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ABSTRACT The dynamic rearrangement of the actin cytoskeleton is an essential component
of many mechanotransduction and cellular force generation pathways. Here we use periodic
surface topographies with feature sizes comparable to those of in vivo collagen fibers to
measure and compare actin dynamics for two representative cell types that have markedly
different migratory modes and physiological purposes: slowly migrating epithelial MCF10A
cells and polarizing, fast-migrating, neutrophil-like HL60 cells. Both cell types exhibit
reproducible guidance of actin waves (esotaxis) on these topographies, enabling quantitative
comparisons of actin dynamics. We adapt a computer-vision algorithm, optical flow, to
measure the directions of actin waves at the submicron scale. Clustering the optical flow into
regions that move in similar directions enables micron-scale measurements of actin-wave
speed and direction. Although the speed and morphology of actin waves differ between
MCF10A and HL60 cells, the underlying actin guidance by nanotopography is similar in both
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cell types at the micron and submicron scales.

INTRODUCTION

Understanding the rearrangements of the cytoskeleton is essential
to developing a complete picture of the dynamic forces involved in
cellular processes such as migration, division, and differentiation.
Cytoskeletal dynamics, and in particular actin dynamics, have been
shown to be important for the growth of cell junctions and focal
adhesions (Maruthamuthu et al., 2010) and for immune-cell activa-
tion (Lam Hui et al., 2014). The formation of actin waves through
directional polymerization and depolymerization of filaments drives
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many types of cell migration (Mdller and Sixt, 2017) and has been
associated with the establishment of polarity in a variety of cell types
(Inagaki and Katsuno, 2017).

Forces from the extracellular environment are an important
modulator of actin dynamics. Physical and chemical characteristics
of the extracellular environment, such as rigidity, biochemical com-
position, and topography, have been shown to influence actin
dynamics and associated cell behavior (Discher et al., 2005; Doyle
et al., 2009; Lu et al., 2012; Petrie and Yamada, 2015). One mecha-
nism for this modulation is mechanosensing via focal adhesions
(Ketchum et al., 2018). In addition, actin waves respond when cells
encounter obstacles (Weiner et al., 2007). It has been established
that ridges of width comparable to fibers in the extracellular matrix
(ECM) can alter actin dynamics significantly (Driscoll et al., 2014; Sun
et al., 2015; Ketchum et al., 2018) and bias the localization of focal
adhesions (Ventre et al., 2014; Sun et al., 2018). Thus, in vivo,
the topography of the ECM, such as collagen networks (Wolf
and Friedl, 2011; Charras and Sahai, 2014), is likely to modulate
actin dynamics.

Periodic nanotopographic surfaces provide the opportunity to
obtain systematic data on the modulation of such intracellular
dynamics. In prior work, we have shown that actin waves can be
nucleated near, and guided along, periodic nanotopography, in a
phenomenon termed esotaxis. Actin-wave guidance has been
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Surface topography prompts distinct actin morphology. The actin cytoskeleton of an epithelial MCF10A cell
on (A) a flat surface has an actin morphology that is distinct from that of a cell on (B) a nanoridged surface. (C) A cell that
is partially on a nanoridged region and partially on a flat region exhibits local actin morphologies that are driven by the
underlying topography. The blue line in C indicates the boundary between the flat region and the nanoridged region.

All scale bars are 10 um. See also Supplemental Movie S1.

observed in cell types that exhibit distinct physiological functions
and migration phenotypes, including Dictyostelium discoideum
(Driscoll et al., 2014; Sun et al., 2015), neutrophil-like HL60 cells (Sun
et al., 2015), B cells (Ketchum et al., 2018), and breast cancer cell
lines (Chen et al., 2019). However, there are clear differences in the
responses of each of these cell types to nanotopography. For
example, although both D. discoideum and HL60 cells exhibit
esotaxis, these two types of cells have been found to move prefer-
entially in different directions on specific nanoscale asymmetric
sawtooth textures (Sun et al., 2015). Furthermore, different breast
cancer cell lines preferentially move in different directions on asym-
metric sawtooth nanotopography (Chen et al., 2019).

Here we introduce a method for performing quantitative mea-
surements of the influence of nanotopography on intracellular dy-
namics at both the submicron and the micron scales. This approach
enables the detection of subtle differences in cytoskeletal dynamics
and allows for in-depth analysis of both the differences and the simi-
larities of these dynamics across cell types and phyla. Our method of
quantification of actin dynamics across scales is based on optical
flow, an image-analysis technique developed in the fields of robotics
and navigation control that uses changes in pixel intensities to detect
motion in image sequences (Horn and Schunck, 1981; Lucas and
Kanade, 1981). Because of the popularity of particle image velocime-
try (PIV), optical flow has seen limited use on biological images.
However, PIV is poorly suited for the variety of features that can be
exhibited in fluorescence images of amorphous concentration fields.
Indeed, a recent study indicated that optical flow may be better
suited for analysis of fluorescence images, as it provides a more
accurate estimate of ground-truth flow fields (Vig et al., 2016). Here,
we use optical flow to measure the dynamics of actin polymerization
with submicron precision, and we further expand the utility of optical
flow by introducing modeling and fitting approaches to the analysis
of optical-flow vector fields. Clustering of the optical-flow data
further allows us to quantify actin dynamics on the micron scale.
Thus, this optical-flow-based analysis enables the identification of
similarities and differences between esotaxis in neutrophillike HL60
cells and human breast epithelial MCF10A cells across length scales.
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RESULTS

Esotaxis has been observed in a wide range of cell types that are
known to respond to their in vivo microenvironment through
processes such as directed migration or immune-system activation
(Driscoll et al., 2014; Sun et al., 2015; Ketchum et al., 2018). More
recently, esotaxis has also been observed in epithelial cells, which
are less motile (Chen et al,, 2019). Here we contrast the actin
dynamics of epithelial MCF10A cells with those of neutrophillike
HL60 cells.

LifeAct-GFP-labeled epithelial MCF10A cells were plated on a
900 pm x 900 pm region patterned with parallel nanoridges with a
spacing of 1.5 pm, as well as on the surrounding flat region. Confo-
cal imaging near the surface revealed distinct actin morphologies
on nanoridges as compared with the flat region (Figure 1). On the
flat region the phenotype is a common one for these cells on such
surfaces, with a broad lamellipodium at the cell front and stress
fibers throughout the cell body (Figure 1A). In contrast, MCF10A
cells on nanoridges exhibit actin streaks aligned with the ridges
throughout the cell area (Figure 1B). The local nature of the
response of actin to surface texture is illustrated in Figure 1C, which
shows a cell that is partially on the nanoridges and partially on the
flat region. On the nanoridged region, the cell shows the same actin
streaks as a cell that lies fully on a ridged surface, whereas the same
cell maintains a broad lamellipodium on the flat region.

Ridged and flat regions also engender distinct actin dynamics.
Kymographs can be used to visualize dynamics in a region of inter-
est in one spatial direction over time. The left side of Figure 2A
compares an MCF10A cell on a flat region with one on a nanoridged
region. The cell on the nanoridged region shows actin streaks
that are characteristic of esotaxis. Actin kymographs from two
perpendicular regions (Figure 2A) in an MCF10A cell on a flat
surface show oscillatory dynamics in all directions at the cell bound-
ary. These oscillations in the kymographs indicate the presence of
fanlike protrusions and retractions across each region over 30 min
(Figure 2B). In contrast, on the nanoridged region, the actin dynam-
ics parallel and perpendicular to the ridges are different (Figure 2C).
Parallel to the nanoridges, MCF10A cells show oscillatory actin

Molecular Biology of the Cell



A MCF10A

Flat

E
E
E
E
Es
E

n
Q
(o)

§e)

14

B
0 10 20 30
Time (min)

Cc

—~ 5

S

=

(0]

[&]

C

]

@

o

0 10 20 30
Time (min)

Flat

Ridges

E
10
Flat —— = 5|
S
=
o O
(&)
C
£10
2
Flat 5
0
0 10
Time (min)
F

-
o

Distance (um)
o

Ridges —=

o o

Ridges

[¢)]

O
o

0 10
Time (min)

Surface topography leads to distinct actin morphodynamics. (A) Optical micrographs of MCF10A cells in
(left) bright-field and (right) fluorescence on (top) a flat region and (bottom) a nanoridged region. All scale bars are
10 pm. Kymographs for the areas denoted in A are shown in B for the flat region and in C for the nanoridges. D-F are
the same as A-C, respectively, but for HL60 cells. The dynamics in A and D are shown in Supplemental Movies S2 and

S3, respectively.

dynamics. As shown in the bottom left of Figure 2C, a representa-
tive kymograph of a region perpendicular to the ridges shows
actin structures that persist for tens of minutes and do not move
perpendicular to the ridges. This behavior is typical for kymographs
perpendicular to the ridges, although perpendicular motion is
observed in some cases as discussed below.

The behavior of motile, neutrophil-like HL60 cells on flat and na-
noridged regions is illustrated in Figure 2, D-F. Figure 2D illustrates
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the regions from which kymographs were generated. In HL0 cells
on flat regions, actin is concentrated near the cell front. This localiza-
tion is largely preserved on the ridged surfaces, although the
morphology of the actin changes such that streaks of actin are
aligned with the ridges. On flat surfaces, the HL40 cells show
regions of protrusions and retractions (Figure 2E) similar to the actin
dynamics seen in MCF10A cells (Figure 2B). We note that protru-
sions occur on the scale of seconds in HL60 cells and on a scale of
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minutes in MCF10A cells. Kymographs of the HL60 cells in the direc-
tion parallel to the nanoridges show protrusive dynamics, although
often in the form of a single persistent wave (Figure 2F, top), in con-
trast to the oscillatory behavior seen on flat surfaces (Figure 2E). A
representative kymograph of an HL&0 cell in the direction perpen-
dicular to the nanoridges shows streaks (Figure 2F, bottom) that
indicate that actin waves do not move perpendicular to the ridges,
but the streaks are shorter in duration than those in a typical
MCF10A cell (Figure 2C). This behavior is typical for kymographs of
actin in HL60 perpendicular to the ridges. Unlike in MCF10A cells, in
which actin streaks on the ridges localize throughout the cell (Figure
2C, bottom), in the HL60 cells the streaks occur near the cell front
(Figure 2F, bottom). Groups of actin streaks propagate together at
the front of the HL&0 cells, suggesting that there may be large-scale
organization of actin dynamics (spanning many ridges) in these cells.
It is unclear whether there is large-scale organization of actin
dynamics in the MCF10A cells.

As shown in Supplemental Movies S2 and S3, the full range of
actin dynamics is more complex than is revealed by kymographs.
MCF10A cells on the ridged regions exhibit actin dynamics through-
out the substrate contact area, whereas actin dynamics on flat
surfaces are largely confined to the cell boundary. These movies
show that, in both cell types, nanoridges stimulate reproducible,
dynamic, linear actin structures.

Time-lapse fluorescence images of actin waves are difficult to
interpret by visual inspection or kymographs alone, because the
observed dynamics arise from a complex spatio-temporal concen-
tration field. To measure these wavelike dynamics quantitatively, we
must first define a wave (size and shape) and then capture its propa-
gation (splitting, recombination, and changes in direction). Here, we
address these challenges by introducing an automated approach to
quantify actin-wave dynamics across length scales for unbiased
comparison in different cell types and extracellular environments.

Our method is based on a computervision algorithm from
robotics and navigation control called optical flow (Horn and
Schunck, 1981; Lucas and Kanade, 1981), which provides pixel-
based information about the direction and magnitude of intensity
flux in a series of time-lapse images. Fields of optical-flow vectors
are calculated by integrating changes of intensity in space and time,
as shown schematically in Figure 3. For example, two images of a
migrating HL&0 cell taken 8 s apart are shown with changes in time
highlighted by a green-to-magenta montage (Figure 3A). The
magenta region indicates growth of the actin front (which, as ex-
pected, occurs at the leading edge of the cell), and the green region
indicates a decrease in actin intensity.

The general objective of calculating optical flow is to solve for
the unknowns Ax and Ay in

I(x,y,t)=I(x+Ax,y + Ay, t+At) (1

where [(x,y,t) represents the actin fluorescence intensity at frame t.
The intensity | that exists at point (x,y) at time t translates to a new
point (x + Ax,y +Ay) at some future time t + At. Expanding about
small Ax and Ay and neglecting second-order derivatives yields the
master optical-flow equation

K

V-V =—
ot

%)
This governing equation is underdetermined, and so the Lucas-
Kanade optical-flow constraint (Lucas and Kanade, 1981) was
applied to calculate flow fields. This constraint prescribes that all
pixels in a small window centered at (x,y) each have the same
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translational optical-flow vector. The equation can then be solved
using the least-squares criterion (an explicit derivation is given in the
Materials and Methods) to yield the intensity flow, v (Figure 3B,
center panel). Solving for v requires use of the negative spatial
gradient, v (Figure 3B, left panel), which forms a vector field
oriented away from regions of highest local intensity, and the time
derivative, dl/dt (Figure 3B, right panel) as shown in Eq. 2. Using
the pair of images from Figure 3A as a representative example, the
spatial and temporal gradients are used to calculate the optical-flow
vector field, which approximates the flow of actin between the two
frames. In this example, the vector field captures the translational
motion on the leading edge of the cell (Figure 3C).

Optical-flow measurements of actin intensity translation enable
the quantification of the pixel-scale response of actin dynamics to
nanoridge topographies (Figure 4). The green-to-magenta mon-
tages of representative HL60 and MCF10A cells show dynamic and
protrusive actin behavior at the leading edge of the cell (Figure 4A).
Coloring the calculated flow fields based on direction relative to the
nanoridges (Figure 4B) reveals the clear bias of actin wave guidance
in the direction parallel to the ridges, which is consistent with
the qualitative features of the montage images in Figure 4A.
Measurements of the optical-flow directions on all HL60 and
MCF10A cells on both flat and ridged surface topographies are
shown in the histograms of Figure 4C. In both cell types, the cumu-
lative distribution of flow in cells on flat surfaces shows no appre-
ciable bias in any direction. However, cells on ridges exhibit a clear
preference for flow along the ridge direction.

We note that the images for the MCF10A and HL60 were obtained
with different objectives (100x and 60x, respectively) and at different
acquisition rates (10 and 2 s between frames, respectively). Never-
theless, the optical-flow algorithm performs well on each set of data,
emphasizing the broad applicability of this approach. The two cell
types also use different actin-labeling approaches (LifeAct for the
MCF10A and Actin-YFP for the HL60), which may have different over-
expression effects on actin dynamics (Melak et al., 2017), but in both
cases produce reliable optical-flow results that are indicative of nano-
topography-guided actin dynamics.

For further quantification, we fit the distribution of flow direc-
tions from each cell to a bimodal von Mises model with a constant
offset (Materials and Methods). The distribution used consists of a
uniform component and two peaked components that are 180°
apart. The five parameters of the bimodal model are illustrated in
Figure 4D. The angle 6, indicates the direction of the main compo-
nent, and 1/x is proportional to the width of the distribution. The
values of kon ridged regions are significantly higher than those than
on flat regions for both the MCF10A and the HL60 cells (Figure 4E,
p =0.0001583 and p = 0.0040), indicating that the ridges strongly
guide the actin flows in a bidirectional manner. A comparison of &
and 6, shows that cells with a bidirectional actin flow (i.e., high x
values) are more likely to be guided along the ridge direction
(Figure 4F).

Although the optical-flow vector field indicates preferred direc-
tions of actin flow, it does not yield propagation speeds of actin po-
lymerization waves directly. The magnitude of an optical-flow vector
incorporates both the shift of actin in space and the change in actin
intensity over time. This submicron-scale (i.e., pixel-scale) flux of in-
tensity does not translate directly into characteristics of the dynamics
that are notable on the micron-scale (i.e., tens of pixels), such as the
organization of waves across ridges seen in neutrophils in Figure 2F
or the speed of wave propagation. To quantify these micron-scale
characteristics, we combined similarly oriented optical-flow vectors
into clusters (Figure 5A), which were then tracked over time. To
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Optical-flow calculations capture the dynamics in movies of actin fluorescence. (A) Two frames of a
representative HL60 cell obtained 8 s apart and a merged image show the dynamics of the cell’s behavior over time. The
schematic in B illustrates how the procedure used to carry out optical-flow calculations combines the spatial gradient of an
image (left) and the difference image/temporal gradient (right) to yield the optical-flow vector field (center). These
calculations are applied to the images in A and shown in the images of C. The spatial gradient field (left) and temporal
gradient (right) result in the output optical-flow vector field (center). Blue pixels in the right panel of C indicate a positive
change (increase) in the pixel brightness from the first frame to the second frame, and red pixels in the right panel indicate
a negative change (decrease) in the pixel brightness from the first frame to the second frame. All scale bars are 5 um.

ensure that we tracked robust clusters, we applied additional con-
straints, such as requiring sufficiently large intensity changes (see
Materials and Methods). The result of this clustering was the identifi-
cation of broad regions of actin that moved collectively (Figure 5B).

Volume 31 July 21, 2020

We applied peak-finding and tracking algorithms (Blair and
Dufresne, 2018) to follow the locations of maximum alignment of
these optical-flow clusters on the micron scale. Although the opti-
cal-flow results shown in Figure 4 follow motion on the pixel scale,
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Using optical flow to measure pixel-scale guidance. (A) Representative merged time-lapse images of an
MCF10A cell (top, 100 s apart) and an HL60 cell (bottom, 8 s apart). (B) Optical-flow vector fields colored by direction
relative to the horizontal ridges. Blue indicates motion aligned with the ridges and yellow indicates motion perpendicular
to the ridges. All scale bars are 5 pm. The dynamics in B are shown in Supplemental Movies S4 and S5. (C) Cumulative
distributions of the directions of optical-flow vectors for multiple HL60 and MCF10A cells on flat and ridged surfaces; all
cells are weighted equally in the distribution. (N =4 MCF10A cells on flat surfaces from three independent experiments,
N =19 MCF10A cells on ridges from four independent experiments, N = 14 HL60 cells on flat surfaces from two
independent experiments, and N = 17 HL60 cells on ridges from three independent experiments.) (D) The distribution of
angles can be fit to a mixture of two von Mises distributions with five fitting parameters: 6y (primary direction of motion),
K (inversely related to distribution width), and three coefficients indicating the component of motion in the 6u direction,
the component in the 8p + 180° direction, and the component that is uniform. (E) In both MCF10A and HL60 cells, the
distribution width, parameterized by «, shows significant differences (p = 0.0001583 and p = 0.0040) on flat versus ridged
surfaces. (F) For each cell, the mean direction of motion (angular axis) is plotted vs. « (radial axis). Values of « less than 2
(indicated by the dashed line) indicate cells with direction distributions that are statistically indistinguishable from a
uniform distribution. We note « = 19.6 for one HL60 cell, and this point is not visible in this figure.
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by following the peak alignment of the optical flow, we are able to
track larger coordinated clusters of actin. Our tracking is consistent
with the actin dynamics seen in kymographs, as shown by repre-
sentative kymographs of MCF10A (Figure 5C) and HL60 (Figure
5D) cells overlaid with the tracked location of actin waves. Unlike
kymographs, which are sensitive to motion along a chosen direc-
tion, tracks of clustered flow vectors reveal the micron-scale mo-
tion of actin in two dimensions. The benefits of our approach are
illustrated in Figure 5C for an MCF10A cell. For the initial frames,
the kymograph indicates a stationary actin structure (Figure 5C,
left), but when the actin dynamics are viewed in two dimensions
(Figure 5C, right), it is evident that in the early frames this wave is
moving perpendicular to the ridges, a motion that cannot be cap-
tured in this one-dimensional kymograph. Thus, the combination
of optical flow, clustering, and tracking allows us to follow actin
waves without being limited to tracking only motion that occurs
along a straight line.

The speeds of the tracked actin clusters (Figure 5E) are similar
to speeds derived from actin kymographs (Figure 5, C and D, and
Supplemental Figure S1), despite an approximately order-of-
magnitude difference in speed between the two cell types that is
consistent with their distinct in vivo functions and with previously
reported cell-migration speeds (Meyer and Howard, 1987; Lee
et al.,, 2016). For both cell types we find no significant difference
(p =0.5529 and p = 0.0586) between actin-wave speeds on flat
and ridged surfaces (Figure 5E), implying that topography steers
actin dynamics but does not alter wave speeds. On flat surfaces,
the directions of the clusters are distributed uniformly for
MCF10A cells but show distinct peaks in multiple directions for
HL&0 cells (Figure 5F). This observation is consistent with the
polarized character of actin in several of the HL60 cells on flat
surfaces, corresponding to k values greater than 2 in Figure 4, E
and F.

DISCUSSION

Extracellular texture, which is an important component of the 3D, in
vivo environment, is capable of spatially patterning actin and
modulating actin dynamics. Using nanoridge structures in conjunc-
tion with optical-flow approaches, we are able to probe and quantify
this intracellular response to extracellular textures in a systematic
manner.

Previous studies of D. discoideum (Driscoll et al., 2014; Sun et al.,
2015), B cells (Ketchum et al., 2018), and tumor-associated fibro-
blasts (Azatov et al., 2017) showed similarity in actin response to
texture, which suggests that guidance of actin driven by texture
(esotaxis) is broadly conserved across cell types. Controlled textures
are thus a useful model microenvironment for the systematic,
reproducible, and quantitative study of intracellular dynamics and
force regulation. Here we demonstrated the analysis of time-lapse
images of two cell types that have distinct physiological function.
Neutrophil-like HL60 cells are polarized and highly motile, and
respond to a variety of cues as they fulfill their role in the immune
system. Epithelial MCF10A cells, however, have a nonmotile physi-
ological function. Nevertheless, both cell types show clear, and
quantitatively similar, actin dynamics in response to surface textures.
Consistent with our prior results (Driscoll et al., 2014; Azatov et al.,
2017), we find that nanoridges lead to persistent streaks of actin that
are not seen on flat surfaces.

Optical flow enables the quantification of both the reproducible
streaks of actin seen on nanoridged surfaces and the more chaotic
actin waves seen on flat surfaces. The latter waves are typically much
wider than guided actin waves. On flat surfaces the waves often
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change direction and can also grow wider and split. Such motion
phenotypes are not easily captured with standard techniques such
as kymographs. Optical flow enables us to follow these dynamics
and thus yields insights beyond those derived from kymograph-
based techniques.

We note that optical flow is suitable for comparisons of sys-
tems imaged under different conditions (e.g., 60x vs. 100x ob-
jectives), enabling comparisons of widely varying cell sizes and
migration speeds. The use of varying acquisition rates (i.e., 2 and
10 s) in this work was based on the differences in cell migration
speeds of the two cell lines studied. In general, optical flow re-
quires a frame rate such that changes in fluorescence intensity
between frames are small but larger than noise. Our use of the
Lucas—Kanade optical-flow constraint also makes the assumption
that there is a smoothness to the flow field over a certain neigh-
borhood, which is a length-scale parameter in the optical-flow
analysis. This assumption is met by a wide variety of biological
imaging data sets, and thus the use of our optical-flow approach
is not limited to actin dynamics. Optical flow could provide in-
sights into the motion of other cytoskeletal proteins, such as tu-
bulin, or into the dynamics of other fluorescent markers that ex-
hibit a spatially and temporally changing intensity field. Our use
of clustering to study larger-scale actin dynamics could similarly
be adapted to other fluorescent markers under the assumption
that there are larger-scale dynamics that move together in similar
directions. In this work, we used a spinning-disk confocal micro-
scope for image acquisition, but our analysis pipeline would also
be appropriate for other imaging techniques, such as epifluores-
cence. When working with other imaging modalities or fluores-
cent markers, the size of the Lucas-Kanade neighborhood and
the threshold for vector reproducibility (see Materials and
Methods and Supplemental Figure S2) can be adapted to only
include robust results in further analysis.

Using submicron-scale optical flow and associated micron-scale
analysis, we have shown that both MCF10A and HL60 cells have
actin flows that are biased along nanoridges. By clustering similarly
oriented optical-flow vectors, we are able to measure the speed of
actin waves within the cell. The measured speeds are comparable to
speeds calculated from actin kymographs. Optical-flow analysis
allows us to determine that the speeds do not differ significantly on
flat versus ridged regions. This finding indicates that nanotopogra-
phy guides, but does not fundamentally alter, the speed of actin
dynamics. We measure actin-wave speeds on the order of 1 um/min
in the MCF10A cells, consistent with previously reported cell
migration speeds of approximately 0.5 um/min (Lee et al., 2016). In
the HL&O cells we find actin speeds ranging from approximately 8 to
14 um/min, consistent with the 8 um/min speed for cell migration
previously reported (Meyer and Howard, 1987).

Fitting the optical-flow vectors to a bimodal von Mises distribu-
tion enables quantification of the differences in the directionality of
actin flows on flat and ridged surfaces in both cell lines. The fit
parameters also show differences in actin polarization in these two
cell lines. HL&0 cells occasionally exhibit coordinated and directed
actin flows even on flat surfaces, whereas MCF10A cells on flat
surfaces show uniform direction distributions of actin waves. On
the micron scale, actin-wave tracks from individual HL60 cells on
flat surfaces generally polarize and have a preferred direction,
consistent with the behavior of immune cells, which tend to polarize
and migrate in a directed manner. Tracks from MCF10A cells on a
flat surface, on the other hand, are more directionally uniform for
each cell. In both cell types, ridges guide actin waves in a bidirec-
tional manner.
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The quantitative actin responses in MCF10A and HL60 cells
support a model in which surface texture provides a symmetry-
breaking cue that leads to nucleation of actin polymerization.
Under flat tissue-culture conditions, which lack symmetry-break-
ing cues, actin polymerization relies on spontaneous nucleation
or edge effects (Begemann et al., 2019). Edge effects may lead
to morphological features such as the lamellipodia seen in HL60
cells on flat surfaces in Figure 2B. By changing the landscape on
which nucleation occurs, surface texture can lead to actin
polymerization in other locations of the cell, such as the persis-
tent streaks seen in the center of MCF10A cells on ridges in
Figure 2A.

There are multiple mechanisms by which cells may respond to
local forces and geometry (Vogel and Sheetz, 2006), including
sensing mechanisms that can respond to membrane curvature on a
variety of scales (McMahon and Boucrot, 2015). Our finding that
nanoridges change the direction, rather than the speed, of actin
waves suggests that growth of existing actin filaments away from
the surface is the rate-limiting step in actin polymerization wave
propagation. In some cases, sensing mechanisms may rely on the
preferential formation of focal adhesions. This hypothesis is
consistent with previous results on focal adhesion localization and
orientation in response to surface texture (Ventre et al., 2014; Sun
et al., 2018). Although MCF10A cells form strong focal adhesions
that may align with texture cues (Sun et al., 2018), the HL40 cells
form weaker adhesions, and the previously studied D. discoideum
cells (Driscoll et al., 2014; Sun et al., 2015) are not known to form
integrin-mediated focal adhesions. Thus, the dominant mechanism
of surface texture response likely depends on both the cell type and
the extracellular environment.

Known surface-sensing mechanisms also include cytoskeletal
components such as septins, which respond to micron-scale
curvatures (Bridges et al.,, 2016), and BAR domains, which sense
nanoscale curvature (Zimmerberg and MclLaughlin, 2004). Proteins
with BAR domains have been linked to actin assembly (Graziano and
Weiner, 2014) as well as to key components of actin-regulating
pathways, such as WAVE and Rac (Miki et al., 2000; Habermann,
2004). Recent work has suggested that nucleation of new actin
filaments is enhanced by nanotopography. Specifically, curved
nanopillars activate the nucleation-promoting factors Arp2/3 and N-
WASP through enhanced binding of an F-BAR domain containing
protein (Lou et al., 2019). Additionally, evidence suggests that
topography is capable of shifting multiple gene-expression path-
ways (Dalby et al., 2005), which implies that longer-term exposure to
topography may mediate additional surface-sensing pathways. As
in vivo microenvironments contain a variety of textures, it is likely
that multiple mechanisms respond to distinct features of extracellu-
lar texture, and future work on the response of actin regulators to
controlled topographies such as those investigated here will help
elucidate the contributions of distinct signaling pathways in topog-
raphy-guided actin dynamics.

Although the systematic modulation and interrogation of all
possible molecular factors of esotaxis is beyond the scope of this
article, our analysis yields two remarkable constraints on the mole-
cular sources of esotaxis. First, the speed of actin waves is not
altered by esotaxis. Second, the directional guidance provided by
nanotopography is comparable in the two cell types investigated,
despite their disparate functions and migratory phenotypes.
Quantitative analysis of esotaxis as a physical phenotype could yield
crucial prognostic disease insights, especially in the case of cancer,
in which changes in the texture of the microenvironment correlate
with disease progression.
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MATERIALS AND METHODS

Cell culture and imaging

HL60 YFP-actin cells were a gift from Orion Weiner of the
University of California, San Francisco. The cells were cultured in
RPMI 1640 medium, Glutamax (Life Technologies) supplemented
with 10% heat-inactivated fetal bovine serum (Gemini Bio). Cells
were passaged every 2-3 d and kept between 3 x 105 and 1 x 10¢
cells/ml. For differentiation, cell media was additionally
supplemented with 1.3% dimethyl sulfoxide Hybri-Max (Sigma
Aldrich) for 5 d before imaging. Actin dynamics of HL-60 YFP-
actin cells were observed by confocal fluorescence and bright-
field time-lapse imaging using a PerkinElmer spinning-disk
confocal microscope with a water immersion 60x objective
(0.21 pm/pixel). Images were recorded every 2 s. We note that
this method of plating resulted in the imaging of some multicel-
lular clusters of HL60 cells; these clusters were removed from
further analysis.

Preparation for imaging included a 10 pg/ml coating of fibronec-
tin on the substrates. Cells were plated and allowed to settle.
After approximately 30 min, N-Formyl-Met-Leu-Phe (fMLF; Sigma
Aldrich) was added to 1 uM. HL-60 cells were imaged on flat resin
and ridged nanotopographies beginning between 10 and 15 s after
fMLF stimulation. All images analyzed in this work were obtained
after fMLF stimulation.

MCF10A LifeAct-EGFP cells were a gift from Carole A. Parent
(National Cancer Institute, Bethesda, MD). These cells were cultured
in DMEM/F12 media supplemented with 5% horse serum, 10 pg/ml
insulin (ThermoFisher Scientific), 10 ng/ml EGF (Peprotech, Rocky
Hill, NJ), 0.5 pg/ml hydrocortisone, and 100 ng/ml cholera toxin
(both Sigma, St. Louis, MO). The media were additionally supple-
mented with 2 ug/ml puromycin dihydrochloride (ThermoFisher Sci-
entific) to select for EGFP-positive cells. Before imaging, cells were
plated on a nanoridged surface coated with collagen IV and were
allowed to adhere to the surface overnight. Actin dynamics were
studied by confocal fluorescence and bright-field, time-lapse imag-
ing using a PerkinElmer spinning-disk confocal microscope with a
100x objective (0.14 uym/pixel). Images were recorded every 10 s.

For both cell types, data were collected using PerkinElmer’s
Volocity software (version 6.4.0). The spinning-disk confocal micro-
scope was equipped with a Hamamatsu ImagEM X2 EM-CCD
camera (C9100-23B), which recorded 12-bit images. Cells used in
this study tested mycoplasma negative using the MycoAlert (Lonza)
testing system.

Surface fabrication

The nanotopographies were designed and fabricated using
multiphoton absorption polymerization (MAP), as described previ-
ously (Sun et al., 2018). A drop of prepolymer resin (1:1 wt/wt Tris
[2-hydroxy ethyl] isocyanurate triacrylate [SR368]: ethoxylated
(6) trimethylolpropane triacrylate [SR499], both from Sartomer;
3% Lucirin TPO-L [BASF]) was sandwiched between a coverslip
and a plasma-treated microscope slide that had been functional-
ized with acrylate groups (LaFratta et al., 2007; Li and Fourkas,
2007; Sun et al., 2018). The coverslip was mounted onto the stage
of an inverted microscope (Zeiss Axiovert 135). A beam of 150-fs
pulses centered at 800 nm from a Ti:sapphire oscillator (Coherent
Mira 900) was directed into the microscope and through a high-
numerical-aperture objective (Zeiss alpha-Plan Fluar 100x; NA
1.45). The stage motion and shutter were controlled using a
program written in LabVIEW (National Instruments). Once the
pattern was fabricated, the sample was developed in ethanol and
baked at 110°C for 1 h.
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A replica molding approach was then used to mold the chemi-
cally functionalized pattern (Sun et al., 2018). This step included the
initial casting of a hard-poly(dimethylsiloxane) (h-PDMS) layer
(1000 rpm, 40 s) to better resolve nanoscale features of the topo-
graphical pattern. This layer was allowed to sit on the pattern at
room temperature for 2 h and was then baked at 60°C for an
additional 1 h. Finally, Sylgard 184 was mixed (10:1 elastomer
base:curing agent) and poured onto the initial h-PDMS layer. The
PDMS was cured at 60°C for 1 h 10 min.

The MAP-fabricated structure was then reproduced through a
soft-lithographic technique. A drop of the aforementioned resin was
sandwiched between the PDMS mold and an acrylate-functional-
ized coverslip and was then exposed to UV radiation from a lamp for
a desired amount of time. After the resin cured, the coverslip was
peeled off the mold. This process was repeated many times to
produce enough replicas to perform the necessary experiments.
The replicas were soaked in ethanol for at least 4 h and subsequently
baked/dried in an oven at 110°C for 1 h. Samples used to study
MCF10A cells were also soaked in UltraPure water (ThermoFisher)
for approximately 12 h.

Kymographs

Kymographs were created in MATLAB by manually selecting a rect-
angular region in an actin image. Fluorescence intensities inside the
region were averaged across the short axis of the region; this pro-
cess was repeated for each image in the time-lapse sequence, and
the resulting intensity data were combined into the kymographs
shown in Figure 2 and Supplemental Figure S1.

Optical flow

The Lucas—Kanade optical-flow method (Lucas and Kanade,
1981) was used to capture the direction and strength of intensity
flow of fluorescent actin and to produce vector fields indicating
actin motion. The optical-flow vector field of an image series is
the field of apparent translation in the image plane, as is shown
schematically in Figure 3B. Calculating the optical flow for two
adjacent two-dimensional images in an image series requires
solving for the unknowns Ax and Ay in Eq 1, as described above.
The Lucas-Kanade method uses a least-squares regression
approach to solve for the best optical-flow vector on a pixel-by-
pixel basis under the assumption that all pixels within a
"neighborhood” move in a similar direction (Lucas and Kanade,
1981). If solving for the optical-flow vector of some point p with
coordinate (xp,yp,f), the master optical-flow equation requires
that the optical flow vector of point p and all points in the neigh-
borhood about p (points 1,2,...,p,..., N) follow the underdeter-
mined relation

L,V x, I,va)’w
v lyvy, .
lt,
Vs lyeVye ..
_ hove vy, s 4
IXPMVXpM I)’pﬂv)’m‘ t?w
L ItN .
IxNVxN IyNVYN

1762 | R. M. Lee, L. Campanello, et al.

Under the Lucas—Kanade assumption, the vector for point p is
assigned to all points in the neighborhood
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The least-squares solution to equations of this form, A = b, is
X= (ATA)_ ATb. Furthermore, we implement a scheme using a
Gaussian weight matrix centered at point p to ensure that pixels near
p have more influence over the result. The equation then becomes
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where w is a VN x+/N centered Gaussian matrix. The equation
then takes the form wAX=+wb and has solution

AT A ) AT B = (ATwa) AT,

Optical-flow reliability is defined as the smallest eigenvalue of
the ATWA matrix (Simoncelli et al., 1991; Barron et al., 1994) and
was used to remove flow vectors that were created by noise or an
ill-defined least-squares calculation. The threshold used can be
adapted to best suit the experimental data and scientific questions
of interest by only keeping the most reliable vectors while measur-
ing the motion of more regions of the cell. The optical-flow weight
matrix for MCF10A cells was a 27 x 27 pixel Gaussian with a SD of
4.5 pixels (0.63 pm). The optical-flow weight matrix for HL60 cells
was 19 x 19 pixel Gaussian with a SD of 3 pixels (0.63 pm). With
other imaging modalities, magnifications, or fluorescent markers, it
may be appropriate to change the size of this weight matrix based
on the size of features of interest and noise in the image.

X =
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von Mises model of flow distribution

Optical-flow distributions were modeled with a modified bimodal
von Mises distribution (von Mises distributions are a continuous and
differentiable analogue of normal distributions on a circle with simi-
lar statistical properties). The model was defined as

f(816,,%)=p1*VM(810,,x)+ p2 *VM(9+TE|GH,K)+(1—p1—pz)*%

where VM (816, 1) is the von Mises distribution

eKcos(S—e,,)

VM(OlGu,K)zm

8)

and Ig (k) is the modified Bessel function of the first kind. The
maximum likelihood estimates of the parameter « were used for
statistical analyses.

Cluster-tracking analysis

Regions of actin fluorescence were clustered using the direction of
optical-flow vectors together with an optical-flow reliability thresh-
old and by requiring that actin intensity change over time (see
Supplemental Figure S2 for a visualization of this workflow). The dot
products between optical-flow vectors around a point p (i.e., vectors
VIV, Vet vp+1,...,vN) were calculated and accumulated using a
Gaussian weighting scheme to a single scalar alignment metric. The
alignment metric is defined as

ap ZZW[*(VP-V,') (9)

where w is a renormalized VN x+/N centered Gaussian matrix
with a center manually set to O. This calculation was carried out for
each pixel.

To require that the actin intensity change over time, a mask of the
thresholded difference image between subsequent frames was
calculated. For every pair of adjacent frames, I; and [y, the result-
ing mask took value | where Iy a; > I and O otherwise. For our analy-
sis, A;= 30 s for MCF10A and 6 s for HL60.

To calculate the final clustered regions, the alignment metric ap,
optical-flow reliability 4, and difference-image mask were multiplied
in an element-wise manner to create a final cluster image. The cluster
image was inputted into a peak-finding algorithm to locate peaks in
the resulting intensity profile, and the Crocker-Grier particle-tracking
algorithm (Crocker and Grier, 1996; Blair and Dufresne, 2018) was
used to track coordinates of the resulting peaks over time.

The clustering weight matrix for MCF10A was a 27 x 27 pixel
Gaussian with a SD of 4.5 pixels (0.63 pm). The clustering weight
matrix for HL60 cells was 19 x 19 pixel Gaussian with a SD of 3 pixels
(0.63 pm). The diameter of the peaks used in pkfnd.m (Blair and
Dufresne, 2018) was 15 pixels (2.1 pm) for MCF10A cells and
10 pixels (2.1 pm) for HL60 cells. The maximum displacement used
in track.m (Blair and Dufresne, 2018) was 11.5 pixels (1.54 um) for
MCF10A cells and 7 pixels (1.47 pm) for HL&0 cells. Tracks measured
in the movies of MCF10A cells were considered only if they were
tracked for more than three frames (30 s) and tracks measured in
movies of HL&0 cells were only considered if they were tracked for
more than three frames (6 s).

Statistical methods
Measurements of k for MCF10A cells (Figure 4E) and actin-wave
speeds for both cell types (Figure 5E) were compared on flat versus
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nanoridged surfaces using two-sample t tests with unequal
variances. A two-tailed t distribution was used to calculate the
reported p values. As the measurements « of for HL40 cells violated
the normality assumption for a t test, we used a nonparametric
Wilcoxon rank sum test to compare these values. A full description
of the statistical parameters involved in these tests is provided in
Supplemental Dataset S1.

Data and software availability

Our optical-flow analysis code is available on GitHub at https://
github.com/losertlab/flowclustertracking. Imaging data from this
study is available in a Mendeley Data repository on publication (Lee
et al., 2020).
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