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Targeted Memory Reactivation during Sleep Elicits Neural
Signals Related to Learning Content
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Retrieval of learning-related neural activity patterns is thought to drive memory stabilization. However, finding reliable, noninvasive,
content-specific indicators of memory retrieval remains a central challenge. Here, we attempted to decode the content of retrieved
memories in the EEG during sleep. During encoding, male and female human subjects learned to associate spatial locations of visual
objects with left- or right-hand movements, and each object was accompanied by an inherently related sound. During subsequent
slow-wave sleep within an afternoon nap, we presented half of the sound cues that were associated (during wake) with left- and right-hand
movements before bringing subjects back for a final postnap test. We trained a classifier on sleep EEG data (focusing on lateralized EEG
features that discriminated left- vs right-sided trials during wake) to predict learning content when we cued the memories during sleep.
Discrimination performance was significantly above chance and predicted subsequent memory, supporting the idea that retrieval leads
to memory stabilization. Moreover, these lateralized signals increased with postcue sleep spindle power, demonstrating that retrieval has
astrong relationship with spindles. These results show that lateralized activity related to individual memories can be decoded from sleep

EEG, providing an effective indicator of offline retrieval.
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ignificance Statement

populations.

Memories are thought to be retrieved during sleep, leading to their long-term stabilization. However, there has been relatively little
work in humans linking neural measures of retrieval of individual memories during sleep to subsequent memory performance.
This work leverages the prominent electrophysiological signal triggered by lateralized movements to robustly demonstrate the
retrieval of specific cued memories during sleep. Moreover, these signals predict subsequent memory and are correlated with sleep
spindles, neural oscillations that have previously been implicated in memory stabilization. Together, these findings link memory
retrieval to stabilization and provide a powerful tool for investigating memory in a wide range of learning contexts and human
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Introduction

In recent decades, evidence has increasingly converged on the
idea that newly formed memory traces are spontaneously re-
trieved during sleep, promoting their stabilization (Wilson and
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McNaughton, 1994; Ji and Wilson, 2007). Decoding the content
of replayed information from animal studies (using invasive elec-
trophysiology) has massively advanced our understanding of
how sleep contributes to learning and memory. Detecting non-
invasive, content-specific signals of retrieval in humans is, there-
fore, of utmost interest for understanding brain mechanisms of
memory.

Several recent studies have brought us closer to this goal. Mul-
tivariate classification methods have been used to decode (during
sleep) the category of information (faces or scenes) learned be-
fore sleep in the EEG (Schonauer et al., 2017) and stimulus-
specific information in fMRI (Deuker et al., 2013). Another
approach that allows for more temporal precision over which
memory is being retrieved is to play learning-related cues during
sleep. This approach, termed targeted memory reactivation
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Figure1.

Experimental task and design. Subjectsimagined reaching out and touching targets that were associated with auditory cues before executing theirmovement. Subjects used either their

left orright hand depending on the location of the target on the screen (left hand for 32 left-side targets, right hand for 32 right-side targets). Subjects then took a prenap test on the location of each
target. During periods of SWS in an afternoon nap, subjects were presented with half of the sounds associated with left-side and half associated with right-side targets. After the nap, subjects

returned to the laboratory and took a test on all target and nontarget locations.

(TMR) (Oudiette and Paller, 2013), biases neuronal replay in the
hippocampus in rodents (Bendor and Wilson, 2012), and bene-
fits memory in humans (Rasch et al., 2007; Rudoy et al., 2009),
suggesting it resembles retrieval that occurs spontaneously. Re-
cently, Cairney et al. (2018) linked TMR cues (auditory words)
with visual images and found that the image category (face or
scene) could be decoded during post-TMR cue activity. Addi-
tionally, they found that the presence of sleep spindles, brief
(0.5-3 s) bursts of 11-16 Hz oscillatory brain activity during
NREM sleep that frequently correlate with memory retention
(Antony and Paller, 2017) overlapped with time intervals when
this decoding was possible. Similarly, Shanahan et al. (2018)
showed decoding of TMR-evoked category information using
fMRI. Finally, multivariate features from EEG activity after TMR
cues could be used to successfully decode different parts of a
procedural memory sequence (Belal et al., 2018).

Other prior findings suggest that neural signals resulting from
lateralized neural activity can be robustly tracked with EEG dur-
ing sleep. After training subjects to perform lateralized judgments
on words during wake (e.g., “press left if word, press right if
nonword”), corresponding lateralized responses were elicited by
those stimuli during sleep (Kouider et al., 2014; Andrillon et al.,
2016). Additionally, lateralized differences in the number and
amplitude of fast sleep spindles emerged after cueing learning
contexts using learning-related odors that were predominantly
associated with left- or right-sided visual stimuli (Cox et al.,
2014).

Here, we sought to extend the aforementioned results by “tag-
ging” individual declarative memories with lateralized move-
ments and activating them during sleep via auditory TMR cues.
In so doing, we could constrain our search for evidence of mem-
ory retrieval to these robust lateralization signals. Subjects first
encoded visual objects on the left or right side of a computer
touch screen (Fig. 1). Each target object (e.g., cow) was accom-
panied by an inherently related sound (e.g., “moo”) and was
presented concurrently with a visual nontarget (e.g., avocado) on
the opposite side of the screen. During encoding, subjects imag-
ined moving their corresponding hand toward the target (e.g.,
right hand for right-side stimuli) for 5 s, after which they exe-

cuted the movement. Subjects then took an item-location test for
each target without feedback before an afternoon nap. During
indications of slow-wave sleep (SWS), we presented half of the
TMR cues that were previously associated with both left- and
right-side targets. After a 90-min break, subjects returned for a
final memory test.

Behaviorally, we predicted subjects would remember cued
targets better than uncued ones. Neurally, we predicted the emer-
gence of lateralized, learning-related EEG activity during sleep
following TMR cues associated with left- versus right-side targets.
We predicted that these signals would be larger for targets with
intact prenap memory and would also predict postnap memory.
Another key goal of our study was to relate lateralized evidence of
retrieval to other sleep physiological predictors of postnap mem-
ory. TMR benefits have been intimately linked with postcue spin-
dles (Schreiner et al., 2015; Antony et al., 2018a,b; Cairney et al.,
2018). Therefore, we anticipated that postcue spindles would
positively predict lateralized evidence of retrieval during sleep, as
well as subsequent memory during the postnap test. Further-
more, prior work has shown that spindles have a refractory pe-
riod of 3—6 s, during which TMR cues are less effective (Antony et
al., 2018b); as such, we expected that precue spindles would neg-
atively predict both lateralized evidence of retrieval and subse-
quent memory.

Materials and Methods

Subjects. Twenty-four subjects (14 female, 1833 years old, mean 22.3)
with normal or corrected-to-normal vision and fluent in English were
recruited via campus flyers and online scheduling software. Twenty-nine
other subjects were excluded for not sleeping long enough to receive at
least one round of sleep cues. Subjects were given hourly monetary com-
pensation for participating ($20/h) and small additional increases based
on good performance (up to $5). To increase the likelihood of a success-
ful nap, we requested that subjects go to bed at their normal sleeping time
but wake up 2 h earlier than normal. We also requested that they abstain
from alcohol the night before and coffee the morning of the experiment.
Written informed consent was obtained in a manner approved by the
Princeton University Institutional Review Boards.

Experimental setup. Visual stimuli were presented on a 120 Hz LCD
monitor in the testing room outfitted with an infrared touch screen
frame. Touches on this display were registered as mouse input. Audio
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cues (during both wake and sleep) were played through a speaker system
in the testing room.

Stimuli. Subjects viewed 128 images of common objects. Each image
was shown in one of eight stimulus locations with a 300 X 300 pixel
resolution. Sixty-four of these were associated with inherently related
sounds (e.g., cow-“moo”) lasting up to 500 ms; the sounds were adapted
from a previous study (Oudiette et al., 2013) and an online repository at
www.freesound.org. Shorter sounds were looped, and longer sounds
were trimmed, sped up, and pitch-corrected to keep them recognizable.
During the nap, sleep cues were embedded in constant white noise (~ 44
dB), resulting in increases of no larger than 5 dB.

Design and procedure. The experiment included four phases: learning,
prenap test, nap, and postnap test (Fig. 1). Subjects arrived in the labo-
ratory at 11:00 A.M., and EEG electrodes were attached. They completed
the learning phase task, took a 15-min break, and then took the prenap
test. Following the test, subjects napped in the testing room for 90 min
from ~13:00 to 14:30. After the nap, subjects were given a 90-min break
during which they were allowed to leave the laboratory. Subjects returned
at 16:00 to complete the postnap test.

In the learning phase, subjects were trained to execute a lateralized
motor action corresponding to the locations of 64 image-pairs. Each pair
consisted of one target and one nontarget image; the pair was presented
along with an audio cue that was inherently associated with the target
(e.g., cow-“moo”). Thus, the content of the audio cue (“moo”) specified
to the subject which image was the target and (by exclusion) which image
was the nontarget. Nontargets had no immediately obvious sounds (e.g.,
avocado) and were included along with the target to ensure subjects paid
attention to the semantic content of the images.

Target—nontarget pairs and image locations were assigned pseudoran-
domly for each subject. Images appeared in one of eight possible loca-
tions, each visually designed on the screen by a black, square outline. The
target and nontarget for a given sound were always on opposite sides of
the screen. We assigned image locations such that each location was
associated with 16 images, an equal number of which were targets and
nontargets.

Subjects underwent two blocks of image-location learning, each with
64 trials, so that each target—nontarget pair was seen twice (once per
image-pair). Trial order was randomized in each block. A single trial
comprised a fixation period, a stimulus presentation, an imagined selec-
tion, a physical selection, and a rest period. During the fixation period,
subjects were presented with a red central fixation cross and the eight
empty image frames. After 1 s, an image-pair (target and nontarget)
appeared and the sound associated with the target was played. Subjects
had 5 s to imagine reaching out and touching the target with their corre-
sponding hand (e.g., right hand for right side of screen). Then the fixa-
tion crosshair changed from red to green, signaling that the subject could
execute their movement. If the subject touched the nontarget or any
other location, on-screen text instructed them to try again until they
touched the target. They were accurate at doing this on the first attempt
98.3 = 0.3% of the time.

In the prenap test, each trial comprised a fixation period, a sound
stimulus presentation, an imagined location selection, a physical location
selection, and a rest period. After 1 s fixation, the target-related sound
was played, and subjects had 5 s in which to imagine touching the frame
where the associated target had appeared during the learning phase, after
which the crosshair turned green and they executed their movements.
Each target was tested once, and subjects received no feedback on re-
sponse accuracy.

Following the test, subjects napped for 90 min. All naps began between
12:00 and 13:00. Upon indications of SWS, we played half of the sounds
associated with left targets (16) and half of the sounds associated with
right targets (16) to cue their associated memories. Cues were separated
by 4.5 s, and cue order was randomized within loops. If the subject was
asleep for 60 min and had not received cues, the experimenter loosened
the criteria to include Stage 2 sleep. The EEG was monitored continu-
ously during cueing, and cues were stopped immediately upon indica-
tions of arousal; cues were resumed if the subject reentered SWS. Subjects
were cued between 1 and 7 times per cue (mean = 3.32 = 0.42) depend-
ing on how long they spent in SWS and Stage 2 sleep. If by 90 min the
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Table 1. Time in each sleep stage and number of sounds per stage

Wake S1 S2 S3 REM
Time/stage (min)
Mean 27.35 6.37 27.43 26.65 3.78
SEM 3.09 0.93 2.54 2.92 1.13
Cues/stage
Mean 2.09 0.13 9.52 97.04 0.13
SEM 0.75 0.07 425 14.68 0.07

subject was still asleep and had not completed a loop of cues, they were
kept for an additional 20 min to try to reach this criterion. Table 1 shows
a full breakdown of the stages and where cues fell with respect to those
stages. Sleep stages are assigned based on whichever stage is more prev-
alent within each 30 s epoch, meaning that sounds can occur during
unintended stages. Only sounds occurring during Stage 2 sleep and SWS
were included in our analyses.

After the nap, subjects left the laboratory and returned again 90 min
later for the final phase. They then completed a postnap item-location
test on both target and nontarget locations (128 trials total). On each
trial, an image appeared in the center of the screen surrounded by the 8
empty frames as before. The subject was instructed to touch the frame
where they believed the image appeared during the learning phase. After
this test, subjects were compensated for their time and left the laboratory.

EEG data acquisition and preprocessing. Continuous EEG data were
recorded during the learning phase, prenap test, and nap using Ag/AgCl
active electrodes (BioSemi ActiveTwo). Recordings were made at 256 Hz
from 64 scalp EEG electrodes from locations on the standard 10/20 lay-
out plus intermediate 10% electrodes. Additionally, two mastoid chan-
nels were placed behind the left and right ears for offline rereferencing, a
horizontal EOG electrode was placed next to the right eye, a vertical EOG
electrode under the left eye, and an EMG electrode on the chin.

EEG data were processed using a combination of internal functions in
EEGLAB (Delorme and Makeig, 2004) and custom-written scripts. Data
were rereferenced offline to the average signal of the left and right mas-
toids; then they were high-pass filtered at 0.1 Hz and low-pass filtered at
60 Hz in successive steps. For each wake recording, we removed artifac-
tual segments in the continuous EEG of the learning phase. We ran
spatial independent components analysis (ICA) (Delorme and Makeig,
2004) for each subject to remove eyeblink components. Any electrodes
with artifacts for long stretches of time were marked and interpolated
within-subject after ICA.

Next, we created across-subject components. The learning phase data
were segmented into epochs, including the 5 s imagination period with
2 s of baseline (i.e., —2 to 5 s relative to the imagination cue). We sub-
tracted voltage values from lateralized channels (e.g., C3—C4) and omit-
ted channels along the midline to reduce the number of features from 64
channels to 27 channel pairs (Kouider et al., 2014; Andrillon et al., 2016)
(Fig. 2). We then concatenated data from all 24 subjects to create one
across-subject dataset from which we ran across-subject spatial ICA.
Component activations (analogous to channel voltage, but in compo-
nent space) from this ICA were then used as our features of interest. This
procedure allowed us to reduce the dimensionality of the data while
maintaining consistent features across individuals.

To assess spindle power, we first bandpass-filtered the raw signal be-
tween 11 and 16 Hz. Then we calculated the root-mean-square (RMS)
value for every time point using a moving window of * 100 ms (Antony
etal., 2018a,b). To calculate spindles in a quantized fashion, a threshold
was determined by multiplying the SD of the entire channel’s signal for
all nonartifactual segments of NREM sleep by 1.5. Any RMS signal that
crossed this threshold consecutively for 0.5-3 s was considered a spindle.
Times for the start of each spindle were recorded for alignment with sleep
cues.

Sleep physiological analyses. Sleep stages were determined by an expert
scorer according to standard American Academy of Sleep Medicine cri-
teria (Rechtschaffen and Kales, 1968). Artifacts (large movements,
blinks, arousals, and rare, large deflections in single channels) during
sleep were identified visually and rejected in 5 s chunks following sleep
staging.
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Figure2. Wake classification and feature selection for sleep. Voltages from lateralized EEG electrodes were subtracted, and midline electrodes were eliminated to create 27 electrode pairs. Next,

data from all subjects were combined. ICA was run on the combined data, and we assessed which of the resulting components discriminated between left and right motor imagery during wake. 4,
The five components (1, 3, 4, 6, and 7) that significantly discriminated between left and right motor imagery. B, Classification accuracy (operationalized as AUC) as a function of time bin for those
five components. Error bars indicate the edges of the middle 95th percentile of classification accuracies. x axis values indicate the center time point for each 1000 ms time bin. There is a wider y axis

range for component 1 than other components.

Experimental design and statistical analysis. All behavioral contrasts for
within-subject measures were performed using paired, two-tailed #-tests
with a significance level of p = 0.05; these tests contrasted the mean
proportions of items that were correct under various conditions. To
calculate the mean cueing effect, we regressed out the effect of prenap
memory from postnap — prenap differences for cued and uncued
groups. Specifically, we computed (for each subject) the average level of
prenap memory (separately for cued and uncued) and the average level of
postnap — prenap memory change (separately for cued and uncued). We
then put the subject-wise cued and uncued memory scores into a single
regression (i.e., with number-of-subjects X 2 data points), using prenap
memory scores to predict memory change scores. The residuals from this
regression reflect the cued and uncued memory change scores for each
subject, controlling for prenap memory.

To identify lateralized features that might be useful for decoding mem-
ory retrieval during sleep, we first asked how well each ICA component
discriminated between left and right imagination conditions during
wake in two successive steps. First, we performed baseline correction on
each trial by subtracting out the average activity from —1000 to 0 ms
relative to the onset of the visual stimulus. We divided each trial’s data
into overlapping time bins of length 1000 ms; for each time bin, we
trained a single-feature, logistic regression classifier (that component’s
average value across the time bin) to discriminate between left and right
trials, using a leave-one-subject-out cross-validation procedure. This
procedure yielded an area under the curve (AUC) value for each subject
and each time bin. We then used a bootstrap procedure to generate 95%
ClIs for the average AUC value (across subjects) for each time bin. For this
procedure, we resampled subjects’ AUC scores with replacement 1000
times. For each resampling, we computed the average AUC across (resa-
mpled) subjects, yielding a bootstrap distribution of 1000 average AUC
scores for each time bin. After sorting the AUC values at each time bin
from low to high, we counted the number of time bins for which the
middle 95th percentile of bootstrapped trials passed above or below
chance (at the 2.5th or 97.5th percentile); we refer to this measure as
“number of significant time bins.”

Second, to correct for multiple comparisons (i.e., looking at multiple
time bins), we scrambled the left and right condition labels 200 times and
repeated the bootstrap procedure above for each of the scrambles. This
allowed us to compute a null distribution on the “number of significant
time bins” measure described above. If, for a given component, the num-
ber of individually significant time bins exceeded 95% of the null distri-

bution, the component was deemed to significantly discriminate
between left and right trials (corrected for multiple comparisons).

To compute classification accuracy during sleep (in response to TMR
cues), we computed the time series of activity (on each trial, in response
to the TMR cue) of each of the five components that were identified as
significant using the wake-classification procedure outlined above. We
again performed baseline correction from —1000 to 0 ms relative to cue
onset. As with the wake-classification procedure, we divided each trial’s
data (time-locked to the TMR cue) into overlapping time bins of length
1000 ms, and we trained a separate classifier for each time bin. Putting all
of this together, each of these time bin-specific classifiers was fed a
5-dimensional vector for each TMR cue (reflecting the average activity of
each of the five components during the relevant time bin, in response to
that cue); the job of the classifier was to determine whether the TMR cue
that was just played was associated with a left- or right-sided movement.
As with wake classification, we used a leave-one-subject-out cross-
validation procedure that yielded an AUC score for each time bin for each
subject. For the sleep data, we used an L1-regularized logistic regression
classifier (A = 0.1). We used regularization here, despite the relatively
low number of feature dimensions, as a hedge against the noisy nature of
EEG data, which can otherwise lead to spurious classification results
(Jamalabadi et al., 2016). We chose the largest lambda (in powers of 10)
that still led to some nonzero weights for the time points of interest.
Multiple-comparisons-corrected significance was assessed using the
same bootstrapping-and-scrambling procedure that we used for the
wake classifier. We report the p value based on this analysis such that, for
example, if the true number exceeds 98% of the null distribution, it was
reported as p = 0.02. In some cases, the regularization was strong enough
such that all of the feature weights were zero, resulting in a classification
score that was exactly at chance. Also, for the sleep-EEG analyses, we
omitted 1 subject who did not have any items that were initially remem-
bered and later forgotten (making it impossible to include them in
subsequent-memory analyses). We did this to ensure that all of our sleep-
EEG analyses included the same subjects, thereby maximizing compara-
bility across these analyses. After this 24th subject was dropped, we were
left with 23 subjects for most of the sleep-EEG analyses (importantly, the
qualitative nature of our results was the same regardless of whether the
24th subject was included; for example, redoing the classifier analysis
shown in Fig. 3A with all 24 subjects still produced a significant result of
p < 0.01). Nine other subjects did not have trials in both left- and right-
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cue conditions that were initially remembered and later forgotten, leav-
ing 14 subjects for analyses related to this condition.

First, we ran this sleep-classification analysis on all trials. Second, we
conditionalized the data based on whether items were correct before the
nap or not, hypothesizing that only items correct before the nap could be
retrieved during sleep. For this and all other conditionalized analyses, we
trained and tested on the same subset of trials that we used to condition-
alize the data (here, prenap accuracy). We also ran an analysis to look at
items that were remembered correctly prenap, and additionally condi-
tionalized by whether items were remembered (or not) postnap, hypoth-
esizing that the content-related signal may predict subsequent memory.
For the latter two ways of splitting the data, we also conducted subtrac-
tion analyses, whereby we calculated differences in the AUC (e.g., be-
tween prenap-correct and prenap-incorrect) after each iteration of
resampling the data, and then we assessed whether these AUC differences
were significantly different from zero using the same bootstrapping-and-
scrambling procedure as above. The mean number of trials per subject
that entered our analysis (omitting those falling during rejected artifacts)
was as follows: items remembered on both the prenap and postnap tests,
48.83 = 15.4; items remembered on the prenap test, but not the postnap
test, 9.39 * 4.14; items not remembered on the prenap test, but remem-
bered on the postnap test, 20.17 £ 7.34; items not remembered on either
test, 27.61 £ 10.82. This counts the same cue presented to the same
subject (e.g., “moo” on the first and second round of cues) as separate
trials. The mean number of items in each memory category was as fol-
lows: items remembered on both the prenap and postnap tests, 29.62 +
1.58; items remembered on the prenap test, but not the postnap test,
5.58 = 0.56; items not remembered on the prenap test, but remembered
on the postnap test, 12.04 £ 0.90; items not remembered on either test,
16.75 = 1.31.

To calculate the effects of spindle power on subsequent memory, we
contrasted items that were correct both prenap and postnap with items
that were only correct prenap. We averaged RMS values across specified
time windows for each subject and calculated differences across condi-
tions using within-subject t-tests. Our specified precue window was
—2000 to 0, based on a previous study (Antony et al., 2018b). Our a priori
postcue window was 1000 to 1500 ms (Antony et al., 2018a), although we
eventually widened this window to 1000 to 4500 ms after observing that
left/right decoding accuracy stayed above chance up to 4.5 s after cue
onset. The postcue analyses were baseline-corrected, whereas the precue
analyses were not.

We additionally investigated whether precue and postcue spindle
power modulates this content-related signal. For these analyses, we cal-
culated AUC as above after splitting trials by each subject’s median RMS
power value in the prespecified time windows (pre: —2000 to 0 ms; post:
1000 to 4500 ms). Similar to the above approaches, we also calculated
subtracted differences between AUC values for trials above and below
their corresponding median RMS values. For these analyses, we only used
trials that were correct before the nap.

For comparison with the results of a previous study (Cox et al., 2014),
we calculated spindle incidence and amplitude measures in electrode
pairs chosen a priori (TP7-TP8, and P7-P8). Spindle amplitude was
measured as the absolute value (in wV) of the maximum negative peak.
These contrasts were double subtractions, such that we subtracted these
spindle measures between the two electrodes and the two conditions (left
vs right targets). We considered spindles that started between 0 and 4 s
after the cue. Based on the previous results, we initially restricted our
analyses to fast spindles (13.5-16 Hz), but we also later tested slow and
fast spindles together (11-16 Hz). We calculated these double subtrac-
tion measures for each subject and asked whether they differed from zero
using paired, two-tailed ¢-tests with a significance level of p = 0.05.

Data availability. The datasets generated during and/or analyzed dur-
ing the current study and the analysis code will be made available within
a year of publication on the Open Science Framework website.

Results
Behavior
Before sleep, subjects took an item-location memory test on all
targets, with 8 possible locations (chance proportion correct =
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0.125). Performance did not differ on the prenap test between
targets that were later cued (mean proportion correct and SE of
measurement: 0.55 * 0.024) and uncued (0.55 = 0.027; t(,3, =
0.06, d, = 0.01, p = 0.95). After the nap, subjects returned to the
laboratory to take another item-location memory test on all tar-
gets and nontargets. We measured memory retention for targets
by subtracting prenap performance from postnap performance
while regressing out prenap performance, similar to previous re-
ports (Antony et al., 2018a,b). We measured retention for non-
targets by assessing postnap accuracy because these were not
tested before the nap. We predicted that cued targets would show
better retention than uncued targets. Contrary to our prediction,
this difference was not significant (cued: 0.32 * 0.02; uncued:
0.29 * 0.02; tp3 = 1.4, d, = 0.29, p = 0.17). However, we
reasoned that retrieval during sleep may only be possible for
items remembered prenap because feedback was not given after
the prenap test. Therefore, we ran another analysis looking at the
proportion of items still remembered postnap that were remem-
bered prenap. We found that initially remembered cued targets
were remembered marginally better than uncued targets (cued:
0.85 = 0.02; uncued: 0.81 = 0.03; £,y = 1.8,d, = 0.38, p = 0.07).
Finally, there was no difference between the proportion of re-
membered nontargets whose sound was associated with cued tar-
gets versus uncued targets (cued: 0.28 * 0.02; uncued: 0.29 =
0.02; £55, = 0.63,d, = 0.13, p = 0.53).

Feature selection via decoding during wake

Our primary goal in analyzing the wake EEG data was to find
neural features that discriminated between left and right condi-
tions during motor imagery at encoding, with the aim of using
those features for classification during sleep. To accomplish this,
we relied on the prominent signal produced by the lateralized
readiness potential as a result of imagining motor activity from
opposite limbs (Kouider et al., 2014). We subtracted each later-
alized electrode on the right side of the head from its left side
counterpart, eliminated 10 midline electrodes, and ran across-
subject spatial ICA to obtain 27 components (Fig. 2A; for more
details, see Materials and Methods). We then asked which com-
ponents significantly discriminated between the conditions (left
vs right) during wake (for more details, see Materials and Meth-
ods). Plots of significant components are shown locked to the
visual stimulus onset when subjects were directed to begin motor
imagery (Fig. 2B). These components thus provided neural fea-
tures of learning-related activity by which we could assess mem-
ory retrieval during sleep.

Content-related activity during sleep differs by prenap and
postnap target memory

We next sought to obtain evidence of learning-content-related
activity during sleep. We investigated neural activity after playing
TMR cues that were paired with targets associated with left- ver-
sus right-side movements (hereafter, left-targets and right-
targets). We trained a multivariate classifier on sleep EEG data,
using (as input features) the same ICA components that were
significantly discriminable during wake (for details, see Materials
and Methods). This approach differs from using a classifier
trained on wake EEG data; when we did this, we found no evi-
dence of reinstatement (see No reinstatement of specific,
learning-related pattern from wake imagery).

We conducted our sleep-classification analyses in three steps.
First, we asked whether left-targets and right-targets were dis-
criminable when we allow all items to enter in the analysis. We
found that the classifier significantly predicted lateralized cate-
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Lateralized retrieval of learning content during sleep related to prenap and postnap memory. Using the lateralized components that discriminated left versus right motor imagery

during wake as features, we trained a leave-one-subject-out classifier on sleep data and computed AUC-based classification performance time-locked to TMR cues. We found significant classification
performance when using all trials (A). B, Significant across-subject decoding from 1.5 to 4s. €, Performance when crossing training and testing time. We also found significant classification performance when
focusing just on trials that were remembered prenap (D), but not for trials that were not remembered prenap (E). However, there were no significant differences in classification performance
between these conditions (F). Using only trials that were remembered before the nap, we then found significant classification performance for trials that were subsequently remembered postnap
(@), but not for those forgotten postnap (H), and there were significant differences in classification performance between these conditions (/). In all graphs, classification was performed on
time-averaged signals within 1000 ms windows centered on each time point. Error bars indicate the edges of the middle 95th percentile of classification accuracies.

gory, most prominently between 1376 and 4270 ms postcue (p =
0.01; Fig. 3A). This analysis remains significant if we remove
independent component 1 (p = 0.005), which topographically
suggests that it may include some horizontal eye activity during
wake. To depict the size of this effect across subjects, we plotted
the mean AUC values from 1.5 to 4 s after the cue, which signif-
icantly differed from chance (mean AUC: 53.4 * 0.89, t,,, =
3.76,d, = 0.78, p = 0.001; Fig. 3B). To gain a better understand-
ing of how the features detected by the classifier might change
over time, we also plotted AUC values for every combination of
training and testing time points (Fig. 3C). It appears from the
“block-like” pattern (i.e., similar results across multiple training
times) that the features that discriminate between classes are rel-
atively stable over time.

Second, we reasoned that lateralized activity should be greater
for targets whose position was correctly remembered before the
nap. As there was no feedback given after the prenap test, these
were the only cues that we could verify were correctly encoded.
For items recalled prenap, we again found significant classifica-
tion, in this case, most prominently between 592 and 3924 ms
postcue (p = 0.01; Fig. 3D). Conversely, for items not remem-
bered prenap, classification was not significantly predictive (no
significant time points, p > 0.99; Fig. 3E). We also directly con-
trasted decoding ability for items initially remembered versus

those not initially remembered by subtracting the classification
accuracy for each condition on each resampled subset, and then
assessed whether this differed from what is expected by chance by
repeating this analysis using scrambled labels. This difference was
not significant (p = 0.195; Fig. 3F).

Third, limiting ourselves to items that were correctly remem-
bered prenap, we further asked whether there were differences in
classification based on postnap memory. For items that were re-
membered on both the prenap and postnap tests, we found sig-
nificant above-chance classification, most prominently from 592
to 2016 ms and 2804 to 3932 ms (p = 0.015; Fig. 3G). For items
remembered only on the prenap test but not the postnap test, we
found no meaningful above-chance segments (p = 0.605; Fig.
3H). Finally, we directly contrasted these signals and found that
classification was significantly higher for items remembered pre-
nap and postnap than for items only remembered prenap (p <
0.01; Fig. 31).

Postcue and precue o power positively and negatively
predicts subsequent memory

Recent evidence has suggested that post-TMR cue o (spindle-
band) power positively predicts memory, an effect that is maxi-
mal over the centroparietal midline electrode, CPz (Antony et al.,
2018a,b). We therefore asked whether these signals predict sub-
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sequent memory for items that were remembered prenap. We
found that postcue o power over CPz was significantly higher
from 1000 to 4500 ms for later-remembered than later-forgotten
targets (later-remembered: 0.016 = 0.06; later-forgotten: —0.74 % 0.36,
toy = 2.15,d, = 0.45, p = 0.043; Fig. 4A). This analysis did not
reach significance using only the early interval (1000 to 1500 ms)
that we chose a priori based on previous studies, as described in
Materials and Methods (later-remembered: 0.69 * 0.17; later-
forgotten: —0.05 * 0.48, t,,) = 1.49,d, = 0.31, p = 0.15).

Intriguingly, while postcue o power may indicate that success-
ful retrieval has occurred, precue o-may prevent retrieval because
cues fall within the spindle refractory period (Antony et al.,
2018b). Therefore, we next asked whether precue o power over
CPz negatively predicted subsequent memory for items that were
remembered prenap. For this analysis, we did not perform stan-
dard baseline correction, as o power within the baseline interval
is our variable of interest. Indeed, precue o power over CPz was
significantly lower from —2000 to 0 ms for later-remembered
than later-forgotten items (later-remembered: 3.24 = 0.16; later-
forgotten: 3.73 + 0.29, t(,,, = 2.42,d, = 0.50, p = 0.024; Fig. 4B).
In sum, both postcue and precue effects replicate previous find-
ings and allow us to use o power over CPz as an independent
predictor of lateralized retrieval evidence.

Postcue and precue o power positively and negatively
predicts lateralized memory retrieval

We next asked whether postcue o power was associated with
improved lateralized memory retrieval and precue o power asso-
ciated with impaired lateralized memory retrieval. First, we took
all trials where prenap memory was correct and split these trials
by median postcue o power values. We found significant lateral-
ized memory retrieval for trials with above-median (p < 0.005),
but not below-median (p = 0.42), o power (Fig. 4C,D). More-

over, when we subtracted the AUC values between these condi-
tions on each resampled subset (as above), the strength of
lateralized memory retrieval differed significantly (p < 0.025;
Fig. 4E). Next, we took all trials where prenap memory was cor-
rect and split these trials by median precue o power values. As
predicted, we found significant lateralized memory retrieval for
trials with below-median (p < 0.005), but not above-median
(p = 0.53), o power (Fig. 4 F,G). When contrasting high and low
precue o power directly, there was marginally higher lateralized
memory retrieval in the low precue o power condition (p = 0.07;
Fig. 4H).

While the above analyses used a median split on o power to
ensure equal numbers of trials in each group, we also performed
similar analyses based on whether a postcue (starting 0—4 s rela-
tive to cue) or precue spindle (starting —3 to 0 s relative to cue)
was present. Postcue spindles were found on 26.3% of trials, and
precue spindles were found on 14.4% of trials. As expected from
the above analysis using median split on o power, we found sig-
nificant classification for trials with postcue spindles (p = 0.005).
Unlike the above analysis, we also found significant classification
for trials without postcue spindles (p = 0.005). This divergence
from the previous analysis likely stems from the fact that there is
a higher proportion of trials (73.7%) without postcue spindles
than for below median o power (50% by convention). Neverthe-
less, directly contrasting the two conditions shows that there is
significantly higher classification for trials with than without
spindles (p = 0.03), underscoring the importance of postcue
spindles. Similar to the above median split analysis, the opposite
pattern emerges for precue spindles. On trials with a precue spin-
dle, we see no significant classification (p = 0.20), whereas on
trials with one, we see significant classification ( p < 0.005). How-
ever, there was no significant difference between these conditions
when compared directly (p = 0.29).
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No reinstatement of specific, learning-related pattern from
wake imagery

The above results involved extracting learning-related features
and then training and testing a classification algorithm using
those features via cross-validation during sleep. However, it is
worth asking whether the specific learning-related pattern in-
volved in wakeful motor imagery is reinstated during sleep. First,
we established that wakeful motor imagery patterns could be
successfully decoded via cross-validation (p < 0.005). Next, us-
ing the exact classifier weights that were obtained by training on
wakeful motor imagery, we tested whether these patterns were
reinstated during sleep. We found no evidence of this (p = 0.43).
We also attempted to do this without independent component 1;
while we were able to successfully cross-validate during wake
(p < 0.005), we again found no evidence of these patterns during
sleep (p = 0.22). Therefore, there seem to be differences in the
feature weights that are most important for discriminating be-
tween motor imagery during wake versus retrieval during sleep.

Lateralized spindle incidence and power analyses

One report found that, after training subjects to learn visual stim-
uli in a spatial array in either left or right hemisphere-heavy
blocks, TMR cues elicited differences in the number and ampli-
tude of lateralized spindles (Cox et al., 2014). Their analysis fo-
cused specifically on fast (>13.5 Hz) spindles. Therefore, we
tested whether these differences existed using (1) both all lateral-
ized channels pooled together and (2) specifically using signifi-
cant channels from the above study. For these analyses, we
considered spindles that started between 0 and 4 s after the cue
and were >13.5 Hz in frequency. For spindle incidence, we per-
formed double subtractions on the average number of spindles
occurring over each electrode based on cue type and channel
hemisphere [e.g. (number of spindles after left cues in P7-P8) —
(number of spindles after right cues in P7-P8)]. For spindle am-
plitude, we averaged the power of each spindle (calculated as the
sum of the absolute value of its data points) for all spindles within
a particular condition [e.g. (mean spindle power after left cues in
P7-P8) — (mean spindle power after right cues in P7-P8)]. Pool-
ing all 27 lateralized channels together, we found no significant
differences in the spindle incidence [mean subtracted difference:
0.012 * 0.013 spindles, t,,) = 0.87, d, = 0.18, p = 0.40] or
amplitude [15 * 43 uV, t(,,, = 0.34,d, = 0.07, p = 0.74]. For the
specific channel analyses, we tried two channel pairs (TP7-TP8
and P7-P8). Neither produced significant differences in inci-
dence [TP7-TP8 difference: 0.008 = 0.04 spindles, .,,) = 0.22,
d, = 0.05, p = 0.83; P7-P8 diff: 0.05 + 0.03 spindles, £ ,, = 1.43,
d, = 0.30, p = 0.17] or amplitude [TP7-TP8 difference: 169 = 85
WV, t = 138, d, = 0.42, p = 0.20; P7-P8 diff: 9 + 53 uV, 1)
=0.13,d,=0.04, p = 0.90]. Finally, these analyses were similarly
not significant when considering all slow and fast spindles to-
gether (all p > 0.29).

Discussion

We demonstrated that learning-related signals from individual
episodic memories emerge when cued during sleep by decoding
lateralized activity associated with specific sound cues. Evidence
for retrieval was only significant if prenap memory was correct,
suggesting that this effect only occurs for learned information.
Furthermore, lateralized retrieval evidence also predicted post-
nap memory, specifically linking retrieval with memory stabili-
zation. We also found that postcue and precue spindle power
positively and negatively predicted subsequent memory, respec-
tively. Moreover, lateralized retrieval evidence was stronger for
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trials with high postcue spindle power and low precue spindle
power (the former contrast was significant; the latter contrast was
trending). Collectively, these analyses support the idea that sleep
benefits memory retention via retrieval of individual learning
episodes.

In our study, content-related differences in neural activity
were generally detectable from ~1 to 4 s after the cue. This result
fits with those from other studies showing bouts of replay that
extend for multiple seconds. For example, two studies using TMR
in rodents found differences in learning-related neural activity
for a number of seconds, lasting until the next cue arrived (Ben-
dor and Wilson, 2012; Rothschild et al., 2017). While some hu-
man TMR studies have only reported neural differences
predicting subsequent memory within the first ~1.5 s (Schreiner
etal., 2015; Lehmann et al., 2016; Farthouat et al., 2017; Antony et
al., 2018a,b), others have found differences up to and later than
2 s postcue (Schreiner et al., 2015, 2018; Cairney et al., 2018).
Importantly, this long time window may reflect brief bouts of
retrieval occurring at variable times within the window, rather
than continuous retrieval throughout the window.

To the best of our knowledge, our results are the first to show
that, across trials, retrieval evidence on any particular trial in-
creases with higher postcue spindle power. These results nicely
dovetail with findings showing that retrieval of neural content
temporally coincides with spindles (Cairney et al., 2018). We also
found a trend toward lateralized retrieval evidence decreasing
with higher precue spindle power; this converges with results
showing that TMR cues are effective when followed by spindles
and less effective when presented in the spindle refractory period,
when ensuing spindles are unlikely (Antony et al., 2018b). Our
results strongly support a recent mechanistic framework propos-
ing that memories are retrieved during spindle events and spindle
refractoriness prevents further retrieval of other memories
(Antony et al., 2019). However, we did not find evidence for the
related idea that localized spindles support retrieval (Bergmann
etal.,2012; Johnson et al., 2012; Cox et al., 2014). We hope future
studies, perhaps using techniques with finer spatial resolution,
such as electrocorticography or magnetoencephalography, or
tasks engaging different areas of the neocortex, will clarify this
issue.

One limitation of our study is that, although our cueing ma-
nipulation resulted in numerical differences between cued and
uncued targets in the expected direction, this difference was not
significant (when we limited the analysis to items that were re-
membered correctly prenap, the difference was marginal, p =
0.07). One possible explanation for this nonsignificant effect is
that the prenap and postnap tests differed in a way that was likely
to engage different sorts of retrieval processing. The retrieval cue
in each trial of the prenap test was the sound associated with the
object (picture not shown), whereas the retrieval cue in each trial
of the postnap test was the item picture (the sound was not
played). We omitted pictures in the prenap test to create fewer
distractions for subjects to perform motor imagery, and we omit-
ted sounds in the postnap test to ensure that subjects correctly
associated visual items with locations (and were not relying on
sound-location memory), as we have done in previous studies
(Antony et al., 2018a,b). These differences in retrieval demands
may have added noise to prepost comparisons, obscuring TMR
effects.

Another possible limitation stems from the inclusion of non-
target stimuli; these stimuli were included to ensure that subjects
encoded the semantic nature of the target stimuli and not just the
spatial location. While these could feasibly become a source of
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interference during TMR, such interference was not reflected in
the behavior (memory for cued and uncued nontarget stimuli did
not differ), it would have been equal for both left and right target
cues (because nontarget stimuli were present for every trial), and
any lateralized neural activity it may have caused was clearly over-
ridden by lateralized evidence for the target stimuli.

We present evidence for the retrieval of learning content by
showing that learning-related (lateralized) neural features can be
successfully decoded when the classifier is trained and tested on
sleep data (in a cross-validated fashion). This approach resembles
the approach taken by recent papers that also trained and tested
using only sleep data (Schonauer etal., 2017; Cairney et al., 2018),
and extends these approaches by selecting only features that dis-
criminated between learning conditions during wake. However,
it is important to note that a classifier trained on lateralized dif-
ferences from wake did not show above-chance classification
during sleep, suggesting that the specific neural pattern of later-
alized differences from wake was not reinstated in response to
TMR cues during sleep.

In conclusion, our findings support the idea that retrieval of
learning-related neural activity during sleep benefits memory.
Furthermore, retrieval following an auditory cue was linked with
spindle occurrence, in keeping with our prior description of spin-
dle refractoriness (Antony et al., 2019). Memory retrieval was
facilitated when the cue was followed by a spindle, as evidenced
both by later memory performance and by EEG analyses. More-
over, this paradigm, using lateralized differences as a means of
tracking retrieval of specific episodic associations, could be useful
for uncovering nuanced relationships between retrieval and
memory (Lewis-Peacock and Norman, 2014) and investigating
how retrieval differs across physiological states (Andrillon et al.,
2016; Jiang et al., 2017; Schonauer et al., 2017) and human pop-
ulations (Mander et al., 2013; Westerberg et al., 2015).
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