which the model deviates

from the average. The rms of a quantity x is given by

rmsðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðx − hxiÞ2i

q
: ð49Þ

Here, wewill calculate the rms for τmodel and τDNS. The goal

here is for the rms of τmodel is to be as close to the rms of

τDNS as possible. In addition, we would like to use the

absolute value of the rms of τDNS to tell us more about the

features of τ for the various models, resolutions, and

filter sizes.

VII. RESULTS

In this section, we present results of several tests we

conducted to assess the reliability of our neural network

model to accurately capture the physics of our testing

datasets.

A. Spectra

We will begin the discussion of the results by analyzing

the spectra of the simulations. The first three images in

Fig. 4 illustrate the spectra at the time slices of the

simulation that were featured in the density plots in

Fig. 2 with all simulation resolutions included. These

selected time slices occur at approximately t ¼ 1.5,
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5, 10. The last plot in Fig. 4 depicts the spectrum of the test

dataset whose density distribution can be seen in Fig. 3.

Figure 5 includes both Ekin and Emag. We observe that the

Ekin of the plots is fairly similar at low k values. The

obvious exception to this is the t ¼ 1.5 plot, where the low

k spectrum appears to still be settling down for both energy

types, though this effect does not appear to be resolution

dependent. We also notice that the 20482 resolution

simulation has reduced values of Ekin at low k compared

to the other simulations at later times, likely due to the

kinetic energy being converted into magnetic energy more

efficiently at high resolutions. At high k values, we observe
a faster Ekin falloff at low resolution. This drop off is likely

due to the effect of the finite grid resolution on the small-

scale features.

The magnetic field spectrum at low k is significantly

smaller than its kinetic energy counterpart. As k increases,
the magnetic field spectrum increases; it may eventually

surpass the kinetic energy spectra before decaying. It

appears that much of this decay is an effect of the finite

grid resolution. At later times, all Emag spectra increase

considerably. The high-resolution simulations have

noticeably greater Emag than those at lower resolutions.

This effect is likely caused by the conversion of kinetic

energy to magnetic energy being more efficient at high

resolutions.

The last plot in Fig. 4 presents the spectra of our testing

dataset. We observe that this plot shares similar character-

istics with the t ¼ 10 spectra plot. However, we note that

the high k region of the N ¼ 10242 simulation’s Emag
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FIG. 4. Plots of the energy spectra EðkÞ at various time steps throughout the simulation for each resolution. The kinetic energy spectra

EkinðkÞ is given by the solid lines, while the magnetic energy spectra EmagðkÞ is denoted by the dashed lines. The resolutions N ¼ 5122,

10242, and 20482 are given by the blue, red, and green lines, respectively. The top left, top right, and bottom left images are taken at

approximately t ¼ 1.5, 5, and 10, respectively, and correspond to the time steps displayed of the density distribution plots in Fig. 2. The

bottom right plot provides the spectra of the test dataset used for evaluating the models whose density distribution is featured in Fig. 3.
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spectra is weaker relative to the N ¼ 2048 simulation’s

Emag spectra than in the t ¼ 10 spectra plot.

Figure 5 shows the integrated energy spectrum or total

energy vs time starting at t ¼ 1 for both the kinetic energy

Ekin and the magnetic energy Emag in the first and second

plots, respectively. We notice that Ekin starts the same for all

simulations but decreases over time. The higher-resolution

simulations decreased in Ekin faster than those at lower

resolutions. This may indicate that Ekin is being converted

into Emag. On the other hand, Emag started fairly similar in

magnitude for all resolutions with deviations of the order of

unity. We then see an increase in the magnetic energy with

the higher-resolution simulations increasing much faster

than their lower-resolution counterparts. At t ∼ 7, the N ¼
10242 simulation is observed to rise faster than the N ¼
20482 simulation, which results in both simulations having

nearly equal energy by the end of the simulation at t ¼ 10.

Emag still appears to be increasing at t ¼ 10, which may

indicate that the process of magnetic amplification may still

be ongoing.

B. Model performance

For all subgrid filter sizes f and at all resolutions N, our

findings indicate that our neural network model outper-

forms the gradient model when evaluated on the test data.

To show this, let us first take a look at the results of models

with N ¼ 20482 at f ¼ 8, a case where the differences can

be clearly observed between the two SGS models.

Figure 6 presents targets vs predictions of the SGS

models for the test data at N ¼ 20482 and f ¼ 8. We notice

that both models show good performance when the

magnitude of the SGS tensor is low. However, at high
SGS tensor magnitudes, the gradient model significantly
underestimates the SGS quantities. Compared to the
gradient model, the ANN models predict more accurate
values for those high-magnitude targets, in particular, for
the components of τmag and τind tensors. We note that one

reason for the poor performance of the gradient model for
high SGS tensors may be due to it being a first-order model
and could potentially be improved using higher-order
corrections.
In Fig. 7, we show a histogram of the normalized

distribution of the SGS tensors of the N ¼ 20482, f ¼ 8

test data as well as those predicted by the ANN and
gradient models for this same dataset. We find that,

overall, the ANN model’s predictions more closely
resemble the distribution calculated from the DNS dataset
compared to those of the gradient model. This improve-
ment is especially noticeable for the τmag tensor compo-

nents. We also notice that the ANN model predicts some
negative values for the diagonal components of the SGS

tensors τkin and τmag. However, these predictions are

unphysical, as they violate the realizability constraint

which requires τii ≥ 0 [38,39]. Such unphysical behavior
can be resolved in ANN models by embedding the
physical constraint in the loss function, which will be a
subject of future work.
To understand exactly how models behave for a single

time slice of data, Fig. 8 shows the values of the
components of the SGS tensor τmag for the actual DNS
data τDNS, the ANN model τANN, and the gradient model
τgrad. From these plots, we observe that τANN performs

noticeably better in regions with significant small-scale
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FIG. 5. Time evolution of the total kinetic energy Ekin (left panel) and total magnetic energy Emag (right panel). The kinetic energy

decreases over time as it is being converted into magnetic energy. This energy conversion can be seen in the right panel, where Emag

increases over time. We notice that Ekin decreases more rapidly for the high-resolution runs while Emag increases more rapidly. This

would indicate that this conversion from Ekin to Emag occurs most efficiently at small scales that high-resolution simulations can best

resolve.
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structure in τDNS compared to τgrad. This effect is most

prevalent in τmag in Fig. 8, though is visible for most of the

other tensors. The plots depicting the values of the other

SGS tensors can be seen in Figs. 12–14 in Appendix C.

Having examined a specific SGS tensor qualitatively, we

will now move toward a more general quantitative dis-

cussion of the behavior of the SGS tensors at different

resolution and filter sizes for the models. For this, we will

FIG. 6. Predictions vs target values of SGS tensors for the N ¼ 20482 resolution test dataset with filter size f ¼ 8 for each of our SGS

models. The small transparent green circles represent values of the gradient model and are overlaid on top of the small transparent blue

circles, which represent the values of the ANN model. The black dashed line depicts a perfect one-to-one matching between the targets

and the predictions. The first row displays the xx, xy, and yy components of τkin from left to right, respectively. The middle row shows

the same information for the components of the τmag SGS tensor. The bottom row shows the xy component of τind on the left, the x

component of τenth in the middle, and the y component of τenth on the right. We observe that the blue circles of the ANN model appear

much closer to the dashed black line for high SGS tensor values than the green circles of the gradient model, especially in the τmag and

τind SGS tensors.
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start by looking at the correlation coefficient C presented

in Fig. 9.

In Fig. 9, we show the plots of correlation coefficient C
vs the filter size f for all resolutions simulated in this study.

Our findings show that all ANN models performed better

than their gradient model counterparts for every SGS tensor

component at the same N and f. The degree to which this

improvement occurred was dependent primarily on the

FIG. 7. Histogram of the normalized probability distribution of the values of SGS tensors for the N ¼ 20482 resolution test dataset

with filter size f ¼ 8 for each of our SGS models. The black dot-dashed line represents the distribution of the DNS data, the solid blue

line represents the distribution of the ANN model predictions, and the green dashed line represents the distribution of the gradient model

predictions. The first row displays the xx, xy, and yy components of τkin from left to right, respectively. The middle row shows the same

information for the components of the τmag SGS tensor. The bottom row shows the xy component of τind on the left, the x component of

τenth in the middle, and the y component of τenth on the right. We observe that the ANN model predictions more closely resemble the

distribution of the DNS values than those of the gradient model.

ARTIFICIAL NEURAL NETWORK SUBGRID MODELS OF 2D … PHYS. REV. D 101, 084024 (2020)

084024-11



filter size and the SGS tensor being analyzed. The effect of

the resolution is not entirely clear, but both models appear

to follow similar trajectories on lines at the same resolution.

In general, the value of C decreased as f increased. This

was particularly prevalent in the τmag and τind tensors. This

decrease in C at high f was much more significant in τgrad
than in τANN. This indicates that τANN performs better at

higher filter sizes, implying that we would be able get

accurate results from employing the ANN models at lower

resolutions than we could from the gradient model.

Moreover, the gradient model’s difficulty calculating

τmag and τind at high filter sizes suggests that it is not able

to reproduce the effects of turbulence on the magnetic

fields at lower grid resolutions. In contrast, our results

indicate that neural networks can address these limitations

in an a posteriori study. We observed that the purely

FIG. 8. Plots of the components of the τmag SGS tensor of the test dataset for the N ¼ 20482 resolution run with a filter size of f ¼ 8.

The columns depict the SGS tensor values of the exact DNS calculation, the ANN model reconstruction, and the gradient model

reconstruction from left to right, respectively. The top, middle, and bottom rows display the xx, xy, and yy components, respectively. We

observe that, while the ANN model appears to reproduce most of the visual features of the DNS calculation, the gradient model appears

to struggle in regions with more detailed structure.
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hydrodynamical τkin SGS tensor was the easiest to

compute accurately for both the ANN and gradient

models. Thus, the improvements in the ANN model’s

calculation of τkin should be considered less beneficial

than those from τmag and τind.

The energy SGS tensor τenth also receives a noticeable

improvement from the use of the ANN model over the

gradient model. This effect is again most prevalent at high f
values, more than for τkin but not quite as significant as the

τmag or τind terms. We should note again that the gradient

model is a leading-order expansion of the filtering operator

in grid spacing, which corresponds to filter size f. With a

higher-order expansion of the filtering operator, we may see

some improvement at high f.

FIG. 9. Here we plot the correlation coefficient C as a function of filter size f for all resolutions N, SGS tensor components τ, and SGS

models. The solid lines refer to the ANN model, and the dashed lines refer to the gradient model. The resolutions are given by the color

of the line; blue represents the N ¼ 5122 simulation, red represents the N ¼ 10242 simulation, and green represents the N ¼ 20482

simulation. We observe that the ANN model has a higher correlation coefficient than the gradient model for all SGS tensor components

at all resolutions. We also note that C generally decreases with increasing f, but this decay affects the gradient model more significantly.
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Figure 10 shows the relative error E between the

predictions of the gradient and ANN models compared

to the DNS data. The results mirror those discussed for the

correlation coefficient C in terms of E increasing with f
more quickly for the gradient model compared to the

ANN model.

In Fig. 11, we show the rms of τDNS, τANN, and τgrad for

all SGS tensor components at all resolutions. For τkin we

observe that the two models perform similarly in terms of

their proximity to the rms of τDNS, and both slightly

undershoot the true value for this SGS tensor. We also

notice that the value of the rms increases with filter size f,

FIG. 10. Here we plot the relative error E as a function of filter size f for all resolutions N, SGS tensor components τ, and SGS models.

The solid lines refer to the ANN model, and the dashed lines refer to the gradient model. The resolutions are given by the color of the

line; blue represents the N ¼ 5122 simulation, red represents the N ¼ 10242 simulation, and green represents the N ¼ 20482

simulation. We observe that E is lower for the ANN model than for the gradient model for all SGS tensor components at all resolutions.

We also note that E generally increases with f but is more severe for the gradient model than for the ANN model.
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while the performance of both models decreases slightly for

this metric at high f for τkin. This makes sense, as one

would expect more SGS behavior at high f as the grid

increases we have more SGS phenomena, resulting in the

SGS tensors being more difficult to model. The rms of the

low-resolution data is greater than that of the high-

resolution simulations for τkin. Moreover, this rise in rms

appears to be polynomial in f and occurs much more

prevalently at lower resolutions. This would imply that

there does not exist a preferred scale for τkin, as the rms

value appears to increase with the volume of the grid.

The rms plots of τmag, on the other hand, demonstrate

clear differences in the behavior of the models. For

example, the rms of the ANN model is considerably higher

than that of the gradient model for all components of τmag.

In turn, the rms of τANN is much closer than τgrad to the rms

of τDNS, which is greater than either model. The difference

between the rms of τmodel and the rms of τDNS is greatest at

FIG. 11. Here we plot the rms value as a function of filter size f for all resolutions N, SGS tensor components τ, and SGS models

including the DNS calculation. The solid lines refer to the ANN model, the dashed lines refer to the gradient model, and the dash-dotted

lines refer to the DNS calculation. The resolutions are given by the color of the line; blue represents the N ¼ 5122 simulation, red

represents the N ¼ 10242 simulation, and green represents the N ¼ 20482 simulation. We observe that the rms values are fairly similar

for the τkin SGS tensor components (top row) for both SGS models and the DNS result. For the SGS tensors τmag (middle row), τind
(bottom right), and τenth (bottom middle and left), the ANN model has a much closer rms value to the DNS result compared to the

gradient model.
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high values of f for both the ANN and gradient models,

with the difference between the rms of τDNS and τgrad being

much more severe. We also observe the N ¼ 5122 reso-

lution runs have a significantly lower rms value than the

others, implying that this resolution was too low to capture

much of the SGS behavior of the magnetic field.

Meanwhile, the rms values of the N ¼ 10242 and the N ¼
20482 simulations are fairly similar, which is not surprising

given that the value of Emag is fairly similar for the two

resolutions at t ¼ 9.25, the time slice of the training data.

The rms value increases with f for τmag, but this increase

slows down at high f. In contrast, we recall that the increase
in rms of τkin accelerates at high values of f. This behavior
when taken in conjunction with the significantly lower rms

value of the lowest-resolution run implies that τmag prefers

to act on small scales.

The plots of the rms values of τind share many of the

same characteristics as those of τmag in terms of the superior

performance of the ANN model over the gradient model,

the rms of the lowest-resolution run having the lowest

value, and the deceleration of the increase in rms at a high f
value. However, we would like to emphasize that the rms of

the N ¼ 10242 run is clearly greater than the N ¼ 20482

run unlike τmag, where their values were fairly similar. This

phenomenon likely results from the quick acceleration of

the increase of Emag of the test data slice at t ¼ 9.25 that

was observed in Fig. 5, which is evidenced in τind
representing the turbulent amplification of the magnetic

field. We also observe that the gradient model performs

particularly poorly for this SGS tensor at high f, where the
rms of τgrad actually decreases despite the rms of τDNS
actually increasing, albeit at a slower rate.

The rms plots of τenth show the lowest resolution having

the highest rms value, followed by the middle resolution,

and then the high resolution as in the plots of τkin. However,

we still observe a slower increase of rms at high f like τmag

and τind. The ANN model clearly models the rms of τenth
more closely than the gradient model as well. As with all

the previously mentioned SGS tensor components, the

performance of the models in computing the rms decreases

at high f.

VIII. CONCLUSIONS

We performed an a priori study to evaluate the accuracy

of ANN models of SGS ideal MHD turbulence with high-

resolution 2D simulations of the magnetized KHI. This is

the first such study of ANNs in MHD turbulence. We

compared the performance of the model to the gradient

model that has been proposed in similar studies of model-

ing MHD turbulence in the LES framework.

In this study, we showed that the ANN performs

significantly better than the gradient model in reproducing

the SGS tensors compared to the gradient model. This

improvement occurred at all resolutions, for all SGS

tensors, and filter sizes. However, the degree of improve-

ment varied considerably with the SGS tensor and fil-

ter size.

In particular, τmag, representing the turbulent effect of the

magnetic field on the motion of the field, and τind,

representing the turbulent amplification of the magnetic

field, are modeled much more accurately than with the

gradient model. This allows ANNs to provide a better

model of the turbulent effects of the magnetic field than any

model in the MHD turbulence literature.

Moreover, we demonstrated that the gradient model’s

performance falls off significantly at high filter sizes.

However, the ANN is able to maintain a much higher

correlation coefficient at high filter sizes. This implies that

ANNs may be able to reproduce the effect of turbulence

more accurately than gradient models.

Having established the potential of these ANNmodels of

MHD turbulence in an a priori study, there are various

pathways of future study for the use of ANN models. The

most obvious of which is a posteriori study, where we

deploy these models in an actual simulation and quantify

how well the SGS models reproduce the spectra. One may

also consider evaluating these models for more computa-

tionally intensive 3D simulations and, eventually, general

relativistic MHD. This work will also require the develop-

ment of loss functions that incorporate physical constraints

such as rotational invariance. These studies will be pursued

in the near future.
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APPENDIX A: ANN MODEL INPUTS

Here we explicitly note the inputs to each SGS tensor of

τANN for clarity:

Iτkin;net ¼ fṽm;n
i ; ṽm.1;n

i ; ṽm;n.1

i ; ∂pṽ
m;n
i ; ∂pṽ

m.1;n
i ; ∂pṽ

m;n.1

i ; ∂p∂qṽ
m;n
i ; ∂p∂qṽ

m.1;n
i ; ∂p∂qṽ

m;n.1

i g; ðA1Þ

Iτmag;net
¼ fB̄m;n

i ; B̄m.1;n
i ; B̄m;n.1

i ; ∂pB̄
m;n
i ; ∂pB̄

m.1;n
i ; ∂pB̄

m;n.1

i ; ∂p∂qB̄
m;n
i ; ∂p∂qB̄

m.1;n
i ; ∂p∂qB̄

m;n.1

i g; ðA2Þ
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Iτind;net ¼ fρ̄m;n; ρ̄m.1;n; ρ̄m;n.1; ∂pρ̄
m;n; ∂pρ̄

m.1;n; ∂pρ̄
m;n.1; ∂p∂qρ̄

m;n; ∂p∂qρ̄
m.1;n; ∂p∂qρ̄

m;n.1;

ṽm;n
i ; ṽm.1;n

i ; ṽm;n.1

i ; ∂pṽ
m;n
i ; ∂pṽ

m.1;n
i ; ∂pṽ

m;n.1

i ; ∂p∂qṽ
m;n
i ; ∂p∂qṽ

m.1;n
i ; ∂p∂qṽ

m;n.1

i ;

B̄m;n
i ; B̄m.1;n

i ; B̄m;n.1

i ; ∂pB̄
m;n
i ; ∂pB̄

m.1;n
i ; ∂pB̄

m;n.1

i ; ∂p∂qB̄
m;n
i ; ∂p∂qB̄

m.1;n
i ; ∂p∂qB̄

m;n.1

i g; ðA3Þ

Iτenth;net ¼ fρ̄m;n; ρ̄m.1;n; ρ̄m;n.1; ∂pρ̄
m;n; ∂pρ̄

m.1;n; ∂pρ̄
m;n.1; ∂p∂qρ̄

m;n; ∂p∂qρ̄
m.1;n; ∂p∂qρ̄

m;n.1;

ṽm;n
i ; ṽm.1;n

i ; ṽm;n.1

i ; ∂pṽ
m;n
i ; ∂pṽ

m.1;n
i ; ∂pṽ

m;n.1

i ; ∂p∂qṽ
m;n
i ; ∂p∂qṽ

m.1;n
i ; ∂p∂qṽ

m;n.1

i ;

h̃m;n; h̃m.1;n; h̃m;n.1; ∂ph̃
m;n; ∂ph̃

m.1;n; ∂ph̃
m;n.1; ∂p∂qh̃

m;n; ∂p∂qh̃
m.1;n; ∂p∂qh̃

m;n.1g; ðA4Þ

where the index i ¼ 1; 2 are the components of the vector,

the indices m and n correspond to the discrete spatial

location on the grid after filtering, and the indices p; q ¼
1; 2 represent the spatial indices along which we are taking

derivatives. The (m, n. 1) index refers to the value of the

quantities in the cells located at (m, n − 1) and m, nþ 1,

while (m. 1, n) refers to cells designated by (m − 1, n)
and (mþ 1, n).

APPENDIX B: SPECTRA CALCULATION

DETAILS

The spectra of the simulation EkinðkÞ and EmagðkÞ were
computed in Fourier space with a 2D shifted fast Fourier

transform (FFT) such that the FFT is centered at k ¼ 0

under the assumption of periodic boundary conditions

that were used in the simulation. We first calculated

the 2D wave number k2Dðkx; kyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
, where

kx ¼ 2πnx=Lx, ky ¼ 2πny=Ly, and Lx ¼ Ly ¼ 1 is the

length in the x and y directions, respectively. Here nx ∈
½−Nx=2; Nx=2 − 1( and ny ∈ ½−Ny=2; Ny=2 − 1( are inte-

gers, and Nx and Ny are the number of grid points in

the x and y directions, respectively. We then calculated

the energy spectra associated with each of these wave

numbers kx and ky for the 2D kinetic energy and magnetic

energy as

Ekin;2Dðkx; kyÞ ¼
dffiffiffiρp
vx

dffiffiffiρp
vx

/ þ dffiffiffiρp
vy

dffiffiffiρp
vy

/

N2
xN

2
y

; Emag;2Dðkx; kyÞ ¼
cBx

cBx
/ þcBy

cBy
/

N2
xN

2
y

; ðB1Þ

where x̂ is the 2D-shifted FFT of x, rendering it a function of kx and ky, and x/ is the complex conjugate of x.

k2D was then resampled over as k ¼ nΔk, where Δk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δk2x þ Δk2y

q
, Δkx ¼ π=Lx, Δkx ¼ π=Ly, and n ∈ ½1; N( is an

integer. To resample, we computed kdiffðk; kx; kyÞ ¼ jk − k2Dðkx; kyÞj for every value of kx and ky looping over values of k.
Then, for each value of k, we compute EkinðkÞ and EmagðkÞ as

EkinðkÞ ¼
X

kx

X

ky

#
Ekin;2Dðkx; kyÞ jkdiffðk; kx; kyÞj < Δk

2
;

0 otherwise;
ðB2Þ

EmagðkÞ ¼
X

kx

X

ky

#
Emag;2Dðkx; kyÞ jkdiffðk; kx; kyÞj < Δk

2
;

0 otherwise:
ðB3Þ

APPENDIX C: SGS TENSORS

Here we present the plots of the SGS tensors τkin, τind, and τenth in Figs. 12–14, respectively. Each figure provides the

value of τ computed from the DNS data τDNS, the ANN model τANN, and the gradient model τgrad.
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FIG. 12. The same as Fig. 8 for the SGS tensor components of τkin.

FIG. 13. The same as Fig. 8 for the SGS tensor components of τind.
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