
Neural Networks 119 (2019) 10–30

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

A programmable neural virtualmachine based on a fast store-erase
learning rule
Garrett E. Katz a,∗, Gregory P. Davis b, Rodolphe J. Gentili c, James A. Reggia b

a Department of Elec. Engr. and Comp. Sci., Syracuse University, Syracuse, NY, USA
b Department of Computer Science, University of Maryland, College Park, MD, USA
c Department of Kinesiology, University of Maryland, College Park, MD, USA

a r t i c l e i n f o

Article history:
Received 20 January 2019
Received in revised form 22 June 2019
Accepted 21 July 2019
Available online 26 July 2019

Keywords:
Programmable neural networks
Local learning
Itinerant attractor dynamics
Multiplicative gating
Symbolic processing

a b s t r a c t

We present a neural architecture that uses a novel local learning rule to represent and execute
arbitrary, symbolic programs written in a conventional assembly-like language. This Neural Virtual
Machine (NVM) is purely neurocomputational but supports all of the key functionality of a traditional
computer architecture. Unlike other programmable neural networks, the NVM uses principles such
as fast non-iterative local learning, distributed representation of information, program-independent
circuitry, itinerant attractor dynamics, and multiplicative gating for both activity and plasticity. We
present the NVM in detail, theoretically analyze its properties, and conduct empirical computer
experiments that quantify its performance and demonstrate that it works effectively.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Humans readily think, reason, and communicate in symbolic
terms, whether through natural language, mathematical
formalisms, or computer programs. Designing neural networks
that can represent, execute, and learn these types of symbolic
processes is a long-standing research topic in artificial intelli-
gence. It has been known for some time that in theory, universal
computation can be implemented in neural networks (Pollack,
1987; Siegelmann & Sontag, 1991). There also exist practical-
purpose methods for ‘‘compiling’’ human-authored programs into
neurocomputational representations (Dehaene & Changeux, 1997;
Gruau, Ratajszczak, & Wiber, 1995; Neto, Siegelmann, & Costa,
2003; Siegelmann, 1994; Sylvester & Reggia, 2016). Most recently,
neural architectures have been developed that can learn algorith-
mic behavior from training data (Bošnjak, Rocktäschel, Narad-
owsky, & Riedel, 2017; Bunel, Desmaison, Mudigonda, Kohli, &
Torr, 2016; Devlin, Bunel, Singh, Hausknecht and Kohli, 2017;
Graves et al., 2016; Neelakantan, Le, & Sutskever, 2016; Reed &
De Freitas, 2016; Rocktäschel & Riedel, 2017; Sylvester & Reggia,
2016).

Most of these approaches involve one or both of the following
paradigms:

• Local representation. For example, program stacks may be
represented by arbitrary-precision values in single artificial
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neurons (Pollack, 1987; Siegelmann & Sontag, 1991); in-
dividual variables or symbols may be assigned individual
artificial neurons (Abdelbar, Andrews, & Wunsch II, 2003);
data structures may be represented by distributed pat-
terns at a single time-step, rather than temporal sequences
of patterns (Plate, 1995); different programs may require
different program-specific circuitry (Dehaene & Changeux,
1997; Neto et al., 2003); or working memory is activation-
based, wherein each item currently stored in memory must
remain simultaneously active in separate neural popula-
tions (Graves et al., 2016). From a scientific standpoint,
many brain mechanisms are thought to employ distributed,
not local, representation of information, and from an engi-
neering standpoint, local representation lacks fault tolerance
and graceful degradation.
• Non-local learning. In particular, most recent work relies

heavily on error back-propagation throughout the network,
with unlimited repeated access to offline training exam-
ples. Further, many older works use hand-crafted program-
specific circuitry and weights. Non-local learning is
generally more computationally expensive and less biolog-
ically plausible than local learning, in which changes to a
synaptic weight only depend on the recent activity of the
neurons directly connected by that synapse.

There are some exceptions that break this mold, such as Sylvester
and Reggia (2016). However, as yet these exceptions do not fully
address universal computation: more work is needed to con-
firm their Turing completeness, and from a practical perspective,
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Fig. 1. The Neural Virtual Machine (NVM) workflow. First a blank NVM instance is constructed according to user-provided specifications (supplied as parameters
to an API call). Thereafter, human-authored programs can be ‘‘assembled’’ and ‘‘loaded’’ into the instance via local learning rules. The instance can store new
programs without forgetting previously learned programs, and execute existing programs at any time (only two programs are shown here for brevity). Program
execution is emulated by running the underlying neural activation dynamics, which involves additional fast local weight updates. A ‘‘codec’’ converts between neural
representations and human-readable input/output, as described further in the text.

they do not support many constructs and toolchains typically
available in traditional programming languages (e.g., instruction
operands, pointers, sub-routines, user-friendly ‘‘compilation’’ to
neural encoding, etc.).

The main contribution of this paper is an approach to uni-
versal neural programming based on non-local representation and
local learning, wherein synaptic weight changes depend only on
information that is nearby in time and space. In this approach,
working memory uses a novel local learning rule, and repre-
sents structured programs and data using temporal sequences
of distributed neural activity patterns. We explain how our neu-
ral model can emulate a Harvard computer architecture (Rosen,
1969) that stores multiple arbitrary programs simultaneously.
Harvard architectures use separate physical storage for programs
and data and form the basis of many computing systems to-
day. We also explain how our model can asymptotically simu-
late any Turing machine. Emulating a von Neumann architecture
might also be possible with a similar approach, but we target the
Harvard architecture because separate program and data mem-
ory is more readily implemented using separate neural layers,
and avoids the complexity of coordinating program and data
segments within a single memory.

We refer to our model as a ‘‘Neural Virtual Machine’’ (NVM).
A reference implementation is open-source and freely available
online.1 The high-level NVM workflow is shown in Fig. 1. First,
the NVM is initialized with a one-time non-local procedure, to
meet user-provided specifications (layer sizes, activation func-
tions, etc.), which are supplied via an API (Application Program-
ming Interface) call. Subsequently, any human-authored program,
written in an assembly-like language we designed, can be ‘‘as-
sembled’’ and ‘‘executed’’ in the underlying neural network solely
by virtue of local weight updates — with no rewiring of con-
nectivity required. New programs can be added without erasing
previously stored programs. An assembly-like language was cho-
sen for greater simplicity and because assembly is a proven
platform for any higher-level language feature.

Each human-readable symbol in a specific NVM program is
represented by randomly chosen neural activity patterns. The
symbol-to-pattern mappings are stored in an external non-neural
lookup table that we call a ‘‘codec’’, borrowing the portmanteau of
‘‘encoder–decoder’’ from the field of video processing, since sym-
bols are ‘‘encoded’’ by neural activity. During program execution,
a human can use the codec to convert NVM input from, or NVM
output to, human-readable symbols. However, the NVM itself is
a purely neural system that can emulate programs from start to
finish without relying on a codec.

1 Source-code available at https://github.com/garrettkatz/nvm/releases/tag/
v1.0.

The NVM is not intended as a veridical model of the brain,
but rather a neuroengineering system that can emulate tradi-
tional computer programs using artificial neural computation.
Our specific contributions include a novel local learning rule
for emulating computer memory, the NVM architectural designs,
some theoretical analysis that helps characterize our approach,
and empirical validations using hand-written and randomly gen-
erated programs. We conclude with an assessment of the NVM
and discussion of future research directions.

2. Implementation of the Neural Virtual Machine

We first explain the symbolic architecture being emulated,
before explaining how that emulation is done in neural form.

2.1. Overview of the emulated harvard architecture

The NVM emulates a symbolic machine (SM) with a Harvard
architecture, pictured in Fig. 2(a). It consists of several regis-
ters and memory modules. The SM processes symbols that we
denote in teletype font (e.g. a, b, c, etc.). Each register ri is a
temporary storage location that contains one symbol at a time.
The general purpose registers are accessible to the programmer,
and a program can move symbols between registers or compare
the symbols in two registers for equality. A special flags register
called co (‘‘compare output’’) contains the result of the most
recent equality comparison. Programs can perform conditional
jumps based on the results of these comparison operations.

In addition to temporary storage, some registers can also be
dedicated to I/O communication with the external world. The
contents of these registers can be altered asynchronously and
exogenously by external processes outside the NVM. By moving
symbols into these registers the NVM can potentially influence
external processes as well. It is the programmer’s responsibility
to write ‘‘drivers’’ that properly handle sudden changes in I/O
registers. From an implementation perspective, the NVM provides
an API that allows other software to asynchronously set or get
register contents.

Lastly, registers can interact with long-term contiguous mem-
ory storage, illustrated in more detail in Fig. 2(b). Memory is
accessed by a single read/write head whose current address can
be incremented or decremented. Register contents can be written
to, or read from, the current head address. In addition, the current
memory address can be saved in a register and then restored at
a later time, akin to pointer reference and dereference, which
enables a form of ‘‘random-access’’ memory. Heap memory is
exposed to the programmer and can be used with the general
purpose registers. Separate program and stack memories are used
internally to store and execute programs.

https://github.com/garrettkatz/nvm/releases/tag/v1.0
https://github.com/garrettkatz/nvm/releases/tag/v1.0
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Fig. 2. (a) The symbolic machine architecture emulated by the NVM, consisting of various memory modules and registers described in the text. (b) A more detailed
depiction of the contiguous memory model used by heap, stack, and program memory. Numbers . . . ,−3,−2,−1, 0, 1, 2, 3, . . . are memory addresses. a and b are
symbols that can be stored in registers or memory. m(t) is the current location of the read-write head at time t (triangle).

Fig. 3. A small example NVM assembly program. ‘#’ indicates a comment. This program is written for an NVM instance with four registers: rloc, rval, rinp, and
rout. The latter two are I/O registers used to stream a list of symbols in from, or out to, the external environment. The program assumes that the environment
obeys an I/O protocol in which successive list items are divided by a special separator symbol sep, and lists are terminated by a special symbol nil. This program
streams in a list and saves it in memory, and then streams the full list back out in order. It uses rloc to save the memory location of the first list item, and rval
to store the symbolic values of the list items as they are streamed in or out.

Programs for the SM are written in an imperative assembly-
like language. The instructions of this language are listed in
Table 1 and an example program is pictured in Fig. 3. Programs
are sequences of (optionally labeled) instructions, one per line.
Each instruction consists of an opcode and zero or more operands.
Operands can be register names, labels, or literal symbolic values,
depending on the opcode. Register names are provided as part of
the user specification when an NVM instance is first constructed,
so that they can be treated as ‘‘reserved words’’ and not arbitrary
symbols. There are instructions for register movements and com-
parisons, conditional and unconditional jumps, sub-routine calls,
and heap memory operations. A more detailed description of the
NVM assembly language is in Appendix A.

Programs are stored in contiguous program memory, distinct
from heap memory, and loaded by setting the program memory’s
read-write head to the address of the first instruction. Before
executing an instruction, its opcode and operands are read into

the dedicated registers opc, op1, and op2. After the instruction
is executed, the program is normally advanced one line by in-
crementing the program memory read-write head. However, if
a jump occurs, the read-write head is moved non-linearly by
dereferencing the label of the jump’s target line. In addition, if
the instruction is a sub-routine call, the current position of the
program memory read-write head is pushed onto stack memory,
and subsequently popped off when the next return instruction is
encountered.

2.2. Neural model

The NVM is a purely neural emulation of the SM described
above. The NVM’s design is inspired by the ‘‘gated regions and
pathways’’ organizational principle (Sylvester & Reggia, 2016), as
illustrated in Fig. 4. The figure shows three generic regions for
the sake of example, but our actual architecture involves many
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Table 1
The NVM instruction set.a

Syntax Description

nop Do nothing (no operation).
mov dst src Move (copy) the value of src into register dst.
jmp lab Jump to the line labeled lab.
cmp s1 s2 Compare the values of s1 and s2 for equality.
jie lab Jump, if the most recent compare was equal, to the line labeled lab.
sub lab Call the sub-routine starting on the line labeled lab.
ret Return from the current sub-routine to the line where it was called.
nxt Shift the read/write head to the next memory location (‘‘increment’’).
prv Shift the read/write head to the previous memory location (‘‘decrement’’).
mem reg Write the symbol in register reg to the current memory location.
rem reg Read the symbol at the current memory location into register reg.
ref reg Save the current read/write head location in register reg (‘‘reference’’).
drf reg Move the read-write head to the position saved in reg (‘‘dereference’’).
exit Halt execution.

aThe operands src, lab, s1 , and s2 can either be literal symbolic values, or register names. In the
latter case, the symbol contained in the named register is used.

more regions as detailed in the following. The key idea is that
some neural units (i.e., artificial neurons) double as multiplicative
gates that modulate activity and learning in other regions and
pathways. The use of multiplicative gating is not new (Greff,
Srivastava, Koutník, Steunebrink, & Schmidhuber, 2017) or even
necessary for emulating universal computation in a neural net-
work (Siegelmann & Sontag, 1991). However, a key novelty in our
approach is the use of gated plasticity: gates influence not only
activity, but also local weight changes (i.e. learning). This enables
our main contribution of using local learning to emulate symbolic
computation.

Mathematically, the NVM state evolves over time according to:

vq(t + 1) = σq

⎛⎜⎜⎜⎜⎝(
1− dq(t)

)  
decay

ωqvq(t)  
saturation

+

∑
r

sq,r(t)W q,r(t)vr(t)  
synaptic input

⎞⎟⎟⎟⎟⎠
(1)

W q,r(t + 1) = W q,r(t)+ ℓq,r(t)∆W q,r(t)  
gated learning

(2)

where

• vq(t) ∈ RNq is a real-valued vector of neural activity at
time-step t in a region q with Nq neural units,
• σq : RNq → RNq is an element-wise sigmoidal activation

function,
• dq(t) ∈ {0, 1} is a ‘‘decay’’ gate at time-step t that can cause

neural activity in region q to become zero,
• ωq ∈ R is a scalar ‘‘saturation’’ self-weight, larger than 1,

which (in the absence of decay and synaptic input) causes
vq to approach a stable fixed point in its current orthant,
• sq,r(t) ∈ {0, 1} is a ‘‘synaptic input’’ gate at time-step t that

can prevent or allow neural activity to propagate over the
pathway from region r to region q,2

• W q,r(t) ∈ RNq×Nr is the synaptic weight matrix at time-step
t parameterizing the pathway from region r to region q,
• ℓq,r(t) ∈ {0, 1} is a ‘‘learning’’ gate at time-step t that can

prevent or allow local weight changes within the pathway
from region r to region q, and
• ∆W q,r(t) ∈ RNq×Nr is a matrix of synaptic weight changes

at time-step t in the pathway from region r to region q, de-
termined by a (potentially pathway-specific) local learning
rule.

2 Note that we adopt the indexing scheme destination, source to be consistent
with the conventional notation for synaptic weight indices.

Fig. 4. A neural network with gated regions and pathways. Neural units
(artificial neurons) in some regions (bold outline) can serve as gating units
that modulate activity and learning in other pathways. Note that each block
arrow represents a set of full connections (not individually shown); these are
the connections whose activity flow and learning is gated.

For ease of presentation we omit explicitly listing bias terms that
can be included along with the saturation self-weight and the
synaptic input weights. In Eq. (1), the summation runs over every
region r with synaptic connections to q. This can include the case
q = r when the model includes a recurrent pathway from region
q to itself, distinct from the scalar saturation self-weight ωq.

Each gate is determined by a neural unit in a special ‘‘gating
output’’ region, which we abbreviate by ‘‘go’’ (see Fig. 5, ex-
plained below). This corresponds to the bold outlined region in
the Fig. 4 example. The output of these go units determine the
respective gate values. Mathematically, we equate vgo with a
concatenation of all the gates:

vgo(t) = [..., dq(t), . . . , sq,r(t), . . . , ℓq,r(t), . . .]⊤ (3)

where q and r range over all regions in the model. Computation-
ally, at every time-step, the entries of vgo are first accessed to
populate the respective gate values. Then, vgo evolves according
to the same rule as every other region, by setting q = go in
Eq. (1).

As illustrated in Fig. 1, when a blank NVM instance is first
constructed, the user can specify the architectural details, such
as a list of instance-specific region names (representing general-
purpose and I/O registers), the region sizes Nq, the activation
functions σq, and the local learning rules for ∆W q,r. In this paper,
we use hyperbolic tangent as the activation function for every
region except vgo, which uses the Heaviside step function to
produce binary gates in {0, 1}. When synaptic weight matrices
are supplemented with bias vectors it is possible to use other
activation functions such as logistic sigmoid. Various region sizes
are also possible, although larger regions are generally required
to emulate larger programs. As reported later, we systematically
tested a wide range of region sizes to assess the practical scal-
ability of the approach. Finally, various learning rules may be
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Fig. 5. The NVM network architecture. Small squares are neural regions. Dashed
lines are pathways with fixed weights that are initialized when an NVM instance
is constructed. Solid lines are pathways that undergo weight changes during
program learning and execution. Recurrent self-to-self pathways are indicated
by bold outlines around a region rather than an arrow. Each register region also
has a pathway to every other register region (not shown). The circular go region
gates all pathways in the architecture (not shown). Note that each arrow denotes
an entire pathway between regions, which is a full set of synaptic connections
(not individually shown).

possible, but our successful implementation relied on a specific
novel learning rule that we detail in Section 2.4.3.

The full set of NVM regions and pathways is shown in Fig. 5,
and explained in the following sections. There is roughly one
neural region per register, with additional regions to implement
memory, comparison, and control flow. We now explain how this
architecture represents symbols and programs.

2.3. Representing individual symbols

One last user-configurable parameter is ρq ∈ (0, 1), a per-
region constant that specifies the steady-state magnitude of each
entry in a neural activity vector. For a given region q, a symbol
c is represented by a neural activity vector denoted vq[c] ∈
{−ρq,+ρq}

Nq . Note that we use parentheses to denote an activity
pattern at a certain time, but square brackets to denote a time-
independent activity pattern representing a certain symbol. The
pattern at some time t (i.e., vq(t)) may or may not be the pattern
for some symbol c (i.e., vq[c]). These mappings from symbols to
patterns are stored in the NVM codec.

Once ρq is fixed, the saturation parameter ωq can be automat-
ically chosen so that the saturating dynamics converge to vectors
with ±ρq entries. More formally, when synaptic input and decay
are both gated off (dq(t) = sq,r(t) = 0), Eq. (1) reduces to v∗ =
σ (ωqv∗) at a fixed point v∗ = vq(t) = vq(t+1). Setting each |vi| to
ρq and isolating ωq, one obtains the formula ωq ← σ−1(ρq)/ρq.

As detailed below, most SM instructions are emulated with
sparse gating patterns, which keep most regions in saturation
mode most of the time. Consequently, NVM regions spend most
of their time converging to fixed points, interspersed with oc-
casional transitions when pathways are ungated and incoming
synaptic input causes a transition to a different basin of attraction.
As such, the time evolution of the NVM can be viewed as a form
of itinerant attractor dynamics (Hoshino, Usuba, Kashimori, &
Kambara, 1997; Sylvester & Reggia, 2016).

2.4. Emulating the symbolic machine with local learning rules

We next describe the local learning rules of the NVM and
how they are used to implement the symbolic machine (SM) in

Fig. 2. First we explain how several individual instructions are
performed, presenting the local learning rules along the way. We
then explain how multiple instructions are stored as a program
in program memory. Finally we explain how programs are exe-
cuted sequentially, accounting for non-linear jumps. As detailed
later, non-linear program execution is accomplished by properly
initializing the fixed weights in the control flow regions of Fig. 5,
which implement the instruction cycle of the emulated SM.

2.4.1. Register moves
The simplest instruction is mov, which copies a symbol c from

one register to another. The NVM can readily ‘‘copy’’ the un-
derlying pattern from one region to another by ungating synap-
tic activity flow between them and decay in the target region
(dq(t) = sq,r(t) = 1). Under this gating pattern, Eq. (1) reduces
to vq(t + 1) = σq(W q,r(t)vr(t)), where q and r are the respec-
tive target and source registers. Therefore the NVM can perform
the copy in a single time-step if the weight matrix satisfies
vq[c] = σq(W q,r(t)vr[c]). The requisite weights are produced
by associative learning, applied to each register pair and each
symbol in a program when it is assembled into the NVM. Later,
when mov is encountered during execution, it can be emulated by
simply ungating synaptic flow in the respective pathway. Note
that in this scheme, the same symbol can be represented by
different patterns in different regions. The associative learning
rule is described in the next two sections.

2.4.2. Memory operations
Hetero-associative learning in the NVM is crucial not only for

register moves but also for the six memory operations shown
in Fig. 2(b). Each possible memory address ...,-2,-1,0,1,2, . . . is
also treated as a symbol and receives its own address pattern in
dedicated regions. Associative learning can then be applied with
those address patterns in three ways:

• Contiguity of linear address space can be encoded by associ-
ating each address pattern with its successor in a recurrent
pathway (using temporally asymmetric learning).
• Register contents can be ‘‘written’’ to a memory address,

by associating the address pattern with the content pattern,
and forgetting any previously associated content pattern.
• Register contents can be used as ‘‘pointers’’ to a memory

address, by associating the content pattern with the address
pattern (using a pathway in the opposite direction from
memory writes).

Note that the latter two items require fast learning during pro-
gram execution, not before. Once these associations are prop-
erly learned, the remaining memory operations (increments/
decrements, memory reads, and pointer dereferences) can be em-
ulated by ungating activity flow, rather than associative learning,
in the respective pathways. The specific NVM regions that store
heap address patterns are mf (‘‘memory forward’’) and mb (‘‘mem-
ory backward’’), which encode forward and backward motion
of the read-write head, respectively (see Fig. 5). The pathways
from each of these regions to themselves, to each other, and to
the general purpose registers are where associative learning or
activity flow occurs during memory operations. Each memory
operation uses an appropriate gating pattern applied to these
pathways, as illustrated in Fig. 6.

As a concrete example, suppose at time t the NVM memory
contains the symbol b at address 1. This is represented by pre-
viously learned weights that satisfy vri [b] = σri (W

ri,mf(t)vmf[1]),
where ri is a register. Suppose further that the read-write head
is currently positioned at address 1: i.e., vmf(t) = vmf[1]. Lastly,
suppose that a different symbol than b, namely c, is currently
stored in the register: i.e., vri (t) = vri [c]. A write operation would
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ungate learning to forget the previous association of 1with b, and
form a new association with c, producing new weights at the next
time-step t + 1 which satisfy vri [c] = σri (W

ri,mf(t + 1)vmf[1]).
A subsequent increment operation would ungate activity flow
in the recurrent mf pathway, retrieving the previously learned
temporally asymmetric association of 1 with 2: i.e.,

vmf(t + 2) = vmf[2] = σmf(W mf,mf(t + 1)vmf[1])
= σmf(W mf,mf(t + 1)vmf(t + 1)).

At the same time, the mf → mb pathway is also ungated,
so that similar previously learned associations also advance mb
to position 2 and keep it in ‘‘lock-step’’ with mf. This way, a
future decrement operation will decrement from the current head
position 2 rather than the previous position 1. The reason for two
regions mf and mb, instead of one, is to provide distinct path-
ways (i.e. weight matrices) for representing the distinct directions
through address space (forwards and backwards). If our model
were augmented so that a single region could have multiple dis-
tinct recurrent weight matrices, then the notation would be more
complicated, but one region for memory address patterns would
suffice. A more formal description of all six memory operations
and their neural implementation is provided in Appendix B.

2.4.3. A fast store-erase learning rule
Next, we present a local learning rule capable of forming the

associations required above. In general terms, the rule should be
able to associate a pattern vr in a source region r (e.g., a memory
address in mf) with a pattern vq in a target region q (e.g., a symbol
in a register) in a single time-step. Moreover, if later a new target
v̂q is to be associated with the same source vr (e.g., overwriting
the same memory address with a new symbol), the rule must
readily forget the previous association when storing the new one.

To this end, we propose the following ‘‘Fast Store-Erase Learn-
ing Rule:’’

∆W q,r(t) =

⎛⎜⎝ σ−1q (vq(t))  
store new target

−W q,r(t)vr(t)  
erase old target

⎞⎟⎠ (vr(t))⊤  
source

/(ρ2
qNr)  

normalize

,

(4)

where σq is hyperbolic tangent, Nr is the size of region r, and
ρq is the magnitude of each neural unit’s activity at a saturated
fixed point (i.e., σq(ωqρq) = ρq). Intuitively, this is basic Hebbian
storage of a new association, accounting for the non-linear σq,
and with an additional ‘‘forget’’ term that erases the effect of
a previously stored association. Under the right conditions, if
vr(t) is a new pattern that has not been used previously and
is being stored for the first time, then W q,r(t)vr(t) ≈ 0, so
that the ‘‘erase’’ term has negligible effect and the rule reduces
to normal Hebbian learning. These claims are substantiated in
Sections 4 and 5, which provide several theoretical and empirical
results characterizing this learning rule. Most importantly, in the
limit Nr → ∞, this rule can approximate memory writes to
an infinite memory tape. Other activation functions can also be
accommodated with additional bias terms and constants in an
analogous learning rule (omitted here for simplicity).

To our knowledge, this particular form of local learning has
not been proposed before. We note that it encompasses aspects
of both Hebbian and anti-Hebbian learning, and is very different
from gradient-based learning that is most widely used in pro-
grammable neural nets today. In particular it is a one-step, online
learning rule that does not require large amounts of training data.
Clearly, Eq. (4) is local in time. Moreover, it has a form of spatial
locality: changes to each row of W q,r are independent of the
other rows.

Fig. 6. Gated regions and pathways organization underlying contiguous memory
emulation. Only relevant regions are shown. Pathways that are gated closed
(i.e., no learning or activity) are shown in light gray, and open pathways are
shown in black. Here, an ‘‘open’’ learning gate between q and r means that
ℓq,r(t) = 1. ‘‘Open’’ activity flow means that dq(t) = sq,r(t) = 1: this causes
any previous pattern in q to ‘‘decay’’ (i.e., be multiplied by 1− dq(t) = 0), and
a new pattern to form on the basis of synaptic input from r. Each sub-figure
(a)–(f) shows all gates that are simultaneously open during a particular memory
operation.

2.4.4. Emulating symbol comparison
Unlike memory operations and register copies, each of which

require a single gating pattern, we implement comparison with
a sequence of gating patterns over four time-steps, illustrated in
Fig. 7. Symbol comparison is performed using two NVM regions
ci (‘‘compare input’’) and co (‘‘compare output’’). co uses a
randomly chosen pattern to represent a true symbol, and its
negation to represent false: vco[true] = −vco[false]. Com-
parison operates on any two registers ri and rj. First, the symbol
in ri (call it c) is moved into ci. Second, a special fast learning
rule (Eqs. (5)–(6)) associates vci[c] with vco[true]. Third, the
symbol in rj is moved into ci. Finally, ci is allowed to activate
co. If rj also contained symbol c, then the final step will produce
true in co, by virtue of the association that was just learned. On
the other hand, if rj had contained any other symbol, the learned
weights should produce false in co. Given that all symbol pat-
terns have±ρci entries, one can check that the following learning
rule suffices:

W co,ci(t + 1) = σ−1(vco[true])(vci(t))⊤/ρ2
ci (5)

uco,ci(t + 1) = −σ−1(vco[true])(Nci − 1) (6)

where a bias vector u is required in this case, and the net synaptic
input from ci into co (sans gating) isW co,ci(t)vci(t)+uco,ci(t) at
any given time.3 An analogous rule can be formed for activation
functions other than hyperbolic tangent with additional constants
(omitted here for brevity). This rule is only used in the ci →
co pathway, and only when it is ungated at time t + 1 of a
comparison operation as shown in Fig. 7. Fast learning in all
other pathways and during all other instructions uses the fast
store-erase learning rule (4).

The gating sequence depicted in Fig. 7 is expressed more
formally in Table 2. Here we use the notation (q, r) to abbreviate
the gate pattern dq(t) = sq,r(t) = 1, which reduces Eq. (1) as
shown in the table, thereby allowing activity to propagate to q
from r. Similarly, we use the notation {q, r} to abbreviate the
gate pattern ℓq,r(t) = 1, which allows learning to occur (in this
case, according to Eqs. (5)–(6)).

3 To be precise, after this learning rule is applied, a pattern other than c will
produce a vector in co with the same signs as vco[false] but magnitudes at
least equal to ρ. This can be remedied by ungating saturation in co, so that the
magnitudes rapidly converge back to ρ.
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Fig. 7. Gated regions and pathways organization underlying comparison. Only
relevant regions and pathways are shown, using the same conventions as Fig. 6.
Comparison of two ‘‘register’’ regions ri and rj occurs over four time-steps from
time t to time t + 3. The gating pattern at each time-step is shown.

Table 2
Gating sequence for comparison.
Gate sequence Reduced Eqs. (1)–(2)

0. (ci, ri) vci(1) = σci(W ci,ri(0)vri (0))

1. {co, ci} W co,ci(2) = W co,ci(1)+∆W co,ci(1)

2. (ci, rj) vci(3) = σci(W ci,rj (2)vrj (2))
3. (co, ci) vco(4) = σco(W co,ci(3)vci(3)+ uco,ci(3))

2.4.5. Representing and executing programs
Programs are stored in dedicated program memory that is

similar to, but simpler than, heap memory. The current pro-
gram counter is stored in a single region called ip (‘‘instruction
pointer’’), analogous to mf, that can be incremented but not
decremented. Just as heap memory contents can be read from mf
into registers, programmemory contents (i.e., instructions) can be
read from ip into the regions opc, op1, and op2, which represent
the opcode and operands.

Programs are initially ‘‘assembled’’ (see Fig. 1) by first writ-
ing the instructions to contiguous program memory addresses,
using the fast store-erase learning rule. Next, memory reference
operations, also using the fast store-erase learning rule, are used
to associate each label that occurs in a jump operand with its
corresponding address in program memory. Finally, to support
comparisons and register moves, each program symbol is en-
coded in ci and in every register, and the pathways between
them are updated to associate different encodings of the same
pattern. A more formal statement of the assembly procedure is
included in Appendix C.

Once a program has been assembled in program memory, it is
loaded and executed by initializing ip to the address of its first
line and then iterating the neural dynamics (Eqs. (1) and (2)). Each
instruction cycle is driven by neural dynamics in the control flow
regions, described next, that load the current instruction, execute
it, and then update the instruction pointer in ip. For non-jump
instructions, ip is updated with a simple increment memory
operation that advances to the next position in program memory,
which stores the next line of the program. For jump instructions,
ip is updated by dereferencing the target line label supplied in
the instruction operand region. Sub-routine calls are like jumps
but also push the current program counter onto stack memory,
with a stack head increment followed by a write. Subsequent
return instructions then pop ip back off stack memory with a
read followed by a decrement. These instructions are explained
more formally in Appendix D.

The control flow regions are go (the gating output), and an
auxiliary ‘‘gating hidden’’ region gh (see Fig. 5). Each instruction
cycle begins with the same gating sequence in go, which reads
the current instruction from programmemory. However, depend-
ing on the instruction contents loaded into opc, op1, and op2,
and the comparison flag in co, the go dynamics must ‘‘branch’’

down one of the several different gating sequences required for
different instructions. Consequently, the gating dynamics can be
conceptualized as a Finite State Machine (FSM). Formally, the
gating FSM is specified by a tuple (S, A,G, τ , γ ), where

• S is a set of states (each represented by a pattern in gh),
• A is an alphabet of FSM input tokens (each represented by

a concatenation of patterns in opc, op1, op2, and co),
• G is an alphabet of FSM output tokens (each represented by

a gating pattern in go),
• τ : S × A → S is the transition function (represented by

recurrent and incoming pathways to gh), mapping a current
state and input token (s, a) ∈ S × A to a new state s′ ∈ S,
and
• γ : S → G is an output function (represented by the gh→go

pathway), mapping each state s ∈ S to an output token
g ∈ G.

Appendix D includes a detailed, concrete example of the gating
FSM and its neural representation, in the case of the instruction
cycle for a jump instruction.

The gating FSM can be used to generate ‘‘training data’’ for
the weight matrices governing gh and go dynamics. In particular,
each output mapping s ↦→ γ (s) is a training example for W go,gh:
training will seek the matrix satisfying ∀s ∈ S : γ (s) =
σgo(W go,ghs). Similarly, each transition (s, a) ↦→ τ (s, a) is a train-
ing example for the matrices W gh,r , with source region r ranging
over opc, op1, op2, and co. The FSM is an inherent property of
the NVM assembly language and not program-specific, so the
weights need only be calculated once when an NVM instance is
constructed. A number of training techniques could be used to
do this. In the spirit of fast learning, we opted for a non-iterative
procedure (detailed in Appendix E) that assigns random patterns
in gh for every FSM state, and then constructs suitable weights
with a linear solver.

3. Turing completeness

In the limit of infinite computer memory, a typical computer is
asympototically Turing complete. Similarly, in the limit N →∞,
where N is the number of neural units (artificial neurons) in each
NVM region, the NVM has infinitely many memory addresses and
can simulate any Turing machine. We can show this by showing
how to simulate any Turing machine with an NVM program.

To this end, we initialize an NVM instance with two reg-
isters: rstt stores a symbol representing the current Turing
machine state, and rsym stores the tape symbol at the current
tape position. The tape is represented by heap memory. The
Turing machine state transitions are represented by a program
in program memory. This program first reads the current tape
symbol from heap memory into rsym. It then uses conditional
jumps to form one logical branch for each possible (state, tape
symbol) pair. Each branch emits the appropriate new tape symbol
with a memory write, and then shifts the tape left or right with
nxt or prv commands, as dictated by the given Turing machine.
Appendix F includes an example program for a small Turing
machine, as well as the general algorithm for converting a Turing
machine into an NVM program that simulates it.

4. Theoretical analysis

The NVM depends critically on learning rule (4) functioning
as expected. This learning rule updates the weights in a given
pathway between a ‘‘source’’ region and a ‘‘target’’ region. In
one time-step, it should successfully associate a pattern x in the
source region with a pattern y in the target region. Moreover,
the association of x with y should overwrite (erase) any previous
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associations of x with patterns other than y. This section pro-
vides theoretical results characterizing the learning rule and the
conditions in which it works as desired.

Formally, let x(1), . . . , x(t), . . . and y(1), . . . , y(t), . . . be two
sequences of source and target patterns, respectively, each drawn
from {−ρ,+ρ}N . Region sub/super-scripts are omitted to avoid
clutter. Suppose rule (4) is used to associate each x(t) with its cor-
responding y(t), one t at a time, and let W (t) denote the resulting
matrix after the first t associations have been learned, starting
with a matrix W (0) containing all zeros. To further simplify the
notation, we use the following abbreviations: xt for x(t), yt for
yi(t), ỹt for σ−1(yt ), and wt for the ith row vector of W (t). All
results and proofs are identical for each i, so it can be safely
omitted. We also use η to abbreviate ∥xt∥2 = Nρ2, as well as
I to denote the identity matrix, and Px = I − xx⊤/η to denote
the orthogonal projection matrix onto the null space of a vector
x. With this notation, the learning rule (4) can be rewritten more
compactly as follows:

wt = wt−1Pxt + ỹtx⊤t /η, (7)

with w0 containing all zeros in the base case.
If the same source pattern is present multiple times before

some time T , the rule (7) should ‘‘erase’’ the old target associa-
tions and ‘‘store’’ the newest one. In other words, if xt = xt ′ with
t ̸= t ′, only the last (i.e., most recent) association for that source
pattern should be retained when time T is reached. To denote that
‘‘last’’ association, we introduce a function mT (t), which returns
the largest time t ′ ⩽ T for which xt = xt ′ :

mT (t) = max
t′⩽T

xt=xt′

t ′ (8)

mT (t) is well-defined for all t ⩽ T . As an example, if xt∗ is a
pattern that only occurs once before time T , then mT (t∗) = t∗.
As another example, if xT is a pattern that has not occurred
previously before time T and is presented for the first time at
time T , then mT (t) < T for every t < T . The latter example
is relevant to the question of whether ‘‘erasing’’ a pattern that
has not yet been stored has ill effect. Both of these examples are
special cases subsumed by the following results, meaning that
they are correctly accounted for by the learning rule under the
right conditions.

It is known for other local learning rules that orthogonal
activity patterns lead to superior memory capacity, and we first
show an analogous result here:

Proposition 1. Given any source and target sequences {xt}∞t=1 and
{ỹt}∞t=1, with each entry of each pattern equal to ±ρ, suppose that
wt is learned according to Eq. (7), and that distinct patterns in the
source sequence are mutually orthogonal: x⊤t ′ xt ∈ {0, η} for all t, t

′.
Then for every T and every t ⩽ T ,

wTxt = ỹmT (t). (9)

In other words, in the orthogonal case, any source pattern
(e.g., memory address) xt is guaranteed to produce the most
recent target associated with it (e.g., symbol stored at that ad-
dress), namely ymT (t). This remains true for arbitrarily large T
(e.g., unlimited memory writes).

Proof. We proceed by induction on T . In the base case, (7) gives
w1 = ỹ1x⊤1 /η. Since x⊤1 x1/η = η/η = 1, this implies w1x1 = ỹ1.
Since m1(1) = 1, the proposition holds.

In the inductive case, (7) gives:

wTxt = wT−1PxT xt + ỹTx⊤T xt/η. (10)

There are two sub-cases: either xT = xt (a repeated source
pattern), or it does not. If it does, then mT (t) = T , so ỹmT (t) = ỹT .
Furthermore,

PxT xt = PxT xT = (I − xTx⊤T /η)xT = xT − xTx⊤T xT/η
= xT − xTη/η = 0,

where 0 is an N × 1 vector of all zeros (i.e., xT is projected into
its own null space). Substituting into Eq. (10) gives wTxt = ỹmT (t)
as needed.

In the other sub-case, xT ̸= xt , which implies t ⩽ T − 1 and
mT (t) = mT−1(t). Moreover, given that distinct source patterns
are orthogonal, we have x⊤T xt = 0. This implies

PxT xt = (I − x⊤T xT/η)xt = xt

(since xt is already in the null space of xT , it is unchanged by the
projection). Therefore, Eq. (10) reduces to

wTxt = wT−1xt = ỹmT−1(t) = ỹmT (t), (11)

where the second equality follows from the inductive hypothesis
and the third follows because mT−1(t) = mT (t) in this sub-case.

We have shown that in either sub-case, the proposition
holds. □

Even if the patterns are not strictly orthogonal, but chosen
independently and uniformly at random from {−ρ,+ρ}N , they
are still orthogonal in expectation, since each pair of coordinates
have the same sign or different sign with equal probability:
E[x⊤t xt ′ ] = 0. This will allow us to show the following:

Theorem 1. Suppose a source and target sequence, {xt}∞t=1 and
{ỹt}∞t=1, are generated by sampling each pattern of each sequence
independently and uniformly from {−ρ,+ρ}N , and suppose that wt
is learned according to Eq. (7). Then for every T and every t ⩽ T ,

E[ỹmT (t)wTxt ] > 0. (12)

In other words, σ (W (T )x(t)) is expected to have the same sign
in every coordinate as its most recently associated target y(mT (t)),
for arbitrarily large T (e.g., unlimited memory writes). As long as
the signs are correct, saturation dynamics can then be used to
fully recover y. The proof of Theorem 1 follows.

Proof. From (7), we have

E[ỹmT (t)wTxt ] = E[ỹmT (t)(wT−1PxT + ỹTx⊤T /η)xt ]. (13)

By linearity of expectation, (13) implies

E[ỹmT (t)wTxt ] = E[ỹmT (t)wT−1PxT xt ] + E[ỹmT (t)ỹTx
⊤

T xt ]/η. (14)

First we consider the case t = T , wherein xT = xt and mT (t) = T .
In this case, PxT xt = PxT xT = 0, and x⊤T xt = x⊤T xT = η. Therefore
the right hand side of (14) simplifies to E[ỹ2T ] = ρ̃

2 > 0.
The more complicated case is t < T . Here, we first note that

whilemT (t) is a random variable dependent on both xT and xt , the
quantity ỹmT (t) is independent of them both, since every entry of
every target pattern is chosen from ±ρ independently of every
source pattern. Therefore E[ỹmT (t)ỹTx

⊤

T xt ] = E[ỹmT (t)ỹT ]E[x
⊤

T xt ].
Moreover, E[x⊤T xt ] = 0, since the entries of xT and xt are also
independently chosen from ±ρ, and their entry-wise products
are equally likely to be ±(ρ2), which averages to 0. Consequently,
(14) simplifies to

E[ỹmT (t)wTxt ] = E[ỹmT (t)wT−1PxT xt ]. (15)

We can condition the expectation in (15) on whether or not xT =
xt , obtaining

E[ỹmT (t)wTxt ] =E[ỹmT (t)wT−1PxT xt
⏐⏐ xT ̸= xt ]Pr{xT ̸= xt}+ (16)
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E[ỹmT (t)wT−1PxT xt
⏐⏐ xT = xt ]Pr{xT = xt} (17)

Again, since PxT xT = 0, term (17) vanishes and we are left with
the term on line (16). Moreover, the condition xT ̸= xt implies
mT (t) = mT−1(t). Therefore, substituting into (16) and using the
definition of conditional expectation gives:

E[ỹmT (t)wTxt ] = (18)

E[ỹmT−1(t)wT−1PxT xt
⏐⏐ xT ̸= xt ]Pr{xT ̸= xt} = (19)∑

y,w,x,x̂

ywPxx̂ Pr{ỹmT−1(t) = y, wT−1 = w, xt = x̂,

xT = x, xT ̸= xt}, (20)

where the underlined terms denote possible values for the re-
spective random variables, and the summation ranges over all
possibilities for those values. Note that the factor Pr{xT ̸= xt}
in (19) cancels the denominator of the conditional probability,
leaving the joint probability in (20).

The events

{ỹmT−1(t) = y, wT−1 = w, xt = x̂, xT = x, xT ̸= xt}
{ỹmT−1(t) = y, wT−1 = w, xt = x̂, xT = x, xT ̸= x̂}

(which differ only in the last term) are logically equivalent, and
xT is independent from the other random variables, so

Pr{ỹmT−1(t) = y, wT−1 = w, xt = x̂, xT = x, xT ̸= xt} =
Pr{ỹmT−1(t) = y, wT−1 = w, xt = x̂} Pr{xT = x, xT ̸= x̂},

and since xT is chosen uniformly at random,

Pr{xT = x, xT ̸= x̂} =
{
2−N if x ̸= x̂,
0 otherwise.

(21)

Therefore (20) can be factored as follows:

E[ỹmT (t)wTxt ] (22)

=

∑
y,w,x̂

yw

⎡⎣2−N
∑
x̸=x̂

Px

⎤⎦ x̂ Pr{ỹmT−1(t) = y, wT−1 = w, xt = x̂}

(23)

=2−N
∑
y,w,x̂

yw

⎡⎣⎛⎝∑
x

Px

⎞⎠− Px̂

⎤⎦ x̂ Pr{ỹmT−1(t) = y,

wT−1 = w, xt = x̂} (24)

=2−N
∑
y,w,x̂

yw

⎛⎝∑
x

Px

⎞⎠ x̂ Pr{ỹmT−1(t) = y, wT−1 = w, xt = x̂},

(25)

where (25) follows since Px̂x̂ = 0. Since Px = I − x x⊤/η, we can
view a sum of outer products

∑
x x x⊤ as a matrix multiplication,

and obtain∑
x

Px = 2N I − XX⊤/η, (26)

where X is an N × 2N matrix with one column for every pos-
sible x. In fact, XX⊤ = 2Nρ2I , which can readily be seen from
low-dimensional examples like

X = ρ

[
+1 −1 +1 −1 +1 −1 +1 −1
+1 +1 −1 −1 +1 +1 −1 −1
+1 +1 +1 +1 −1 −1 −1 −1

]
. (27)

Therefore,
∑

x Px = 2N (1 − ρ2/η)I = 2N (1 − 1/N)I , and (25)
reduces to

E[ỹmT (t)wTxt ] (28)

=(1− 1/N)
∑
y,w,x̂

ywx̂ Pr{ỹmT−1(t) = y, wT−1 = w, xt = x̂} (29)

=(1− 1/N)E[ỹmT−1(t)wT−1xt ] (30)

In summary, we have shown that E[ỹmT (t)wTxt ] = (1 − 1/N)E
[ỹmT−1(t)wT−1xt ] for all t < T . Expanding this recursion from the
base case E[ỹ1w1x1] = ρ̃2 gives

E[ỹmT (t)wTxt ] = (1− 1/N)T ρ̃2 > 0. (31)

In both cases t < T and t = T , the theorem holds. □

Theorem 1 bounds the expected value above zero for all T .
However, the expected value approaches zero as T increases,
and moreover, the variance is not characterized. Consequently,
memory corruption could still be common in practice. It is known
for classical attractor networks that memory performance is best
when the number of patterns stored is significantly less than the
number of neurons in the network. In our context, this corre-
sponds to a pool of distinct source patterns X = {x1, . . . , xP },
with P small relative to N , and a sequence of xt sampled from X
with replacement. Concretely, for example, we might expect that
as long as N is significantly larger than the number of memory
addresses required for NVM programs in a given application,
those addresses can be successfully rewritten an unlimited num-
ber of times. More formally, we conjecture the following analog
of Theorem 1:

Conjecture 1. Let X = {x1, . . . , xP }, with each xp sampled
independently and uniformly at random from {−ρ,+ρ}N . Suppose
the sequential source patterns xt are each sampled independently
and uniformly with replacement from X . Then for every T and every
t ⩽ T ,

E[ỹmT (t)wTxt ] > K (P,N, ρ) > 0, (32)

where K (P,N, ρ) is a value independent of T that increases as P/N
decreases.

While a proof of this conjecture has eluded us, it is corrobo-
rated by empirical results in the following section.

5. Empirical results

Here we use computer experiments to bolster the results of
our theoretical analysis above. We also empirically validate the
NVM as a whole on hand-written and automatically generated
programs.

5.1. Capacity of the learning rule

A famous result characterizing auto-associative attractor net-
works is that P/N ≈ .138 in the large N limit, where N is the
number of units and P is the number of patterns that can be
reliably stored without an orthogonality constraint (Amit, Gut-
freund, & Sompolinsky, 1985). An analogous result in our case
considers both P/N and T/N , where as before T is the number
of times the learning rule is applied. To empirically investigate
storage capacity of learning rule (4), we used a randomized com-
puter experiment in which we systematically varied P , T , and N
in each trial, focusing on an isolated associative weight matrix
without considering the NVM as a whole. For the purposes of this
experiment only, we set ρ = 1, σ (·) = sign(·), and omitted σ−1
from the learning rule. This was intended to more closely match
the classical results and can be viewed as a high-gain limiting
case where continuous activity patterns become binary vectors
with ±1 entries. In each trial, we sampled the random patterns
without enforcing orthogonality, learned the weight matrixW (T ),
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Fig. 8. Memory capacity for different N , P , and T . Dashed vertical lines indicate
the classical proportion ≈ .138.

and measured the following Hamming distance between target
and actual output:
N∑
i=1

1[sign(yi(mT (t))) = sign(Wi,:(T )x(t))] (33)

for each t ⩽ T . Here 1[·] is an indicator function, which takes the
value 1 when the bracketed expression is true, and 0 otherwise.
A Hamming distance of 0 is optimal, indicating that the sign of
every vector element of the desired association was correctly
learned (and therefore the desired association could be fully
recovered via saturation dynamics).

The average Hamming distance in each trial (over 30 repeti-
tions) is aggregated and plotted against

√
(T/N)(P/N) in Fig. 8, for

three orders of magnitude of N . The motivation for the formula
√
(T/N)(P/N) is that when T = P , it reduces to the classical

P/N , and when T ̸= P , we might expect that increases in one
require decreases in the other to maintain the same performance.
Similar to the classical result, we observe a phase transition in
reliable storage around

√
(T/N)(P/N) ≈ .138, which becomes

more pronounced as N increases. However, even for N = 1024
there are still some non-negligible errors near .138, including on
the ordered side of the phase transition. In practice, if orthogonal
patterns cannot be used, and if P and T can be estimated for a
program, then conservatively choosing N so that the ratio is in
the range .05− .10 appears to be a more reliable rule of thumb.

We ran further experiments to disentangle the effects of in-
creasing P versus T . In these experiments, we used a similar
setup as before, but viewed performance as a function of T , for
various fixed values of P . In each random trial, after training to
time T , we measured the value of σ−1(yi(mT (t)))Wi,:(T )x(t) for
each i ∈ {1, . . . ,N} and t ∈ {1, . . . , T }. The empirical mean of
this value was then aggregated across all i, all t , and across 30
random trials with the same N , P , and T . A large positive value
for this mean indicates that Wi,:(T )x(t) is typically bounded away
from zero and the same sign as σ−1(yi(mT (t))), as desired for an
effective learning rule and suggested in Conjecture 1. As shown in
Fig. 9 (top), the empirical mean appears to converge to a positive
number, substantially far from 0, that depends on N and P but not
T , suggesting that memory performance is relatively insensitive
to the number of re-writes. This corroborates our theoretical
results.

If the growth of the weights is also bounded independently
of T , that would be another useful property both in theory and
practice. To quantify the typical growth in the weights, we also
show empirical maximums of maxi,j |Wi,j(T )| in Fig. 9 (bottom).
This evidence suggests that |Wi,j(T )| is indeed bounded for all
T , at least with high probability. Finally, to further understand
the distribution of possible weights, we automated an exhaustive
brute-force computation of every possible wT = Wi,:(T ), by
enumerating each possible training sequence and then iterating
the fast store-erase rule on that sequence. This is feasible for
small N and T , and Fig. 10 (left) plots every possible weight

Fig. 9. Long-term non-orthogonal memory performance as a function of T ,
for various N and P . Top: The empirical average of σ−1(yi(mT (t)))Wi,:(T )x(t),
aggregated across all i ∈ {1, . . . ,N}, t ∈ {1, . . . , T }, and all 30 trials for a given
N and P . Bottom: The empirical global maximum of maxi,j |Wi,j(T )|, taken across
all of the same trials as shown on top.

vector for N = 3 and T ⩽ 6, with ρ fixed at .99. For illustrative
purposes, we show the subset of weight vectors for which the
training sequence ended in xT = ρ1, and also use xT = ρ1 as
the line of sight for the visual. However, due to the symmetries
of the cube, any choice of the 23 possibilities for the final xT
results in an identical picture. Note that, as per the proof of
Theorem 1, wTxT always equals ỹT , which defines a plane or-
thogonal to xT . Therefore all possibilities for wT visible in Fig. 10
(left) are an equal distance from the viewer. It appears that the
possible weight vectors may be confined to a non-convex union
of bounded, convex sets, and that the possibilities become dense
in this union as T →∞. However, such a union proved difficult
to identify and theoretically analyze in higher dimensions for the
general case.

Having computed all possiblewT , we also calculated the mean,
standard deviation, and maximum of their Euclidean norms
(Fig. 10, right). The results suggest that the expected value of
the norm is indeed bounded independently of T , and in fact
this can be shown using similar manipulations as in the proof
of Theorem 1. The theoretical maximum of the norm appears to
grow sub-linearly in T , but it is not visually obvious whether it is
ultimately bounded.

5.2. Validation of the NVM on real programs

We next validated the NVM end-to-end by using it to emulate
a real hand-written program: the list memorization and recall
program in Fig. 3. We ran separate tests of this program using
both orthogonal and non-orthogonal random activity patterns
to represent distinct symbols. Non-orthogonal random patterns
were generated by uniformly and independently selecting each
pattern from {−ρ,+ρ}N . We refer to this method as ‘‘Bernoulli’’.
Orthogonal random patterns were generated based on Sylvester’s
construction for Hadamard matrices (Sylvester, 1867), which
have orthogonal columns and ±1 entries, and are closed under
certain elementary row operations (namely, row switching, and
row multiplication by ±1). The canonical Hadamard matrix was
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Fig. 10. Brute-force computation of all possible wT up to T = 6 with N = 3. Left: All wT for which xT = ρ1. Weight vectors encountered at larger T are shown in
darker gray. The wT space is viewed with line of sight parallel to 1. Right: Maximum, mean, and standard deviation (as error bars) of ∥wT∥ across all possibilities.

first constructed, and then in each trial, for each NVM region, a
series of randomly chosen elementary row operations was used
to randomize the matrix. The resulting columns were used as
distinct patterns for the symbols in that region and trial. The
orthogonal trials only used region sizes which were powers of
2, since this is required by Sylvester’s construction.

For these experiments, the NVM API was called with a user-
specification (see Fig. 1) that prescribed ρ = .9999, σ = tanh, and
four registers (rloc, rval, rinp, and rout, as required by the
program in Fig. 3). The hidden gate layer gh and stack layers sf
and sb (see Fig. 5) used fixed sizes of Ngh = 512 and Nsf = Nsb =

64, while all other layer sizes in the user-specification were varied
across different experimental trials as detailed in the following.

For both Bernoulli and orthogonal patterns, we tested the
list program using a range of list input lengths, and a range of
NVM region sizes. For each combination of list length and NVM
size tested, we ran 30 independent random trials with different
random samplings for the pattern encodings and the list contents.
List lengths ranged from 10 to 40 elements, and each element was
randomly selected with replacement from a set of 26 symbols
denoted ‘A,’...,‘Z.’ Baseline sizes for each NVM region were then
chosen based on the number of distinct patterns they needed to
accommodate, denoted P . For example, mf and mbwere sized pro-
portionally to the length of the list, ip was sized proportionally
to the number of lines (i.e., 17) in the program, and registers were
sized proportionally to the number of distinct program symbols
(26 letters, plus the other register names and label symbols in the
program). For orthogonal patterns, this proportion was N = 1×P ,
although we rounded up to the nearest power of 2 as required
by Sylvester’s construction. For Bernoulli patterns, based on the
rule of thumb identified in the previous section, we used the
proportion N = 1/0.05× P = 20× P .

Finally, after sizing the regions for a given list input, an ad-
ditional scaling factor of 0.75, 1, 1.25, or 1.5 was applied to N
to determine final region sizes. This allowed us to assess perfor-
mance degradation when an NVM instance is not perfectly sized.
The final region sizes were then used for 30 independent random
trials, in which an NVM instance with those sizes was constructed
and used to run the list program on randomly sampled list input.
At each time-step, we used the NVM codec (see Fig. 1) to convert
between neural activity patterns in the I/O registers (rinp and
rout) and the symbols they represented (letters A-Z or the sep-
arator sep). The program output for the trial was then compared

with the input to measure the number of list elements that were
correctly memorized and recalled. The fraction of correct ele-
ments, or ‘‘match rate’’, is shown in Fig. 11. The results show that
orthogonal patterns never require additional scale factor beyond
1.0, whereas Bernoulli patterns sometimes require an additional
scale factor strictly greater than 1.0. Given the baseline propor-
tions in the previous paragraph, before additional scale factor,
this implies that orthogonal patterns enable networks roughly
1/20 the size of Bernoulli patterns. This is notwithstanding the
observation that performance can degrade more gracefully in the
Bernoulli setting when regions are inadequately sized.

In additional experiments (not shown) we have also verified
that the NVM can effectively perform small instances of the ‘‘Digit
Symbol Substitution Test’’, a commonly administered cognitive
task in human psychological experiments (Bettcher, Libon, Ka-
plan, Swenson, & Penney, 2011). This work is being used in an
ongoing project to model cognitive deficiencies in PTSD patients.
Additionally, we are using the NVM to encode causal knowledge
used by meteorologists in predicting the weather, as part of a
project on spatiotemporally chaotic time-series forecasting.

5.3. Empirical scalability of the NVM

To more comprehensively assess scalability of the NVM, we
next devised a large-scale computer experiment using randomly
generated programs (of course, such programs are very unlikely
to do anything useful). In each experimental trial, a blank NVM in-
stance was constructed and then multiple random programs were
generated and assembled into the instance. Next, the programs
were each executed for up to 100 time-steps, and the number
of successful execution traces was recorded. We automated the
success check by implementing a non-neural ‘‘reference’’ virtual
machine that can also run NVM assembly, but operates directly
on human-readable symbols rather than neural activity vectors.
Successful execution was determined by comparing the NVM
execution traces against those from the symbolic reference VM
when running the same program. In particular, the ‘‘execution
trace’’ was the list of symbols stored in each register at each time-
step of program execution. In the case of the NVM, this trace was
populated from the neural activity vectors at each time-step using
the NVM codec (see Fig. 1). Appendix G provides more detail on
the random program generation along with an example.



G.E. Katz, G.P. Davis, R.J. Gentili et al. / Neural Networks 119 (2019) 10–30 21

Fig. 11. NVM match rates on the list program for various scale factors and list lengths.

For these experiments, the NVM API was called with a user-
specification (see Fig. 1) identical to that used in the previous
section, except there were three general purpose registers (r0,
r1, and r2). Layer sizes in the user-specification were varied
across different experimental trials as follows. For a given set of
programs in a particular trial, the number of lines and number
of distinct symbols were each extracted. The former was used to
size the program counter region ip, and the latter was used to
size each register region ri. As before, we determined baseline
region sizes with the ratio N = 20 × P for Bernoulli trials and
N = 1×P for orthogonal trials (rounded up to the nearest power
of 2). The baseline region sizes were further scaled by factors
ranging from 0.5 to 2.0, in order to better gauge performance
degradation when an NVM instance is not perfectly sized. Each
final scaling configuration was used for a separate trial.

Number of programs per trial ranged from 2 to 4, with number
of lines in each program ranging from 4 to 512, and number
of sub-routines in each program ranging from 1 to 8. For each
configuration of program counts, line counts, and sub-routine
counts, 30 independent repetitions of the experiment were per-
formed. Distinct program contents, but with the same counts,
were generated in each of the 30 repetitions. Finally, in each
repetition, separate NVM instances were generated for scale fac-
tors ranging from 0.5 to 2.0 of the baseline sizing. Each instance
was tested separately on the program contents for the repetition
and compared with the reference VM. Any execution trace that
did not match perfectly was marked as a failure. Success rate
was then aggregated across the 30 repetitions for each configu-
ration of program sizing and NVM sizing. To assess the scaling
requirements of the NVM, we extracted the minimum region
sizings required to achieve 100% and 90% success rates on a given
program set size. Fig. 12 shows the results in terms of the number
of distinct symbols in the programs and the resulting register size
requirements. Fig. 13 shows the same data but viewed in terms
of the total number of program lines, and the resulting ip size
required. In many cases, the same minimum size was required
for both 90% and 100% success rate, in which case gray datapoints
are obscured by black datapoints at the same position. Bernoulli
trials were limited to symbol/line counts on the order of 200, as
larger counts had sizing requirements that were too large for our
workstation.

As expected, both views demonstrate that empirical sizing
requirements scale roughly linearly, and that Bernoulli patterns
have much more demanding scaling requirements than orthogo-
nal patterns. These results also show that reasonably sized NVM
instances can reliably execute fairly large programs, particularly
when orthogonal patterns are used.

6. Discussion

We have presented a Neural Virtual Machine (NVM) that can
represent and execute multiple arbitrary programs using local
learning and distributed representation. Our system has been
explained and analyzed in mathematical detail, implemented, and
validated empirically through large-scale computer experiments.
Those experiments show that the NVM works in practice and
scales to relatively large programs. Further, our computational
experiments demonstrated that using orthogonal patterns to rep-
resent symbolic entities resulted in a qualitative reduction in the
underlying neural network sizes needed to implement a specific
NVM instance. Our primary contribution is that, unlike past work,
the NVM is built on the principles of local learning and gated
plasticity. As part of that contribution, we have introduced and
characterized a novel learning rule that can emulate contigu-
ous, random-access memory. We have also developed a more
programmer-friendly language and toolchain for this system than
other approaches. As noted above (Footnote 1), open source code
for the NVM is freely available online.

One major limitation in the current NVM is that it can only
learn complete, pre-authored programs. Ultimately, the NVM
should learn how to synthesize its own programs based on expe-
rience. Future work should explore additional learning paradigms,
such as imitation and reinforcement learning, and incorporate
recent breakthroughs in neural program induction and synthesis
(e.g., Bošnjak et al. (2017), Devlin, Uesato, Bhupatiraju, Singh,
Mohamed and Kohli (2017) and Graves et al. (2016)).

Another avenue for future work is further theoretical anal-
ysis of the fast store-erase learning rule. We have shown that
it always functions as desired in the orthogonal regime, and
that in a Bernoulli regime where any source pattern is possible,
it functions properly in expectation. The latter result should be
improved and extended to the case where the set of possible
source patterns is small relative to the size of the network.
Bounds on variance, in addition to expected value, should also
be derived. Lastly, the question of whether weight growth is
ultimately bounded should be resolved. One other future research
direction is to emulate a von Neumann, rather than Harvard,
architecture, in which programs and data are both stored in the
same NVM memory regions.

The NVM is certainly not a veridical model of the human brain.
However, many of its operating principles have some basis in
neuroscientific evidence and theories. While our primary learning
rule is not synapse-local, like basic Hebbian learning, it is neuron-
local: changes to a neuron’s synapses only depend on information
in other synapses of the same neuron at the current time-step
(mathematically speaking, changes to one row of the weight
matrix are independent of the other rows). Therefore, unlike
error backpropagation of signals across synapses to other neurons,
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Fig. 12. Minimum NVM region scaling required to reach 100% and 90% success rates as a function of the number of distinct symbols in the programs used for a
given trial, both for orthogonal trials and Bernoulli trials. Relative scaling is shown on left and absolute register sizes are shown on right. On left, the upper dashed
line is the baseline scale factor expected for Bernoulli trials and the lower dashed line is the baseline for orthogonal trials. Also on the left, non-linear data is an
artifact of the next-power-of-2 rounding in orthogonal trials.

Fig. 13. Minimum NVM region scaling required to reach 100% and 90% success rates as a function of the total number of lines in the programs used for a given
trial, both for orthogonal trials and Bernoulli trials. Relative scaling is shown on left and absolute ip size is shown on right. On left, the upper dashed line is the
baseline scale factor expected for Bernoulli trials and the lower dashed line is the baseline for orthogonal trials.

which is considered biologically implausible, the fast store-erase
learning rule only requires bidirectional information flow within
dendrites of the same neuron, consistent with substantial empirical
evidence that information can propagate bidirectionally within a
single biological neuron’s dendrites (Schiess, Urbanczik, & Senn,
2016). Using fast weight learning for comparison also has its
basis in neuroscientific theory (Engel & Wang, 2011). Lastly, the
use of multiplicative gating has a strong basis in evidence and a
strong precedent in neural networks (Mehaffey, Doiron, Maler, &
Turner, 2005; Salinas & Sejnowski, 2001; Shin & Ghosh, 1991).
To the extent that the NVM captures underlying mechanisms for
symbolic processing in the human brain, it may also be relevant
to consciousness studies (Reggia, Huang, & Katz, 2017). Future
work in this vein could measure proposed neurocomputational
correlates of consciousness in a running NVM instance.

In terms of neuroanatomy (to a rough first approximation),
we speculate that NVM regions may have reasonably plausible
correlates in the human brain:

• opc, op1, and op2 might reasonably be associated with pre-
frontal cortex (PFC), given their central role in representing

the task at hand. More specifically, opc might correspond to
dorsolateral PFC, and op1 and op2 to ventrolateral PFC, given
the characterization of dorsal-ventral gradient in terms of
how something is done vs. what it is done to Goodale and
Milner (1992) and O’Reilly (2010).
• Given their role in I/O with the external world and storage

of task-relevant values, registers might be viewed as more
posterior cortical areas (temporal, occipital, parietal). This is
based on current theories that posterior cortex deals more
with mental representation while anterior cortex deals more
with mental processing. Relatedly, recent theories suggest
that working memory is not locally represented in PFC per
se, but rather distributed via a network between the anterior
and posterior brain regions through which high-level cog-
nitive function and mental representations interact (Lara &
Wallis, 2015; Nee & D’Esposito, 2016). This further supports
the view of registers as posterior cortical areas, given both
their role in short-term, activity-based information storage,
and the fact that op1 and op2 provide top-down signals that
identify registers to be manipulated.
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• ci and co might be related to anterior cingulate cortex,
given its implication in error detection and conflict moni-
toring (Botvinick, Cohen, & Carter, 2004).
• mf, mb, sf, and sb are reminiscent of the hippocampus,

given their role in memory. Their forward/backward func-
tions were directly inspired by evidence of reverse replay
in the hippocampus (Foster & Wilson, 2006). Moreover,
the bidirectional pathways between hippocampus and cor-
tex, which are critical for declarative memory (Eichenbaum,
2000), mirror the NVM pathways between mf, mb, sf, sb
and the registers, in which activity flow and learning in both
directions are critical for memory operations.
• gh and go might relate to portions of the basal ganglia (BG),

given their close cooperation with opc, op1 and op2 in order
to select procedural behaviors via top-down modulation of
other regions and pathways. The organization of incoming
and recurrent pathways for gh, followed by a feed-forward
pathway to go, also mirrors the organization of pathways
from cortex through striatum to the pallidal complex in
BG (Haber, 2003).
• ip is responsible for sequencing instructions, rather than

data, but nevertheless it uses a similar mechanism to mf
and sf, which are reminiscent of the hippocampus. On the
other hand, its central role in program execution might be
more closely associated with PFC. Since incoming signals can
cause ip to suddenly jump to remote branches or routines
in a program, it might be viewed as responsive to motiva-
tional signals and involved in goal selection. In that sense, it
might be conceptualized as analogous to ventromedial PFC
in particular (Bechara, Damasio, Damasio, & Lee, 1999).

Certainly, these proposed neuroanatomical correlates are specu-
lative, imperfect, and incomplete. In future work, the NVM could
be refined to more closely match neuroscientific knowledge, and
could be used to generate testable neuroscientific predictions.
By iteratively testing such predictions and incorporating new
findings into its neurocomputational designs, the NVM may one
day find potential not only as a tool for artificial intelligence
research but also for modeling symbolic processing in the human
brain.
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Appendix A. NVM Program grammar and semantics

NVM assembly programs are written as line-separated lists of
instructions in a minimalistic imperative style. Each instruction
consists of an opcode which specifies what to do (e.g., move a
symbol between registers), and zero or more operands (e.g., the
source and destination registers for the move). Fig. A.14 shows
the formal NVM assembly language syntax in extended Backus–
Naur form (ISO/IEC 14977:1996 E, 1996). The full instruction
semantics are described in Table A.3, which elaborates on Table 1
in the main text. Depending on the opcode, operands can either
be register names, labels, or arbitrary symbols that are treated
as literal values. Many opcodes have a ‘v’ or ‘r’ suffix, indicating
whether an operand is a literal value or a register name. We
include the suffix in the full instruction set here, but omit it in
the examples of the main text, because a simple preprocessor
is provided with the NVM that determines and appends the
appropriate suffix.

Fig. A.14. The NVM assembly language grammar in extended Backus–Naur
form. {...} indicates zero or more repetitions, [...] indicates optional content,
| indicates disjunction, and quotes enclose terminals. Within terminal strings
we use \v to denote vertical whitespace (line breaks), \h to denote horizontal
whitespace (spaces, tabs) and \w to denote alphanumeric and other unreserved
characters (excluding whitespace, ‘#’, and ‘:’).

Appendix B. Formal memory operations

The specific contiguous memory implemented by the NVM
is shown in Fig. 2(b). An abstract Turing machine has infinitely
many addresses, and each can store one of a finite set of symbols
at a given time t . Let A denote the set of symbols and let µ(t)

:

Z → A be a function that maps each address m ∈ Z to the
symbol a ∈ A stored there at time t . For example, in Fig. 2(b),
µ(t)(2) = a. Symbols are read from/written to memory via a
‘‘read/write head’’ that can be incremented or decremented one
step at a time. Let m(t) to denote the position of the read/write
head at time t . Mathematically, reading a symbol from address
m(t) at time t amounts to evaluating µ(t)(m(t)). Writing a symbol
a to address m(t) at time t amounts to updating the µ function,
so that µ(t+1)(m(t)) = a. Increment can be expressed as a function
ψ : Z → Z that does not change over time: ψ(m(t)) = m(t)

+ 1.
Similarly, ψ−1 is the decrement function.

To model reference/dereference operations, we allow symbols
to be treated not only as values, but also like ‘‘pointer variable
names’’ that temporarily point to a particular memory address.
Mathematically, we introduce one more function φ(t)

: A → Z
that maps pointer symbols to memory addresses and can change
over time. For example, in Fig. 2(b), φ(t)(b) = 2. A symbol a can
be assigned as a pointer to a memory location m at time t by up-
dating the mapping so that φ(t+1)(a) = m (a so-called ‘‘reference’’
operation). Similarly, a symbol a can be dereferenced at time t by
evaluating φ(t)(a), thereby producing whatever memory address
was previously bound to a. Currently there is no way in NVM
assembly to indicate whether symbols are pointers or values; it
is the responsibility of the programmer to ensure that no symbol
is dereferenced unless it was already referenced earlier during
program execution.

We use pathways between the regions mf, mb, and the reg-
isters to encode the functions µ,ψ , and φ for heap memory.
Similarly, pathways involving ip, opc, op1, and op2 encode these
functions for program memory, and pathways involving sf, sb,
and ip encode these functions for stack memory. Updates to
these functions (i.e., memory writes and pointer references) are
performed using the fast store-erase learning rule (4) in the
appropriate pathways. Evaluations of these functions (i.e., mem-
ory reads, pointer dereferences, and inc/decrements) are per-
formed using activity flow across the appropriate pathways. More
specifically, each memory operation is performed as indicated
in Table B.4. Note that each neural operation in the table is
a special case of the network rules, Eqs. (1) and (2), with the
gates appropriately set. For example, a memory write occurs
when ℓri,mf(t) = 1, and an increment occurs when dmf(t), dmb(t),
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Table A.3
The full NVM instruction set semantics.
Syntax Description

nop Do nothing (no operation).
movv reg sym Move the literal symbol sym into register reg.
movr dst src Move (copy) the symbol in register src into register dst.
jmpv lab Jump to the line labeled lab.
jmpr reg Jump to the line whose label is stored in register reg.
cmpv reg sym Compare the symbol in register reg with the literal symbol sym.
cmpr reg1 reg2 Compare the symbols in registers reg1 and reg2.
jiev lab Jump, if the last compare was equal, to the line labeled lab.
jier reg Like jiev but the target label is stored in register reg.
subv lab Call the sub-routine starting on the line labeled lab.
subr reg Like subv but the target label is stored in register reg.
ret Return from the current sub-routine to the line where it was called.
nxt Shift the read/write head to the next memory location.
prv Shift the read/write head to the previous memory location.
mem reg Write the symbol in register reg to the current memory location.
rem reg Read the symbol at the current memory location into register reg.
ref reg Reference the current memory location by the symbol in register reg.
drf reg Dereference a new memory location from the symbol in register reg.
exit Halt execution.

Table B.4
Mathematical and neural representations of each NVM memory operation.
Operation Mathematical Neural

Read a = µ(t)(m) vri [a] = σri (W
ri,mf(t)vmf[m])

Write µ(t)
→ µ(t+1) W ri,mf(t + 1) = W ri,mf(t)+∆W ri,mf(t)

Increment m+ 1 = ψ(m) vmf[m+ 1] = σmf(W mf,mf(t)vmf[m])
vmb[m+ 1] = σmb(W mb,mf(t)vmb[m])

Decrement m− 1 = ψ−1(m) vmf[m− 1] = σmf(W mf,mb(t)vmb[m])
vmb[m− 1] = σmb(W mb,mb(t)vmb[m])

Dereference m = φ(t)(a) vmf[m] = σmf(W mf,ri (t)vri [a])
vmb[m] = σmb(W mb,ri (t)vri [a])

Reference φ(t)
→ φ(t+1) W mf,ri (t + 1) = W mf,ri (t)+∆W mf,ri (t)

W mb,ri (t + 1) = W mb,ri (t)+∆W mb,ri (t)

smf,mf(t), and smb,mf(t) are all 1. The requisite gating patterns for
each memory operation are shown visually in Fig. 6.

The available addresses in heap and stack memory are inde-
pendent of any particular program. In other words, ψ and ψ−1
for these memories may be evaluated, but are never updated,
during program execution. Hence these functions are only en-
coded (i.e., updated) once when a blank NVM instance is first
created (see Fig. 1). Correspondingly, although we include time-
step notation for consistency, the weight matrices W mf,mf, etc.
shown for increment/decrement in Table B.4 are fixed after NVM
instance construction. All other function updates and evaluations
for all memories occur during program assembly and execution.

Appendix C. NVM assembly routine

NVM programs are preprocessed, assembled, and loaded as
follows. First, the preprocessor appends v or r to each opcode
as described in Appendix A, assigns unlabeled lines default labels
based on line number, and populates unused operands with a
null symbol.

Let L be the number of lines in a program P, let P(p)
ip :

P(p)
opc P

(p)
op1 P

(p)
op2 be the pth instruction of P, with p ranging from 1 to

L, and let P(0)
ip denote a special label used to initiate the program.

Also let ∆W (y, x) abbreviate the fast store-erase learning rule (4)
applied to source pattern x and target pattern y. A program can
then be ‘‘assembled’’ in an NVM instance using the procedure
in Fig. C.15. The first inner loop writes the sequence of program
instructions to program memory. The second inner loop enables
jumps by associating any label that might occur as an operand
in op1, or in a register specified by op1, with its corresponding

Fig. C.15. The NVM assembly procedure. Commentary provided in the appendix
text.

pattern in ip. The third inner loop enables register moves and
comparisons by associating different patterns in different regions
for the same symbol, as described previously. Finally, once a
program P is assembled in the NVM, it can be ‘‘loaded’’ at any
time by initializing ip to P(0)

ip and then ‘‘executed’’ by running
the network dynamics.

Appendix D. The NVM gating FSM

Fig. D.16 illustrates how the NVM gating dynamics correspond
to a finite state machine (FSM), encoded by various NVM regions
that are coordinated to emulate one instruction cycle during
program execution. Note that although the NVM instruction cycle
emulates a symbolic FSM, it is implemented with purely neural
distributed processing. As an example we consider a ‘‘jump if
equal’’ instruction that performs a conditional jump to a differ-
ent program position if the most recent comparison operation
produced true. Otherwise, it advances sequentially to the next
program line. This instruction is signified by an opcode jie and
one operand in op1. The operand is the name of one of the
registers rk, and the named register is assumed to contain the
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Fig. D.16. An illustration of one instruction cycle in the NVM, as implemented in the distributed processing of the NVM’s recurrent neural networks. Top: A small
subgraph of the gating FSM. Rectangles denote FSM states and arrows denote transitions, labeled by the input tokens (if any) that produce them. Gray lines indicate
FSM paths that might have occurred if different input tokens had been present. Middle: The ‘‘output symbols’’ (i.e., gating patterns) produced by the successive
states visited by the FSM, using the same conventions as Fig. 6. Only the relevant subset of NVM regions is shown. Bottom: The symbols present in the relevant
NVM regions during each successive time-step of the FSM sequence. Additional commentary provided in the text.

target label of the jump. In Fig. D.16 we assume that op1 contains
r1, i.e. vop1 (t) = vop1 [r1], so the instruction being emulated is
‘‘jie r1’’. This instruction is emulated as follows.

Suppose that the (emulated) FSM is in a ‘‘load next instruc-
tion’’ state at time t . For convenience we use mnemonics like
lni to refer to this and other FSM states, but these mnemonics
are not intended to be programmer-accessible symbols, and they
are represented by arbitrary random patterns in gh. At this point
in time, we assume the program counter is currently at line p,
represented by the pattern vip[p] in ip. We also assume the most
recent comparison operation in the past produced a true symbol
in co. Lastly, we assume the symbol p’, representing another
program position p’̸=p+1, was previously stored in register r1.
We make no assumptions about the instruction on line p−1 of the
program, indicated by the blank table cells in Fig. D.16 (bottom).

The gating output for FSM state lni opens several pathways. It
‘‘reads’’ the current opcode and operands from program memory,
by ungating activity in the ip→ opc and ip→ opk pathways. It
also opens the recurrent ip→ ip pathway. Similarly to memory
increments in mf, this advances the instruction pointer to the
next line of the program at p+1, so that it will be executed next
once the current operation is complete (if the conditional jump
does not occur).

Next, the FSM transitions to a ‘‘check opcode’’ (cop) state at
time t+1 that serves as an FSM branching point depending on the
current opcode. The gating output at this point ungates activity
in the opc→ gh pathway, so that the pattern in the opc region
can serve as an FSM ‘‘input token’’ by influencing the dynamics
of gh.

At this point, if the pattern in opc had represented a ‘‘no-op’’
opcode vopc[nop], then the FSM would have done nothing and

transitioned back to the lni state so that the instruction at line
p+1 would be executed. Instead, since the current opcode in the
opc region is ‘‘jie’’, the FSM transitions to a ‘‘check equality’’
(ceq) state at time t + 2. This state serves as an FSM branching
point depending on whether the most recent equality comparison
was true, which should determine whether or not to perform a
conditional jump. Accordingly, the gating pattern at t+2 ungates
activity flow in the co→ gh pathway, so that the relevant FSM
input token in co (compare output) is accessible.

At this point, if co had contained false, the most recent
comparison would have been false, and instead of performing
a jump, the FSM would transition back to lni so that the next
instruction at line p+1 would be executed. Instead, since the ‘‘co’’
region contains true, the FSM transitions to a ‘‘check register’’
(crg) state at time t + 3, which serves as a branching point
depending on which register contains the jump target. The gating
pattern at this point allows op1 to influence gh so that the FSM
can branch depending on which register contains the jump target,
which is specified by the first operand.

Next, the FSM branches depending on which register contains
the target line for the jump. Since op1 contains a pattern signify-
ing r1, the FSM transitions to a ‘‘jump register 1’’ state (jr1) at
time t + 4, which will finalize the jump based on the contents of
r1. If instead op1 had indicated another register such as r2, the
FSM would have transitioned to state jr2 which would finalize
a jump based on r2 instead of r1.

Finally, the jump is enacted by the gating pattern output in
state jr1. Specifically, activity across the r1 → ip pathway is
ungated, so that the new program position p + 1 is overwritten
with whatever position p’ was stored in r1. This is exactly the
same principle used for pointer dereferences in mf. As a result,
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Table D.5
Gating sequence for jie instruction cycle.
Gate sequence Reduced Eqs. (1)–(2)

0. (q,ip), q ∈ {ip, opc, op1, op2} vip(1) = σip(W ip,ip(0)vip(0))
vopc(1) = σopc(W opc,ip(0)vip(0))
vop1 (1) = σop1 (W op1,ip(0)vip(0))
vop2 (1) = σop2 (W op2,ip(0)vip(0))

1. (gh,opc) vgh(2) = σgh(W gh,gh(1)vgh(1)+W gh,opc(1)vopc(1))
2. (gh,co) vgh(3) = σgh(W gh,gh(2)vgh(2)+W gh,co(2)vco(2))
Continues if vco(2) = vco[true]
3. (gh, op1) vgh(4) = σgh(W gh,gh(3)vgh(3)+W gh,op1 (3)vop1 (3))
At this step, vop1 (3) = vop1 [r]
4. (ip,r) vip(5) = σip(W ip,r(4)vr(4))
5. [ip] vip(6) = σip(ωipvip(5))

Table D.6
Gating sequences for other NVM instructions.
Instruction Gate sequence Reduced Eqs. (1)–(2)

jmpv a 2. (ip, op1) vip(3) = σip(W ip,op1 (2)vop1 (2))
3. [ip] vip(4) = σip(ωipvip(3))

jmpr r 2. (gh, op1) vgh(3) = σgh(W gh,op1 (2)vop1 (2))
At this step, vop1 (2) = vop1 [r]
3. (ip,r) vip(4) = σip(W ip,r(3)vr(3))
4. [ip] vip(5) = σip(ωipvip(4))

subv a 2. {ip,sf} W ip,sf(3) = W ip,sf(2)+∆W ip,sf(2)

3. (sf,sf),(sb,sf) vsf(4) = σsf(W sf,sf(3)vsf(3))
vsb(4) = σsb(W sb,sf(3)vsf(3))

4. (ip, op1) vip(5) = σip(W ip,op1 (4)vop1 (4))
5. [ip] vip(6) = σip(ωipvip(5))

subr r 2. {ip,sf} W ip,sf(3) = W ip,sf(2)+∆W ip,sf(2)

3. (sf,sf),(sb,sf) vsf(4) = σsf(W sf,sf(3)vsf(3))
vsb(4) = σsb(W sb,sf(3)vsf(3))

4.(gh, op1) vgh(5) = σgh(W gh,op1 (4)vop1 (4))
At this step, vop1 (4) = vop1 [r]
5. (ip, r) vip(6) = σip(W ip,r(5)vr(5))
6. [ip] vip(7) = σip(ωipvip(6))

ret 2. (sf,sb),(sb,sb) vsf(3) = σsf(W sf,sb(2)vsb(2))
vsb(3) = σsb(W sb,sb(2)vsb(2))

3. (ip,sf) vip(4) = σip(W ip,sf(3)vsf(3))
4. [ip] vip(5) = σip(ωipvip(4))

when the FSM returns to lni at time t + 5, ip will point to the
target line p’ of the jump, and the next instruction cycle will
proceed from program position p’ instead of p+1.

The gating sequence depicted in Fig. D.16 is expressed more
formally in Table D.5. As in Table 2, we use the notation (q, r)
to abbreviate the gate pattern dq(t) = sq,r(t) = 1, which
reduces Eq. (1) as shown in the table, thereby allowing activity
to propagate to q from r. Additionally, we use [q] to denote the
‘‘saturation’’ gate pattern dq(t) = sq,r(t) = 0, which reduces
Eq. (1) as shown, thereby allowing layers to converge towards the
closest attractor state. In fact, this is the default gating pattern for
all layers at all time-steps (excluding gh and go) unless otherwise
listed in the table. It is made explicit in step 5 because often
ip needs additional time-steps to sufficiently stabilize at a new
program memory address before loading the next instruction.
Also note that steps 0–1 are not specific to jie, but serve the
purpose of loading a new instruction and always occur at the
beginning of every instruction cycle. Lastly, we note that the
gating operations (gh, gh), (go, gh) always occur at every time-
step in order to advance the gating FSM (not shown in the table
to avoid clutter).

We have described in detail the gating sequences for register
moves (Section 2.4.1), symbol comparisons (Section 2.4.4), mem-
ory operations Appendix B, and conditional jumps (this section).
The remaining NVM instructions were mentioned in Section 2.4.5,
use similar principles, and are presented formally in Table D.6.
The numbering starts from 2 to account for the first two steps of
the instruction cycle (Table D.5) that load the current instruction
(omitted in Table D.6 to avoid clutter).

Appendix E. Flashing an NVM instance

As illustrated in Appendix D, a complete gating FSM can be
used to fully specify an ‘‘instruction set’’ for an NVM instance.
This instruction set must then be ‘‘flashed’’ onto the fixed control
flow weights when the instance is constructed, analogous to how
non-volatile microcontroller memory is ‘‘flashed’’ with device
firmware that changes infrequently. The NVM flash procedure is
done as follows. Let s′ = τ (s, a) be any transition in the FSM, from
state s and input token a to new state s′. The states s′ and s are
represented by patterns in gh. The input token a is represented
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Fig. F.17. The algorithm for converting a Turing machine ⟨Q , q0,Γ , F , δ⟩ to an NVM program. Appending a string to an (initially empty) program is denoted ⊕
‘‘...’’, and ‘\n’ denotes a line break.

by the vertical concatenation of patterns in co, opc, and each
opk, multiplied by 0 if the respective pathway to gh is gated shut
during the transition. These column vectors can then be collected
into two matrices of ‘‘training data’’ X and Y , where each column
of X represents a transition input (s, a) and the corresponding
column of Y represents the corresponding transition output s′ =
τ (s, a). For example, the portions of X and Y corresponding to the
first few transitions in Fig. D.16 are as follows:

X =

⎡⎢⎢⎢⎢⎢⎣
... vgh[lni] vgh[cop] vgh[cop] vgh[ceq] vgh[ceq] ...

... 0 0 0 vco[true] vco[false] ...

... 0 vopc[nop] vopc[jie] 0 0 ...

... 0 0 0 0 0 ...

... 0 0 0 0 0 ...

⎤⎥⎥⎥⎥⎥⎦

Y =
[
... vgh[cop] vgh[lni] vgh[ceq] vgh[crg] vgh[lni] ...

]
Neural dynamics in gh should be such that each column in X
transitions to the corresponding column in Y . That is, if⎡⎢⎢⎢⎢⎢⎢⎣

sgh,gh(t)vgh(t)
sgh,co(t)vco(t)
sgh,opc(t)vopc(t)
sgh,op1 (t)v

op1 (t)

sgh,op2 (t)v
op2 (t)

⎤⎥⎥⎥⎥⎥⎥⎦
matches a column of X , then vgh(t + 1) should match the cor-
responding column of Y . The issue then is to find the set of
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Fig. F.18. An NVM assembly program simulating an example Turing machine.

weights

W = [W gh,gh,W gh,co,W gh,opc,W gh,op1 ,W gh,op2 ]

that makes this true for every pair of respective columns in X and
Y . In other words, we wish to solve Y = σgh(WX), or equivalently
σ−1gh (Y ) = WX , for W .

However, this may not always be possible, for essentially
the same reason that single-layer perceptrons are not universal
function approximators. In particular, we found in practice that
σ−1gh (Y ) was full rank but X was not, and hence there was no linear
operator W that would solve the requisite equation. To resolve
this issue without adding another hidden region, we instead
introduced a ‘‘hidden time-step’’, allowing each FSM transition to
occur over two iterations of network dynamics instead of one.
In this case, the equation to solve is Y = σgh(W gh,ghσgh(WX)).
This can be done in a non-iterative fashion with standard linear

algebraic techniques, by constructing a random matrix Z with the
same low rank row space as X , and simultaneously solving

Z =
[
W gh,gh W gh,co W gh,opc W gh,op1

]
X

σ−1gh (Y ) = W gh,ghσgh(Z)

for the weights. In neural terms, Z represents the net synaptic
input to gh before the hidden time-step. We found in practice
that for a randomly generated low-rank Z , the hidden time-step
activity σgh(Z) will generally become full rank, thereby enabling
a solution to the linear system.

We encode the output mapping γ : S → G similarly: Let s′ be
the state encoded by the jth column of Y , and let vgo[γ (s′)] denote
the requisite gating output for that state of the gating FSM. Then
we can construct the matrix Y go, whose jth column is vgo[γ (s′)].
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Fig. G.19. An example of a randomly generated NVM assembly program, for an NVM instance with three registers (r0, r1, and r2).

Finally, we can solve the linear equations

σ−1go (Y go) = W go,ghσgh(Z)

for W go,gh. Since the columns of Z are the ‘‘hidden time-steps’’
immediately before s′ is reached, this ensures that gh contains the
pattern for s′ at the same time-step that go contains the gating
pattern for γ (s′). Since we use the Heaviside function for σgo, its
inverse is not strictly defined. However, using the sign function
in place of σ−1go was found to work in practice.

The hidden time-steps described above are omitted in
Tables 2, D.5, and D.6 to avoid clutter. The default gating pattern
during hidden time-steps for all layers other than gh is the
saturation dynamics (dq = sq,r = 0).

Since the weights associated with the gating FSM are found
using a linear solver, this ‘‘learning rule’’ is not local. However, it
is much faster and more reproducible than iterative methods like
gradient descent. Moreover, the instruction set and therefore FSM
is independent of any particular program, so the FSM weights
need only be ‘‘learned’’ once when an NVM instance is first
constructed. Subsequently, specific programs can be assembled
and executed using only the local learning rules described in the
main text.

Appendix F. Simulating turing machines with NVM programs

Let ⟨Q , q0,Γ , F , δ⟩ be any Turing machine, where Q is the
set of machine states, q0 is the initial state, Γ is the set of tape
symbols, F ⊆ Q is the set of accepting states, and δ : Q × Γ →
Q×Γ×{L, R} is the transition function (Hopcroft & Ullman, 1979).
δ maps the current state and tape symbol to a new state, a new
symbol to write to the tape, and a direction d to shift the tape,
either left (d =L) or right (d =R).

To simulate the Turing machine with an NVM instance, we
use the following strategy. First, we construct the NVM instance
with two registers: rstt, for storing the current Turing machine
state, and rsym, for storing the current tape symbol. Next, we
use heap memory to represent the tape, using read/write head
increments (nxt instruction) to shift the tape left and decrements
(prv instruction) to shift it right. Finally, we use a program in
program memory to repeatedly execute the transition function δ,
using a series of conditional branches within an outer loop.

Pseudocode for a procedure which writes this NVM program
is shown in Fig. F.17. First it initializes the machine state by
moving q0 into the rstt register. Next, it starts the loop that
repeatedly executes δ to run the Turing machine. Each iteration

begins by loading the current tape symbol into rsym from the
current heap memory address (rem). Next, the current state is
compared against each possible state q ∈ Q one at a time. Once
a match is found, a conditional jump (jie) redirects the NVM to
the relevant code with label ‘‘ifq’’. If q is an accepting state, the
code for q simply halts the NVM (exit). Otherwise, the current
symbol is compared against each possible symbol γ ∈ Γ . Once
a match is found, another conditional jump redirects the NVM
to code for the (q, γ ) transition, labeled with ‘‘ifqγ ’’. Based on
the transition output (q′, γ ′, d) = δ(q, γ ), the program moves the
new state q′ into rstt, the symbol γ ′ into rsym, writes γ ′ to
the tape (mem), shifts the tape in the direction d by incrementing
or decrementing the heap memory address, and finally makes an
unconditional jump (jmp) to repeat the process again, starting
from the loop label.

Fig. F.18 shows an NVM program generated in this manner for
a small two-state, two-symbol Turing machine with no accepting
states. To make the programmore concise, we used unconditional
jumps for the ‘‘else’’ part of each conditional branch.

Appendix G. Random program generation

Random programs of a given length were created by ran-
domly selecting the opcode and operands for each line, and then
post-processing to ensure well-defined program semantics. For
example, any randomly created label used as an operand for a
jump or sub-routine opcode would also be randomly assigned
to another line of the program, so that each jump and sub-
routine call would actually have a valid target. Fig. G.19 shows
an example of a random program generated in this way.
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