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Abstract

Chronic medical conditions show substantial heterogeneity in their clinical features and pro-
gression. We develop the novel data-driven, network-based Trajectory Profile Clustering
(TPC) algorithm for 1) identification of disease subtypes and 2) early prediction of subtype/
disease progression patterns. TPC is an easily generalizable method that identifies sub-
types by clustering patients with similar disease trajectory profiles, based not only on Parkin-
son’s Disease (PD) variable severity, but also on their complex patterns of evolution. TPC is
derived from bipartite networks that connect patients to disease variables. Applying our TPC
algorithm to a PD clinical dataset, we identify 3 distinct subtypes/patient clusters, each with
a characteristic progression profile. We show that TPC predicts the patient’s disease sub-
type 4 years in advance with 72% accuracy for a longitudinal test cohort. Furthermore, we
demonstrate that other types of data such as genetic data can be integrated seamlessly in
the TPC algorithm. In summary, using PD as an example, we present an effective method
for subtype identification in multidimensional longitudinal datasets, and early prediction of
subtypes in individual patients.

Introduction

Parkinson’s disease (PD) is the second most common neurodegenerative disorder, affecting
an estimated 7-10 million people worldwide [1]. The cause of PD is unknown, and the disease
course is variable with age of onset and rate of progression differing across the population [2].
Furthermore, the clinical presentation is variable, with a broad range of possible motor and
non-motor symptoms [3]. Based on these differences, multiple PD subtypes have been pro-
posed, based on clinical intuition or unbiased data-driven approaches like cluster analysis [4].
Disease subtypes, which are likely to differ by the underlying etiology, treatment responsive-
ness and prognosis, will therefore facilitate PD research, management, and counseling of
patients regarding prognosis [5, 6].

There is currently no consensus on Parkinson’s subtypes that are biologically valid and clin-
ically relevant, and the best approach for identifying such subtypes remains elusive [7]. Lack of
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integration of longitudinal data for a large number of variables and lack of data-based progno-
ses are limitations of existing approaches [8].

Network medicine [9-13] offers a promising approach for untangling the complexities due
to multiple influences on disease manifestation and progression via analysis of interconnec-
tions within data. For example, studies of the human disease network (i.e. the ‘diseaseome’)
[13], in which diseases are linked if they share one or more associated genes, are useful for
identifying disease pathways and predicting other disease-related genetic variants [11]. With
few exceptions, most network medicine studies have focused on biomolecular data [13-16]
rather than the complexities of clinical phenotypic assessments, and disease subtyping based
on disease progression patterns is relatively unexplored [17, 18]. Another possible benefit of
network medicine approaches is that they offer ways to integrate different types of data, for
example to simultaneously incorporate clinical assessments with genetic data. This is especially
important for PD, as a large number of genetic variants have been identified as risk factors
[19]. Further, evidence has emerged that the same genetic risk variants also determine certain
clinical features of the disease, highlighting the need to explore novel approaches that integrate
genetic data into clustering (or subtyping) algorithms [20, 21].

Technological innovations in data processing and storage capacity have enabled develop-
ment of large clinical datasets, containing longitudinal clinical and biological data. In this
work we use data from the Michael J. Fox Foundation’s Parkinson’s Progression Markers Ini-
tiative (PPMI), a worldwide study to establish a comprehensive set of clinical, imaging and
genetic data (http://www.ppmi-info.org). Such datasets require sophisticated data-driven
approaches for effective extraction and analysis of clinically relevant information. Data-driven
methods are typically applied to diseases in two ways: disease-specific, i.e., identifying disease
subtypes and variable progression patterns from large scale patient data, and patient-specific,
i.e., predicting disease subtype and trajectory in the individual patient based on their data. Our
work incorporates both these perspectives and presents a network science method that not
only identifies disease subtypes using diverse types of patient data (e.g., genetic and clinical
variables), but is also predictive. We present our results based on a PD dataset, however this
method is easily applied to other chronic medical conditions.

To provide an intuitive data-driven solution that is both disease- and patient-centric, we
develop the novel Trajectory Profile Clustering (TPC) algorithm to identify PD subtypes
through similarities in patterns of progression. Additionally, we demonstrate the predictive
ability of our algorithm on a test/validation cohort of new patients. We also explore inclusion
of four PD genetic variants in our approach, to demonstrate its capacity to simultaneously
incorporate clinical, demographic, and genetic information. Thus, TPC is a data-driven algo-
rithm that can incorporate different types of data (e.g., genetic, clinical etc.) and different
weighting schemes for different variables in order to cluster patients according to the similarity
of their disease progression. In addition, TPC also offers predictive power, making it a useful
tool for clinicians in the study of multivariate, progressive disease datasets. Our method, to the
best of our knowledge, presents a new and easily generalizable approach for robust subtype
identification by accounting for disease progression patterns in addition to overall variable
profiles. This work is aimed at bridging the gap between the computational methodologies
developed by network and data scientists and the clinical experience of health professionals.

Materials and methods
Description of data

Data used in the preparation of this article were obtained from the Parkinson’s Progression
Markers Initiative (PPMI) database (www.ppmi-info.org/data). The data consists of patient
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Domain

Demographics
Gender
Age

General PD Severity

MDS-UPDRS1
MDS-UPDRS2
MDS-UPDRS3
T-MDS-UPDRS
Cognitive

JOLO
SDM
MoCA
HVLT
LNS
SFT

Disability

SEADL
Sleep

RBDQ

ESS
Autonomic

SCOPA-AUT

Mental Health

GDS

STAI

Genetic Risk Loci

G1
G2
G3
G4

Scale/Variable

Gender
Age

Movement Disorders Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) - Part 1
Movement Disorders Society-Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) - Part 2
Movement Disorders Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) - Part 3
Total Movement Disorders Society-Unified Parkinson’s Disease Rating Scale (MDS-UPDRS)

Benton Judgement of Line Orientation
Symbol Digit Modalities Test

Montreal Cognitive Assessment
Hopkins Verbal Learning Test

Letter Number Sequencing

Semantic Fluency Test

Schwab and England Activities of Daily Living

Rapid Eye Movement Sleep Behavior Disorder Questionnaire
Epworth Sleepiness Scale

Scales for Outcomes in Parkinson’s Disease - Autonomic

Geriatric Depression Scale
State -Trait Anxiety Inventory

rs11060180
rs6430538
rs823118
rs356181

Fig 1. Description of PPMI Data. Data includes two demographic variables, outcome variables from six clinical
domains, and four genetic single nucleotide polymorphisms.

https://doi.org/10.1371/journal.pone.0233296.9001

variable values across 5 time points: baseline values (which we denote as year 0) and years
1,2,3, and 4. Of the 430 patients at baseline in this dataset, 314 patients remained in year 4.
Once patients with incomplete data were excluded, 194 patients remained in our analysis.
Twenty percent of this population (number of individuals # = 39) was kept as a test/validation
dataset. The remainder of the patients (n = 155) formed the training dataset that was used in
the algorithm to identify PD subtypes. The data included demographics (gender and age in
year 4), clinical variables from six clinical domains (General PD Severity, Disability, Cognition,
Autonomic Function, Sleep, and Mental Health) and 4 PD genetic variants (Fig 1). PPMI
motor assessment was performed in a ‘practically defined off state, i.e., subjects are asked to
withhold their medication prior to the assessment for 12 hours for a defined “OFF” medication
score, practically eliminating medication effects on motor symptoms in this dataset.

Trajectory Profile Clustering algorithm

Our Trajectory Profile Clustering algorithm is designed to group together patients based on
the similarities of their disease trajectories. The algorithm proceeds as follows:

1. Create bipartite networks connecting individuals to variables: At time point ¢ (e.g., baseline,
year 1, year 2, etc.) we construct an N x V bipartite graph modeling connections between
individuals and disease variables, where N is the number of individuals in the training pop-
ulation and Vis the total number of variables, as illustrated in Fig 2. For M time points,
we can represent the set of these bipartite graphs as an N x V x M multidimensional array,
where X;,, gives the value of individual i’s disease variable v at time .

2. Transform data for variable uniformity: For each non-binary variable, we determine its
‘direction’. For variable v, if higher values of the variable are associated with greater disease
severity then its direction d, = +1; otherwise d, = —1. For our data, clinical variables ESS,
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Fig 2. Stacking bipartite networks across time. An illustration of an individual-variable bipartite graph at one
timestep (left). Set of bipartite graphs across time (right).

https://doi.org/10.1371/journal.pone.0233296.9002

RBDQ, GDS, STAI UPDRS and age have d, = 1, and HVLT, JOLO, SFT, LNS, SDM,
MoCA, SEADL have d, = —1. We then define a new N x V x M multi-dimensional array Y
such that Y;,; = d, X;,, for non-binary variables. For binary variables, Y;,; = X;.

3. Construct patient trajectory profiles: For each patient i, we construct a V x M trajectory pro-
file matrix, T'. The matrix entries of T' are calculated as follows:

o For non-binary variables:

T =1if Y, >0,
(1)

= 0 otherwise.

where 0, is the threshold for variable v. In this manuscript, we set 8, to the median baseline
value of variable v in the training data. We threshold the connections, i.e., the individual

is only connected with disease variables for which they have a high enough severity. This
thresholding causes patients to be shown as unconnected to all variables in Fig 2.

« For binary variables:
For gender: T, = 1 if the patient is male, T, = 0 otherwise. For genetic risk loci: T!, = 1 if
patient contains single nucleotide polymorphisms (SNP) v, T?, = 0 otherwise. Each SNP is
treated as independent.

4. Create a patient-patient network with connections based on trajectory similarity: After hav-
ing defined the trajectory profile matrix T for each individual i, we create a patient-patient
network P of all patients in the training set. The nodes of this network correspond to
patients and the strength of a link between patient i and patient j captures the similarity of
their trajectory profiles. P has an adjacency matrix given by:

Py=> (T, =T). 2)
vt
In other words, P;; gives the number of matrix entries for which trajectory profile T* has the
same value as . This formulation implies that variables are equally weighted. Other appli-
cations may require unequal weighting for variables and time points, in which case one
may calculate the patient-patient matrix as follows: P, = > w, (T, = T),) where w,, is the
weight of variable v at time ¢. An alternate more finely resolved approach to constructing

the patient-patient network P would be, for example, to divide the baseline data for each
variable into quartiles. In this case, the strength of a link between two patients would be
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determined by the number of variable-timesteps for which their values landed in the same
quartile. In preliminary investigations, the more finely resolved approach gave similar
results, so for simplicity we focus in this manuscript on the median-based discretization
scheme defined by Eq 1.

5. Cluster the network to identify communities/subtypes: We then perform Louvain community
detection [22] to maximize the Newman-Girvan modularity function [23] on the uni-par-
tite network defined by the weighted matrix P. As is common in network community detec-
tion approaches [24], the number of communities is not set a priori, but rather chosen so
that the modularity is maximized. This process allows us to cluster trajectory profiles, and
hence patients, into communities (subtypes) which are relatively densely connected.

6. Construct aggregate profiles to characterize each community/subtype: We average the trajec-
tory profiles of all patients in each community C' to obtain the ‘community/subtype profile’
S'. The subtype profile is indicative of the variable features that describe the subtype. More
specifically, it is the normalized average of the trajectory profiles of all the patients in that
subtype, i.e., $'is a V x M matrix with elements defined by

ZieCl Tir

s, =
" N, 1 UvU

(3)

where N; is the total number of individuals in community C.. U,y is a normalization con-

Z"Tl”“, and 0

stant that represents the average value for variable v in the baseline: U,, = ==

denotes the baseline year.

Prediction scheme for test patients

From baseline data, we predict the community/subtype that an individual test patient (patient
whose data was not used in identifying the PD subtypes) belongs to. We then check whether
the test patient is still aligned with the same community/subtype after 4 years to demonstrate
the utility of our baseline prediction.

To predict test patient i’s subtype from his/her baseline profile, we find the community
(subtype) C' whose baseline community profile, with elements S',, has the smallest Euclidean
distance from the patient’s baseline profile. In other words, ! is chosen to minimize the dis-
tance

dy = Z(Tio - S[vo)z- (4)

v

Does the patient’s trajectory match the subtype’s trajectory? We then investigate the quality
of the subtype/community baseline prediction at a later time ¢ by calculating the patient’s sub-
type/community C' is chosen to minimize the distance between the community profile and
the patient’s profile at time t:

d;l/ = Z(Txi/t - S[v/t)Q' (5)

v

The prediction accuracy is then defined as the fraction of test patients for which the subtype
identification (I) from the baseline matches the subtype identification (I') at a later time ¢.
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Results
TPC algorithm for PD subtype identification

In this section, we present the disease subtypes (communities) identified by our method from
the training patient data. Maximizing Newman-Girvan modularity on the patient-patient tra-
jectory profile network gives us three distinct subtypes, i.e., three is the optimal number of sub-
types for this data, as indicated by the modularity measure.

The clinical profiles plus demographics of each subtype as compared to the entire study
population are shown for baseline and years 1-4 in Fig 3. The darkness of the shade of grey of
a continuous variable in a year denotes the fraction of the subtype population that has a value
above the median of the total population baseline for that variable. The darkness of the shade
of grey for a binary variable is the fraction of the subtype population containing that variable
(male in the case of the variable gender). In the raw data, a higher raw score in some variables
(such as the Montreal Cognitive Assessment) implies a healthier/less severely affected patient,
while for other scales, the opposite is true (higher score = greater severity). Therefore, in step
one of our algorithm we transformed the data, so that for all variables except for the genetic
and demographic variables, a higher score is associated with greater severity of that variable
and a deeper shade of grey.

bl
Subtype 1 1
n=31 g2 )
>3 Domain
4
bl == Demographics
n 1 &
Subype2 g2 3 |= PDseverity
>3 %
4 2., == Cognitive
[V
7 g Disabil
» = . .
Subtype 3 & ; ] isability
n=61 Q 3
— Sleep
4
bl Autonomic
oToIt:tI'on g ;
ulati L
pnp= 152 £ :23 0.0 Mental Health
4
3L NRe0ozsHordgaeEazg
PerCr 5039823630385
© ooog> ST we X
© aooas » =
2224 Q
DDDA ©
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Fig 3. Variable profiles of the Parkinson’s subtypes identified by the TPC algorithm. Subtypes/communities

identified by our algorithm: top three panels show three subtype/community profiles (average profile of all patients in
the subtype). Subtypes identified by the algorithm containing fewer than 10 patients are not shown (3 patients fall
under this category). The bottom panel shows the total population profile. The shade of grey indicates the affected
fraction, i.e, fraction above baseline median in the direction of disease progression for the continuous variables, and
fraction that is male for gender. n is the number of patients in the subtype. The variable names are listed below the
panels (See Fig 1 for description).

https://doi.org/10.1371/journal.pone.0233296.g003
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Description of the subtypes

As seen in Fig 3, the subtypes can be outlined as follows:

« Subtype 1 is the ‘mixed subtype’, with a striking discrepancy between severe impairment of
motor and autonomic function, mental health and sleep on the one hand, and good cogni-
tion on the other hand, both at baseline and over time, and also young and predominantly
female;

o Subtype 2 is the ‘mild subtype’, with milder than average impairment in all domains (motor,
cognitive, autonomic and mental) at baseline and throughout the study duration (age and
gender distribution close to the average of the entire population);

« Subtype 3 is the ‘severe subtype’, with worse than average impairment in all domains, in par-
ticular motor and cognition. This subtype is also predominantly male and older than aver-
age. Autonomic and mental function is less impaired than in the mixed subtype (subtype 1)

The bottom panel in Fig 3 shows the profile of the total population. Since the threshold vari-
able severity in an individual is set with respect to the median of the total population at base-
line, the total population baseline profile for all variables has a value close to 0.5 (i.e., 50% of
the total population at baseline has a value of 1 for any variable, and the other half has a value
of 0). Fluctuations of the baseline total population value around 0.5 occur when multiple peo-
ple in the population have a value coinciding with the baseline median. In the Appendix A,
we provide statistical analyses comparing the subtypes at the baseline and the final timepoint
(year 4). These analyses support the subtype descriptions provided above.

Early prediction of patient subtypes

In addition to identifying PD subtypes, our method predicts the individual patient subtype
years in advance. In this section we use the test patient cohort (n = 39) to assess the accuracy of
early prediction of disease subtype. Data from these test patients was not used in the identifica-
tion of the subtypes. Fig 4 shows the prediction of future PD subtype based on baseline data
for 39 test patients that run across the horizontal axis. The top panel shows the Euclidian dis-
tance between the baseline profile of a patient and the baseline profile of each subtype (sub-
types are shape coded). The subtype with which the patient has minimum baseline distance is
the ‘predicted subtype’, and is marked in red. Patients are organized from left to right in order
of decreasing confidence, i.e., from minimum to maximum distance of the patients’ baseline
profile with the predicted subtype baseline profile. The remaining panels follow the same plot-
ting scheme for consecutive years. The red-coding of baseline predicted community makes it
easy to track across the years. Finally, in year 4, we assess the accuracy of our predictions by
identifying the ‘actual final subtype’ (the subtype with minimum distance to the patient in year
4). If the actual final subtype and the predicted subtype are the same, then we consider our pre-
diction to be successful for that patient. In other words, for a patient, if in year 4 the red sub-
type has the minimum distance (is below the black subtypes) then our prediction is successful.
For the test PD patients in the PPMI dataset, our algorithm uses only their baseline year data
to predicts their PD subtype after 4 years of disease progression with 72% accuracy.

Incorporating genetic data into the TPC algorithm

Genetic variants are increasingly recognized as important determinants of disease subtype and
disease progression and prognosis. As an exploratory objective, we investigated the integration
of genetic variants (single nucleotide polymorphisms, or SNPs) in previously identified PD
risk loci into our TPC-based approach. Each patient has 2 copies for each piece of genetic
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Fig 4. Prediction of test patients into the subtypes. The i panel (row) shows the distance between the test patient i*"
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year 4 is 72%. Patients whose year 4 subtype is correctly predicted from their baseline data are designed by a star. Data
includes 39 test patients and 18 clinical variables across 5 time points: baseline (bl) or year 0 + years 1,2,3,4).

https://doi.org/10.1371/journal.pone.0233296.9004

information, and there are by definition 2 variants for each SNP. Hence, there are 3 possible
combinations of the 2 variants for each of the genetic risk loci. PPMI contains information
for 28 such SNPs for each patient. As a proof of principle, we selected 4 of those 28 SNPs to be
included in our approach. For one of those SNPs (rs356181/2, labeled ‘G4’ in our study), an
association with PD motor has recently been described [25], making this an obvious choice for
our study. Recently, genotype-phenotype correlations have been described for a number of
SNPs associated with PD risk [21, 26, 27]. However, there was minimal overlap in terms of
which genetic variants were associated with specific clinical features of PD, even though two
of these studies were performed by the same consortium, analyzing data from essentially the
same collection of large PD cohorts [21, 27]. Consistent with our proof-of-principle approach,
we therefore picked the additional 3 SNPs based on their high minor allele frequency, so that
all 3 possible combinations of the 2 genetic variants were present in sufficient numbers in our
study population of 194 subjects. The G allele of one of these SNPs (rs1106180, labeled ‘G1’ in
our study) is associated with a later age of onset [21].

Fig 5 shows the five subtypes identified when genetic data is introduced. Here, the number
of subtypes is determined by maximizing the network modularity measure for the network
created using clinical and genetic information. The plots Fig 5(a) and 5(b) are organized in the
same way as Figs 3 and 4 respectively. In Fig 5(a), the darkness of the shade of grey of a variable
in a year denotes the fraction of the subtype that has a value above the baseline median of the
total population of that variable, and the color coding on the x axis denotes the domains as in
Fig 3.
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Fig 5. Variable profiles and test patient subtype prediction using clinical and genetic data. (a) Top five panels show
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population profile. The legend is a measure of the affected fraction, i.e, fraction above baseline median in the direction
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points: baseline (bl) or year 0 + years 1,2,3,4.

https://doi.org/10.1371/journal.pone.0233296.9005

Subtypes 1 (top) and 2 have relatively similar clinical profiles, with the difference being in
their genetic profile. The CC genotype of G2, and CT genotype of G3 and G4 are frequent in
subtype 1, and the CT is the most common genotype of G2 in subtype 2. Subtypes 3 and 4 rela-
tively mild symptoms at baseline, and an overall benign progression of most variables over
the course of 4 years. Subtype 3 includes more patients who are younger and less cognitively
impaired than average. Subtype 4 has less psychiatric, autonomic and sleep impairments but
intermediate motor impairments (MDS-UPDRS3). Finally, subtype 5 is small (n = 14) and
young with rather severe symptoms at baseline and rapid progression across most clinical
domains. Each of the subtypes has a distinct genetic profile. When genetic data is added to the
analysis, baseline prediction of patient subtype in the test group 4 years later shows an accuracy
of 67%.

Discussion

Multidimensional clinical datasets are valuable resources that are not used to their full poten-
tial due to the analytic challenges of diverse biomarkers and outcome variables. We describe
development of a method to identify disease subtypes based on the pattern of progression of
multidimensional clinical data including demographics, clinical variables, and genetics. We
then validate our method by measuring the accuracy of subtype prediction in individual
patients based on baseline clinical and genetic variables. The disease subtypes are characterized
by patterns of progression of the clinical variables. The concordance between our results with
the domain-structure of the variables supports our approach. For example, in the clinical-only
case, subtypes 1 and 3 have high progression of all PD severity variables and subtype 2 has a
low progression of all PD severity variables. Variables within other domains such as Sleep,
Mental Health and Cognition also show common intra-domain patterns within a subtype.
Our predictions of the future subtype of individual patients in the test sample based on
their baseline data, shows good accuracy in predicting disease subtypes four years later (72%
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for clinical data and 67% for clinical+genetic data). 4 years is a significant time-scale for PD,
which has large subtype variability. Our prediction accuracies 4 years in advance are very
promising in the field of PD medicine. The explanation for the reduction in predictive accu-
racy with addition of genetic data may be due to: 1) the inclusion of a very limited number

of genetic risk loci, 2) that genetic data isn’t predictive of PD subtype within the 4-year time
frame of our data or 3) that the genetic data has a large variance in the population, thus requir-
ing a larger dataset for long-term prediction (the larger number of subtypes found by our
method may indicate this). Nonetheless, from a methodological perspective, this exploratory
work successfully demonstrates the inclusion of genetic data. Other biomarkers (i.e. serologic
and cerebrospinal fluid biomarkers) can also be easily integrated into our analysis. Our algo-
rithm is likely to benefit from more extensive datasets with larger populations.

A number of studies have identified PD subtypes based on baseline characteristics [7, 28-
30]. In contrast to that, our innovative algorithm uses longitudinal data (or the trajectory of
the different variables over time) to identify disease subtypes. In other words, our method
accounts for both disease variable values as well as their progression patterns. To our knowl-
edge, this is a novel approach. The baseline features of individual patients in a test cohort were
then used to predict their future disease trajectory (prognosis). Our study represents an inno-
vative network-based data-driven approach, that has advantages over previous methods by
taking full advantage of large heterogenous, longitudinal datasets.

Despite the fact that genetic factors likely play a major role in determining PD subtypes
[25], few data-driven algorithms for suptype identification exist that incorporate genetic data.
Two recent studies have developed models of PD progression based on clinical, demographic
and genetic data at baseline, using hierarchical cluster analysis and a Bayesian multivariate pre-
dictive inference platform, respectively, to identify PD subtypes that show significant differ-
ences in their rate of progression over time [7, 26]. Even though both of these studies
thoroughly evaluate the differences of baseline subtypes in terms of long-term outcome, nei-
ther of them determines the prediction accuracy of their baseline subtype classification by
repeating the subtype classification algorithm at the last time point of the follow-up period.
The authors of one of the two studies [26] used the coefficient of determination R2 as a mea-
sure of overall explanatory power of their model and found it to be 41% in the study cohort,
and 9% in an independent validation cohort. However, this is a measure of how well the base-
line data explain the variability at follow-up when applying their model, rather than a metric of
the accuracy of subtype prediction that we introduced in our study as a novel and, in our opin-
ion, critically important quality metric that may serve as reference when comparing our results
with future subtype classification algorithms.

Our trajectory clustering method works with various types of data including clinician-
and patient-reported outcome measures, genetics, physical performance measures, as well as
diverse results from diagnostic investigations. This analysis uses demographics, clinician- and
patient-reported data, and genetic data. In our analysis, each genetic SNP (if considered) and
clinical variable is treated independently and allotted the same weight. Our algorithm allows
for variable weightings, where each domain and SNP is assigned a chosen weight. However,
this raises the question of how the weighting would be decided. For example, if we had allotted
equal weights to one hundred SNPs in our analysis in addition to the 18 clinical variables, the
genetic information would dominate the algorithm, and affect the resulting communities. On
the other hand, different weighting strategies may be preferable based on the study aims. For
example, if the main objective is to identify disease subtypes based on motor vs. cognitive func-
tion, one could allot equal cumulative weight to the motor and cognitive domains.

A strength of our algorithm, which is also a caveat, is that it is entirely data-driven. The
level of severity of each variable relative to the baseline median is used to normalize all
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variables, as opposed to the absolute value of the variable. This is done to readily compare
changes in different variables. A notable example is the clinical variable, SEADL (a disability
scale). SEADL is a relatively insensitive scale in the early years of PD since there is little func-
tional disability in the years following diagnosis. Yet, in our analysis SEADL shows high pro-
gression (darker shade in later years) in Figs 3 and 5(a). It is important to note that this dark
shade isn’t indicative of the absolute severity. It only tells us that a larger fraction of the popula-
tion in the later years has SEADL values above the baseline median of the total training popula-
tion (which may be low to begin with). Like the results from any data-driven approach to
identify disease subtypes, our results should be applied in practice in conjunction with medical
expertise. An additional limitation of our approach is the fact that a number of choices had to
be made by our team of data scientists and clinicians to create this algorithm including thresh-
olds, the weighting scheme for all variables in the network, and variables to include. While our
data-driven method is primarily agnostic, these choices are inevitably somewhat arbitrary in
nature, and will have an impact on the result of the analysis. Furthermore, they may be differ-
ent for different applications/datasets. Lastly, like any data-driven method, the robustness of
the method is proportional to the quantity of data. Hence, while this method is suitable for het-
erogenous datasets such as the PPMI data, there may be other datasets that have large gaps in
data collection, inconsistent times of acquiring data, too much variation in data or simply too
little data- therefore, our method may not be suitable for all clinical datasets.

Our approach is innovative, adaptable, and clinically relevant. PD subtyping [31] is an area
of active research but there are currently no clinically prognostic analyses in use for the man-
agement of PD. Application of an approach like ours for subtype identification as a predictive
model of PD progression will help the neurologist improve clinical management of individual
patients. For example, such an approach may prompt the clinician to pursue earlier, more
aggressive management for those patients for whom the algorithm predicts a more rapid
disease progression (i.e., ‘precision medicine’). It may also guide the neurologist to perform
targeted investigations (e.g. cognitive testing) in individuals based on their subtype. Finally,
prediction of disease progression will improve prognostic counseling, a problem commonly
encountered by clinicians, by bringing to attention disease features that are predicted to
develop over the course of the disease. A natural extension of this work will be to implement
this method for datasets in other chronic medical conditions. Other promising future direc-
tions include extending the TPC algorithm to incorporate and compare other network cluster-
ing approaches, such as multi-layer network clustering [8]; studying the effect of treatment on
progression of disease variables, and predicting modifications of algorithm-identified subtypes
as a consequence of different treatments.

A statistical analyses

We conducted statistical tests to validate our approach and demonstrate some of the differ-
ences between the subtypes identified by our TPC algorithm. These tests were focused on dif-
ferentiating between the 3 subtypes illustrated in Fig 3: mixed, mild, and severe.

For each pair of subtypes, for each non-binary variable, we conducted a Mann-Whitney
U test (implemented in SciPy [32]), which allows 2 groups to be compared without assuming
that values are normally distributed. This test was chosen because values for many of the vari-
ables violated the normality assumption. For gender, which was binary in our analysis, we per-
formed Fisher’s exact test to calculate two-sided p-values. Fig 6 reports unadjusted p-values
from these tests applied at two different time points: the baseline and the final timepoint (year
4). To achieve an overall significance level of o = 0.05, we used the conservative Bonferroni
correction to account for Type I errors due to multiple comparisons, giving us an adjusted
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Total Mixed Mild Severe Mixed-Mild Mixed-Severe Mild-Severe
Population | Subtype | Subtype | Subtype Comparison Comparison Comparison
Median Values Mann-Whitney U Test (unadjusted)
Cognitive
JOLO * 14.000 14.000 14.000 14.000 9.79474E-02 3.93453E-01 5.38126E-02
SDM * 42.000 43.000 46.000 37.000 4.51391E-02 1.00948E-03 2.17537E-08
SFT * 47.500 54.000 51.500 42.000 2.56642E-01 5.90935E-06 9.67435E-07
HVLT * 0.900 0.917 0.917 0.857 4.16284E-01 1.19052E-01 4.01845E-02
LNS * 11.000 11.000 12.000 9.000 3.37278E-01 3.0738E-04 1.66226E-06
MOCA * 27.000 28.000 28.000 26.000 4.02757E-01 6.53549E-04 1.87142E-04
Other
SEADL * 95.000 95.000 95.000 90.000 3.37239E-02 3.83466E-02 2.21909E-05
RBDQ 4.000 6.000 3.000 5.000 4.75543E-08 1.97312E-01 4.71059E-06
ESS 6.000 7.000 4.000 7.000 2.13653E-04 1.46197E-01 1.29032E-03
SCOPA-AUT 9.000 11.000 5.000 12.000 1.1846E-07 1.30012E-01 1.28124E-11
GDS 2.000 3.000 1.000 2.000 7.16102E-07 7.71462E-03 5.62609E-05
STAI 65.000 76.000 60.000 65.000 2.13091E-07 1.08602E-03 2.97056E-02
General PD
UPDRS1 5.500 8.000 3.000 6.000 1.57388E-10 3.09748E-03 1.48489E-08
UPDRS2 5.000 6.000 3.000 7.000 3.91296E-04 2.5907E-01 4.49743E-08
UPDRS3 20.000 19.000 17.000 23.000 2.41458E-02 1.16917E-01 5.76769E-05
T-UPDRS 32.000 38.000 25.000 38.000 3.28002E-07 3.72004E-01 1.45972E-09
(A) Clinical Variables at Baseline
Cognitive
JOLO * 14.000 14.000 14.000 13.000 3.70071E-01 1.28372E-01 3.81919E-02
SDM * 39.000 39.000 44.000 30.000 7.52701E-03 3.20957E-06 4.06453E-14
SFT * 46.000 54.000 52.000 39.000 3.48395E-01 2.91609E-07 2.09833E-09
HVLT * 0913 1.000 1.000 0.750 8.30811E-02 2.1057E-05 1.14352E-04
LNS * 10.000 12.000 11.000 9.000 4.51269E-01 5.21425E-06 8.53034E-09
MOCA * 27.000 28.000 29.000 24.000 1.03701E-01 7.2164E-07 2.36389E-12
Other
SEADL * 90.000 80.000 90.000 80.000 3.39231E-07 1.44041E-01 2.76118E-10
RBDQ 4.000 7.000 3.000 5.000 2.34179E-07 1.89244E-02 1.48618E-04
ESS 7.000 9.000 5.500 9.000 4.83838E-05 8.33317E-02 5.90884E-04
SCOPA-AUT 13.000 18.000 10.000 16.000 5.16473E-07 2.74385E-01 3.6953E-08
GDS 2.000 2.000 1.000 3.000 6.27766E-08 4.14027E-01 7.0907E-10
STAI 64.000 76.000 52.500 73.000 2.89384E-10 6.26615E-02 2.62203E-08
General PD
UPDRS1 8.500 12.000 5.500 11.000 4.72273E-10 6.59234E-02 5.58839E-10
UPDRS2 10.000 13.000 5.000 12.000 7.73458E-09 3.30451E-01 4.66129E-11
UPDRS3 31.500 36.000 23.000 37.000 4.93264E-06 4.22977E-01 5.67969E-08
T-UPDRS 47.000 60.000 34.000 60.000 3.50751E-10 2.94173E-01 4.74786E-12
(B) Clinical Variables at Year 4
Age 69.000 61.000 65.000 74.000 8.52716E-02 2.6445E-09 5.38204E-10
Gender 0.683 0.387 0.583 0.918 0.08278 1.09527E-07 1.83353E-05
Fraction Male Fisher’s Exact Test
(C) Demographic Variables

Fig 6. Statistical analysis. Statistical analysis comparing the 3 subtypes described in the main text: mixed, mild, and

severe. Features of the total population are also listed. Medians are calculated from the raw data. Variables with

negative directions are denoted by an asterisk (*). Comparisons meeting our criteria for statistical significance are
shown in bold blue text. The top box (A) provides statistics for the baseline clinical variables, the middle box (B) for the
year 4 clinical variables, and the bottom box (C) for demographics.

https://doi.org/10.1371/journal.pone.0233296.9006
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significance level of o, gjusiea = 0.05/n. = 5e — 4, where n. = n,(V; + 2V,) = 102 is the total
number of comparisons, 7, = 3 is the number of pairs of subtypes, V; = 2 is the number of
demographic variables (age and gender), and V, = 16 is the number of potentially evolving
clinical variables that we assess at each of the 2 timepoints. Comparisons meeting our adjusted
significance criteria are highlighted in bold in the figure.

For the baseline clinical values, we see several significant statistical differences between sub-
types that support the descriptions presented in the main text. For example, compared with
both the mixed and severe subtypes, the mild subtype shows significantly lower general PD
severity according to 3 of 4 of the PD scales (UPDRS1, UPDRS2, and TUPDRS) as well as
lower impairment according to several other scales, including the GDS (depression), SCOPA
(autonomic) and RBDQ (sleep) scales. Compared with patients in the mild subtype, patients
in the severe subtype show significantly greater impairment in 4 of 6 cognitive scales: SDM,
SFT, LNS, and MOCA, as well as in the SEADL (disability) scale. In addition, compared even
to patients in the mixed subtype, patients in the severe subtype show significantly greater
impairment in the SFT and LNS cognitive scales.

For year 4 clinical values, we see even more significant differences between the subtypes
than at baseline. For example, compared with the mixed and severe subtypes, the mild subtype
shows significantly less impairment for all 4 PD severity scales, up from 3 at baseline. Further,
the severe subtype is significantly more impaired than both the mixed and mild subtypes
according to 5 of the cognitive scales, compared to just 2 at baseline.

We also see a significant difference in demographic variables between the subtypes. Com-
pared to the other 2 subtypes, the severe subtype has older patients and a greater fraction of
males.

While these statistical tests only compare the subtypes at two timepoints, they serve to vali-
date our approach by highlighting some of the significant differences.
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