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Quantifying topography-guided actin dynamics 
across scales using optical flow

ABSTRACT  The dynamic rearrangement of the actin cytoskeleton is an essential component 
of many mechanotransduction and cellular force generation pathways. Here we use periodic 
surface topographies with feature sizes comparable to those of in vivo collagen fibers to 
measure and compare actin dynamics for two representative cell types that have markedly 
different migratory modes and physiological purposes: slowly migrating epithelial MCF10A 
cells and polarizing, fast-migrating, neutrophil-like HL60 cells. Both cell types exhibit 
reproducible guidance of actin waves (esotaxis) on these topographies, enabling quantitative 
comparisons of actin dynamics. We adapt a computer-vision algorithm, optical flow, to 
measure the directions of actin waves at the submicron scale. Clustering the optical flow into 
regions that move in similar directions enables micron-scale measurements of actin-wave 
speed and direction. Although the speed and morphology of actin waves differ between 
MCF10A and HL60 cells, the underlying actin guidance by nanotopography is similar in both 
cell types at the micron and submicron scales.

INTRODUCTION
Understanding the rearrangements of the cytoskeleton is essential 
to developing a complete picture of the dynamic forces involved in 
cellular processes such as migration, division, and differentiation. 
Cytoskeletal dynamics, and in particular actin dynamics, have been 
shown to be important for the growth of cell junctions and focal 
adhesions (Maruthamuthu et al., 2010) and for immune-cell activa-
tion (Lam Hui et al., 2014). The formation of actin waves through 
directional polymerization and depolymerization of filaments drives 

many types of cell migration (Müller and Sixt, 2017) and has been 
associated with the establishment of polarity in a variety of cell types 
(Inagaki and Katsuno, 2017).

Forces from the extracellular environment are an important 
modulator of actin dynamics. Physical and chemical characteristics 
of the extracellular environment, such as rigidity, biochemical com-
position, and topography, have been shown to influence actin 
dynamics and associated cell behavior (Discher et al., 2005; Doyle 
et al., 2009; Lu et al., 2012; Petrie and Yamada, 2015). One mecha-
nism for this modulation is mechanosensing via focal adhesions 
(Ketchum et al., 2018). In addition, actin waves respond when cells 
encounter obstacles (Weiner et al., 2007). It has been established 
that ridges of width comparable to fibers in the extracellular matrix 
(ECM) can alter actin dynamics significantly (Driscoll et al., 2014; Sun 
et al., 2015; Ketchum et al., 2018) and bias the localization of focal 
adhesions (Ventre et al., 2014; Sun et al., 2018). Thus, in vivo, 
the topography of the ECM, such as collagen networks (Wolf 
and Friedl, 2011; Charras and Sahai, 2014), is likely to modulate 
actin dynamics.

Periodic nanotopographic surfaces provide the opportunity to 
obtain systematic data on the modulation of such intracellular 
dynamics. In prior work, we have shown that actin waves can be 
nucleated near, and guided along, periodic nanotopography, in a 
phenomenon termed esotaxis. Actin-wave guidance has been 
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observed in cell types that exhibit distinct physiological functions 
and migration phenotypes, including Dictyostelium discoideum 
(Driscoll et al., 2014; Sun et al., 2015), neutrophil-like HL60 cells (Sun 
et al., 2015), B cells (Ketchum et al., 2018), and breast cancer cell 
lines (Chen et al., 2019). However, there are clear differences in the 
responses of each of these cell types to nanotopography. For 
example, although both D. discoideum and HL60 cells exhibit 
esotaxis, these two types of cells have been found to move prefer-
entially in different directions on specific nanoscale asymmetric 
sawtooth textures (Sun et al., 2015). Furthermore, different breast 
cancer cell lines preferentially move in different directions on asym-
metric sawtooth nanotopography (Chen et al., 2019).

Here we introduce a method for performing quantitative mea-
surements of the influence of nanotopography on intracellular dy-
namics at both the submicron and the micron scales. This approach 
enables the detection of subtle differences in cytoskeletal dynamics 
and allows for in-depth analysis of both the differences and the simi-
larities of these dynamics across cell types and phyla. Our method of 
quantification of actin dynamics across scales is based on optical 
flow, an image-analysis technique developed in the fields of robotics 
and navigation control that uses changes in pixel intensities to detect 
motion in image sequences (Horn and Schunck, 1981; Lucas and 
Kanade, 1981). Because of the popularity of particle image velocime
try (PIV), optical flow has seen limited use on biological images. 
However, PIV is poorly suited for the variety of features that can be 
exhibited in fluorescence images of amorphous concentration fields. 
Indeed, a recent study indicated that optical flow may be better 
suited for analysis of fluorescence images, as it provides a more 
accurate estimate of ground-truth flow fields (Vig et al., 2016). Here, 
we use optical flow to measure the dynamics of actin polymerization 
with submicron precision, and we further expand the utility of optical 
flow by introducing modeling and fitting approaches to the analysis 
of optical-flow vector fields. Clustering of the optical-flow data 
further allows us to quantify actin dynamics on the micron scale. 
Thus, this optical–flow-based analysis enables the identification of 
similarities and differences between esotaxis in neutrophillike HL60 
cells and human breast epithelial MCF10A cells across length scales.

RESULTS
Esotaxis has been observed in a wide range of cell types that are 
known to respond to their in vivo microenvironment through 
processes such as directed migration or immune-system activation 
(Driscoll et al., 2014; Sun et al., 2015; Ketchum et al., 2018). More 
recently, esotaxis has also been observed in epithelial cells, which 
are less motile (Chen et al., 2019). Here we contrast the actin 
dynamics of epithelial MCF10A cells with those of neutrophillike 
HL60 cells.

LifeAct–GFP-labeled epithelial MCF10A cells were plated on a 
900 µm × 900 µm region patterned with parallel nanoridges with a 
spacing of 1.5 µm, as well as on the surrounding flat region. Confo-
cal imaging near the surface revealed distinct actin morphologies 
on nanoridges as compared with the flat region (Figure 1). On the 
flat region the phenotype is a common one for these cells on such 
surfaces, with a broad lamellipodium at the cell front and stress 
fibers throughout the cell body (Figure 1A). In contrast, MCF10A 
cells on nanoridges exhibit actin streaks aligned with the ridges 
throughout the cell area (Figure 1B). The local nature of the 
response of actin to surface texture is illustrated in Figure 1C, which 
shows a cell that is partially on the nanoridges and partially on the 
flat region. On the nanoridged region, the cell shows the same actin 
streaks as a cell that lies fully on a ridged surface, whereas the same 
cell maintains a broad lamellipodium on the flat region.

Ridged and flat regions also engender distinct actin dynamics. 
Kymographs can be used to visualize dynamics in a region of inter-
est in one spatial direction over time. The left side of Figure 2A 
compares an MCF10A cell on a flat region with one on a nanoridged 
region. The cell on the nanoridged region shows actin streaks 
that are characteristic of esotaxis. Actin kymographs from two 
perpendicular regions (Figure 2A) in an MCF10A cell on a flat 
surface show oscillatory dynamics in all directions at the cell bound-
ary. These oscillations in the kymographs indicate the presence of 
fanlike protrusions and retractions across each region over 30 min 
(Figure 2B). In contrast, on the nanoridged region, the actin dynam-
ics parallel and perpendicular to the ridges are different (Figure 2C). 
Parallel to the nanoridges, MCF10A cells show oscillatory actin 

FIGURE 1:  Surface topography prompts distinct actin morphology. The actin cytoskeleton of an epithelial MCF10A cell 
on (A) a flat surface has an actin morphology that is distinct from that of a cell on (B) a nanoridged surface. (C) A cell that 
is partially on a nanoridged region and partially on a flat region exhibits local actin morphologies that are driven by the 
underlying topography. The blue line in C indicates the boundary between the flat region and the nanoridged region. 
All scale bars are 10 µm. See also Supplemental Movie S1.
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dynamics. As shown in the bottom left of Figure 2C, a representa-
tive kymograph of a region perpendicular to the ridges shows 
actin structures that persist for tens of minutes and do not move 
perpendicular to the ridges. This behavior is typical for kymographs 
perpendicular to the ridges, although perpendicular motion is 
observed in some cases as discussed below.

The behavior of motile, neutrophil-like HL60 cells on flat and na-
noridged regions is illustrated in Figure 2, D–F. Figure 2D illustrates 

the regions from which kymographs were generated. In HL60 cells 
on flat regions, actin is concentrated near the cell front. This localiza-
tion is largely preserved on the ridged surfaces, although the 
morphology of the actin changes such that streaks of actin are 
aligned with the ridges. On flat surfaces, the HL60 cells show 
regions of protrusions and retractions (Figure 2E) similar to the actin 
dynamics seen in MCF10A cells (Figure 2B). We note that protru-
sions occur on the scale of seconds in HL60 cells and on a scale of 

FIGURE 2:  Surface topography leads to distinct actin morphodynamics. (A) Optical micrographs of MCF10A cells in 
(left) bright-field and (right) fluorescence on (top) a flat region and (bottom) a nanoridged region. All scale bars are 
10 µm. Kymographs for the areas denoted in A are shown in B for the flat region and in C for the nanoridges. D–F are 
the same as A–C, respectively, but for HL60 cells. The dynamics in A and D are shown in Supplemental Movies S2 and 
S3, respectively.
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minutes in MCF10A cells. Kymographs of the HL60 cells in the direc-
tion parallel to the nanoridges show protrusive dynamics, although 
often in the form of a single persistent wave (Figure 2F, top), in con-
trast to the oscillatory behavior seen on flat surfaces (Figure 2E). A 
representative kymograph of an HL60 cell in the direction perpen-
dicular to the nanoridges shows streaks (Figure 2F, bottom) that 
indicate that actin waves do not move perpendicular to the ridges, 
but the streaks are shorter in duration than those in a typical 
MCF10A cell (Figure 2C). This behavior is typical for kymographs of 
actin in HL60 perpendicular to the ridges. Unlike in MCF10A cells, in 
which actin streaks on the ridges localize throughout the cell (Figure 
2C, bottom), in the HL60 cells the streaks occur near the cell front 
(Figure 2F, bottom). Groups of actin streaks propagate together at 
the front of the HL60 cells, suggesting that there may be large-scale 
organization of actin dynamics (spanning many ridges) in these cells. 
It is unclear whether there is large-scale organization of actin 
dynamics in the MCF10A cells.

As shown in Supplemental Movies S2 and S3, the full range of 
actin dynamics is more complex than is revealed by kymographs. 
MCF10A cells on the ridged regions exhibit actin dynamics through-
out the substrate contact area, whereas actin dynamics on flat 
surfaces are largely confined to the cell boundary. These movies 
show that, in both cell types, nanoridges stimulate reproducible, 
dynamic, linear actin structures.

Time-lapse fluorescence images of actin waves are difficult to 
interpret by visual inspection or kymographs alone, because the 
observed dynamics arise from a complex spatio-temporal concen-
tration field. To measure these wavelike dynamics quantitatively, we 
must first define a wave (size and shape) and then capture its propa-
gation (splitting, recombination, and changes in direction). Here, we 
address these challenges by introducing an automated approach to 
quantify actin-wave dynamics across length scales for unbiased 
comparison in different cell types and extracellular environments.

Our method is based on a computer-vision algorithm from 
robotics and navigation control called optical flow (Horn and 
Schunck, 1981; Lucas and Kanade, 1981), which provides pixel-
based information about the direction and magnitude of intensity 
flux in a series of time-lapse images. Fields of optical-flow vectors 
are calculated by integrating changes of intensity in space and time, 
as shown schematically in Figure 3. For example, two images of a 
migrating HL60 cell taken 8 s apart are shown with changes in time 
highlighted by a green-to-magenta montage (Figure 3A). The 
magenta region indicates growth of the actin front (which, as ex-
pected, occurs at the leading edge of the cell), and the green region 
indicates a decrease in actin intensity.

The general objective of calculating optical flow is to solve for 
the unknowns Δx and Δy in

I x y t I x x y y t t, , , ,( ) ( )= + ∆ + ∆ + ∆ � (1)

where I(x,y,t) represents the actin fluorescence intensity at frame t. 
The intensity I that exists at point (x,y) at time t translates to a new 
point (x + Δx,y +Δy) at some future time t + Δt. Expanding about 
small Δx and Δy and neglecting second-order derivatives yields the 
master optical-flow equation
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This governing equation is underdetermined, and so the Lucas–
Kanade optical-flow constraint (Lucas and Kanade, 1981) was 
applied to calculate flow fields. This constraint prescribes that all 
pixels in a small window centered at (x,y) each have the same 

translational optical-flow vector. The equation can then be solved 
using the least-squares criterion (an explicit derivation is given in the 
Materials and Methods) to yield the intensity flow, 

�
v (Figure 3B, 

center panel). Solving for 
�
v  requires use of the negative spatial 

gradient, −∇
�
I (Figure 3B, left panel), which forms a vector field 

oriented away from regions of highest local intensity, and the time 
derivative, ∂I/∂t (Figure 3B, right panel) as shown in Eq. 2. Using 
the pair of images from Figure 3A as a representative example, the 
spatial and temporal gradients are used to calculate the optical-flow 
vector field, which approximates the flow of actin between the two 
frames. In this example, the vector field captures the translational 
motion on the leading edge of the cell (Figure 3C).

Optical-flow measurements of actin intensity translation enable 
the quantification of the pixel-scale response of actin dynamics to 
nanoridge topographies (Figure 4). The green-to-magenta mon-
tages of representative HL60 and MCF10A cells show dynamic and 
protrusive actin behavior at the leading edge of the cell (Figure 4A). 
Coloring the calculated flow fields based on direction relative to the 
nanoridges (Figure 4B) reveals the clear bias of actin wave guidance 
in the direction parallel to the ridges, which is consistent with 
the qualitative features of the montage images in Figure 4A. 
Measurements of the optical-flow directions on all HL60 and 
MCF10A cells on both flat and ridged surface topographies are 
shown in the histograms of Figure 4C. In both cell types, the cumu-
lative distribution of flow in cells on flat surfaces shows no appre-
ciable bias in any direction. However, cells on ridges exhibit a clear 
preference for flow along the ridge direction.

We note that the images for the MCF10A and HL60 were obtained 
with different objectives (100× and 60×, respectively) and at different 
acquisition rates (10 and 2 s between frames, respectively). Never-
theless, the optical-flow algorithm performs well on each set of data, 
emphasizing the broad applicability of this approach. The two cell 
types also use different actin-labeling approaches (LifeAct for the 
MCF10A and Actin-YFP for the HL60), which may have different over-
expression effects on actin dynamics (Melak et al., 2017), but in both 
cases produce reliable optical-flow results that are indicative of nano-
topography-guided actin dynamics.

For further quantification, we fit the distribution of flow direc-
tions from each cell to a bimodal von Mises model with a constant 
offset (Materials and Methods). The distribution used consists of a 
uniform component and two peaked components that are 180° 
apart. The five parameters of the bimodal model are illustrated in 
Figure 4D. The angle θµ indicates the direction of the main compo-
nent, and 1/κ is proportional to the width of the distribution. The 
values of κ on ridged regions are significantly higher than those than 
on flat regions for both the MCF10A and the HL60 cells (Figure 4E, 
p = 0.0001583 and p = 0.0040), indicating that the ridges strongly 
guide the actin flows in a bidirectional manner. A comparison of κ 
and θµ shows that cells with a bidirectional actin flow (i.e., high κ 
values) are more likely to be guided along the ridge direction 
(Figure 4F).

Although the optical-flow vector field indicates preferred direc-
tions of actin flow, it does not yield propagation speeds of actin po-
lymerization waves directly. The magnitude of an optical-flow vector 
incorporates both the shift of actin in space and the change in actin 
intensity over time. This submicron-scale (i.e., pixel-scale) flux of in-
tensity does not translate directly into characteristics of the dynamics 
that are notable on the micron-scale (i.e., tens of pixels), such as the 
organization of waves across ridges seen in neutrophils in Figure 2F 
or the speed of wave propagation. To quantify these micron-scale 
characteristics, we combined similarly oriented optical-flow vectors 
into clusters (Figure 5A), which were then tracked over time. To 
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FIGURE 3:  Optical-flow calculations capture the dynamics in movies of actin fluorescence. (A) Two frames of a 
representative HL60 cell obtained 8 s apart and a merged image show the dynamics of the cell’s behavior over time. The 
schematic in B illustrates how the procedure used to carry out optical-flow calculations combines the spatial gradient of an 
image (left) and the difference image/temporal gradient (right) to yield the optical-flow vector field (center). These 
calculations are applied to the images in A and shown in the images of C. The spatial gradient field (left) and temporal 
gradient (right) result in the output optical-flow vector field (center). Blue pixels in the right panel of C indicate a positive 
change (increase) in the pixel brightness from the first frame to the second frame, and red pixels in the right panel indicate 
a negative change (decrease) in the pixel brightness from the first frame to the second frame. All scale bars are 5 µm.

ensure that we tracked robust clusters, we applied additional con-
straints, such as requiring sufficiently large intensity changes (see 
Materials and Methods). The result of this clustering was the identifi-
cation of broad regions of actin that moved collectively (Figure 5B).

We applied peak-finding and tracking algorithms (Blair and 
Dufresne, 2018) to follow the locations of maximum alignment of 
these optical-flow clusters on the micron scale. Although the opti-
cal-flow results shown in Figure 4 follow motion on the pixel scale, 
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FIGURE 4:  Using optical flow to measure pixel-scale guidance. (A) Representative merged time-lapse images of an 
MCF10A cell (top, 100 s apart) and an HL60 cell (bottom, 8 s apart). (B) Optical-flow vector fields colored by direction 
relative to the horizontal ridges. Blue indicates motion aligned with the ridges and yellow indicates motion perpendicular 
to the ridges. All scale bars are 5 µm. The dynamics in B are shown in Supplemental Movies S4 and S5. (C) Cumulative 
distributions of the directions of optical-flow vectors for multiple HL60 and MCF10A cells on flat and ridged surfaces; all 
cells are weighted equally in the distribution. (N = 4 MCF10A cells on flat surfaces from three independent experiments, 
N = 19 MCF10A cells on ridges from four independent experiments, N = 14 HL60 cells on flat surfaces from two 
independent experiments, and N = 17 HL60 cells on ridges from three independent experiments.) (D) The distribution of 
angles can be fit to a mixture of two von Mises distributions with five fitting parameters: θµ (primary direction of motion), 
κ (inversely related to distribution width), and three coefficients indicating the component of motion in the θµ direction, 
the component in the θµ + 180° direction, and the component that is uniform. (E) In both MCF10A and HL60 cells, the 
distribution width, parameterized by κ, shows significant differences (p = 0.0001583 and p = 0.0040) on flat versus ridged 
surfaces. (F) For each cell, the mean direction of motion (angular axis) is plotted vs. κ (radial axis). Values of κ less than 2 
(indicated by the dashed line) indicate cells with direction distributions that are statistically indistinguishable from a 
uniform distribution. We note κ = 19.6 for one HL60 cell, and this point is not visible in this figure.
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FIGURE 5:  Clustering of optical-flow vectors to measure micron-scale dynamics. (A) Similar flow vectors are grouped 
into clusters. (B) Clusters contain optical-flow vectors with a wide array of orientations, resulting in micron-scale 
structures. All scale bars are 5 µm. (C, D) Particle-tracking algorithms are applied to the tracked clusters. The cluster 
tracks are consistent with the motion at the leading edge of the actin waves seen in the kymographs in both HL60 (C, left) 
and MCF10A (D, left). Panels to the right of each kymograph show the same track in the 2D context of the cells; clusters 
found throughout the cell over time are indicated by colored regions. The dynamics in C and D are shown in 
Supplemental Movies S6 and S7, respectively. (E) The cluster tracks are used to determine speed distributions of actin 
waves on the ridges in the MCF10A and HL60 cells, which show no significant difference (p = 0.5529 and p = 0.0586) 
between flat surfaces and ridges. (F) Cumulative angle distribution of cluster track directions for multiple HL60 and 
MCF10A cells on flat and ridged surfaces; all cells are weighted equally in the distribution. (N = 4 MCF10A cells on flat 
surfaces from three independent experiments, N = 17 MCF10A cells on ridges from four independent experiments, 
N = 9 HL60 cells on flat surfaces from two independent experiments, and N = 16 HL60 cells on ridges from three 
independent experiments.)
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by following the peak alignment of the optical flow, we are able to 
track larger coordinated clusters of actin. Our tracking is consistent 
with the actin dynamics seen in kymographs, as shown by repre-
sentative kymographs of MCF10A (Figure 5C) and HL60 (Figure 
5D) cells overlaid with the tracked location of actin waves. Unlike 
kymographs, which are sensitive to motion along a chosen direc-
tion, tracks of clustered flow vectors reveal the micron-scale mo-
tion of actin in two dimensions. The benefits of our approach are 
illustrated in Figure 5C for an MCF10A cell. For the initial frames, 
the kymograph indicates a stationary actin structure (Figure 5C, 
left), but when the actin dynamics are viewed in two dimensions 
(Figure 5C, right), it is evident that in the early frames this wave is 
moving perpendicular to the ridges, a motion that cannot be cap-
tured in this one-dimensional kymograph. Thus, the combination 
of optical flow, clustering, and tracking allows us to follow actin 
waves without being limited to tracking only motion that occurs 
along a straight line.

The speeds of the tracked actin clusters (Figure 5E) are similar 
to speeds derived from actin kymographs (Figure 5, C and D, and 
Supplemental Figure S1), despite an approximately order-of-
magnitude difference in speed between the two cell types that is 
consistent with their distinct in vivo functions and with previously 
reported cell-migration speeds (Meyer and Howard, 1987; Lee 
et al., 2016). For both cell types we find no significant difference 
(p = 0.5529 and p = 0.0586) between actin-wave speeds on flat 
and ridged surfaces (Figure 5E), implying that topography steers 
actin dynamics but does not alter wave speeds. On flat surfaces, 
the directions of the clusters are distributed uniformly for 
MCF10A cells but show distinct peaks in multiple directions for 
HL60 cells (Figure 5F). This observation is consistent with the 
polarized character of actin in several of the HL60 cells on flat 
surfaces, corresponding to κ values greater than 2 in Figure 4, E 
and F.

DISCUSSION
Extracellular texture, which is an important component of the 3D, in 
vivo environment, is capable of spatially patterning actin and 
modulating actin dynamics. Using nanoridge structures in conjunc-
tion with optical-flow approaches, we are able to probe and quantify 
this intracellular response to extracellular textures in a systematic 
manner.

Previous studies of D. discoideum (Driscoll et al., 2014; Sun et al., 
2015), B cells (Ketchum et al., 2018), and tumor-associated fibro-
blasts (Azatov et al., 2017) showed similarity in actin response to 
texture, which suggests that guidance of actin driven by texture 
(esotaxis) is broadly conserved across cell types. Controlled textures 
are thus a useful model microenvironment for the systematic, 
reproducible, and quantitative study of intracellular dynamics and 
force regulation. Here we demonstrated the analysis of time-lapse 
images of two cell types that have distinct physiological function. 
Neutrophil-like HL60 cells are polarized and highly motile, and 
respond to a variety of cues as they fulfill their role in the immune 
system. Epithelial MCF10A cells, however, have a nonmotile physi-
ological function. Nevertheless, both cell types show clear, and 
quantitatively similar, actin dynamics in response to surface textures. 
Consistent with our prior results (Driscoll et al., 2014; Azatov et al., 
2017), we find that nanoridges lead to persistent streaks of actin that 
are not seen on flat surfaces.

Optical flow enables the quantification of both the reproducible 
streaks of actin seen on nanoridged surfaces and the more chaotic 
actin waves seen on flat surfaces. The latter waves are typically much 
wider than guided actin waves. On flat surfaces the waves often 

change direction and can also grow wider and split. Such motion 
phenotypes are not easily captured with standard techniques such 
as kymographs. Optical flow enables us to follow these dynamics 
and thus yields insights beyond those derived from kymograph-
based techniques.

We note that optical flow is suitable for comparisons of sys-
tems imaged under different conditions (e.g., 60× vs. 100× ob-
jectives), enabling comparisons of widely varying cell sizes and 
migration speeds. The use of varying acquisition rates (i.e., 2 and 
10 s) in this work was based on the differences in cell migration 
speeds of the two cell lines studied. In general, optical flow re-
quires a frame rate such that changes in fluorescence intensity 
between frames are small but larger than noise. Our use of the 
Lucas–Kanade optical-flow constraint also makes the assumption 
that there is a smoothness to the flow field over a certain neigh-
borhood, which is a length-scale parameter in the optical-flow 
analysis. This assumption is met by a wide variety of biological 
imaging data sets, and thus the use of our optical-flow approach 
is not limited to actin dynamics. Optical flow could provide in-
sights into the motion of other cytoskeletal proteins, such as tu-
bulin, or into the dynamics of other fluorescent markers that ex-
hibit a spatially and temporally changing intensity field. Our use 
of clustering to study larger-scale actin dynamics could similarly 
be adapted to other fluorescent markers under the assumption 
that there are larger-scale dynamics that move together in similar 
directions. In this work, we used a spinning-disk confocal micro-
scope for image acquisition, but our analysis pipeline would also 
be appropriate for other imaging techniques, such as epifluores-
cence. When working with other imaging modalities or fluores-
cent markers, the size of the Lucas–Kanade neighborhood and 
the threshold for vector reproducibility (see Materials and 
Methods and Supplemental Figure S2) can be adapted to only 
include robust results in further analysis.

Using submicron-scale optical flow and associated micron-scale 
analysis, we have shown that both MCF10A and HL60 cells have 
actin flows that are biased along nanoridges. By clustering similarly 
oriented optical-flow vectors, we are able to measure the speed of 
actin waves within the cell. The measured speeds are comparable to 
speeds calculated from actin kymographs. Optical-flow analysis 
allows us to determine that the speeds do not differ significantly on 
flat versus ridged regions. This finding indicates that nanotopogra-
phy guides, but does not fundamentally alter, the speed of actin 
dynamics. We measure actin-wave speeds on the order of 1 µm/min 
in the MCF10A cells, consistent with previously reported cell 
migration speeds of approximately 0.5 µm/min (Lee et al., 2016). In 
the HL60 cells we find actin speeds ranging from approximately 8 to 
14 µm/min, consistent with the 8 µm/min speed for cell migration 
previously reported (Meyer and Howard, 1987).

Fitting the optical-flow vectors to a bimodal von Mises distribu-
tion enables quantification of the differences in the directionality of 
actin flows on flat and ridged surfaces in both cell lines. The fit 
parameters also show differences in actin polarization in these two 
cell lines. HL60 cells occasionally exhibit coordinated and directed 
actin flows even on flat surfaces, whereas MCF10A cells on flat 
surfaces show uniform direction distributions of actin waves. On 
the micron scale, actin-wave tracks from individual HL60 cells on 
flat surfaces generally polarize and have a preferred direction, 
consistent with the behavior of immune cells, which tend to polarize 
and migrate in a directed manner. Tracks from MCF10A cells on a 
flat surface, on the other hand, are more directionally uniform for 
each cell. In both cell types, ridges guide actin waves in a bidirec-
tional manner.
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The quantitative actin responses in MCF10A and HL60 cells 
support a model in which surface texture provides a symmetry-
breaking cue that leads to nucleation of actin polymerization. 
Under flat tissue-culture conditions, which lack symmetry-break-
ing cues, actin polymerization relies on spontaneous nucleation 
or edge effects (Begemann et al., 2019). Edge effects may lead 
to morphological features such as the lamellipodia seen in HL60 
cells on flat surfaces in Figure 2B. By changing the landscape on 
which nucleation occurs, surface texture can lead to actin 
polymerization in other locations of the cell, such as the persis-
tent streaks seen in the center of MCF10A cells on ridges in 
Figure 2A.

There are multiple mechanisms by which cells may respond to 
local forces and geometry (Vogel and Sheetz, 2006), including 
sensing mechanisms that can respond to membrane curvature on a 
variety of scales (McMahon and Boucrot, 2015). Our finding that 
nanoridges change the direction, rather than the speed, of actin 
waves suggests that growth of existing actin filaments away from 
the surface is the rate-limiting step in actin polymerization wave 
propagation. In some cases, sensing mechanisms may rely on the 
preferential formation of focal adhesions. This hypothesis is 
consistent with previous results on focal adhesion localization and 
orientation in response to surface texture (Ventre et al., 2014; Sun 
et al., 2018). Although MCF10A cells form strong focal adhesions 
that may align with texture cues (Sun et al., 2018), the HL60 cells 
form weaker adhesions, and the previously studied D. discoideum 
cells (Driscoll et al., 2014; Sun et al., 2015) are not known to form 
integrin-mediated focal adhesions. Thus, the dominant mechanism 
of surface texture response likely depends on both the cell type and 
the extracellular environment.

Known surface-sensing mechanisms also include cytoskeletal 
components such as septins, which respond to micron-scale 
curvatures (Bridges et al., 2016), and BAR domains, which sense 
nanoscale curvature (Zimmerberg and McLaughlin, 2004). Proteins 
with BAR domains have been linked to actin assembly (Graziano and 
Weiner, 2014) as well as to key components of actin-regulating 
pathways, such as WAVE and Rac (Miki et al., 2000; Habermann, 
2004). Recent work has suggested that nucleation of new actin 
filaments is enhanced by nanotopography. Specifically, curved 
nanopillars activate the nucleation-promoting factors Arp2/3 and N-
WASP through enhanced binding of an F-BAR domain containing 
protein (Lou et al., 2019). Additionally, evidence suggests that 
topography is capable of shifting multiple gene-expression path-
ways (Dalby et al., 2005), which implies that longer-term exposure to 
topography may mediate additional surface-sensing pathways. As 
in vivo microenvironments contain a variety of textures, it is likely 
that multiple mechanisms respond to distinct features of extracellu-
lar texture, and future work on the response of actin regulators to 
controlled topographies such as those investigated here will help 
elucidate the contributions of distinct signaling pathways in topog-
raphy-guided actin dynamics.

Although the systematic modulation and interrogation of all 
possible molecular factors of esotaxis is beyond the scope of this 
article, our analysis yields two remarkable constraints on the mole-
cular sources of esotaxis. First, the speed of actin waves is not 
altered by esotaxis. Second, the directional guidance provided by 
nanotopography is comparable in the two cell types investigated, 
despite their disparate functions and migratory phenotypes. 
Quantitative analysis of esotaxis as a physical phenotype could yield 
crucial prognostic disease insights, especially in the case of cancer, 
in which changes in the texture of the microenvironment correlate 
with disease progression.

MATERIALS AND METHODS
Cell culture and imaging
HL60 YFP-actin cells were a gift from Orion Weiner of the 
University of California, San Francisco. The cells were cultured in 
RPMI 1640 medium, Glutamax (Life Technologies) supplemented 
with 10% heat-inactivated fetal bovine serum (Gemini Bio). Cells 
were passaged every 2–3 d and kept between 3 × 105 and 1 × 106 
cells/ml. For differentiation, cell media was additionally 
supplemented with 1.3% dimethyl sulfoxide Hybri-Max (Sigma 
Aldrich) for 5 d before imaging. Actin dynamics of HL-60 YFP-
actin cells were observed by confocal fluorescence and bright-
field time-lapse imaging using a PerkinElmer spinning-disk 
confocal microscope with a water immersion 60× objective 
(0.21 µm/pixel). Images were recorded every 2 s. We note that 
this method of plating resulted in the imaging of some multicel-
lular clusters of HL60 cells; these clusters were removed from 
further analysis.

Preparation for imaging included a 10 µg/ml coating of fibronec-
tin on the substrates. Cells were plated and allowed to settle. 
After approximately 30 min, N-Formyl-Met-Leu-Phe (fMLF; Sigma 
Aldrich) was added to 1 μM. HL-60 cells were imaged on flat resin 
and ridged nanotopographies beginning between 10 and 15 s after 
fMLF stimulation. All images analyzed in this work were obtained 
after fMLF stimulation.

MCF10A LifeAct-EGFP cells were a gift from Carole A. Parent 
(National Cancer Institute, Bethesda, MD). These cells were cultured 
in DMEM/F12 media supplemented with 5% horse serum, 10 μg/ml 
insulin (ThermoFisher Scientific), 10 ng/ml EGF (Peprotech, Rocky 
Hill, NJ), 0.5 μg/ml hydrocortisone, and 100 ng/ml cholera toxin 
(both Sigma, St. Louis, MO). The media were additionally supple-
mented with 2 μg/ml puromycin dihydrochloride (ThermoFisher Sci-
entific) to select for EGFP-positive cells. Before imaging, cells were 
plated on a nanoridged surface coated with collagen IV and were 
allowed to adhere to the surface overnight. Actin dynamics were 
studied by confocal fluorescence and bright-field, time-lapse imag-
ing using a PerkinElmer spinning-disk confocal microscope with a 
100× objective (0.14 µm/pixel). Images were recorded every 10 s.

For both cell types, data were collected using PerkinElmer’s 
Volocity software (version 6.4.0). The spinning-disk confocal micro-
scope was equipped with a Hamamatsu ImagEM X2 EM-CCD 
camera (C9100-23B), which recorded 12-bit images. Cells used in 
this study tested mycoplasma negative using the MycoAlert (Lonza) 
testing system.

Surface fabrication
The nanotopographies were designed and fabricated using 
multiphoton absorption polymerization (MAP), as described previ-
ously (Sun et al., 2018). A drop of prepolymer resin (1:1 wt/wt Tris 
[2-hydroxy ethyl] isocyanurate triacrylate [SR368]: ethoxylated 
(6) trimethylolpropane triacrylate [SR499], both from Sartomer; 
3% Lucirin TPO-L [BASF]) was sandwiched between a coverslip 
and a plasma-treated microscope slide that had been functional-
ized with acrylate groups (LaFratta et al., 2007; Li and Fourkas, 
2007; Sun et al., 2018). The coverslip was mounted onto the stage 
of an inverted microscope (Zeiss Axiovert 135). A beam of 150-fs 
pulses centered at 800 nm from a Ti:sapphire oscillator (Coherent 
Mira 900) was directed into the microscope and through a high-
numerical-aperture objective (Zeiss alpha-Plan Fluar 100×; NA 
1.45). The stage motion and shutter were controlled using a 
program written in LabVIEW (National Instruments). Once the 
pattern was fabricated, the sample was developed in ethanol and 
baked at 110°C for 1 h.
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A replica molding approach was then used to mold the chemi-
cally functionalized pattern (Sun et al., 2018). This step included the 
initial casting of a hard-poly(dimethylsiloxane) (h-PDMS) layer 
(1000 rpm, 40 s) to better resolve nanoscale features of the topo-
graphical pattern. This layer was allowed to sit on the pattern at 
room temperature for 2 h and was then baked at 60°C for an 
additional 1 h. Finally, Sylgard 184 was mixed (10:1 elastomer 
base:curing agent) and poured onto the initial h-PDMS layer. The 
PDMS was cured at 60°C for 1 h 10 min.

The MAP-fabricated structure was then reproduced through a 
soft-lithographic technique. A drop of the aforementioned resin was 
sandwiched between the PDMS mold and an acrylate-functional-
ized coverslip and was then exposed to UV radiation from a lamp for 
a desired amount of time. After the resin cured, the coverslip was 
peeled off the mold. This process was repeated many times to 
produce enough replicas to perform the necessary experiments. 
The replicas were soaked in ethanol for at least 4 h and subsequently 
baked/dried in an oven at 110°C for 1 h. Samples used to study 
MCF10A cells were also soaked in UltraPure water (ThermoFisher) 
for approximately 12 h.

Kymographs
Kymographs were created in MATLAB by manually selecting a rect-
angular region in an actin image. Fluorescence intensities inside the 
region were averaged across the short axis of the region; this pro-
cess was repeated for each image in the time-lapse sequence, and 
the resulting intensity data were combined into the kymographs 
shown in Figure 2 and Supplemental Figure S1.

Optical flow
The Lucas–Kanade optical-flow method (Lucas and Kanade, 
1981) was used to capture the direction and strength of intensity 
flow of fluorescent actin and to produce vector fields indicating 
actin motion. The optical-flow vector field of an image series is 
the field of apparent translation in the image plane, as is shown 
schematically in Figure 3B. Calculating the optical flow for two 
adjacent two-dimensional images in an image series requires 
solving for the unknowns Δx and Δy in Eq 1, as described above. 
The Lucas–Kanade method uses a least-squares regression 
approach to solve for the best optical-flow vector on a pixel-by-
pixel basis under the assumption that all pixels within a 
“neighborhood” move in a similar direction (Lucas and Kanade, 
1981). If solving for the optical-flow vector of some point p with 
coordinate (xp,yp,τ), the master optical-flow equation requires 
that the optical flow vector of point p and all points in the neigh-
borhood about p (points 1,2,…,p,…, N) follow the underdeter-
mined relation
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Under the Lucas–Kanade assumption, the vector for point p is 
assigned to all points in the neighborhood
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The least-squares solution to equations of this form, Ax b
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Gaussian weight matrix centered at point p to ensure that pixels near 
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where w is a ×N N  centered Gaussian matrix. The equation 
then takes the form wAx wb

� �
=  and has solution 

x A w wA A w w b A wA A wbT T T T T T
1 1� � �( ) ( )= =

− −
.

Optical-flow reliability is defined as the smallest eigenvalue of 
the ATwA matrix (Simoncelli et al., 1991; Barron et al., 1994) and 
was used to remove flow vectors that were created by noise or an 
ill-defined least-squares calculation. The threshold used can be 
adapted to best suit the experimental data and scientific questions 
of interest by only keeping the most reliable vectors while measur-
ing the motion of more regions of the cell. The optical-flow weight 
matrix for MCF10A cells was a 27 × 27 pixel Gaussian with a SD of 
4.5 pixels (0.63 µm). The optical-flow weight matrix for HL60 cells 
was 19 × 19 pixel Gaussian with a SD of 3 pixels (0.63 µm). With 
other imaging modalities, magnifications, or fluorescent markers, it 
may be appropriate to change the size of this weight matrix based 
on the size of features of interest and noise in the image.
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von Mises model of flow distribution
Optical-flow distributions were modeled with a modified bimodal 
von Mises distribution (von Mises distributions are a continuous and 
differentiable analogue of normal distributions on a circle with simi-
lar statistical properties). The model was defined as

f p VM p VM p p| , * | , * | , 1 *
1

2
1 2 1 2( )( ) ( ) ( )θ θ κ = θ θ κ + θ + π θ κ + − −

πµ µ µ
 

� (7)

where VM (θ | θμ,k) is the von Mises distribution

VM
e

I
| ,

2

cos

0
( ) ( )θ θ κ =

π κ

( )
µ

κ θ−θµ

� (8)

and I0 ( )κ  is the modified Bessel function of the first kind. The 
maximum likelihood estimates of the parameter k were used for 
statistical analyses.

Cluster-tracking analysis
Regions of actin fluorescence were clustered using the direction of 
optical-flow vectors together with an optical-flow reliability thresh-
old and by requiring that actin intensity change over time (see 
Supplemental Figure S2 for a visualization of this workflow). The dot 
products between optical-flow vectors around a point p (i.e., vectors 
v1,v2,…,vp-1, vp+1,…,vN) were calculated and accumulated using a 
Gaussian weighting scheme to a single scalar alignment metric. The 
alignment metric is defined as

∑ ( )= ⋅
=

� �
a w v v*p

i

N

i p i
1

� (9)

where w is a renormalized ×N N centered Gaussian matrix 
with a center manually set to 0. This calculation was carried out for 
each pixel.

To require that the actin intensity change over time, a mask of the 
thresholded difference image between subsequent frames was 
calculated. For every pair of adjacent frames, It and It+Δt, the result-
ing mask took value I where It+Δt > It and 0 otherwise. For our analy-
sis, Δt = 30 s for MCF10A and 6 s for HL60.

To calculate the final clustered regions, the alignment metric ap, 
optical-flow reliability λp, and difference-image mask were multiplied 
in an element-wise manner to create a final cluster image. The cluster 
image was inputted into a peak-finding algorithm to locate peaks in 
the resulting intensity profile, and the Crocker-Grier particle-tracking 
algorithm (Crocker and Grier, 1996; Blair and Dufresne, 2018) was 
used to track coordinates of the resulting peaks over time.

The clustering weight matrix for MCF10A was a 27 × 27 pixel 
Gaussian with a SD of 4.5 pixels (0.63 µm). The clustering weight 
matrix for HL60 cells was 19 × 19 pixel Gaussian with a SD of 3 pixels 
(0.63 µm). The diameter of the peaks used in pkfnd.m (Blair and 
Dufresne, 2018) was 15 pixels (2.1 µm) for MCF10A cells and 
10 pixels (2.1 µm) for HL60 cells. The maximum displacement used 
in track.m (Blair and Dufresne, 2018) was 11.5 pixels (1.54 µm) for 
MCF10A cells and 7 pixels (1.47 µm) for HL60 cells. Tracks measured 
in the movies of MCF10A cells were considered only if they were 
tracked for more than three frames (30 s) and tracks measured in 
movies of HL60 cells were only considered if they were tracked for 
more than three frames (6 s).

Statistical methods
Measurements of κ for MCF10A cells (Figure 4E) and actin-wave 
speeds for both cell types (Figure 5E) were compared on flat versus 

nanoridged surfaces using two-sample t tests with unequal 
variances. A two-tailed t distribution was used to calculate the 
reported p values. As the measurements κ of for HL60 cells violated 
the normality assumption for a t test, we used a nonparametric 
Wilcoxon rank sum test to compare these values. A full description 
of the statistical parameters involved in these tests is provided in 
Supplemental Dataset S1.

Data and software availability
Our optical-flow analysis code is available on GitHub at https://
github.com/losertlab/flowclustertracking. Imaging data from this 
study is available in a Mendeley Data repository on publication (Lee 
et al., 2020).
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