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We explore the suitability of deep learning to capture the physics of subgrid-scale ideal magnetohy-
drodynamics turbulence of 2D simulations of the magnetized Kelvin-Helmholtz instability. We produce
simulations at different resolutions to systematically quantify the performance of neural network models to
reproduce the physics of these complex simulations. We compare the performance of our neural networks
with gradient models, which are extensively used in the magnetohydrodynamic literature. Our findings
indicate that neural networks significantly outperform gradient models in accurately computing the
subgrid-scale tensors that encode the effects of magnetohydrodynamics turbulence. To the best of our
knowledge, this is the first exploratory study on the use of deep learning to learn and reproduce the physics

of magnetohydrodynamics turbulence.
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I. INTRODUCTION

In astrophysical simulations of magnetohydrodynamics
(MHD) such as magnetized binary neutron star (BNS)
mergers, we confront turbulent phenomena in the limit of
an infinite Reynolds number Re [1]. While these turbulent
effects are often ignored, ultrahigh-resolution simulations
of magnetized BNS mergers have demonstrated that MHD
turbulence can amplify the magnetic field by several orders
of magnitude and occur only at resolutions that are too
computationally expensive to run in bulk [2,3]. This
amplification is due to the magnetized Kelvin-Helmholtz
instability (KHI), which occurs when two fluids flow past
each other in opposite directions. In order to help resolve
turbulence originating from the KHI, we examine the
methods employed in more traditional hydrodynamical
turbulence.

To resolve turbulent effects, the computational fluid
dynamics community uses several classes of simulations
that provide varying degrees of accuracy. Direct numerical
simulations (DNSs) provide the most accurate results by
capturing all the effects at all scales relevant to the problem
being studied. To resolve the turbulent effects of these
simulations, DNSs require extremely high resolutions that
scale as the cube of Re. This resolution requirement renders
DNSs feasible only for a small number of simulations.
Moreover, our problems of interest has an extremely high
Re, resulting in DNSs becoming too computationally
expensive for our work.

The other prominent techniques, Reynolds-averaged
Navier-Stokes (RANS) and large eddy simulations
(LESs), employ subgrid-scale (SGS) models to reproduce
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the most important effects of DNSs such as the energy
transfer rate at much lower resolutions. RANS is the most
widely used but is best suited for steady state phenomena.
For an instability such as the KHI, LESs serve as the
preferred approach. The goal behind LESs is to evolve the
equations with sufficient resolution to resolve the largest
eddies and rely on the SGS model to compute the
contribution of the smaller eddies.

Recent work has sought to develop SGS models of MHD
turbulence using traditional LES models [4—15]. However,
MHD turbulence presents some unique challenges not
observed in standard hydrodynamical turbulence.
Although the boundary conditions for problems of interest
are typically much simpler, the equations are more com-
plex. These complexities include a dynamo mechanism for
the conversion between kinetic and magnetic energy as
well as anisotropies arising from the magnetic field [15-
17]. Moreover, there exists a much weaker understanding
of MHD turbulence compared to the hydrodynamical
variety.

To resolve these complexities without exerting signifi-
cant efforts studying the intricacies of MHD turbulence, we
explore the use of artificial neural networks (ANNs) to act
as SGS models. Significant work has been done in
examining and evaluating ANN models of hydrodynamical
turbulence for both RANS and LESs in recent years [18—
26]. These studies indicate that ANNs may outperform
traditional approaches used to model turbulence.

In this article, we develop a proof-of-concept neural
network model to quantify the performance of deep-
learning algorithms to reproduce the true dynamics of
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turbulent magnetic field amplification at manageable res-
olutions of MHD simulations of the KHI in the LES
formalism. We use as a driver for this study 2D MHD
simulations and compare the performance of our neural
networks to traditional models, such as the a priori study
introduced in Ref. [13]. For reference, an a priori study
involves evaluating the performance of the models in how
closely they reproduce the SGS effects compared to the
filtered DNS data. In contrast, an a posteriori study would
implement these models in an actual simulation to observe
how the SGS models compare to the higher-resolution DNS
simulations. We leave the more computationally expensive
3D case as well as the implementation of these neural
network models, and subsequent a posteriori comparison
of the models, to future work. Herein, we will perform a
more in-depth analysis of the conditions each model
performs best in our a priori study to gain as much insight
as possible before moving to the more complicated tests.

This article is organized as follows: Sec. II provides an
overview of the LES formalism and its application to the
MHD equations. In Sec. III, we describe the SGS models
used in this work, including our proposed ANN model and
the traditional gradient model. Section IV describes the
simulations used to train and evaluate our SGS models. We
describe the methods in which those simulations were
employed to train the ANN model in Sec. V. In Sec. VI, we
define the metrics used to evaluate the SGS models. We
provide the results of our a priori study of the ANN SGS
turbulence model and compare its performance with that of
the gradient model. Section VIII summarizes our findings
and outline future directions of work.

II. LES FORMALISM

In this section, we introduce the mathematical formal-
isms that we will use throughout the article. We describe the
LES formalism and briefly describe the compressible MHD
equations, which will be used as the science driver of our
analysis.

A. Filtering

In the LES formalism, one views the grid resolution as a
spatial filter applied to a continuous variable. In this
approach, the size of the grid A corresponds to the size
of the filter. Typically, we start with very-high-resolution
data taken from DNS or experimental results and apply a
filter with a cutoff size Ay, where Ay > A is the lower-
resolution grid on which we want to perform our simu-
lation. We apply the kernel G to a field f as

F(x,1) = /_°° G(x — X)f(x, 1)dx'. (1)

For implicit LES simulations which are employed in this
work, the filtering operator of size A is applied to the high-

resolution simulation of grid size A when calibrating SGS
models. In turn, this filtering provides insight into the effect
of moving to a lower to a lower grid resolution. The choice
of filter depends on the numerical method employed. For
finite volume schemes like those used in this work, a box or
top-hat filter is used to simulate the spatial averaging that
occurs during such schemes. This filter kernel is given in
real space for D spatial dimensions as

D

G(Ix =x'|) = [[ Gi(lxi = %)), (2)

i=1
where

1/Ap if Jx; —xj| < Ap/2,

/ —
Gilli —xil) = {0 otherwise.
Filtering operators commute with linear terms. However,
nonlinearities in the MHD equations fail to commute with
the filtering operator. This results in a residual term known
as the SGS tensor. We will provide examples of these SGS
tensors in the next section.

For compressible fluids, we use a specific type of
filtering called Favre or density weighted to simplify our
problem by eliminating the SGS tensor in the continuity
equation. For some quantity f weighted by some density p,
we define the Favre filtered quantity f as

f==. (4)

‘bl‘;bg

This also gives us the identity pf = 5 f.

B. Compressible MHD equations

1. Unfiltered MHD equations

For the evolution of our system, we used the conservative
form of the ideal compressible Newtonian MHD equations.
Each equation continuity, momentum, induction, and
energy evolution, respectively, represents the local evolu-
tion of a globally conserved quantity. The equations are
given by

9,p + Oilpv'] = 0, (5)
. o o . B?
0,(pv’) + 0; |pv'v/ — B'B/ + 8" <p + 7)} =0, (6)

0,B/ + 0;[v'B/ — vIBi] = 0, (7)
O+ 9;[(u+ p+ B*)v' — (v;B))B'] =0,  (8)

where the total energy density u is defined as
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u=€+7+7. (9)

Here, the indices are spatial components assuming the
Einstein summation convention, 6" is the Kronecker delta,
p is the mass density, p is the pressure, e is the internal
energy density, v is the velocity, and B’ is the magnetic
field. The units of this expression are such that the speed of
light ¢ and the magnetic permeability y, are ¢ = py = 1.
For this system, we used an ideal gas equation of state
(EOS) to define p as

p=(—-1e (10)

where y is the adiabatic index set to y =4/3 for a
relativistic gas in this work. We note that we intentionally
did not exploit any simplifications made using the fact that
we have an ideal gas EOS to ensure that our ANN
turbulence model can be used for any generic EOS. This
is done to ensure that the model can be easily employed by
BNS simulations where the EOS is a variable parameter.

2. Filtered MHD equations

To derive the filtered equations, we apply Eq. (2) to
Egs. (5)-(8) [13]. We find these equations become

0,p + 0;[pv'] = 0, (11)
, . B? i
5‘,(ﬁ17]) + 0; |pv'v! — B'B/ 4 89 ([3 + 7>:| = _airglom»
(12)
0,B/ + 9,[v'B — /B = 07/, (13)
0, + 8i[(ﬁ +p+ Bz)'ﬁi - (TJJB])BI] = _aiféng + 2eng’
(14)

where the merged SGS tensor terms are given by
i =i _ i si(ls w5 -
Trom = PTy, — Tmag 1 0 Eéklfmag + (p - p) > (15)

i i ij = i B
Teng = Tenth + Tmom Y + TindBj’ (16)

and the scalar SGS tensor terms denoted by X are given by

Zeng = Zpres + Zinom + Zinds (17)

Zpres = Uiaip - biaiﬁ’ (18)

Zmom = 5 (Givj + 8jv,~)7mom, (19)
1 = = ij

Yind = ) (aiBj - ajBi)Tind' (20)

In the above expressions, we have defined

2

I
ST

an
I
=
|
]
| S

, (21)

>

p=(-1e (22)
and will define the enthalpy / and its filtered version / as

h=p+e+p, (23)

h=p+e+p, (24)

respectively.

For modeling the SGS terms in Eqs. (11)-(14), we care
only about 7y;, describing turbulent motion, ,,, describing
the contribution of the turbulent magnetic field to the
motion, 7,4 describing the turbulent amplification of the
magnetic field, and 7., describing the effect of turbulence
on the energy transfer. We neglect the terms (p — p) and
Yores» @8 We expect their contributions to be small and EOS
dependent, which reduces the robustness of our models.
The rest of the terms in Eqgs. (11)-(14) are combinations of
the aforementioned terms. The four SGS tensors we want to
model are defined formally as

T =il — B, (25)

vl = BB — B'BJ, (26)

@ = (VIB/ — v/B') — (¥'B/ — #/B), (27)
T = ho' = hil. (28)

The astute reader may notice that 7%, is actually a vector,
but we will refer to it as an SGS tensor throughout this work
for the sake of conciseness.

III. MODELING SGS TENSORS

In this section, we introduce the gradient model, which
currently represents the state of the art in the LES MHD
literature, and our deep-learning algorithm. In what fol-
lows, we will present direct comparisons between these two
methodologies to highlight their key differences and to
furnish evidence that deep learning outperforms the gra-
dient approach.

A. Gradient model

The gradient model is extensively used in the LES MHD
literature [13,15]. The prevalence of this model in other
LES MHD turbulence studies promotes it as a good
baseline to test the performance of our neural network
model. The gradient model is derived using the Taylor
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expansion of the SGS stress tensor under a particular
filtering operator. Here we use the leading-order expansion
of our box filtering operator which is also valid for a
Gaussian filter [15] to obtain

A
Fo=Fg+55 0703 (29)
— LA
f9=19+4; d'f0,3, (30)
s 7= A% i - 8ip_
f9=fa+3507\09-="37). (31)
p

for regular filtered terms, Favre filtered terms, and mixed
filtered terms, respectively [13]. This results in the follow-
ing expressions for the SGS tensors [13]:

X T
T = Ciln 73 400V, (32)
y N S
T = cgﬁagl—gakBlaka, (33)
. A2 A in: OP -
g = Cina 2 {akal (aka - 7"191)
(o D
— 0, <8kB’ - T”Bl)] : (34)
D

A7 d.p
. v .

7} Y. (35)

The coefficient C¥ is determined by the best fit of the
data to a time slice of filtered DNS data for each component

of 7/ 4 independently. The fitting is determined by

gra

Y (s (%7 (x))
forlgjrad (Xf)

Cii , (36)

where T;’l;ad is the SGS tensor calculated by the gradient

model in Egs. (32)-(35), TgNS is the true SGS tensor
computed directly from the DNS data, x, represents the
filtered grid, and Einstein summation notation is not used.
When employing this model in an a posteriori test, one
would estimate C” with a secondary filter [22,27]. In the
LES literature, this is known as a dynamical model.
However, we do not use a secondary filter for our a priori
study and instead filter the DNS data directly. We acknowl-
edge that this may overestimate the performance of the
gradient model compared to an a posteriori study.

Input Hidden
layer layer 1

Hidden Output
layer 2 layer

Input #1 — — Output #1
Input #2 — — Output #2
Input#3 — — Output #3
Input#4 — — Output #4
FIG. 1. Schematic illustration of a neural network. A multilayer

perceptron with two hidden layers is presented. Circles represent
neurons, whereas arrows correspond to weights.

B. Neural network model

ANNSs are the building blocks of deep neural networks.
The basic units of calculation in ANNSs are called neurons,
which are connected via weighted inputs that resemble
synapses. These biologically inspired models have the
proven capability of learning from data, which has accel-
erated the data-driven discovery revolution over the past
decade [28-32].

As shown in Fig. 1, a neural network creates a relation-
ship between the inputs and outputs. This relation uses
multiple layers of neurons connected through a series of
linear or nonlinear functions. The input layer takes the input
data and applies these operations to calculate its outputs X'
for each input i. Then, each of the ANN’s subsequent layers
[ takes the outputs of the previous layer X 5‘1 of layer / — 1
and applies this same calculations to calculate the outputs
X! of each of is neurons. The calculation is performed as

Xi = g(si + bi), (37)
sh=") "wixi, (38)
J

where ¢ is a nonlinear function known as an activation
function, and the parameters to be tuned during training are
the weights W1; and biases b!. The values of W}; and b} are
continually adjusted during the training stage until training
data with the same labels consistently yield similar results
in the output layer X£. In our case, the output of the neural
network model corresponds to the SGS tensor components.
For the activation function of the hidden layers, we selected
the rectified linear unit (RelL.U), which is common in
machine learning for its fast training speed. The ReLU
is defined as g(x) = max(0,x). For the output layer,
we used a linear activation function, defined simply as
g(x) = x.
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Most ANN models of turbulence use a multilayer
perception (MLP) network [19,21,22] or some slight
variation of an MLP [18,20]. In this work, we also employ
an MLP network to implement our model. The network
acts on individual grid cells. The network configuration
used in this work had an input layer with N; inputs, a
hidden layer with 64 neurons followed by another hidden
layer with 32 neurons, and finally an output layer with N
outputs.

There is some variation in the literature in selecting the
input features for ANN models of hydrodynamical turbu-
lence [18-23,25]. The inputs for ANN model 7,y Were all
quantities defined for the SGS tensors in Egs. (25)—(28),
the first and second derivatives of those quantities, and the
value of all aforementioned terms in cells adjacent to the
cell of interest. All derivatives were computed using fourth-
order centered finite differencing. For the mixed filtered
quantities 7;,q and 7,5, we add the mass density p to our
collection of variables that we include in the inputs in the
same manner described above. The inputs to each ANN are
explicitly given in Appendix A.

In our case, the outputs are all unique components of the
desired SGS tensor which vary depending on the tensor of
interest. Thus, we have Ny = 3 for 7, and 7,45, Np = 1
for 7;,4, and Ny = 2 for 7.y, This differs from most of the
literature, where a different ANN is used to find each
individual component of the SGS tensor [19,21-23]. By
computing all components of the SGS tensor, we hope to
incorporate physical symmetries and constraints into future
models of 754y such as Galilean invariance, though we do
not attempt to do so in this work.

For reference, we have chosen mean-squared error as the
loss function to optimize the performance of our neural
network model. We describe in detail the high-resolution
simulations of the magnetized KHI used to train and test

our models in Sec. IV. The hyperparameters of our neural
network model are presented in Sec. V.

IV. SIMULATION

To train and evaluate the model, we ran 2D magnetized
KHI simulations. As described above, the KHI instability
occurs when two fluids are moving in opposite directions.
When magnetic fields are included, the instability accel-
erates and the magnetic fields are amplified throughout the
process. The KHI was selected because BNS mergers, the
targeted application of this work, experience a KHI-like
process during the merger phase.

The simulations were run using the open-source
SIMFLOWNY code [33,34]. For these simulations, the grid
was a Cartesian square with x,y € [-L/2,L/2], with
length L = 1. These simulations were performed at three
grid sizes with the number of points N = 5122, N = 10242,
and N = 20482 for the low, medium, and high resolutions,
respectively. The boundary conditions were chosen to be
periodic in all directions. We evolved the equations for ten
units of time. Using a RK4 time integration scheme, we
evolved the MHD equations in Egs. (5)—(8) with time steps
of At = %. We show density plots of these simulations in

Figs. 2 and 3.

To assist in triggering the instability, we add velocity
perturbations to the system in both coordinate directions.
The specific setup for the initial conditions for the grid
functions in this simulation is given by

p = po+sgn(y) {5/7 tanh (Ma;ly’)] : (39)

v, = sgn(y) {Uxo tanh <m>] + v, sin(2zn,y), (40)
a

FIG. 2. Plots of the mass density distribution p time slices at t = 1.5, 5, 10 of our magnetized KHI simulations with a resolution of
N = 20482. On the left, we have the ¢ = 1.5 time slice, in which we can observe vortexes begin to form between the two fluids. The
number and size of these vortexes are controlled by an initial sinusoidal perturbation of the fluid velocity in the y direction. The center
plot at # = 5 occurs after many of the aforementioned vortexes have merged together, at which point the flow has become unsteady. This
unsteady flow manifests itself in the high-density fluid beginning to break apart. The rightmost plot at t = 10 depicts the fluids in a
turbulent mixing process with two low-density vortexes helping to drive this mixing.
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FIG. 3. Plots of the density distribution p of the test dataset at time slices ¢ = 9.25 for resolutions N = 5122, 10482, and 2048 in the
left, middle, and right image, respectively. All three datasets appear to be undergoing a turbulent mixing process at t = 9.25. We observe
that, while the N = 1024 and N = 2048 runs appear to share many of the same general characteristics, the N = 5122 run fails to
reproduce these same features. This failure implies that N = 5122 is not enough to capture the turbulent effects of the magnetized KHI
without a SGS model. We note that the testing time slice is of particular importance, because it was used to evaluate the SGS models.

vy = sgn(y){(ivy sin(27zn,x) exp [— <L:yl> 2} } (41)

Bx = BxO» (42)
By — ByO’ (43)
P = Do (44)

In the above expressions, p, = 1.5 and dp = —0.5 are the
average and difference of the low-density region p; = 1
and high-density region p, = 2, respectively. y; = 0.25 is
the y coordinate where the transition from p; to p, occurs.
a; = 0.01 is the characteristic size of this transition region,
providing a smooth transition that mitigates some of the
numerical instabilities of the transition between the differ-
ent density regions. v,q = 0.5 is the initial velocity of the
fluid in the x direction. év, = 0.01 is a sinusoidal pertur-
bation of v,, with n, =4 periods going along the y
direction. 6v, = 0.2 is a sinusoidal perturbation of the y
component of the velocity with n, = 7 periods along the x
direction. ¢ = 0.1 is the characteristic Gaussian falloff of
év, away from y,. We note that, for [y| > 0.45, év, is set
to 0. B,y = 0.001, By, =0, and p, =1 are the initial x
component of the magnetic field, initial y component of the
magnetic field, and initial pressure, respectively.

Like Ref. [13], we desired to evolve with similar
numerical methods to those used in numerical relativity
simulations of BNS mergers. We employed the method of
lines to discretize our system of equations. We used a finite
volume scheme with MP5 reconstruction and local lax
Friedrichs flux splitting for the evolution of our system,
which provides numerical stability even in the presence of
shocks. This scheme views the ideal MHD equations in
Egs. (5)—(8) as

U + 9. F =S, (45)

where U = {p, pv/, B/, u} are our conserved quantities, F
are the fluxes for those conserved fields, and S =
{0,0,0,0} are the source terms. The source term is set
to zero in our case but is nonzero, in general, if, say, an
external force like gravity is applied to the fluid. F is
allowed to depend on the conserved variables but not on
their derivatives. The SGS tensors, which depend on
derivatives of the conserved variables, would be placed
in S rather than F when implementing one of the afore-
mentioned SGS models in a simulation.

To preserve the divergence-free condition on the mag-
netic field, we used a hyperbolic divergence cleaning [35].
This divergence cleaning adds another evolution equation
to our system for ¢ to ensure the magnetic field divergence
decays to 0 and is defined as

a¢+¢ay:—%, (46)

r

where ¢, = 1 and ¢, = 0.18.

V. TRAINING

The KHI simulation data were filtered using a box filter
with filter sizes f =2, 4, 8, 16, where f is defined as

f= %. For each of the filter sizes and resolutions, SGS
tensors and inputs to the ANNs were calculated after t = 1
every ~0.1 time units until the simulation ended at t = 10.!
The test data evaluated these same quantities at ¢ =~ 9.25.

'Because of memory-consumption issues, we used less data to
train the N = 1024 f =2 and N = 2048 f = 2,4 models.
Specifically, the N = 1024 f = 2 and N = 2048 f = 4 models
sampled training data every ~0.5 time units. The N=2048> f = 2
model sampled training data every ~1 time units.
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This approach ensures that even models that are trained
with low-resolution simulations are exposed to data with
sufficient size and variety. We found that this approach
prevents overfitting. In 3D, we expect to use fewer time
slices, as each time slice contains significantly more
samples than in 2D. Another observation is that we
experimented with data augmentation methods, as those
described in Ref. [19], which consist of augmenting the
data by providing multiple copies of each time slice but
choosing a different point after filtering [19]. However, we
found that this approach does not generalize well during
testing. To address that problem, we chose multiple time
slices during training.

After calculating the SGS tensors and the necessary
inputs to the ANN models, we exported the data to train the
model in TensorFlow [36]. The data were normalized to have
zero mean and unit standard deviation. We used 10% of the
simulated data for validation purposes. For the training of
the neural network model, we used an ADAM optimizer
with early stopping [37]. The maximum number of epochs
was 100. A batch size of 1000 was used during training.

VI. METHODOLOGY

In this section, we describe quantities that we will use to
test our neural network model and metrics to assess its
ability to correctly reproduce true features and properties of
the testing dataset.

A. Spectra calculation

The energy spectrum (k) represents the spatial scale at
which the energy is distributed in a given process. For low
wave number k, we see the large-scale features of the
energy spectrum. On the other hand, high & values give the
small-scale features of the spectrum. The ultimate goal of
the large eddy simulation is to reproduce the energy
spectrum of the DNS simulations as closely as possible.
Appendix B describes how to compute these quantities.

In MHD turbulence, we are concerned about the energy
spectra of the kinematic motion &y;,(k) and the magnetic
field &y, (k). We note that these energy spectra have a
different expected distribution. The kinetic energy spec-
trum falls off as &g, (k) « k=/3 at high wave numbers.
However, the magnetic energy spectrum rises as Eyyg (k) o

/% at large k values [13]. Thus, we expect the small-scale
behavior will be especially significant in the overall
magnetic energy contribution and must be modeled
carefully.

Moreover, we are interested in the total energy obtained
by integrating over all the spectra. By examining how the
total energy changes over time, we can extract useful
information about characteristics of the simulation. In
particular, we would like to measure how the kinetic energy
E\i, and magnetic energy E,,, change through the effect of
the KHI.

B. Model performance criteria

To quantify the performance of our models, we will use
several common turbulence statistics. The first of these
statistics is the correlation coefficient C, which shows how
well the data and the model follow one another. We define
C as

((rpns = {7ons)) (Tmodel = (Fmodel)))
C= . (47
\/<(TDNS - <TDNS>)2><(Tm0del - <Tm0del>)2> ( )

where 7png 1S the SGS tensor computed from filtering the
high-resolution data, 7,4, 1S the SGS tensor computed
from the SGS model we are testing, and (x) is the
volumetric average of the quantity x. C can range from
—1 to 1 with values near to —1 being anticorrelated, values
near to 0 being uncorrelated, and values near to 1 being
well correlated. Simply put, the closer C is to 1, the better
the model. We use C as our primary measure of perfor-
mance for our models. We will also look at the relative error
between the model and the simulation denoted by E. E is
defined as

— \/<(TDNS B Tmodel)2>

<T]2)NS )

, (48)

with all quantities defined in the same manner as in
Eq. (47). We note that the lower the value of E is for a
model, the better the model. The root mean square (rms) of
the model tells us the degree to which the model deviates
from the average. The rms of a quantity x is given by

rms(x) = /{(x = (x))?). (49)
Here, we will calculate the rms for 7,,,4.; and zpng. The goal
here is for the rms of 7,,,4¢ is to be as close to the rms of
Tpns as possible. In addition, we would like to use the
absolute value of the rms of 7pyg to tell us more about the
features of 7 for the various models, resolutions, and
filter sizes.

VII. RESULTS

In this section, we present results of several tests we
conducted to assess the reliability of our neural network
model to accurately capture the physics of our testing
datasets.

A. Spectra

We will begin the discussion of the results by analyzing
the spectra of the simulations. The first three images in
Fig. 4 illustrate the spectra at the time slices of the
simulation that were featured in the density plots in
Fig. 2 with all simulation resolutions included. These
selected time slices occur at approximately ¢ = 1.5,
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FIG. 4. Plots of the energy spectra £(k) at various time steps throughout the simulation for each resolution. The kinetic energy spectra
Exin (k) is given by the solid lines, while the magnetic energy spectra &,,,, (k) is denoted by the dashed lines. The resolutions N = 5 122,
10242, and 20487 are given by the blue, red, and green lines, respectively. The top left, top right, and bottom left images are taken at
approximately 1 = 1.5, 5, and 10, respectively, and correspond to the time steps displayed of the density distribution plots in Fig. 2. The
bottom right plot provides the spectra of the test dataset used for evaluating the models whose density distribution is featured in Fig. 3.

5, 10. The last plot in Fig. 4 depicts the spectrum of the test
dataset whose density distribution can be seen in Fig. 3.

Figure 5 includes both £y, and £y,,,. We observe that the
Exin Of the plots is fairly similar at low k values. The
obvious exception to this is the t = 1.5 plot, where the low
k spectrum appears to still be settling down for both energy
types, though this effect does not appear to be resolution
dependent. We also notice that the 2048 resolution
simulation has reduced values of &, at low k compared
to the other simulations at later times, likely due to the
kinetic energy being converted into magnetic energy more
efficiently at high resolutions. At high k values, we observe
a faster &y, falloft at low resolution. This drop off is likely
due to the effect of the finite grid resolution on the small-
scale features.

The magnetic field spectrum at low k is significantly
smaller than its kinetic energy counterpart. As k increases,
the magnetic field spectrum increases; it may eventually
surpass the kinetic energy spectra before decaying. It
appears that much of this decay is an effect of the finite
grid resolution. At later times, all &,,,, spectra increase
considerably. The high-resolution simulations have
noticeably greater &, than those at lower resolutions.
This effect is likely caused by the conversion of kinetic
energy to magnetic energy being more efficient at high
resolutions.

The last plot in Fig. 4 presents the spectra of our testing
dataset. We observe that this plot shares similar character-
istics with the ¢+ = 10 spectra plot. However, we note that
the high k region of the N = 1024 simulation’s Emag
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FIG. 5. Time evolution of the total kinetic energy Ey;, (left panel) and total magnetic energy Ey,,, (right panel). The kinetic energy

decreases over time as it is being converted into magnetic energy. This energy conversion can be seen in the right panel, where E,,
increases over time. We notice that Ey;, decreases more rapidly for the high-resolution runs while E,,, increases more rapidly. This
would indicate that this conversion from Ey;, to Ey,, occurs most efficiently at small scales that high-resolution simulations can best

resolve.

spectra is weaker relative to the N = 2048 simulation’s
Emag SPectra than in the ¢ = 10 spectra plot.

Figure 5 shows the integrated energy spectrum or total
energy vs time starting at t = 1 for both the kinetic energy
Ey, and the magnetic energy E,, in the first and second
plots, respectively. We notice that Ey;, starts the same for all
simulations but decreases over time. The higher-resolution
simulations decreased in E};, faster than those at lower
resolutions. This may indicate that E;, is being converted
into E,,. On the other hand, E,,,,, started fairly similar in
magnitude for all resolutions with deviations of the order of
unity. We then see an increase in the magnetic energy with
the higher-resolution simulations increasing much faster
than their lower-resolution counterparts. At ~ 7, the N =
1024% simulation is observed to rise faster than the N =
2048?% simulation, which results in both simulations having
nearly equal energy by the end of the simulation at = 10.
Epnge still appears to be increasing at ¢ = 10, which may
indicate that the process of magnetic amplification may still
be ongoing.

B. Model performance

For all subgrid filter sizes f and at all resolutions N, our
findings indicate that our neural network model outper-
forms the gradient model when evaluated on the test data.
To show this, let us first take a look at the results of models
with N = 20482 at f = 8, a case where the differences can
be clearly observed between the two SGS models.

Figure 6 presents targets vs predictions of the SGS
models for the test data at N = 2048 and f = 8. We notice
that both models show good performance when the

magnitude of the SGS tensor is low. However, at high
SGS tensor magnitudes, the gradient model significantly
underestimates the SGS quantities. Compared to the
gradient model, the ANN models predict more accurate
values for those high-magnitude targets, in particular, for
the components of 7,,,,, and 7,4 tensors. We note that one
reason for the poor performance of the gradient model for
high SGS tensors may be due to it being a first-order model
and could potentially be improved using higher-order
corrections.

In Fig. 7, we show a histogram of the normalized
distribution of the SGS tensors of the N = 20482, f = 8
test data as well as those predicted by the ANN and
gradient models for this same dataset. We find that,
overall, the ANN model’s predictions more closely
resemble the distribution calculated from the DNS dataset
compared to those of the gradient model. This improve-
ment is especially noticeable for the 7,,, tensor compo-
nents. We also notice that the ANN model predicts some
negative values for the diagonal components of the SGS
tensors 7, and 7,,. However, these predictions are
unphysical, as they violate the realizability constraint
which requires z;; > 0 [38,39]. Such unphysical behavior
can be resolved in ANN models by embedding the
physical constraint in the loss function, which will be a
subject of future work.

To understand exactly how models behave for a single
time slice of data, Fig. 8 shows the values of the
components of the SGS tensor 7, for the actual DNS
data 7png, the ANN model 75Ny, and the gradient model
Torad- From these plots, we observe that toyy performs
noticeably better in regions with significant small-scale
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FIG. 6. Predictions vs target values of SGS tensors for the N = 20487 resolution test dataset with filter size f = 8 for each of our SGS
models. The small transparent green circles represent values of the gradient model and are overlaid on top of the small transparent blue
circles, which represent the values of the ANN model. The black dashed line depicts a perfect one-to-one matching between the targets
and the predictions. The first row displays the xx, xy, and yy components of 7;;, from left to right, respectively. The middle row shows
the same information for the components of the 7.,,, SGS tensor. The bottom row shows the xy component of zj,q on the left, the x
component of 7.4, in the middle, and the y component of 7.,y on the right. We observe that the blue circles of the ANN model appear
much closer to the dashed black line for high SGS tensor values than the green circles of the gradient model, especially in the 7,,,, and

Ting SGS tensors.

structure in 7pys compared tO 7g,q. This effect is most Having examined a specific SGS tensor qualitatively, we
prevalent in 7,,,,, in Fig. 8, though is visible for most of the ~ will now move toward a more general quantitative dis-

other tensors. The plots depicting the values of the other ~ cussion of the behavior of the SGS tensors at different
SGS tensors can be seen in Figs. 12-14 in Appendix C. resolution and filter sizes for the models. For this, we will
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Histogram of the normalized probability distribution of the values of SGS tensors for the N = 20482 resolution test dataset

with filter size f = 8 for each of our SGS models. The black dot-dashed line represents the distribution of the DNS data, the solid blue
line represents the distribution of the ANN model predictions, and the green dashed line represents the distribution of the gradient model
predictions. The first row displays the xx, xy, and yy components of zy;, from left to right, respectively. The middle row shows the same
information for the components of the 7,,,, SGS tensor. The bottom row shows the xy component of 7,4 on the left, the x component of
Teneh 10 the middle, and the y component of 7.4, on the right. We observe that the ANN model predictions more closely resemble the
distribution of the DNS values than those of the gradient model.

start by looking at the correlation coefficient C presented  Our findings show that all ANN models performed better

in Fig. 9.

than their gradient model counterparts for every SGS tensor

In Fig. 9, we show the plots of correlation coefficient C ~ component at the same N and f. The degree to which this
vs the filter size f for all resolutions simulated in this study. improvement occurred was dependent primarily on the
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FIG. 8. Plots of the components of the 7,,,,, SGS tensor of the test dataset for the N = 2048 resolution run with a filter size of f = 8.
The columns depict the SGS tensor values of the exact DNS calculation, the ANN model reconstruction, and the gradient model
reconstruction from left to right, respectively. The top, middle, and bottom rows display the xx, xy, and yy components, respectively. We
observe that, while the ANN model appears to reproduce most of the visual features of the DNS calculation, the gradient model appears

to struggle in regions with more detailed structure.

filter size and the SGS tensor being analyzed. The effect of
the resolution is not entirely clear, but both models appear
to follow similar trajectories on lines at the same resolution.
In general, the value of C decreased as f increased. This
was particularly prevalent in the 7, and 7;,q tensors. This
decrease in C at high f was much more significant in 7,4
than in 7,ny. This indicates that 7,5y performs better at
higher filter sizes, implying that we would be able get

084024-

accurate results from employing the ANN models at lower
resolutions than we could from the gradient model.
Moreover, the gradient model’s difficulty calculating
Tmag and 7jq at high filter sizes suggests that it is not able
to reproduce the effects of turbulence on the magnetic
fields at lower grid resolutions. In contrast, our results
indicate that neural networks can address these limitations
in an a posteriori study. We observed that the purely
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FIG. 9. Here we plot the correlation coefficient C as a function of filter size f for all resolutions N, SGS tensor components 7, and SGS
models. The solid lines refer to the ANN model, and the dashed lines refer to the gradient model. The resolutions are given by the color
of the line; blue represents the N = 5122 simulation, red represents the N = 1024> simulation, and green represents the N = 20482
simulation. We observe that the ANN model has a higher correlation coefficient than the gradient model for all SGS tensor components
at all resolutions. We also note that C generally decreases with increasing f, but this decay affects the gradient model more significantly.

hydrodynamical 7;, SGS tensor was the easiest to  gradient model. This effect is again most prevalent at high f
compute accurately for both the ANN and gradient  values, more than for 7;, but not quite as significant as the
models. Thus, the improvements in the ANN model’s 7., Or 7j,q terms. We should note again that the gradient
calculation of 7y;, should be considered less beneficial model is a leading-order expansion of the filtering operator
than those from 7, and 7jyq. in grid spacing, which corresponds to filter size f. With a

The energy SGS tensor 7.,y also receives a noticeable  higher-order expansion of the filtering operator, we may see
improvement from the use of the ANN model over the  some improvement at high f.
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FIG. 10. Here we plot the relative error E as a function of filter size f for all resolutions N, SGS tensor components 7, and SGS models.
The solid lines refer to the ANN model, and the dashed lines refer to the gradient model. The resolutions are given by the color of the
line; blue represents the N = 5122 simulation, red represents the N = 1024> simulation, and green represents the N = 20482
simulation. We observe that E is lower for the ANN model than for the gradient model for all SGS tensor components at all resolutions.
We also note that E generally increases with f but is more severe for the gradient model than for the ANN model.

Figure 10 shows the relative error E between the
predictions of the gradient and ANN models compared
to the DNS data. The results mirror those discussed for the
correlation coefficient C in terms of E increasing with f
more quickly for the gradient model compared to the
ANN model.

In Fig. 11, we show the rms of 7pys, Tann, and g for
all SGS tensor components at all resolutions. For 7;, we
observe that the two models perform similarly in terms of
their proximity to the rms of 7png, and both slightly
undershoot the true value for this SGS tensor. We also
notice that the value of the rms increases with filter size f,
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FIG. 11. Here we plot the rms value as a function of filter size f for all resolutions N, SGS tensor components 7, and SGS models
including the DNS calculation. The solid lines refer to the ANN model, the dashed lines refer to the gradient model, and the dash-dotted
lines refer to the DNS calculation. The resolutions are given by the color of the line; blue represents the N = 5122 simulation, red
represents the N = 10242 simulation, and green represents the N = 2048 simulation. We observe that the rms values are fairly similar
for the 7,4, SGS tensor components (top row) for both SGS models and the DNS result. For the SGS tensors 7,,, (middle row), zj,q
(bottom right), and 7,4, (bottom middle and left), the ANN model has a much closer rms value to the DNS result compared to the

gradient model.

while the performance of both models decreases slightly for
this metric at high f for 7,;,. This makes sense, as one
would expect more SGS behavior at high f as the grid
increases we have more SGS phenomena, resulting in the
SGS tensors being more difficult to model. The rms of the
low-resolution data is greater than that of the high-
resolution simulations for 7;,. Moreover, this rise in rms
appears to be polynomial in f and occurs much more
prevalently at lower resolutions. This would imply that

there does not exist a preferred scale for zy;,, as the rms
value appears to increase with the volume of the grid.
The rms plots of 7,,,,, on the other hand, demonstrate
clear differences in the behavior of the models. For
example, the rms of the ANN model is considerably higher
than that of the gradient model for all components of 7.
In turn, the rms of 7xy is much closer than 74,4 to the rms
of 7pns, Which is greater than either model. The difference
between the rms of 7,,,,4o; and the rms of g is greatest at
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high values of f for both the ANN and gradient models,
with the difference between the rms of 7pyg and 74,4 being
much more severe. We also observe the N = 5122 reso-
lution runs have a significantly lower rms value than the
others, implying that this resolution was too low to capture
much of the SGS behavior of the magnetic field.
Meanwhile, the rms values of the N = 10242 and the N =
20482 simulations are fairly similar, which is not surprising
given that the value of E,, is fairly similar for the two
resolutions at t = 9.25, the time slice of the training data.
The rms value increases with f for z,,,,, but this increase
slows down at high f. In contrast, we recall that the increase
in rms of 7;, accelerates at high values of f. This behavior
when taken in conjunction with the significantly lower rms
value of the lowest-resolution run implies that 7,,,, prefers
to act on small scales.

The plots of the rms values of 7;,q4 share many of the
same characteristics as those of 7, in terms of the superior
performance of the ANN model over the gradient model,
the rms of the lowest-resolution run having the lowest
value, and the deceleration of the increase in rms at a high f
value. However, we would like to emphasize that the rms of
the N = 10247 run is clearly greater than the N = 2048>
run unlike 7,,,,, Where their values were fairly similar. This
phenomenon likely results from the quick acceleration of
the increase of E,, of the test data slice at 7 = 9.25 that
was observed in Fig. 5, which is evidenced in 7;4
representing the turbulent amplification of the magnetic
field. We also observe that the gradient model performs
particularly poorly for this SGS tensor at high f, where the
rms of 7,4 actually decreases despite the rms of 7pyg
actually increasing, albeit at a slower rate.

The rms plots of 7.4, show the lowest resolution having
the highest rms value, followed by the middle resolution,
and then the high resolution as in the plots of 7;;,. However,
we still observe a slower increase of rms at high f like 7,5,
and 7;,q. The ANN model clearly models the rms of 7,
more closely than the gradient model as well. As with all
the previously mentioned SGS tensor components, the
performance of the models in computing the rms decreases
at high f.

VIII. CONCLUSIONS

We performed an a priori study to evaluate the accuracy
of ANN models of SGS ideal MHD turbulence with high-
resolution 2D simulations of the magnetized KHI. This is
the first such study of ANNs in MHD turbulence. We
compared the performance of the model to the gradient

|

_ f~mn ~m*+ln ~mntl ~Mm,n ~m=*l,n ~m,n+1 ~m,n ~m=El.n ~m,ntl1
I, .. = 10", v 0 L 0,07, 0,07, 0,07, 0,0,07",0,0,07 ", 0,0,7] .

s Vi Vi

Tmag.net

_ (pmn pm*ln pmntl Dm,n pm+l.n pm,ntl pm,n pm+l,n pm,n+1
= (B B/ By 0, B0, B 0, B 0,0,B", 0,0,B " 0,0,BI Y,

model that has been proposed in similar studies of model-
ing MHD turbulence in the LES framework.

In this study, we showed that the ANN performs
significantly better than the gradient model in reproducing
the SGS tensors compared to the gradient model. This
improvement occurred at all resolutions, for all SGS
tensors, and filter sizes. However, the degree of improve-
ment varied considerably with the SGS tensor and fil-
ter size.

In particular, 7,,,, representing the turbulent effect of the
magnetic field on the motion of the field, and 7,
representing the turbulent amplification of the magnetic
field, are modeled much more accurately than with the
gradient model. This allows ANNSs to provide a better
model of the turbulent effects of the magnetic field than any
model in the MHD turbulence literature.

Moreover, we demonstrated that the gradient model’s
performance falls off significantly at high filter sizes.
However, the ANN is able to maintain a much higher
correlation coefficient at high filter sizes. This implies that
ANNs may be able to reproduce the effect of turbulence
more accurately than gradient models.

Having established the potential of these ANN models of
MHD turbulence in an a priori study, there are various
pathways of future study for the use of ANN models. The
most obvious of which is a posteriori study, where we
deploy these models in an actual simulation and quantify
how well the SGS models reproduce the spectra. One may
also consider evaluating these models for more computa-
tionally intensive 3D simulations and, eventually, general
relativistic MHD. This work will also require the develop-
ment of loss functions that incorporate physical constraints
such as rotational invariance. These studies will be pursued
in the near future.
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APPENDIX A: ANN MODEL INPUTS

Here we explicitly note the inputs to each SGS tensor of
TannN for clarity:

(A1)

(A2)
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_ fmzmn mm*+l.n mmntl —m,n -m=*1l,n
Lo = 1" P50, L 0pp"™ ", Opp" ", 0

Vi, s U s OpU;, Op0;

Hm.n ~mi1,n Em,nil a ~m,n a ~mi1.n7 7,

pmn pmtl.n pmntl pm.n pm+tl.n pm,ntl nm,n pmtl.n pm,nt1
By B B 0B 0, B 0B, 0,0,B,0,0,B 0,0, )

'bm,nil , 8P8qpm.n 8 aqﬁmil,n’ apaqﬁm,nil ,

»“p

~m,n+t1 ~Mm,n ~m=+l,n ~m,n+l
D ,a,,aqvl. ,8,,8,11)1- ,a,,aqvi ,

(A3)

_ f=mmn mmtln =mntl —m,n —m=+1,n —m,n+1 —m,n -m=+1,n —m,n+1
Ly = 0™ 0 P A N 20 0gp™". 0,04 2 0p0gp™ "=

~mn ~mEln ~mntl ~m,n ~m=+1,n ~m,n+1 ~m,n ~m+1.n ~m,n+1
A D , 0,0, 0,7 , 0,7 ,0,0,07"",0,0,0; ,0,0,7; ,

i Y > Yi

Tmmn Tmxln Tmntl Tm,n 7.m=E1l.n 7mn+1 7.m,n 7.m+tl.n 7.m,n+l1
Jyen el Jmasl g o g ke g okl g g jmn 9 9 e 9 9 ey,

where the index i = 1,2 are the components of the vector,
the indices m and n correspond to the discrete spatial
location on the grid after filtering, and the indices p, g =
1,2 represent the spatial indices along which we are taking
derivatives. The (m, n = 1) index refers to the value of the
quantities in the cells located at (m, n — 1) and m, n + 1,
while (m £ 1, n) refers to cells designated by (m — 1, n)
and (m + 1, n).

APPENDIX B: SPECTRA CALCULATION
DETAILS

The spectra of the simulation Ey, (k) and &y, (k) were
computed in Fourier space with a 2D shifted fast Fourier
|

\/ﬁvx\ﬁvx* + /P, /’”y*

5kin.2D(kx’ ky) = N2N2
xtVy

(A4)

|
transform (FFT) such that the FFT is centered at k =0
under the assumption of periodic boundary conditions
that were used in the simulation. We first calculated

the 2D wave number kp(k,. k,) = \/k? + k3, where
ky =2zn,/L,, k,=2zn,/L,, and L, =L, =1 is the
length in the x and y directions, respectively. Here n, €
[-N,/2,N,/2—1] and n, € [-N,/2,N,/2 — 1] are inte-
gers, and N, and N, are the number of grid points in
the x and y directions, respectively. We then calculated
the energy spectra associated with each of these wave
numbers k, and k, for the 2D Kinetic energy and magnetic
energy as

BB, +B,B,
5 gmag’zD(kx, k}) = _Amx YTy ,

Bl
e (B1)

where % is the 2D-shifted FFT of x, rendering it a function of k, and k,, and x* is the complex conjugate of x.

kop was then resampled over as k = nAk, where Ak =

\/Ak2 + AKS, Ak, = /L, Ak, = z/L,, and n € [1,N] is an

integer. To resample, we computed kg (k, ky, k) = [k — kop (k. k)| for every value of k, and k, looping over values of k.
Then, for each value of k, we compute &;,(k) and &, (k) as

Exin(k) = Z Z{ gkimw(kw ky)
ke ky

Emek) = > Z{ gmagm
ke Ky

ke k)

x> vy

|kaige (k. ko k)| < 5F,
otherwise,

|kaite (k. ko k)| < 5E,

otherwise.

APPENDIX C: SGS TENSORS

Here we present the plots of the SGS tensors 7, Zjng, and 7, in Figs. 12—14, respectively. Each figure provides the
value of 7 computed from the DNS data 7pys, the ANN model 7,xy, and the gradient model 7yp,q.
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FIG. 12. The same as Fig. 8 for the SGS tensor components of 7;,.
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FIG. 13. The same as Fig. 8 for the SGS tensor components of z;,4.
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FIG. 14. The same as Fig. 8 for the SGS tensor components of 7 pg,.
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