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This experimental study explored the dynamics of lock-in phenomena associated with
upstream shear layer (USL) instabilities for an equidensity gaseous jet in crossflow
(JICF). Axisymmetric sinusoidal forcing of the jet fluid at different forcing amplitudes
and frequencies was used to explore lock-in under flow conditions corresponding to
naturally occurring absolutely/globally unstable and convectively/locally unstable shear
layers, at relatively low and high jet-to-crossflow momentum flux ratios J, respec-
tively. Dynamical phenomena were quantified via hotwire anemometry, which not only
documented differences in spectral characteristics but also in Poincaré maps obtained
via time-delay embedding in the temporal data. The experiments provided evidence
of unconditional lock-in as well as quasiperiodicity in response to forcing, reflective
of marginal lock-in phenomena; these phenomena were observed for both globally
unstable and convectively/locally unstable shear layers in the absence of forcing. The
free jet limit in the absence of crossflow also exhibited unconditional lock-in, with
some characteristics similar to those for the JICF at applied forcing frequencies above
the fundamental mode. For the globally unstable JICF, a simple van der Pol nonlinear
oscillator model used to represent the dynamics of the USL showed consistency with
experimental findings and thus provided additional insights into the nature of shear layer
dynamics.

DOI: 10.1103/PhysRevFluids.5.013901

I. INTRODUCTION

The canonical jet in crossflow (JICF) or transverse jet typically consists of a round jet issuing
perpendicularly into crossflow [1-3], generating diverse vortical structures as shown schematically
in Fig. 1. Here the jet has a mean velocity of U; at the exit plane, exhausting into crossflow with
a freestream velocity U, (outside of the injection wall boundary layer) in the positive x direction.
The trajectory of the transverse jet’s upstream shear layer (USL) is parameterized by the coordinate
s. Commonly used nondimensional parameters used to characterize JICF behavior include the
jet-to-crossflow density ratio, S = p;/ps, velocity ratio, R = U;/Us, and momentum flux ratio,
J = p;U}/pcUZ, = SR* [4]. The Reynolds number of the jet, Re; = p,U;D/u;, is based on jet
diameter, D, and jet dynamic viscosity ;.

Of the vortical structures shown for the flush-injected JICF, the counter-rotating vortex pair
(CVP) has long been understood to dominate the transverse jet’s cross-section [4-7] and is
thought to enhance the entrainment of crossflow into the jet in comparison to that for the free
jet in quiescent surroundings. Experimental and computational studies demonstrate the relevance
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FIG. 1. Schematic of the transverse jet, introduced flush with respect to the injection wall, and relevant
vortical structures, including the counter-rotating vortex pair (CVP). Here (x, y, z) refer to the jet coordinate
system, and s refers to the upstream shear layer trajectory coordinate. Adapted from Fric and Roshko [9].

of the transverse jet’s upstream shear layer vorticity to the formation and evolution of the CVP
[6-8].

A. Unforced JICF instability, structures, and mixing

Experimental studies on the gaseous JICF have focused on upstream shear layer (USL) stability
and structural characteristics for a range of flow conditions [8,10-12] in addition to explorations
of JICF molecular mixing characteristics [13] and strain/scalar dissipation rate fields [14], all in
the absence of any significant external jet excitation. Using hotwire anemometry, Megerian et al.
[10] and Davitian et al. [11] experimentally investigate the stability characteristics of the equidensity
(S = 1) transverse jet’s USL at Re; = 2000 and 3000 for velocity ratios in the range 1.15 < R < oo,
with a nitrogen jet injected flush into a crossflow of air. The studies demonstrate the transition
from a convectively unstable (CU) USL, for which the instability evolves along the shear layer,
to an absolutely unstable (AU) or globally unstable (GU) USL, with sustained self-excited global
oscillations affecting the entire flowfield. Such instabilities transition as one increases the crossflow
velocity, reducing R or J, for a fixed Re;. For the nitrogen jet injected into a crossflow of air, the
transition from CU to GU occurs at approximately R = 3.1 (J & 10). For separate experiments on
the low density JICF, with 0.25 < § < 1.00 achieved by using mixtures of helium and nitrogen in
the jet fluid, the transition to absolute instability is documented in Getsinger et al. [12] to occur
in the range of either J = 10 or § < 0.40 (at Re; = 1800). Evidence for this transition for both
equidensity and low density transverse jets includes quantification of the growth of disturbances
at various locations along the jet shear layer, frequency tracking and response of the transverse jet
to very strong single-mode forcing, creating a lock-in response in the shear layer, and evidence
of USL dynamics suggesting a Hopf bifurcation to a global mode. Direct numerical simulation
(DNS) of the JICF at R = 4 and 2 by Iyer and Mahesh [15], with geometry and inlet flow conditions
identical to those in Megerian er al. [10], show USL spectral characteristics that are qualitatively and
quantitatively in good agreement with experiments, including differences in the spectral character
for these conditions straddling the CU to AU transition.

Recent experiments utilizing optical diagnostics (acetone planar laser-induced fluorescence or
PLIF imaging and stereo particle image velocimetry or PIV) enable investigation of JICF structural
as well as mixing and strain field characteristics [8,13,14]. For the flush nozzle-injected JICF, the
formation of the rolled-up vortical structures on the USL occurs closer to the jet exit as J decreases,
especially for J < 10, as expected per spectral characteristics. Transverse jets at these lower J values
produce a highly symmetric CVP in the cross-sectional view of the JICF. But interestingly, at higher
J values where the USL is CU, asymmetric cross-sections are observed, for example, for J > 20. A
more symmetric cross-section for the JICF is associated with improved molecular mixing [13], and
jet excitation can be used to alter jet structure, documented to improve mixing [16,17]. Hence, the
dynamics of the jet’s upstream shear layer, and the ability to control it via excitation, is of interest
for many applications.
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B. Lock-in and quasiperiodicity

External periodic excitation of a jet in quiescent surroundings [18] or issuing into crossflow
[10,19-22] is known to have the ability to change the dynamics and structural characteristics of the
jet, potentially creating an enhancement in molecular mixing. In general, axisymmetric sinusoidal
excitation of a flowfield is associated with interactions between a natural or fundamental mode of
the flow in the absence of forcing and the forcing mode itself, potentially causing the flow to be
marginally or fully locked-in to the applied forcing frequency and overcoming the natural mode.
This phenomenon is known as “lock-in,” the dynamical characteristics of which are significant in
achieving optimized control of a flowfield (e.g., improving molecular mixing) via external forcing.

Lock-in has been observed for a number of unsteady flowfields, for example for vortex shedding
in the wake of a vibrating circular cylinder [23-26]. The cylinder’s natural vortex shedding
frequency in the absence of forcing, f,, can become locked-in, or synchronized, to the cylinder’s
forced vibrational frequency, fr, over a specific range of forcing frequencies and amplitudes,
creating a so-called a lock-in band [27]. Outside of this band of forcing conditions, the natural
frequency f, dominates the shedding phenomena. The Reynolds numbers explored for wake lock-in
(Re ~ 100-9200) are such that in all cases the cylinder wake is AU when unforced [28,29]. Lock-in
phenomena are associated with other self-excited flows, including low density and reactive free jets
in quiescent surroundings [30-32]. For example, Juniper et al. [30] explore lock-in for a nonreacting
helium free jet and buoyant reactive jet diffusion flame under absolutely unstable flow conditions,
with imposed axisymmetric sinusoidal jet forcing. They demonstrate that there is a critical range of
excitation amplitudes and frequencies at which the global mode of the jet at its natural frequency f,
(in the absence of forcing) disappears and the forced mode with frequency f becomes dominant in
shear layer spectra. Juniper et al. [30] thus create a “lock-in” diagram over a range of frequencies
(fr/fo values) and amplitudes (e.g., input voltage to a speaker) at which lock-in occurs. The
lock-in diagram (amplitude vs. forcing frequency or fr/f, at lock-in) typically takes a V-shape
with respect to fr/f, =1 because of the linear relationship between critical input voltages and
| fr — fol, although there can be asymmetric skewing of the V-shape due to differing shear layer
responses at higher as compared with lower forcing frequencies [31]. Li and Juniper [31] actually
find several kinds of of nonlinear dynamics for various combinations of f and amplitude, including:
(1) cases where the natural frequency, f,,, or one slightly shifted from f,, can dominate during very
low amplitude forcing, (2) cases where “quasiperiodicity” can occur, where linear combinations of
the forcing frequency fy and f, can appear in spectra during intermediate amplitude forcing, and
(3) cases where “1:1 lock-in” occurs, in which the forcing frequency f itself dominates and f, is
significantly diminished during excitation at a fairly high amplitude.

Lock-in behavior for the upstream shear layer has been identified for both equidensity and
low density jets in crossflow. For a relatively limited set of hotwire-acquired data, Davitian et al.
[11] explore the effect of sinusoidal excitation for the equidensity nitrogen (N;) jet issuing into a
crossflow of air, documenting a lock-in type of response of the globally unstable USL for forcing
frequencies close to the fundamental unforced value (f,) or at high enough amplitudes of excitation,
where amplitude is defined in terms of the jet velocity perturbation near the jet exit. A slight
asymmetry in the lock-in diagram suggests that the USL is more resistant to lower frequency
excitation (ff < f,) than to higher frequency excitation (fy > f,), requiring higher amplitude
forcing to achieve lock-in at lower frequencies. In these equidensity JICF studies, the convectively
unstable USL is suggested to be always (unconditionally) locked-in under axisymmetric sine wave
forcing, even at very low amplitudes, although there are limited datasets at very low frequency
forcing conditions. In contrast, the transverse jet’s globally/absolutely unstable USL locks in only
within a lock-in band (i.e., is conditionally locked-in). For low density jets in crossflow, Getsinger
etal. [12] explore lock-in via sinusoidal excitation of a gaseous jet consisting of mixtures of nitrogen
and helium injected into a crossflow of air, hence enabling variable S and J conditions. A conditional
lock-in response of the jet’s USL to sinusoidal forcing is observed for a range of frequencies and
amplitudes (here, quantified in terms of acoustic pressure perturbation). An asymmetry in the lock-in

013901-3



TAKESHI SHOII et al.

T Exhaust
Honeycomb _ Screens H
9:1 Contraction
Section
I ce | Quartz
C 1l k2 [ TWi
_ Mross (lw_' + = Iransverse]et ———————— F/Ylndow
((
]et No!
PVC Pipe

Loudspeaker \ Hotwire

Anemometr
Mass Flow y
Compressed Np Controllers

—"— Amplifier Data Spectrum
perature \—pT—l AchISltlon Ana]yzer

Regulators Mlxmg Chamber|| Controlled T 1
> ® El Acetone
Seeder Function Computer

Compressed He Generator

&
Signal
Generator

FIG. 2. Variable density transverse jet wind tunnel with associated hotwire anemometry and data acquisi-
tion. One additional tunnel section, of identical dimensions, was situated downstream of the test section shown.

diagram for GU/AU conditions with § = 0.55 and J = 5, for example, suggests that the USL
with a higher forcing frequency (fy > f;) has a greater resistance to lock-in than forcing at lower
frequencies fr < f,), consistent with findings of Li and Juniper [31] for a low density free jet. Other
lock-in diagrams for the JICF with § = 0.55 and J = 8 and 10 are relatively symmetric, however,
suggesting potential differences in dynamic response when crossflow conditions are altered.

The goal of the present equidensity JICF experiments is to explore the dynamics of lock-in for
the USL in greater depth, not only as a means of understanding the similarities/differences with
respect to other globally unstable flows, but also to inform transverse jet control strategies. The
range of flow conditions here spanned both globally/absolutely unstable jet shear layers as well as
locally/convectively unstable upstream shear layers. Detailed examination of and evidence for the
phenomena of quasiperiodicity and 1:1 lock-in, and representation using a simple nonlinear Van der
Pol oscillator model [31], provide new insights for the mechanisms of shear layer transition in the
JICF and means by which it may be controlled.

II. EXPERIMENTAL CONFIGURATION

This experimental study utilized a low-velocity wind tunnel to measure gaseous transverse jet
upstream shear layer stability characteristics, as done in prior studies [10-12]. A schematic of the
wind tunnel and associated diagnostics is shown in Fig. 2. A centrifugal blower Baldor M3546-T)
upstream of the test section created a crossflow of air in the downstream (positive x) direction with
freestream velocity, U, calibrated in the tunnel using a pitot probe. The flow from the blower
issued into the test section through a 9:1 area ratio contraction section with honeycomb and screens
for flow straightening. The maximum achievable flow velocity in the test section was approximately
7 m/s, with a maximum turbulence intensity was less than 1.5% in the freestream. The primary
test section was 30 cm x 12 cm x 12 cm, fitted flush with the contraction section, and with quartz
windows at the top for laser sheet access and plexiglass side windows for camera imaging in PLIF
or PIV diagnostics [8,13,14]. A black panel with a cut-out could replace one of the side plexiglass
windows to enable access for hotwire anemometry and the traversing mechanism. Another tunnel
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section with the same size was placed downstream of the primary one; this section was followed by
a wooden chamber which exhausted the gases via a flexible tube connected to the ventilation system
of the laboratory.

Jet fluid issued perpendicularly into the test section through a contoured nozzle with a fifth-order
polynomial contraction, with an exit plane inner diameter 4.04 mm. This contraction created a
top-hat-like spatial velocity profile at the exit of the jet, with a fairly thin jet boundary layer in the
absence of crossflow [10]. The injector exit was mounted flush to the primary test section’s floor at
a location 10 cm downstream of the end of the tunnel contraction. A longitudinal straight PVC pipe
of length 0.9 m was attached to the bottom of the injector to eliminate swirl or other asymmetries
via internal honeycomb flow straighteners. The other end of the PVC pipe was connected to the jet
excitation system.

An acoustic loudspeaker (RadioShack 40-1022B, 4” woofer) was situated below the pipe (see
Fig. 2), introducing a sinusoidal oscillation in the jet fluid over time. The speaker was enclosed by a
plexiglass plenum housing attached to the bottom of the PVC pipe, even for unforced transverse jet
experiments. The sinusoidal signal was created by a function generator (BK Precision Model 4078)
at a desired forcing frequency fr and amplitude, delivered to an amplifier (Adcom GFA-7300) with
a constant gain of 30 for all forcing conditions in this study.

The jet fluid in the present experiments was comprised of mixtures of He, N,, and acetone vapor,
the latter of which was required for PLIF imaging for separate JICF studies with and without
excitation [8,13,16]. Varying the mole fractions of the constituent gases enabled control of the
desired mixture density. Mass flow controllers (Tylan Model FC-260) were used to alter the He
and N, mass flow rates; these species were mixed in a long, cylindrical chamber to passively
remove nonuniformities in the gases before entering a temperature-controlled acetone seeder, which
maintained the appropriate vapor conditions. The seeded mixture then entered four symmetrically
center-oriented injectors beneath the injection/excitation system.

In these studies the jet Reynolds number was kept constant at Re; = 2300 and the jet-to-
crossflow density ratio was fixed at equidensity conditions, S = 1.00, while the momentum flux
ratio J was independently varied by altering the crossflow velocity Uy, Prior studies on shear layer
instabilities and jet structure for variable density conditions and at different jet Reynolds numbers
are documented in Getsinger et al. [8]. The specific momentum flux ratios explored in this lock-in
study were J = 61 and 18, corresponding to a convectively/locally unstable upstream shear layer
in the absence of forcing, and J = 7, corresponding to a naturally absolutely/globally unstable
upstream shear layer [8,14,16]. The free jet in the absence of crossflow, J — oo, was also examined
here. To achieve jet densities equal to that of the crossflow, the jet flow consisted of constituent gases
with fixed mole fractions as follows: N, (¢ &~ 0.548), He (¥ & 0.234), and acetone (¢ ~ 0.218).
Jet density and viscosity were determined for these constituents and the relevant flow rates via the
Reichenberg method [33].

The present experiments used constant temperature anemometry (CTA) via a single-component,
boundary-layer type hotwire probe (Dantec 55P15) to quantify local velocity and shear layer
spectral characteristics. The maximum obtainable frequency via CTA was 400 kHz, significantly
higher than the Nyquist frequency of 12 kHz, which is twice the maximum applied sinusoidal
forcing frequency of 6000 Hz in these experiments. The hotwire was inserted through an opening
in the black side wall of the test section and could be traversed in three dimensions with 1 um
accuracy using a triple-axis linearly staged platform. Hotwire data were delivered first to a 90C10
CTA module in a Dantec StreamLine 90N10 frame and then to an AC/DC signal splitter with
signal conditioning developed by Hendrickson [34]. The maximum forcing frequency of 6000 Hz
resulted from the inherent nonuniform frequency response of the actuation system, consisting of
the amplifier, loudspeaker, hotwire, signal conditioner and DAQ board. Rolloff in the signal was
pronounced beyond 1000 Hz, and was especially poor above 6000 Hz. Spectral data were fed to
a dual channel dynamic signal analyzer (HP Model 35665A) and averaged over 40 instantaneous
frequency distributions. The spectral measurements were applied over a 6.4 kHz range, with 8 Hz
resolution.
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The amplitude of excitation of the perturbed jet was quantified via the hotwire-measured vertical
jet velocity, u;(¢), measured at a location 0.2 jet diameters above the center of the jet exit plane.
The root-mean square (RMS) of the jet velocity perturbation, u/j,rms’ relative to the time-averaged jet
velocity at the same location, #;, was used to quantify the amplitude of jet excitation:

1 u+T
u},rms = ?/t (uj - ﬁj)zdta (1)
1

where T = 1/f7 is the period of excitation. The matching of u}’rms among different flow and
excitation conditions enabled appropriate comparison of the range of jet responses. The RMS values
of velocity perturbations explored were in the range 0.008 < u"]-,rms /U; < 0.23, where the mean jet
velocity averaged over the exit plane was U; ~ 7.9 m/s. It is important to note that, because the
jet consisted of a mixture of helium, nitrogen, and acetone in these experiments, the hotwire was
calibrated in this mixture. As discussed in detail in Shoji [16] and Shoji et al. [17], a separate flush
round pipe with a known fully-developed laminar velocity distribution at the injector exit in the
absence of crossflow was used for this calibration, quantified in the jet Reynolds number range

360 < Re; < 2800.

III. RESULTS
A. Lock-in characteristics

To investigate lock-in behavior of the JICF upstream shear layer, a frequency sweep (in input
forcing frequency fy) was applied by the loudspeaker at a fixed amplitude of forcing, “./i,rms’ as
measured within the USL at a shear layer trajectory location s/D = 2.0 (see Figure 1). The general
method for determining the critical forcing frequency for lock-in at each ;- amplitude thus
contrasted that used in Davitian et al. [11] and Getsinger et al. [12], where the frequency fris
fixed and the amplitude of excitation (pressure perturbation associated with applied excitation) is
systematically increased until lock-in is observed in the spectra. The criteria for determining lock-in
of the upstream shear layer to f; were also slightly different in the present study. In previous studies
of the transverse jet [11,12] and of the low density free jet [30], lock-in is considered to occur when
the USL spectral peak at the unforced natural mode f, disappears under external forcing, with f
dominating the spectra. But in the present study, a more precise set of criteria was used: the USL was
considered to be locked-in to fr when sinusoidal forcing caused the amplitude of the fundamental
peak at f, to be reduced by at least three orders of magnitude and, in addition, when there was no
evidence of quasiperiodic spectral behavior, as defined in Ref. [31].

For example, USL power spectra for J = 7, with a relatively low forcing amplitude correspond-
ing to approximately 1% of the mean jet velocity, matched amongst variable forcing frequencies,
are shown in Fig. 3. Note that the J = 7 transverse jet creates an absolutely unstable USL in
the absence of forcing. In Fig. 3, black lines represent hotwire voltage spectra in the absence of
forcing, with a single strong peak at the fundamental frequency f, = 2000 Hz and with higher
harmonics at 4000 and 6000 Hz, with very low level disturbances at other frequencies. In this
figure, the red lines represent spectra resulting from sine wave forcing for the conditions shown,
with a variety of different responses denoted by the spectral peaks. In Fig. 3(a), the forced spectrum
shows a strong peak at fy = 1200 Hz and a weaker peak at f, = 2000 Hz, in addition to multiple
peaks which in some cases are harmonics of the forcing frequency. Other peaks correspond
to frequencies representing linear combinations of the frequencies |pfr & qf,| (where p and ¢
are integers), representing the interaction between the forcing and natural modes. These forced
spectral characteristics in Fig. 3(a) demonstrated quasiperiodicity, similar to observations for the
phenomenon in low density free jets, per Li and Juniper [31]. According to the present criteria,
fr =1200 Hz in Fig. 3(a) did not represent a lock-in condition. As forcing frequency increased
for the same amplitude, fr became more dominant in the spectrum, and the peak at f, lessened as
compared with that for the unforced case. In Fig. 3(b) for fr = 1400 Hz, the peak at f, was reduced
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FIG. 3. Power spectra of the hotwire-measured velocity perturbations at the USL trajectory coordinate
s/D = 2.0 for the JICF at J =7 with/without sinusoidal forcing at forcing frequencies indicated, where
U ms/Uj = 0.01. The USL had a natural (unforced) USL frequency of f, = 2000 Hz and was considered
to be locked-in for conditions shown in panels (b) and (c).

by over 3 orders of magnitude and essentially disappeared; this represented complete dominance of
the forcing frequency f over the natural mode as well as the disappearance of mode interactions and
quasiperiodicity seen at lower frequency forcing. These features provided evidence of a so-called
1:1 lock-in [31]. In Fig. 3(c), forcing at fy = 2500 Hz also led to a significantly diminished peak
at f; with minimal evidence of quasiperiodicity. At higher forcing frequencies (fy = 3500 Hz
and 5000 Hz in Figs. 3(d) and 3(e), respectively), in contrast, there was little difference between
unforced and forced power spectra, although at fy = 3500 Hz there were a few minor peaks at
linear combinations of f, and fy, created by the interaction between forcing frequency f and the
fundamental frequency f,. These higher forcing frequencies hence were not found to create lock-in.

One can perform the same USL spectral evaluation for other forcing amplitudes and frequencies.
Figure 4 shows power spectra for J =7 at a higher forcing amplitude with u/j,rms /Uj = 0.08,
matched among variable forcing frequencies. At fy = 300 Hz and 460 Hz [Figs. 4(a) and 4(b)],
the interaction between the natural and forcing modes created complicated spectral patterns with
spectral peaks at the forcing frequency as well as harmonics of fr and |pfr & qf,|, again, indicators

013901-7



TAKESHI SHOII et al.

) o
= =
g g
3 i B
jam) | ""‘ !
T T ; i T T ; i
1 ] I I 1 ] I I
1 ] I I 1 ] I I
100 I I I I i -100 I I I I 1
1000 2000 3000 4000 5000 6000 1000 2000 3000 4000 5000 6000
[ (Hz) f (Hz)
(c) ff =590 Hz (d) f; =620 Hz
) o
= =
g g
: £ '
[ . I
T T 1 i T T ; i
1 ] I I 1 ] I I
1 ] I I 1 ] I I
_100 1 L L L I 1 L L L I
1000 2000 3000 4000 5000 6000 1000 2000 3000 4000 5000 6000
[ (Hz) f (Hz)
—— Unforced
——Forced

FIG. 4. Power spectra of the hotwire-measured velocity perturbations at the USL trajectory coordinate
s/D = 2.0 for the JICF at J =7 with/without sinusoidal forcing at forcing frequencies indicated, where
U ms/Uj = 0.08. The USL had a natural (unforced) USL frequency of f, = 2000 Hz and was considered
to be locked-in above fy ~ 590 Hz [e.g., shown in panels (c) and (d)].

of mode interactions and quasiperiodicity [31]. At fr = 590 Hz [Fig. 4(c)], the spectral peak at
the natural frequency f, virtually completely disappeared and the forcing frequency and its higher
harmonics dominated on the USL, corresponding to 1:1 lock-in. The critical minimum forcing
frequency for lock-in for the JICF with J =7 at /., /U; = 0.08 was determined from data in
Fig. 4 as well as additional data [16] to be f; = 590 Hz, at least, as f; was increased toward
fo =2000 Hz. Because the maximum achievable forcing frequency with the current actuation
system at u; .., /U; = 0.08 was 1210 Hz (due to a significant roll-off in frequency response above
1000 Hz) [16], lock-in at higher frequencies could not be determined.

Similar determinations of lock-in bands could be made for other forcing amplitudes and
frequencies, and for different momentum flux ratios J for the present equidensity studies. Power
spectra for J = 18, corresponding to the convectively unstable shear layer in the absence of forcing,
are shown, for example, in Fig. 5, comparing the unforced spectra with those for sinusoidal
excitation at a low forcing amplitude « ., /U; = 0.01. Without excitation, the black lines in
Fig. 5 show multiple weaker peaks around the fundamental at f, &~ 2200 Hz, in addition to
higher harmonics and a subharmonic. In general, these multiple frequencies shift slightly and then
return to the original values as the hotwire is traversed along the upstream shear layer for CU
conditions, as documented extensively in Megerian et al. [10]; the frequency shifting is associated
with tonal interference between the strengthening shear layer instability and the hotwire probe
[12]. Interestingly, with sinusoidal excitation at amplitude «’; . ./U; = 0.01, quasiperiodicity in the

j,rms
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FIG. 5. Power spectra of the hotwire-measured velocity perturbations at the USL trajectory coordinate
s/D = 2.0 for the JICF at J = 18 with/without sinusoidal forcing at forcing frequencies indicated, where
U ms/Uj = 0.01. The USL had a natural (unforced) USL frequency of f, ~ 2200 Hz and was considered to be
locked-in for conditions shown in panels (b) and (c).

USL was observed in Fig. 5(a) (fy = 500 Hz), suggesting that even the CU USL was not always
locked-in to axisymmetric forcing, an unexpected finding based on earlier (less precise) exploration
of lock-in for this regime [11]. At f; = 1400 Hz and 2000 Hz (Figs. 5(b) and 5(c), respectively),
the fundamental mode disappeared and forcing modes dominated the instability, corresponding to
lock-in. But as forcing frequency was increased well above the fundamental mode (f, &~ 2200 Hz),
for example, at fr = 3500 Hz and 5000 Hz (Figs. 5(d) and 5(e), respectively), axisymmetric
forcing had little to no effect on spectral characteristics, with minor evidence of quasiperiodicity for
fr = 5000 Hz. The CU USL responded to axisymmetric forcing similarly to the AU USL despite
the fact that the lock-in band was larger in extent for the convectively unstable flow. When excitation
of the CU USL was studied for J = 61 (Fig. 6), similar trends were observed as those for J = 18.
One can apply the same analysis to the shear layer for the free jet injected into quiescent
surroundings, which under equidensity conditions is known to be convectively unstable [35,36].
Here power spectra were taken at the shear layer location s/D = 4.0 instead of s/D = 2.0 because
there was no clear peak in the fundamental mode at s/D = 2.0, and at that location one could
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FIG. 6. Power spectra of the hotwire-measured velocity perturbations at the USL trajectory coordinate
s/D = 2.0 for the JICF at J = 61 with/without sinusoidal forcing at forcing frequencies indicated, where
U ms/Uj = 0.01. The USL had a natural (unforced) USL frequency in the range f, = 1600-1900 Hz and was
considered to be locked-in for conditions shown in panels (b) and (c).

not distinguish whether lock-in occurred. And because the free jet is more susceptible to external
forcing than the JICF due to its significantly weaker shear layer instability (with f, ~ 1200 Hz), a
forcing amplitude u’; .. /U; = 0.008 was applied, the minimum achievable amplitude for the current
experimental configuration. Even at a relatively low forcing frequency f; = 500 Hz, as shown for
the free jet in Fig. 7(a), the fundamental mode already completely disappeared and the forcing
frequencies dominated, clearly indicating shear layer lock-in to fr. For forcing frequencies lower
than 500 Hz, the shear layer was always locked-in. But as forcing frequency was increased, the
free jet shear layer continued lock-in behavior until a high enough frequency, e.g., f = 3000 Hz,
was applied [Fig. 7(d)], where the weak fundamental mode was still observed. At higher forcing
frequencies, e.g., fr = 5000 Hz [Fig. 7(e)], the shear layer never became locked-in again, and
the natural mode was always observed to be dominant over the forcing mode for this amplitude.
Remarkably, therefore, the shear layer for the free jet was found to be always locked-in to
axisymmetric forcing for f; < f, at the minimum forcing amplitude with the current setup, but
the shear layer could not achieve lock-in when f; > 3000 Hz.
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FIG. 7. Power spectra of the hotwire-measured velocity perturbations at the USL trajectory coordinate
s/D = 4.0 for the free jet with / — oo with/without sinusoidal forcing at forcing frequencies indicated, where
U ms/Uj = 0.008. The USL had a natural (unforced) USL frequency at f, ~ 1200 Hz and was considered to
be locked-in for forcing frequencies f; < 3000 Hz [shown in panels (a)—(c)].

Based on results shown in Figs. 3—7 and in additional datasets, the lock-in diagram can be
extracted for a range of J values. Figure 8 shows a lock-in diagram for different J values, that
is, the combination of the scaled amplitude u’jms /U; and scaled critical forcing frequency fr/f,
producing 1:1 lock-in for JICF conditions J = 7, 18, and 61, as well as for the free jet, / — oo.
Prior experimental studies on the transverse jet [11,12] and the low density free jet [30] indicate
that the lock-in diagram shows a linear relationship between |fy — f,| and the critical acoustic
pressure perturbation amplitude in jet forcing, p. ., suggesting a Hopf bifurcation to a global
mode [30,37] and producing a “V” shape in the lock-in diagram involving p/ ... Figure 8 does not
show a linear relation between |f — f,| and ] ., /U;, since clearly, u .. and p,, do not have
a linear relationship, but the figure does produce a minimum at fy = f,, as expected. As in other
studies, Fig. 8 demonstrated that, as forcing frequency approached f,,, or as the amplitude of forcing
frequency increased for a given fy, the forcing could overtake f, even if the shear layer was naturally
absolutely unstable.
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FIG. 8. Lock-in diagrams for the JICF at J = 7, 18, and 61, as well as for the free jet, /] — oo, in response
to sine wave excitation at various forcing frequencies and scaled amplitudes « . /U;, measured at the shear
layer locations s/D = 2.0 for the transverse jets and s/D = 4.0 for the free jet. All symbols represent critical

forcing conditions required for 1:1 lock-in of the upstream shear layer to the forcing frequency f7.

Interestingly, the V-like shape in Fig. 8 displays an asymmetric slope between the lower- and
higher-frequency regimes for the transverse jet on either side of f7/f, = 1, where the slope was
much shallower for fy > f, than for f; < f,. This trend suggested that the upstream shear layer
was more responsive to external forcing at higher f; than at lower forcing frequencies. This same
orientation in asymmetry is observed for the equidensity JICF (under naturally AU conditions) in
earlier studies [11]. But the asymmetry in Fig. 8 was opposite in orientation to the lock-in diagrams
in Getsinger et al. [12] and Juniper et al. [30] for the low density JICF and free jet, respectively,
with a shear layer that was more resistant to excitation at higher frequencies (f; > f,) than at lower
frequencies. Clearly, the dynamics of shear layer instabilities and lock-in are different for flows with
a variable density than for equidensity conditions, and the influence of crossflow in the transverse
jet affects those dynamics.

Observations of quasiperiodicity in the run-up to 1:1 lock-in for the equidensity transverse jet
and free jet provided interesting new insights into the complex dynamics of shear layer instabilities.
But among the more surprising outcomes of the lock-in study here was the observation that the
convectively unstable JICF USL for J = 18 and 61 was not always locked-in to external forcing,
in contrast to conclusions from more limited datasets for J = 41 in Davitian et al. [11]. Moreover,
the CU free jet shear layer was always found to be locked-in for f; < f, in the present studies, but
not always locked-in for fr > f,, a remarkable observation for an equidensity free jet, given that
lock-in phenomena for this and other flowfields are more often associated with globally unstable
conditions [30-32]. Some of these features may be reminiscent of “marginally” globally unstable
flows, which are locally convectively unstable in the entire flowfield but where absolute instability
could be incipient at streamwise location(s). These phenomena are discussed in detail by Huerre
and Monkewitz [37], Li [38], and Li and Juniper [31].

This lock-in behavior for convectively/locally unstable jet shear layers may be associated with
the intrinsic nature of axisymmetric shear layer stability modes and their growth rates in the absence
of external forcing. Linear stability analysis (LSA) of the equidensity free jet and transverse jet
by Alves et al. [39] reveal trends in growth rates for both axisymmetric and helical shear layer
stability modes. As indicated in Fig. 7 of Alves et al. [39], the free jet’s shear layer has a positive
axisymmetric growth rate, even at natural frequencies approaching zero, and the growth rates remain
positive until a relatively high (but finite) frequency, identical to observations from classical LSA
for the equidensity free jet, e.g., per Michalke [40]. This implies that the free jet would require
much higher amplitude forcing to achieve a response to excitation at higher frequencies than at
lower frequencies, consistent with the ease with which lock-in can be achieved in the latter case.
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In contrast, for the equidensity jet in crossflow, the LSA by Alves et al. [39] indicates that the
upstream shear layer has stable axisymmetric modes at very low frequencies, consistent with greater
difficulty to achieve lock-in for this regime (e.g., as shown in Fig. 8). The LSA also indicates positive
axisymmetric growth rates that start at a relatively low frequency and remain so until a relatively
high but finite natural frequency which decreases with decreasing J or R, that is, for frequencies
below that for the free jet. These axisymmetric growth rate trends are also qualitatively consistent
with transverse jet lock-in observations at higher frequencies in Fig. 8. While not conclusive, the
unexpected trends in lock-in phenomena here were generally consistent with linear stability analysis
trends for axisymmetric modes of the transverse jet and the free jet, and bear more extensive
exploration.

B. Poincaré maps

Additional evidence and insights may be found for transverse jet and free jet shear layer lock-in
via nonlinear time-series analysis, which can be a useful tool for studying dynamical features of
physical systems whose intrinsic dynamics are governed by nonlinear processes [41]. In the present
study on the JICF, one can reconstruct the phase space for various conditions using state variables
extracted from experimental time-series data. In the typical phase space, the state variable of a
dynamical system at a given instant of time appears as a single point, while multiple points of the
state variable as time t — oo create a trajectory in the phase space, with topological features which
can be interpreted in terms of dynamical characteristics of the system. For example, as described
in Li and Juniper [31] for the low density free jet, although the phase space cannot be directly
measured, it can be reconstructed from experimentally (or computationally) extracted temporal data
using time-delay embedding [42], since many measurable state variables are intrinsically coupled to
one another. The present study applied time-delay embedding to the measured temporally variable
hotwire voltage, Vi, acquired at the USL trajectory coordinate s/D = 2.0 to characterize the
dynamics of the JICF USL with and without axisymmetric sinusoidal forcing for / = 7 and 61,
corresponding to naturally absolutely/globally and convectively/locally unstable upstream shear
layers in the absence of external forcing, respectively. Note that local fluctuations in the acetone
mole fraction made it difficult to correlate the temporally varying hotwire voltage directly to vertical
jet velocity along the USL, although the hotwire voltage itself contains the same frequency and
spectral content as velocity, as confirmed separately [16]. The optimal time delay parameter t,
required for time-delay embedding, was chosen to be the first zero-crossing of the autocorrelation
function applied to the temporal hotwire voltage, consistent with the methods in Li and Juniper
[31,32].

To extract dynamical characteristics of the JICF, we utilized a two-dimensional section through
the three-dimensional phase space [31,32]. The two-dimensional section consisted of a one-way
intersection of the phase space trajectory with the plane Vi (f — 27) = 0%, called a “one-sided”
Poincaré map. Per Strogatz [43] and Balanov et al. [44], for example, in a Poincaré map, a periodic
limit cycle appears as a point, while a quasiperiodic oscillation with two incommensurate modes
appears as a continuous ring or a two-dimensional torus. Based on these topological features, one
can extract nonlinear dynamical characteristics of the unforced and forced JICF. The Poincaré map
analysis will be relevant to van der Pol oscillator modeling for the flowfield, described in Sec. III C.

Figure 9 represents Poincaré maps [Viy(t — T) versus Vi (¢)] for J = 7, at a matched forcing
amplitude of ] .. /U; = 0.01 for a range of frequencies f. In the absence of forcing, in Fig. 9(a),
the Poincaré map shows a small blob, which is a typical topological characteristic for the global
instability as extracted from experimental data points. A global instability (or a periodic limit
cycle) ideally would show a single data point for temporal data without any noise [44], but with
experimental noise, a blob would be present. With increasing forcing frequency, from f; = 1200 Hz
to 2500 Hz [Figs. 9(b)-9(d)], the blob became gradually smaller, suggesting stronger periodicity
caused by the lock-in of the USL to fy. It should be noted that, at fy = 1200 Hz, the shape
of the blob in Fig. 9(b) became smaller than for the unforced case but was less circular, with a
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FIG. 9. Poincaré maps of the hotwire voltage at the USL trajectory coordinate s/D = 2.0 for the JICF at
J =7 with/without sinusoidal forcing at forcing frequencies as indicated, for forcing amplitude ;. /U; =

0.01 (cf. Fig. 3). The USL was considered locked-in for forcing conditions shown in panels (c) and (d), and
quasiperiodic for conditions in panels (b) and (e).

cusp-like structure, suggesting that there was a slight propensity for the initiation of quasiperiodicity.
The Poincaré map in Fig. 9(b) appeared to be consistent with the quasiperiodicity observed in
spectra corresponding to this excitation condition [Fig. 3(a)]. And when the USL was forced fairly
close to the fundamental frequency f, = 2000 Hz, e.g., f; = 1400 Hz [Fig. 9(c)] and 2500 Hz
[Fig. 9(d)], the Poincaré map became smaller in size than for the unforced case, consistent with
spectral lock-in behavior as documented in Figs. 3(b) and 3(c), respectively. As forcing frequency
was increased further, to 3500 Hz [Fig. 9(e)] and 5000 Hz [Fig. 9(f)], at which the USL spectra
were nearly identical to the unforced USL [Figs. 3(d) and 3(e), respectively], Poincaré maps
were topologically nearly identical to those for the unforced case [Fig. 9(a)]. Hence, the Poincaré
maps here showed very good consistency with the spectral-based categorization of USL instability
response to axisymmetric forcing.

Poincaré maps also can be created for other flow conditions, e.g., for J = 7 at a higher forcing
amplitude of . /U; =0.08 (Fig. 10) and for J =61 at an amplitude of u . /U; = 0.01
(Fig. 11). AtJ =7 at this higher forcing amplitude, when the USL was not locked-in at f; = 300 Hz
[Fig. 10(b)], the Poincaré map showed a slightly larger blob shape than for unforced conditions,
generally consistent with a periodic limit cycle. But at a higher forcing frequency in the run-up
to lock-in [at f; = 460 Hz, in Fig. 10(c)], a torus-like shape appeared in the Poincaré map. Per
Li and Juniper [31] and Kashinath et al. [45], the creation of a torus-like shape can be labeled a
“torus-birth bifurcation,” a topological characteristic indicating the transition from periodicity (for
the naturally occurring instability) to quasiperiodicity. Such quasiperiodicity was indeed observed in
power spectra under the forcing conditions in Fig. 10(c), as shown in Fig. 4(b). Then once the USL
became locked-in, as defined for higher frequency forcing via the spectra in Figs. 4(c) and 4(d), the
corresponding Poincaré maps [Figs. 10(d) and 10(e), respectively] returned to smaller blob shapes,
although the slight cusp observed at f; = 590 Hz reflected the additional peaks and a transition
from quasiperiodicity observed in the spectra.
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FIG. 11. Poincaré maps of the hotwire voltage at the USL trajectory coordinate s/D = 2.0 for the JICF at

61 with/without sinusoidal forcing at forcing frequencies as indicated, for forcing amplitude u
0.01 (cf. Fig. 6). The USL was considered locked-in for forcing conditions shown in panels (c) and (d), and

quasiperiodic for conditions in panels (b) and (e).
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In Fig. 11 for the J/ = 61 case, which in the absence of forcing had a convectively unstable USL,
Poincaré maps showed a blob which became smaller as forcing frequency increased to approach
the fundamental frequency range of f, = 1600-1900 Hz [Figs. 11(c) and 11(d)]. While spectra at
fr =500 Hz [Fig. 6(a)] showed relatively weak quasiperiodicity, the corresponding Poincaré map
in Fig. 11(a) did not produce clear topological features for quasiperiodicity, such as a torus structure,
likely due to the fairly low forcing amplitude used here, as also seen in the J = 7 results in Fig. 9.

C. van der Pol oscillator model

The van der Pol (VDP) oscillator is a well-known second-order ordinary differential equation
(ODE) capable of representing self-excited dynamical systems [46]. The VDP oscillator model has
been successfully applied to represent the forcing response of a number of flowfields, including
the reactive/nonreactive free jet in quiescent surroundings [31,32,45]. This particular oscillator is
a fairly simple nonlinear model for self-excited flow systems, and is able to replicate trends in
experimental data and hence to capture essential dynamical features. In the present study on the
equidensity JICF, the VDP model was used to model self-excited upstream shear layer dynamics
for the J = 7 case with and without sinusoidal excitation at a relatively strong forcing amplitude
corresponding to u;ms/U; = 0.08. A range of forcing frequencies was explored, with the aim
of having the model approximate the measured temporal hotwire voltage variation, power spectra
(Fig. 4), and Poincaré map (Fig. 10) for the J = 7 condition.

With an external sinusoidal forcing source term as in the present experiments, the general VDP
oscillator model can be formulated as follows:

7 —e(1 — %) + wz = Bsin(wyt), )

where z is the dynamical variable in question and w, is the natural angular frequency of the
dynamical system. The forcing term on the right-hand side of Eq. (2) represents external, sinusoidal
excitation of a system with forcing amplitude B and a forcing frequency w;, while the feedback
parameter, €, controls the degree of linear self-excitation and nonlinear self-limitation of the system.
In the present study, following the same procedure as for the low density free jet in Li and Juniper
[31], the feedback parameter € was specifically chosen to be a fixed value of 0.41, corresponding to
a matching of the lock-in frequency extracted from this model to the experimentally observed value
(fr/fo 7 0.295). The selection of € = 0.41 also represented lock-in and quasiperiodic dynamical
characteristics of the self-excited JICF with forcing atu/; ., /U; = 0.08 quite well, as will be shown.

The second-order ODE in Eq. (2) was solved using a multiple variable-order algorithm [47]; the
procedure followed that in Li and Juniper [31], and details on this approach may be found in that
study. Note that, in the absence of external forcing in Eq. (2), i.e., B = 0, the system modeled by the
VDP oscillation contains a weak nonlinearity with a perfectly circular phase trajectory in the phase
space for € < 1, while the system contains a strong nonlinearity without a circular phase trajectory
for € > 1. Yet a dynamical system for either condition converges to a stable limit cycle, regardless
of initial conditions, due to its intrinsic behavior as a periodic attractor of the VDP oscillator. The
natural angular frequency w, was set to 1 for relative scaling of all conditions, although of course the
actual natural frequency was not necessarily 1 because of intrinsic nonlinearities when € > 0. As
done for the experimental data (see Sec. III B), a two-dimensional section, or “one-sided” Poincaré
map through the three-dimensional phase space, was again utilized in extracting the dynamical
maps.

Figure 12 shows power spectra [Figs. 12(a)-12(c)] and Poincaré maps [Figs. 12(d)-12(f)]
extracted from the temporal results of the VDP model with € = 0.41, corresponding to data for the
experimental case of J = 7 with forcing amplitude Lms/Uj = 0.08. Here the forcing amplitude
parameter B was selected to be 0 for the unforced case and 1 13 for the forced cases, the latter of
which was chosen to produce good qualitative agreement between the model and experiments for
a fixed forcing amplitude at a range of different frequencies, per the approach in Li and Juniper
[31]. For the unforced case [Figs. 12(a) and 12(d)], consistent with an absolutely unstable USL with
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FIG. 12. VDP oscillator model results representing spectral dynamics (a)—(c) and Poincaré maps (d)—(f)
corresponding to the USL trajectory coordinate s/D = 2.0 for the JICF at J =7 with/without sinusoidal
forcing at an amplitude equivalent to «; ,,./U; = 0.08. The USL had a natural (unforced) USL frequency of
fo = 2000 Hz, corresponding to w, = 1, and was considered to be locked-in via experiments for f; > 590 Hz,
shown in panels (c) and (f).

strong natural periodicity, power spectra showed a strong peak at the fundamental frequency w,,
and the Poincaré map reduced to a single data point (i.e., the theoretical limit of an infinitely small
blob), consistent with a periodic limit cycle. At forcing frequency fr = 460 Hz, corresponding to
wys/w, ~ 0.23 in the VDP model, the solution produced multiple peaks, at forcing frequency oy and
at frequencies |pwy & qw,|, where p and ¢ are integers, in the predicted power spectra [Fig. 12(b)].
Correspondingly, there was a torus-like structure predicted in the Poincaré map [Fig. 12(e)]. These
characteristics suggested quasiperiodicity at this forcing condition due to the interaction between
natural modes of the instability and the forcing mode, consistent with experimental observations
for this condition [Fig. 4(b) for the spectra and Fig. 10(c) for the Poincaré map]. For a higher
forcing frequency of fr = 620 Hz (wy/w, ~ 0.31 in the VDP model), at which the USL for
J =7 was locked-in for the experiments, per Fig. 4(d), the peak in the spectrum at the naturally
occurring fundamental frequency completely disappeared, and the forcing frequency and its higher
harmonics dominated the power spectra, shown in Fig. 12(c). This strong periodicity produced
a single data point in the Poincaré map [Fig. 12(f)], as expected for 1:1 lock-in, with general
consistency with the experimental data [Fig. 10(e)]. Overall, the instability characteristics from
these model results for power spectra and topological features in Poincaré maps were qualitatively
consistent with results from experiments for the J =7, u},rms /U; = 0.08 conditions in Figs. 4 and
10. The simple VDP model for this transverse jet condition not only replicated the dynamics of
lock-in and quasiperiodicity, but also provided additional evidence that the unforced condition
for the transverse jet at a low momentum flux ratio demonstrated self-excitation, consistent with
long-standing observations in earlier transverse jet experiments [8,10,11].

IV. DISCUSSION AND CONCLUSIONS

This largely experimental study explored the dynamical characteristics of the equidensity
transverse jet, with a special focus on lock-in and quasiperiodicity generated via axisymmetric
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sinusoidal jet forcing for different jet-to-crossflow momentum flux ratios J, spanning conditions
producing both naturally occurring convectively and absolutely unstable upstream shear layers. For
the JICF with an absolutely/globally unstable USL in the absence of external excitation (J = 7),
as observed in other AU/GU flows, power spectra showed that the USL can be made to lock-in
to sinusoidal forcing at a large enough amplitude, with virtually complete disappearance of its
natural mode f, and dominance of a forcing mode f. For certain forcing amplitudes, lock-in as
well as quasiperiodicity, as the lock-in band was approached, were observed in upstream shear
layer spectra. These phenomena were also visible in Poincaré maps extracted from the experimental
measurements, with the so-called “torus-birth” structure consistent with quasiperiodicity. The
results in this low momentum flux ratio (J = 7) regime were consistent with predictions of
shear layer dynamics from a Van der Pol (VDP) oscillator model, which demonstrated clear
global instability behavior without sinusoidal forcing and quasiperiodicity and lock-in for specific
forcing conditions. For the JICF with a naturally AU/GU USL, these findings provide additional
evidence for consistency with upstream shear layer self-excitation. Indeed, the VDP modeling also
demonstrates that lock-in and quasiperiodic dynamics observed for the JICF are not restricted to
this specific flow system, but are generic features of forced self-excited oscillators.

An unexpected finding in the present studies occurred for JICF flow conditions for which a
convectively/locally unstable upstream shear layer formed in the absence of external forcing (here,
momentum flux ratios J = 18 and 61). In the present experiments with sinusoidal jet excitation,
the USL was not always observed to be locked-in to applied sinusoidal forcing, in contrast to
prior limited experimental conditions explored by Davitian et al. [11] and in contrast to the typical
expectation of straightforward lock-in for a weakly unstable shear layer. As indicated in Fig. 8,
lock-in bands for these convectively unstable conditions were nearly identical to one another, and
were broader in frequency range than that for the JICF with a globally unstable shear layer atJ = 7.
Remarkably, even the equidensity free jet (J/ — oco) with a CU shear layer demonstrated lock-in
behavior in the higher forcing frequency range, but not at low forcing frequencies. These findings
on lock-in for CU flows were in fact consistent with theoretically determined axisymmetric growth
rates for transverse jet shear layer instabilities observed in the linear stability analysis of Alves
et al. [39], where positive growth rates for instabilities within specific frequency ranges suggest
that lock-in bounds should exist for convectively unstable flow conditions. Quasiperiodicity in the
run-up to lock-in was also observed in the present study for the convectively unstable USL, not only
via spectral characteristics but also in experimentally-derived Poincaré maps.

The evidence for complex dynamics associated with sinusoidal excitation of the equidensity
transverse jet is not only interesting and consistent with the VDP dynamical model for a self-excited
flow, but it also suggests that the control of JICF behavior via external forcing could have differing
effects on jet behavior. The implications for jet structure and mixing when the upstream shear layer
is locked-in as opposed to quasiperiodic or only weakly affected by external forcing are subject of
several alternative excitation modalities currently under exploration.
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