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Abstract—Many social networks contain sensitive relational in-
formation. One approach to protect the sensitive relational infor-
mation while offering flexibility for social network research and
analysis is to release synthetic social networks at a pre-specified
privacy risk level, given the original observed network. We
propose the DP-ERGM procedure that synthesizes networks that
satisfy the differential privacy (DP) via the exponential random
graph model (EGRM). We apply DP-ERGM to a college student
friendship network and compare its original network information
preservation in the generated private networks with two other ap-
proaches: differentially private DyadWise Randomized Response
(DWRR) and Sanitization of the Conditional probability of Edge
given Attribute classes (SCEA). The results suggest that DP-
EGRM preserves the original information significantly better
than DWRR and SCEA in both network statistics and inferences
from ERGMs and latent space models. In addition, DP-ERGM
satisfies the node DP, a stronger notion of privacy than the edge
DP that DWRR and SCEA satisfy.

Keywords—exponential random graph model (ERGM); goodness
of fit; node differential privacy (DP); social networks; Bayesian,
posterior distribution

I. INTRODUCTION

For the last few decades, social network (SN) analysis and
research have grown tremendously, especially with the emer-
gence of social media (e.g., Facebook and Twitter). While the
voluminousness and popularity of social network data have
enabled new discoveries, they have also increased privacy risk
of individuals, such as the Facebook network data explored by
Cambridge Analytica [1], and networks on sexual relationships
and sexually transmitted diseases [2, 3].

The state-of-art research work on protecting the privacy of
graph or network data is largely built upon the concept
of differential privacy (DP) [4], which provides a rigorous
mathematical guarantee on privacy protection. Two notions
of DP for relational data have been proposed: edge DP and
node DP. A procedure that satisfies the edge DP ensures
that its output does not reveal more information regarding a
particular relation on top of what the data intruder already
knows, while the output from a procedure of node DP does not
reveal more information regarding the relationships between
a particular node with the rest of the nodes in a network on
top of what the data intruder already knows. Therefore, the
node DP considers provides a stronger guarantee of privacy
protection than edge DP and is more relevant for preserving the
global structure of a network, which is the focus of this paper.
Exiting approaches on network privacy protection using node
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DP include the Johnson-Linderstrauss transform to release
the number of edges crossed in a graph cut [5], projection
the original graph onto the set of graphs with the maximum
degree below a certain threshold [6], mechanisms for private
sub-graph counting [7], and generalization of the exponential
mechanism [8] to approximate the degree distribution [9].

To the best of our knowledge, the existing approaches of
node DP focus on releasing specific graph summary statistics.
For social network data analysis, outputting a limited set of
summary statistics of a network may not be satisfactory from
the practical or research perspective. One solution to accom-
modate the practical and research needs on network data while
ensuring the privacy of the networks in the DP framework is to
release differentially private surrogate or synthetic networks,
so that users can perform their own analysis as if they had the
original network data.

There exist a few approaches for differentially private synthe-
sis of networks and all are built on the weaker edge DP. [10]
introduce an algorithm that releases synthetic relational data
based on differentially private 5 models, which are a simple
type in the exponential random graph model family. Simplicity
is the biggest disadvantage of this approach in that synthetic
networks may greatly deviate from the observed network. [11]
develop a privacy preserving network generator based on dK -
graph models [12]. There are two limitations for this approach.
First, the privacy budget, which is the pre-set privacy risk
tolerance level, needs to be relatively large to have key original
network information preserved in generated graphs. Second,
algorithms for generating graphs when d > 3 do not exist.
[13] develop a differentially private dyadwise randomized
response (DWRR) approach. the DWRR is straightforward
to implement, but synthetic networks tend to be very dense
unless the privacy budget is large. In addition, each edge is
perturbed locally, which could distort the global structure of
the original network. DWRR also assigns a separate pres-set
privacy budget when sanitizing each edge. If different edges
are not independent, the total privacy cost from the whole
network will exceed the nominal per-edge privacy budget.

In summary, all the above mentioned private network synthesis
approaches have some drawbacks. Methods for synthesizing
networks that guarantee the privacy of the released whole
network while maintaining its utility are still in great need. We
propose a new approach, DP-ERGM, that generates private
networks via exponential random graph models (ERGMs).
We choose to use ERGMs because they are flexible genera-
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tive models for networks, incorporating important topological
and nodal information, and can model complex relationships
among nodes. Compared to the existing approaches for private
network synthesis, DP-ERGM has the following advantages.
First, from a privacy protection perspective, it satisfies node
DP for the whole network and thus provides stronger guarantee
of privacy protection. Second, the synthetic networks via DP-
ERGM are expected to preserve well the original network
structures for a large range of networks.

II. METHODOLOGY
A. Preliminaries on Differential Privacy (DP)

Definition 1 (DP [4]). A sanitization algorithm R releases
statistics s with e-DP if for all possible data set pairs (x,x’)
that differ by one record, and all results @ C T,

s (piwtaned)| <

where 7 denotes the output range of R(s), and € > 0 is the
privacy budget.

6]

The privacy budget € is pre-specified and represents the privacy
risk for releasing a query from the sanitization algorithm R.
The smaller € is, the lower the probability of identifying an
individual based on the released sanitized query. DP provides a
mathematically rigorous framework for protecting individuals
when releasing statistics from a data set, regardless of the
knowledge and behaviors of data intruders.

There are some commonly used DP mechanisms for re-
leasing queries. The Laplace mechanism [4] adds noise
to original statistics s = (s1,...,Skx) to generate san-
itized s* = s + e, where e Laplace(0, 01 /€¢) and
01 is the [; the maximum change in s with the change
of one record in data (global sensitivity). The exponen-
tial mechanism releases query result s* with probability
exp(u(s*)e/(20u))/ Yy es exp(u(s’)e/(20,)), where &, is
the maximum change in an utility function u with one element
change in data x. Other mechanisms include the Gaussian
mechanism [14, 15] that relies on the relaxed DP concepts
such as approximate DP [16] and probabilistic DP [17]).

B. Exponential Random Graph Models (ERGMs)

ERGMs are a family of popular statistical models for ana-
lyzing social network data [18, 19]. ERGMs are effective for
explaining the structure of a network, and obtaining statistical
inference on the processes that influence the network struc-
tures. They are also effective generative models for network
data, accommodating various types of structural dependencies
among the nodes in a network. A ERGM is specified as

p(yl|x,0) = exp {07 S(y,x)}/K(8), )

where y is the n X n adjacency matrix among the nodes in
a network (y;; = 1 if nodes 7 and j are connected, y;; = 0
otherwise); x is a n X ¢ matrix that contains ¢ nodal attributes
of the n nodes; and S(y, x) is a vector that contains summary
statistics on the network structure as well as nodal statistics
that might affect y; and 6 is of the same dimension as S(y, x)

and contains the model parameters and represents the effects
of S(y,x) on the network structure. K(0) in Eqn (2) is an
analytically intractable normalizing constant summed over all
possible adjacency matrix y’.

C. Differentially Private Social Network Synthesis via ERGM
(DP-ERGM)

Leveraging the properties and functionalities of ERGMs, we
propose the DP-ERGM procedure to synthesize differentially
private networks. DP-ERGM is based on a Bayesian frame-
work. The steps of the DP-ERGM procedure are provided in
Algorithm 1. In brief, we first obtain the posterior distribution
p(8ly,x) given the likelihood function in Eqn (2) and a data
user-specified prior on 6. We then sanitize p(60|y, x) to obtain
differentially private p*(0]y,x) and draw a sample of 6%,
which will be used by the ERGM model in Eqn (2) to generate
a network. The process of sanitization and drawing can be
repeated m > 1 times to generate m synthetic networks so

Algorithm 1 DP-ERGM

1: Input: original network (x,y), a prespecified EGRM M
or a set of candidate EGRMs, privacy budget e; number
of synthetic networks m.

2: Output: m differentially private synthetic networks

3:Dok=1,...,m

If a set of ERGMs are given, select a model M®F) via
the exponential mechanism with privacy budget €' /m,
where ¢’ is the allocated budget for model selection.

s:  Run model M) on (x,y) in the Bayesian framework

to obtain the empirical or an approximate posterior
distribution p(0|x, y).

6:  Obtain differentially private posterior sample 0**®) with

budget (e—¢')/m.

7:  Feed 0*(k), nodal information x, and M® (o Algo-

rithm 2 to generate a differentially private network.

8: End Do

Algorithm 2 Generation of networks from ERGM via Monte
Carlo Markov chain sampling

1: Input: ERGM(6, x); MCMC iterations 7.

2: Qutput: a random network sample from ERGM(8, x)

3: Initialize a network y(%). Calculate statistics S(©) associ-

ated with ERGM(6, x).

4:Dot=1,....,T

5. Randomly choose a pair of nodes (i,;) from y(—1)
and flip the edge between them to propose a candidate
network y°.

. Calculate summary statistics S¢ given (x,y®).

7. Set y() = y¢ with probability min(1,7), where 7 =
exp (67 (8¢~ (1))

8: End Do

to capture the sanitization and the synthesis uncertainty to
allow for valid statistical inferences on 6 given the released
networks. The inferences for a statistical model fitted to the
multiple sets can be combined with the formulas given in [20]
and [21]. To preserve DP in releasing m sets of networks, each
synthetic set is allocated a privacy budget of 1/m of the total
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privacy budget e per the sequential composition. Our empirical
studies suggests m = 3 to 5 is a good choice in general and
provides enough information across multiple synthetic sets
to capture the sanitization and synthesis uncertainty without
injecting too much DP noise in each individual synthetic set.

Following the current practice in generating differentially pri-
vate synthetic networks, Algorithm 1 focuses on synthesizing
relations/edges y, and the nodes in the sanitized networks
are kept the same as the original. If the original network has
nodal attributes that are deemed sensitive, one may allocate a
portion of the total budget € to generate differentially private
nodes x*(¥). Since nodal data are often presented in tabular
forms, there exist various approaches for sanitizing this type
of data, such as the Laplace sanitizer of the full-dimensional
histogram of x. Readers may refer to [21] for a brief review
on differentially private synthesis of tabular data.

Proposition 1. The synthetic network via the DP-ERGM
procedure in Algorithm 1 satisfies the node-DP for a given
ERGM.

The detailed proof of the
provided in an extended paper.
posterior distribution p(x*,y*|x,y) can be written as
I p(y*|x*,0)p(0]x,y)p(x*|x)d6. p(0*|x,y) satisfies the
node DP per the nature of ERGMs. The differentially
private sanitization of p(x*|x) does involve edges, so strictly
speaking, the differentiation between the node DP vs. edge
DP really does not apply to p(x*|x). Denote by ¢, the budget
allocated to sanitize x and G = (x,y) and G = (x',y’)
two networks differing by one node and the corresponding
changes in its relations with other nodes, then

_ p(x*[x) [p(y*|x*, 0)p(0]x,y)do
p(x*y*x,y')  px|x') [ p(y*|x*,0)p(0]x',y")d0
.. Jp(y*x*,0)p(0]x,y)d0
fp y*|x*, 0)p(0]x’, y’)d6
<eezfp Yo", 0)e wp(0)x,y)do
- [ p(y*|x*,0)p(0|x',y")dO

proposition  will  be
Briefly, the predictive

p(x*, y*|x,y)

III. APPLICATION

To evaluate the statistical and inferential
the synthetic network data generated by
DP-ERGM, we apply DP-ERGM to the
Chinese college student friendship net-
work and benchmark its performance
against some existing private edge syn-
thesis approaches. The Chinese college
student friendship network contains 162
students from a four-year college in China Fig. /: Chinese col-
collected by the Lab for Big Data Method- lege student friend-
ology in the Department of Psychology at $ip network

the University of Notre Dame in 2017 [22]. There are 848
edges among the 162 students, representing friendship (Fig 1).
The nodal attributes include the students’ gender, grade point
average (GPA), class, and the number of cigarettes smoked
per day in the past 30 days.

utility of

A. Synthesis Procedures

We examine three privacy budget settings ¢ € (e71 e, e?),
presenting small, moderate, and relatively privacy risk. We
generate m = 4 differentially private networks at each e. To
examine the stability of the synthesis methods, 100 repetitions
were run for the college friendship example at each e.

For DP-ERGM, we applied Algorithm 1 to generate 4 net-
works with synthetic edges from the ERGM in Eqn (2)
with S(y,x) = {GWD(y), GWESP(y), |GPA;-GPA,|, |#
cigarettes;— # cigarettes;|, 1(class; = class;), 1(gender; =
gender;)}. ¢ and j are indices for nodes; 1 is an indicator
function; GWD stands for geometrlcally weighted degree and
is defined as ¢ 37" '{1 — (1 — e 7)'}D; for 7 > 0 and D;
represent the number of nodes whose degree is ¢ with con-
straint Z?:_Ol D; = n; and GWESP stands for geometrically
weighted edgewise shared partnership (ESP) and is defined as
e” Y2 {1—(1—e " )'}ESP, for 7 > 0 and ESP; represents
the number of edges whose nodes share edges with exactly
i other nodes with constraint z?;OQ ESP; = the number of
edges in the network.

In addition, the GOF statistics in Figure 2 suggests
the mode without # of edges as a covariate captures
the original network information well. we assumed a
non-informative prior f(0) o const and leveraged the
asymptotic normality assumption of the posterior distri-
bution of € to draw and sanitize the posterior samples.
[13] propose DWRR for shar-
ing social network data by syn-
thesizing edges via randomized
response and suggest p;; =
Gij =1 —mij = e /(1 +e)
for all ¢ # j = 1,...,n,
where p;; is the probability of
retaining an edge nodes (7, ) §
and ¢;; is the probability of re- &
taining the absence of an edge,
and ¢;; is privacy budget for
retaining the edge DP between
nodes (4, j). In their numerical
examples, ¢;; = ¢ and the
probability of edge flipping is a
constant 7 = 1/(1+¢). In our
case, 7 = 1/(1+e/*) (divided
by 4 because 4 networks were
generated and released). For 12 3456 7 8 9 NR
the three budgets € = 671 minimum geodesic distance
and e is 7 = 1/(1 + 66/4) Fig. 2: Goodness of fit of the
7 equals to 0477 0.336, and ERGM in the observed college

friendship network
0.136, respectively.

proportion of nodes
0.00 0.04 008 012

proportion of e
0.00 0.05 0.10 0.15

T T o a
edpewise shared partners

proportion of dyads
0.00.1 020304

We also designed an intuitive approach of Synthesizing
the Conditional distribution of Edges given nodal Attributes
(SCEA), from which networks can be generated. SCEA san-
itizes the edge probability between two nodes classes, where
a node class refers to a cell from the full dimensional cross-
tabulation of the nodes attributes. SCEA assumes that whether
two nodes within the same class are tied or not follows
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a Bernoulli distribution with a within-class rate py ; and
whether two nodes from two different classes (k,%’) are
connected is governed by another Bernoulli distribution with a
between-class rate py, 1. pi x makes the diagonal elements and
P,k makes the off-diagonal elements in the K x K probability
matrix P. In this example, there are 4 nodal covariates: class
(6 levels), gender (2 levels), GPA converted to a 5-letter grade,
and number of cigarettes grouped in 3 groups (0, [1,10), >]10).
The cross-tabulation of the 4 nodal attributes leads to 180
cells. After discarding the empty cells, the final P matrix is
of dimension 57 x 57. SCEA sanitizes P via a DP mechanism
(such as the Laplace mechanism) to obtain P* that satisfies
the edge DP. Once the differentially private P* is obtained,
then synthetic edges between nodes within class k are sampled
independently from Bern(pj, ), and those between nodes from
classes k and k' are sampled independently from Bern(pj,.,).

B. Results

Examples of the differentially private synthetic networks are
provided in Figures 3. DWRR produces very dense networks at
all examined ¢ values. SCAE tends to produce dense networks
as well though not to the same degree as DWRR. The synthetic
networks by DP-ERGM have a similar level of denseness as
the original network.

€ DP-ERGM

DWRR

Fig. 3: Examples of differentially private synthetic college student
friendship network.

To assess the utility of the differentially private synthetic
networks, we obtain the summary statistics of edge counts,
GWESP, and GWD, and run the ERGM that has the same
specification as the one DP-ERGM used for synthesizing
networks in, and the latent space model [23] on the synthetic
networks from the three synthesis approaches, and compared
the private statistics and inferences to the original. In the
latent space model, we included covariates of the absolute
differences between nodes ¢ and j on GPA and # of cigarettes,
and node matching on class and gender; and set the dimension
in the latent space at 2. The average deviations and the root
mean squared deviations are presented in Table I for the

number of edges, GWESP, and GWD based on the synthetic
data from those based on the original data, in Table II for the
ERGM model parameter estimates, and in Table III for the
latent space model parameter estimates.

TABLE I: Relation summary statistics from the synthetic college
friendship networks.

original edges GWESP GWD
privacy statistic 848 2472.15 398.25
budget DP-ERGM DWRR SCEA [DP-ERGM DWRR SCEA [DP-ERGM DWRR SCEA

average deviation from the original
et 0.818 5410 1148 [ -590.6 24203 2404 | -1.291  20.64 200.4
e -1.045 3818 -51.35| -596.0 17267 360.6| -1.638  20.64 200.4
e? -0.630 1542 219.5| -600.5 5175 1104 | -1.405  20.64 200.4
root mean squared deviation

et 53.09 5410 1150 632.2 24204 2409 3.406 20.64 200.4
e 6.545 3818 56.96| 599.4 17268 367.0| 3.304 20.64 200.4
e? 2.876 1542 59.96| 604.1 51769 367.5| 3.304 20.64 200.4

TABLE II: ERGM parameter estimates based on the synthetic college
[friendship networks.

Privacy parameter OGwgsp Ocwp Ocpa G#Cigareuesegender Oclass
budget original -0.922 5.592 0.073 -0.002 0.667 0.887

average deviation from the original

DP-ERGM -0.209  -0.480 -0.026 0.005 -0.298 -0.338
el DWRR 1271 456.3  -0.087 0.020 -0.638-0.816
SCEA  -2.121 -1.076x102°-0.311 -0.054 0.457 -0.198
DP-ERGM -0.213  -0.590 -0.020 0.005 -0.298-0.334

e DWRR -0.943 -79.26 -0.073 0.000 -0.595-0.463
SCEA  -1.256 -1.580x10%-0.314 -0.048 0.009 -0.916
DP-ERGM -0.215  -0.519  -0.025 0.006 -0.292-0.338

e? DWRR -0.862 527.6  -0.075 0.005 -0.423 0.295
SCEA -1.248 -77.68 -0.208 -0.025 -0.141-1.417

root mean squared deviation

DP-ERGM 0.211 0.924  0.048 0.007 0.302 0.345

el DWRR 2802 2.64x10%* 0.152 0.151 0.673 0.836
SCEA  1.365 8.518x1020 0.165 0.028 0.236 0.459
DP-ERGM 0.214 0.881 0.042 0.007 0.301 0.341

e DWRR  0.955 747.3 0.076  0.002 0.596 0.464
SCEA  0.631 5.66x10%* 0.162 0.024 0.041 0.116
DP-ERGM 0.217 0.866  0.046 0.007 0.297 0.346

e? DWRR  0.890 6259  0.080 0.050 0.423 0.357
DP-ERGM 0.626 126.7  0.110 0.013 0.079 0.709

DP-ERGM is the obvious winner in all three analyses with
the smallest deviations on all the examined relations statistics;
almost all ERGM parameters at all three e values, except for
0 associated with Gender and Class; two out of four latent
space model parameters. For GWD in Table I, there is little
change over € for DWRR and SCEA on both the deviation and
the root mean squared deviation; in addition, the latter appears
the same as the former. The similarity between the root mean
squared deviation and the average deviation suggests there is
little variation in GWD over the 100 repeats of the 4 sets of
synthetic networks in the case of DWRR and SCAE, and the
main contribution to the root mean squared deviation comes
from the deviation in both cases.

The GOF plots from the fitted ERGMs and latent space models
are presented in Figure 4 (due to space limitation, the GOF
plots are only presented for ¢ = ¢~! and ¢ = €2; results at
€ = e are somewhere in between the two). The distributions of
the GOF statistics from the synthetic networks via DP-ERGM
have the best overlap with those based on the original network
across all € values, with mild deviation on ESP. For DWRR,
the distributions of the GOF statistics deviate significantly
from the original for geodesic distance at all € values, and for
degree and ESP at small e but improve as e increases. The poor
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TABLE III: Latent space model parameter estimates based on synthetic friendship networks.

PTiVaCY parameter GGPA 9# cigarette aGender aClass
budget (original) (-0.169) (-0.084) (1.197) (4.726)
DP-ERGM DWRR SCEA DP-ERGM DWRR  SCEA DP-ERGM DWRR  SCEA DP-ERGM DWRR SCEA
average deviation from the original
e ! 0.249 0.167 -0.498 0.077 0.084 -0.124 -0.509 -1.185 1.180 -3.940 -4.665 3.705
e 0.239 0.157 -0.399 0.079 0.081 -0.100 -0.488 -1.118 0.909 -3.927 -4.268 2.649
e? 0.230 0.123 -0.288 0.080 0.072 -0.075 -0.479 -0.943 0.633 -3.939 -3.385 1.938
root mean squared deviation
e ! 0.282 0.169 1.507 0.079 0.084 1.374 0.522 1.185 1.371 3.942 4.665 3.726
e 0.268 0.159 1.303 0.081 0.081 1.181 0.500 1.118 1.336 3.930 4.269 2.836
e? 0.255 0.127 1.805 0.083 0.072 1.760 0.492 0.943 2.008 3.942 3.385 1.969
method: DP-ERGM DWRR SCEA
€ e’! e? e! e’ e ! e?
ERGM Goodness of Fit
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Fig. 4: ERGM and latent space model goodness of fit based on the synthetic college friendship networks. The solid black lines represent
the statistics from the observed network; the black box plots represent the distributions of the statistics over 100 simulated networks given

the original parameter estimates. The 100
networks per repetition. The red lines represent the averages over the 100 repetitions.

(from 100 repetitions) in each plot represent the averaged statistics over 4 synthetic

GOF statistics from SCAE suggest the synthetic networks via
SCAE preserve poorly the key original information for fitting
the EGRM. The GOF statistics from the synthetic networks
via DP-ERGM have the best overlap with those based on the
original network across all e values with some mild deviation
from the original in terms of degree and ESP. For DWRR and

SCEA, the degree and geodesic distance measures based on
the synthetic networks at all levels of € and the ESP at small e
deviate significantly from the original. There is improvement
for all three GOF statistics in the case of DWRR as € increases.
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IV. CONCLUSIONS AND DISCUSSION

We propose a new approach DP-ERGM that generates syn-
thetic networks with node DP guarantee. DP-ERGM is based
on a generative model that considers high transitivity relations
whereas DWRR and SCEA are “local” generative processes
that independently sanitize edges, not taking into account the
high-order relationships. For that reason, it is not unexpected
that the empirical results suggest that DP-ERGM in general
preserves the original network information better than the
other two approaches with respect to important relationship
summary statistics and statistical inferences from different
network models. On top of the better utility, DP-ERGM also
preserves the network privacy using the node DP, a stronger
notion of privacy than the edge DP under which DWRR and
SCEA operate.

Despite the better performance of DP-ERGM than DWRR and
SCEA in general, there is room for improvement. For example,
one may spend some privacy budget in choosing an ERGM
using the data at hand rather than depending on external
knowledge, compare different randomization mechanisms that
draw posterior samples of the model parameters privately; or
develop a hybrid private network generative model that would
leverage the advantages DP-ERGM and SCAE. In addition, we
are planning to look into coupling the DP-ERGM approach
with the approaches for sanitizing nodal data and examine
the utility of the fully synthesized networks and will continue
to explore new approaches for synthesizing and releasing
private networks. Finally, we would like to apply the synthesis
techniques to other networks of various types and sizes.
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