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1 | INTRODUCTION
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Abstract

Precise identification of causative variants from whole-genome sequencing data,
including both coding and noncoding variants, is challenging. The Critical Assessment
of Genome Interpretation 5 SickKids clinical genome challenge provided an
opportunity to assess our ability to extract such information. Participants in the
challenge were required to match each of the 24 whole-genome sequences to the
correct phenotypic profile and to identify the disease class of each genome. These are
all rare disease cases that have resisted genetic diagnosis in a state-of-the-art pipeline.
The patients have a range of eye, neurological, and connective-tissue disorders. We
used a gene-centric approach to address this problem, assigning each gene a
multiphenotype-matching score. Mutations in the top-scoring genes for each
phenotype profile were ranked on a 6-point scale of pathogenicity probability,
resulting in an approximately equal number of top-ranked coding and noncoding
candidate variants overall. We were able to assign the correct disease class for 12
cases and the correct genome to a clinical profile for five cases. The challenge assessor
found genes in three of these five cases as likely appropriate. In the postsubmission
phase, after careful screening of the genes in the correct genome, we identified

additional potential diagnostic variants, a high proportion of which are noncoding.

KEYWORDS
CAGI5, connective-tissue disorder, diagnostic variants, eye disorder, Human Phenotype

Ontology (HPO), neurological diseases, whole-genome sequencing data

chromosomal microarray data), identification of potential causative

variant(s) out of the approximately four million variants found in a

Identification of the variant(s) causing a patient’s clinical symptoms is
one of the key challenges in rare disease diagnostics. The problem has
assumed increasing urgency, with recent advances in sequencing
technology and a decrease in the sequencing cost (Schwarze,
Buchanan, Taylor, & Wordsworth, 2018), leading to vast amounts of
data to interpret. While whole-genome sequencing data provides more
comprehensive coverage than other more restricted sequencing

technologies (such as gene panel data, exome sequencing data, or

genome resonates with finding a needle in a haystack (Cooper &
Shendure, 2011). The variant diagnostic rate (rate of causative,
pathogenic, or likely pathogenic genotypes in known disease genes
for children) from whole-genome sequencing data is currently only
about 40% (Clark et al., 2018) with the implication that there remain
substantial deficiencies in the current methodology. Many factors
contribute to this shortfall, but there is a clear need for improved

methods from the computational biology community. The Critical
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Assessment of (CAGI; https://

genomeinterpretation.org) is a platform for community experiments

Genome Interpretation
in genome interpretation. Typically, the experiments take the form of
blinded prediction of the phenotypic impacts of genomic variation
followed by an objective independent assessment of the results
2017).
such challenge (https://genomeinterpretation.org/SickKids5_clinical_

(Hoskins et al, The SickKids5 experiment is one
genomes) and follows an earlier CAGI SickKids4 one (https://
genomeinterpretation.org/content/4-SickKids_clinical_genomes). Here,
we report our methods and the results obtained for this challenge and
draw conclusions on directions for future improvement.

Participants were provided with a set of 24 whole-genome
sequencing data and 24 clinical profiles for pediatric patients and
asked to match each genome to the corresponding phenotype profile.
Two general strategies have been developed: genotype to phenotype
and phenotype to genotype. In a genotype to phenotype approach, a
patient’s clinical profile is not utilized to prioritize potential causative
genes and variant(s)—rather all deleterious variants in a genome are
identified from genotype data. Several variant annotation programs
(such as VAAST (Hu et al., 2013), ANNOVAR (Wang, Li, & Hakonarson,
2010), SnpEff (Cingolani, Platts et al., 2012), VAT (Habegger et al.,
2012), and VEP (Mclaren et al, 2010)), utilize population allele
frequency data and evolutionary conservation information together
with appropriate disease inheritance models to prioritize disease-
relevant genes and variants in a genome, without explicitly considering
a specific patient phenotypic profile. Conversely, the common theme
of a phenotype to genotype approach is that a set of patient-specific
phenotypes, either in the form of Human Phenotype Ontology (HPO,
Kohler et al, 2014) terms or other clinical descriptors, is used to
generate a list of relevant genes and only variants in these genes are
considered for further analysis. A number of strategies have been
developed for the incorporation of patient-specific gene prioritization
information. The information may come from various biomedical
ontologies, including human-specific ontologies, like HPO (Ko&hler
et al, 2014), Disease Ontology (DO, Schriml et al, 2019), Gene
Ontology (GO, Blake et al., 2015; such as used in Phevor; Singleton
et al., 2014) and other model organism-specific ontologies, such as
Mammalian Phenotype Ontology (MPO, Smith & Eppig, 2009),
Zebrafish Phenotype Ontology (ZPO, van Slyke, Bradford, Westerfield,
& Haendel, 2014; used in Exomiser; Smedley et al., 2015). Several
computational tools leverage gene-disease-phenotype relationships
and phenotype information, for instance, phenolyzer (Yang, Robinson,
& Wang, 2015) and Phenotype Driven Ranking (PDR, Krdmer, Shah,
Rebres, Tang, & Richards, 2017). Also, some tools extract phenotype
information using keyword search from the text (used in GeneCards;
Safran et al, 2010), or free-text boolean search (used in VarElect;
Stelzer et al., 2016).

Prioritization of variants in prioritized genes includes evaluation of
the likely impact on gene function and pruning variants on the basis of
population frequency data (rare disease implies rare variants). Computa-
tional tools use a variety of methodologies to assess the likely impact of
coding and noncoding variants. Evaluation of coding variants is usually

divided into loss of function (frameshifts, direct splice site impact, and

stop gain or loss), and missense. Many methods have been developed to
estimate the effect of missense mutations based on sequence conserva-
tion properties (e.g., Sorting Intolerant From Tolerant [SIFT] (Kumar,
Henikoff, & Ng, 2009), PolyPhen-2 (Adzhubei et al, 2010), SNPs3D
profile (Yue & Moult, 2006), SNAP2 (Hecht, Bromberg, & Rost, 2015),
and evolutionary action (Katsonis & Lichtarge, 2017)) and on protein
stability, as estimated from protein structure (e.g., SNPs3D stability (Yue,
Li, & Moult, 2005), Rosetta (Park et al, 2016), and FoldX (Delgado,
Radusky, Cianferoni, & Serrano, 2019; Schymkowitz et al., 2005)). Some
methods also include functional information (e.g., MutPred2; Pejaver,
Mooney, & Radivojac, 2017). Noncoding variant analysis methods utilize
features including regional purifying selection, enrichment with func-
tional elements such as transcription factor-binding sites and DNase
hypersensitivity as well as DNA-based evolutionary conservation.
Example methods are PhastCons (Siepel et al., 2005), PhyloP (Pollard,
Hubisz, Rosenbloom, & Siepel, 2010), and Gerp++ (Davydov et al., 2010).
Features are often combined using machine-learning approaches (such
as those used in Genomiser (Smedley et al., 2016) and CADD (Rentzsch,
Witten, Cooper, Shendure, & Kircher, 2019)). In one analysis (Smedley &
Robinson, 2015), phenotype-driven approaches were found to have
substantially better performance than variant driven ones. So far, most
of these methodologies have only been benchmarked against simulated
data, and there has been very limited blind testing.

In the Sickkids5 challenge, participants were provided with clinical
profiles in the form of a set of PhenoTips terms (Girdea et al., 2013;
represented using HPO terms) and whole-genome sequencing data for
the 24 pediatric patients. These are all difficult cases where the
standard SickKids analysis pipeline failed to find any reportable
diagnostic variants (Kasak et al., 2019). The challenge was to assign
each genome to one of three disease classes (eye disorders, neurological
disorders, and connective-tissue disorders) and to match each genome
to the appropriate clinical profile. An additional optional part of the
challenge was the identification of specific diagnostic variants for each
patient. The identification of predictive secondary variants (related to
the risk of other serious diseases and with no phenotypes reported in
the clinical descriptions) was also optional. In the earlier SickKids4
challenge, participants were asked to identify diagnostic variants as well
as predictive secondary variants from whole-genome sequencing data
for 25 pediatric patients. Unlike in SickKids5, matches between the
clinical profiles and the genome data were available.

Here, we report our approach and results for the SickKids5
challenge. We used a phenotype to genotype approach, selecting only
clinical symptom-specific genes. For this purpose, we developed a
phenotype-weighted scoring scheme to select the set of genes
associated with each clinical profile. Each variant in the selected
genes was assigned to one of six impact-related categories. The final
selection of a genome for each clinical profile included a subjective
evaluation of the match of each gene’s online mendelian inheritance
in man (OMIM) description (Hamosh, Scott, Amberger, Bocchini, &
McKusick, 2005) with the clinical profile. The results were analyzed
in a number of ways, especially the role of clear clinical documenta-
tion in developing the phenotype-weighted scoring scheme and types

of prioritized variants.
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2 | MATERIALS AND METHODS

2.1 | SickKids5 clinical profile data

The SickKids Genome Clinic at the Hospital for Sick Children in
Toronto (http://www.sickkids.ca/) provided the clinical profiles for
the challenge. The profiles for the 24 patients included an overall
disease class, with six eye disorder cases, seven neurological, and 11
connective-tissue disorders cases. Additional profile information for
each patient included gender, age, indication for referral and clinical
symptoms in the form of a set of terms from the hierarchical HPO
(Kohler et al., 2014) entered through the PhenoTips interface (Girdea
et al, 2013). Inheritance information was also provided for some
patients: Six were described as autosomal recessive cases and
pedigree charts were given for 14 patients (including two of the six
autosomal recessive cases). Ethnicity information was also provided
for 19 out of 24 patients, none of whom were declared as African
origin. We used in-house software to identify genomes of African
origin (described in Pal, Kundu, Yin, & Moult, 2017). In the
postchallenge submission phase, using the answer key, we found
that one patient with declared Philippine ethnicity is genetically of

African origin, and this caused a prediction error.

2.2 | SickKids5 whole-genome data: annotation of
variant call format (VCF) files and quality control
(QC) filters

Anonymized whole-genome data for all 24 patients were available via
the CAGI SickKids5 challenge website (https://genomeinterpretation.
org/SickKids5_clinical_genomes) in the form of VCF files produced by
the lllumina HiSeqg X system. We annotated single nucleotide variants
(SNVs) and Indels in the VCF files using Varant (https://doi.org/10.
5060/D2F47M2C), including region of occurrence (intron, exon,
splice site, or intergenic), observed minor allele frequencies, mutation
type, predicted impact on protein function (methods used in this step
are listed in Section 2.5.), and associated phenotypes reported in
ClinVar (Landrum et al., 2016). The RefGene (Pruitt et al., 2014) gene
definition file was used for gene and transcript annotations in Varant.
In addition, in-house scripts were used to annotate variants with the
human gene mutation database (HGMD, Stenson et al., 2014)
disease-related information and with dbscSNV (Jian, Boerwinkle, &
Liu, 2014) information on potential splicing effects. We also used
Annovar annotations (Wang et al., 2010) to add Genome Aggregation
Database (GnomAD) frequency data (Lek et al., 2016), Eigen scores
(lonita-Laza, McCallum, Xu, & Buxbaum, 2016), and GERP++ scores
(Davydov et al., 2010) information for each variant. Chromosome M
was annotated and searched for pathogenic variants using MSeqDR
mv (Shen et al.,, 2018). We used only high quality (graded “PASS” in
the VCF file) variants for further analysis. We used SnpSift (Cingolani,
Patel et al., 2012) to calculate Ts/Tv and Het/Hom alternate allele
ratios from the VCF file data. We only considered variants for which

the highest population frequency is <1% in all the referenced

databases (GnomAD exomes and GnomAD genomes, EXAC database
(Lek et al., 2016), and 1000 Genomes (Auton et al., 2015)).

2.3 | Method rationale

To address the challenge of matching genomes to clinical profiles and
identifying the disease class of each genome, we used a phenotype to
genotype approach, first identifying genes compatible with clinical
profile information, and then analyzing variants in those genes. If we
are able to identify an appropriate candidate causal variant (or pair if
variants for a recessive trait) for a specific profile, which is taken as
evidence of a genome and profile match, and will also imply the disease
class of that genome. The steps in the method are: (a) collection of
disease-relevant genes for a particular clinical profile from all 24
genomes (details in Section 2.4.); (b) identification of rare variants (less
than 1% population frequency) in the relevant genes (as mentioned
earlier in “SickKids5 whole genome data” section); (c) search for impact
variants (both coding and noncoding) in the relevant genes and
assignment of these to one of the six categories of impact confidence
(details in Section 2.5.); (d) use of a subjective scoring scheme of the
clinical profile (depending on the presumed disease class to which that
particular profile belongs) to score each disease-relevant gene in a
genome for each clinical profile (details in Section 2.6.); (e) selection of
the top five scoring genomes for each clinical profile, and within those,
selection of top five scoring genes; and (f) manual screening of the
variants selected for each profile for appropriate inheritance model,
ethnicity compatibility, and the full match of the OMIM disease
description associated with each gene to the clinical profile (details in

Section 2.7.). The workflow of the method is shown in Figure 1.

2.4 | Candidate gene list generation

For each patient, we extracted the HPO-based terms from the
PhenoTips annotations provided in the clinical profile. Relevant genes
for each profile were identified by matching the profile HPO terms to
those associated with each gene in the HPO database (Build #139;
Kohler et al., 2014) and in the dbNSFP database (version 3.5a; Liu, Wu,
Li, & Boerwinkle, 2016). The latter includes genes related to phenotypes
observed in humans as well as similar phenotypes included in the mouse
database (Eppig et al., 2015; Georgi, Voight, & Bucan, 2013). We also
used the list of 319 genes from the RetNet database (RetNet; http://
www.sph.uth.tmc.edu/RetNet/; Daiger, 2004) to search for eye disorder-
related variants. The gene list for secondary variants, containing 59
genes, was taken from Table 1 in the 2017 ACMG (The American
College of Medical Genetics and Genomics) guidelines (Kalia et al., 2017).

2.5 | Categorization of variants according to their
likely pathogenic impact

As outlined in the rationale, for each genome we identified 24 different
sets of possible candidate causative variants, one for each of the clinical
profiles. Only variants with less than 1% population frequency were


http://www.sickkids.ca/
https://genomeinterpretation.org/SickKids5_clinical_genomes
https://genomeinterpretation.org/SickKids5_clinical_genomes
https://doi.org/10.5060/D2F47M2C
https://doi.org/10.5060/D2F47M2C
http://www.sph.uth.tmc.edu/RetNet/
http://www.sph.uth.tmc.edu/RetNet/

data for 24
patients

Whole Genome
Illumina HiSeq X

VCF files annotation
by VARANT and
ANNOVAR

PAL ET AL

Clinical
phenotype
description for
24 patients

Genelist
extraction from
HPO, dbNSFP,
RetNet

FIGURE 1 The workflow of the method
for identification of probable causative
variants

Assignment of impact categories to rare variants (with less than 1% population frequency) in
selected genes (selected on the basis of 24 different clinical profiles) for each genome
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Probable causative variant(s)

based on the likelihood of pathogenicity and variant type, as follows:

Category 1 (C1): Variants with HGMD annotation of either DM

(disease-causing mutation) or DP (disease-associated polymorph-

ism), and/or reported in ClinVar with pathogenic or likely

pathogenic clinical significance status.

Category 2 (C2): Nonsense mutation, frameshift or nonframeshift

indel, a mutation disrupting either a splice donor or acceptor
site, splice altering variants (splicing consensus regions around
direct splice sites) predicted by the dbscSNV (Jian et al.,
2014), and missense mutations predicted as damaging by
SNPs3D profile and stability methods (Yue & Moult, 2006;
Yue et al, 2005), SIFT (Kumar et al, 2009), PolyPhen-2
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(Adzhubei et al, 2010), Vest (Carter, Douville, Stenson,
Cooper, & Karchin, 2013), REVEL (loannidis et al., 2016),
and CADD (Kircher et al., 2014). For inclusion of a missense
mutation in Category 2, at least 60% of reporting methods
were required to return a prediction of deleterious. This
threshold is based on calibration against HGMD (Yin, Kundu,
Pal, & Moult, 2017).

Category 3 (C3): Missense mutations predicted as damaging by one
or more of the above missense impact prediction methods, with
the fraction of deleterious predictions <0.6.

Category 4 (C4): Benign missense mutations (zero reporting missense
methods predicting deleterious).

Category 5 (C5): Variants annotated as close (within 12 bases) to a
splice acceptor or splice donor site.

Category 6 (Cé): Noncoding variants annotated as untranslated
region (UTR) and intronic with at least one of the following
conditions satisfied: CADD phred score >20 (Kircher et al., 2014),
Eigen score 24 (lonita-Laza et al., 2016), or Gerp++ score 22
(Davydov et al., 2010).

Variants in all categories were further subdivided on the basis of

population frequency data:

Frequency bin 1: Novel mutations (not seen in any of 1000 Genomes,
ExXAC, gnomAD exomes, and gnomAD genomes databases).

Frequency bin 2: Variants with population frequency >0 and <0.001.

Frequency bin 3: Variants with population frequency >0.001 and
<0.005.

Frequency bin 4: Variants with population frequency >0.005 and
<0.01.

Variants were assigned to autosomal dominant, autosomal
recessive, compound heterozygous, pseudo-autosomal recessive, or
X-linked recessive models based on the OMIM inheritance pattern
for the corresponding gene (https://www.ncbi.nIm.nih.gov/omim).

The subset of selected genes in a genome that contains one or
more impact variants is then considered in the scoring of genome’s
match to a clinical profile.

2.6 | Gene scoring scheme for selection of genomes
best matching to a clinical profile

For each clinical profile, each HPO term (T) was assigned a subjective
weight (W) from 0 to 1, according to its importance (1= most
important and O = least important) in that profile, taking into account
the presumed disease class. Usually, the most important terms were
inferred from the “indication for referral” description. For example, if
a connective-tissue disorder (presumed disease class of that clinical
profile) is the most dominant and definitive term in the profile in the
“indication for referral” description, it has scored the highest. If the
seizure is also part of that profile but with the borderline occurrence,

then that was assigned a lower value than would be the case if the

term occurred in a profile where the seizure is the most significant
phenotype in the “indication for referral” field.

We started with the set of genes containing impact variants
identified in each genome. For each clinical profile, each selected
gene “i” of a genome was assigned a score GS; based on the weights of
its associated HPO terms. The score is a sum over the “n” HPO terms
associated with a gene, and the weight for each term in the sum is
that assigned to that HPO term in the clinical profile analysis
described above.

GS; = PhenoTips terms (P;) x gender factor (G;)

n
where P; = ZWT).,
j=1

and G; = 1, if gender of phenotypic profile and genotypic profile

are the same,

G; = 0, if gender of phenotypic profile and genotypicprofile are
NOT the same.

For each clinical profile, we ranked the genomes according to
the highest GS; score of any gene. The five top-ranked genomes for
each clinical profile were used for further analysis. If there are
multiple genomes with the same score, more than five genomes
will be considered for a particular clinical profile. For each of these
top-ranked genomes, we selected the five top-scoring genes (i.e. a
total of at least 25 genes per profile). There may be multiple genes
with similar scores in a genome, in which case more than five may
be selected. The selected genes were further filtered, removing
those that do not exhibit the appropriate inheritance pattern or
the appropriate ethnicity. The set of categorized variants in the
remaining genes formed the set of candidate causal variants for a

patient.

2.7 | Prioritized causative variants for a genome

The selection of candidate genes by weighted HPO term matching is
an effective automated approach for generating an inclusive shortlist,
but final gene selection required further manual pruning. For this
purpose, the OMIM disease description (Hamosh et al., 2005) of each
selected gene was compared with the associated clinical profiles.
Most genes were eliminated on this basis. Previously selected
variants in the remaining genes formed the set for final prioritization.
Variants in lower frequency bins were prioritized over those with
higher frequency. For example, a novel variant in a gene will be
preferred over a variant in the 0.01% frequency bin in the same gene.
Confidence levels of the categories were C1>C2>C3>C4>C5>Cé.
For example, a variant in a gene in Category 2 is preferred over a
variant in Category 6 in the same gene. If the same gene is matched
from two different genomes for a particular clinical profile, then we
applied frequency and confidence criteria to select one of the two

genomes.
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2.8 | Probable regulatory effects of prioritized
variants

To check for any probable regulatory effects of the prioritized
variants, we noted the RegulomeDB (Boyle et al., 2012) scores, which
are <4 and so possibly part of a regulatory motif. These scores were
not used for the initial prioritization of variants. A RegulomeDB score
of 1a-1f implies an eQTL. As all of the variants of interest are rare,
none was found in this category. A score of 2a-2c implies that
variants at that position may directly impact a transcription factor-
binding site with subcategories (2a, 2b, and 2c) for different types of
evidence. A score of 3a and 3b implies less strong evidence for
impact on a transcription factor-binding site with subcategories (3a
and 3b) indicating different types of evidence.

2.9 | Searching for predictive secondary variants

Here, we followed the rules in ACMG (2017; Kalia et al., 2017) to
extract predictive secondary variants from 59 genes. We searched
only for clinically known pathogenic and loss of function variants in
those genes, as defined in Table 1 of (Kalia et al., 2017).

3 | RESULTS

3.1 | Demographics, clinical symptoms, and
relevant genes

The SickKids5 challenge data consists of the whole-genome sequen-
cing data and clinical profiles for 24 pediatric patients, of whom 11
are male and 13 female. The age range was from 5 to 19 years with
an average age of 10.7 years. The challenge description included the
information that there are six eye disorder cases, seven neurological
disorder cases, and 11 Ehlers-Danlos syndrome connective-tissue
disorder cases.

As mentioned in Section 2.1., clinical annotations of the 24
patients were provided in the form of HPO terms. Notable points are
that some specific HPO terms co-occur in multiple patients, some
terms occur in all three classes of disease, and complex diseases co-
occur with rare disease symptoms (Figure 2). Some examples:
Connective-tissue disorder patients exhibit symptoms involving a
large number of organs such as the gastrointestinal tract including
irritable bowel syndrome and Crohn’s disease (four cases), cardio-
vascular/hypertension (four cases), eye defects (four cases), devel-
opmental/motor delay (five cases), scarring of tissue (three cases),
and bruising susceptibility (four cases). Similarly, neurological
disorder patients often exhibit developmental delays or motor
delays. Autism is manifested in one patient out of the seven
neurological disorder cases. One neurological disorder patient is
affected by an eye disorder as well as musculoskeletal disorders,
including scoliosis and osteopenia. Similarly, an eye disorder patient
is also affected by other musculoskeletal disorders, including hyper-
extensibility of the joints and ear defects. Altogether, 10 of the 24

cases have symptoms in two or more disease classes.

In total, there are 213 unique HPO terms for the 24 cases. These
terms were used to compile a total 6,239 potentially relevant genes
from the HPO (Kohler et al., 2014) and dbNSFP (Liu et al., 2016)
databases and the 319 genes in the RetNet eye disorder database
(Daiger, 2004). The number of genes related to each clinical profile
ranges from 350 to 4,000, with an average of 1,600. Figure S1 shows
the number of genes for each case, grouped by disease class. Eye
disorder patients have an average of 770 candidate genes.
Neurological clinical profiles are usually associated with more genes,
with an average of 2,300 genes. Connective-tissue disorder patients
have the widest range, from 400 to 2,800 genes.

3.2 | SickKids5 data quality

Figure 3 shows the SickKids5 challenge data quality in terms of Ts/Tv
ratio, Het/Hom alternate allele ratio, total SNV counts and rare (<1%
population frequency) SNV counts. We compared these data with
that for the corresponding ethnicities in the 1000 Genome set (Auton
et al, 2015) and the high-quality reference Genome in a Bottle
(GIAB) data (Zook et al., 2016).

In the previous SickKids challenge (https://genomeinterpretation.
org/content/4-SickKids_clinical_genomes), we observed an excess of
rare and novel variants for 25 patients with sequencing data
provided by Complete Genomics (Pal et al., 2017), relative to 1000
Genome data. Compared with the Complete Genomics data, the
CAGI5 lllumina HiSeq X data are of better quality—the data have
comparable Ts/Tv ratio, Het/Hom alternate allele ratio, and total
SNV counts to that of 1000 Genome data (Figure 3). Rare SNV
counts in SickKids5 AFR data are comparable to that with 1000
Genome AFR data. Non-AFR rare SNV counts in SickKids5 are closer
to that in GIAB than 1000 Genome EUR data. The excess of rare
variants in both GIAB and SickKids5 data compared with 1000
Genome data may be due to the increasing identification of rare
variants in recent years as a result of improved sequencing
technologies. Nevertheless, there is a small excess of rare as well
as total variant counts for SickKids5 data compared with GIAB data,
not unexpected given the very high quality of the GIAB data. To
investigate this discrepancy in data quality, we checked the alternate
allele fraction (alt allele counts/ref allele counts) distribution for
heterozygous calls in both GIAB and SickKids5 data for all “PASS”
variants (Figure S2). This distribution has a broader range even
within “PASS” variants for SickKids5 data compared with GIAB,
indicating a higher noise level in the SickKids5 data. If we restrict this
alternate allele fraction distribution in SickKids5 data to the range as
observed in GIAB data, the SNV counts agree.

3.3 | Distribution of candidate variants

As described in Section 2, for each clinical profile, we identified the
five or more top-scoring (best HPO term matches) genes in the five
(or more) top scoring genomes. Genes in the female 13 genomes
are matched to the female profiles and genes in the 11 male genomes

are matched to the male profiles. An average of 35 genes per profile
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were selected, resulting in a total of 342 unique genes for all 24
profiles for further analysis. There is an average of five variants in
each of the five genes selected in each genome, with an average total
of about 116 candidate variants per clinical profile. For eye disorder
clinical profiles, we also included candidate variants in the 319
RetNet genes. For each profile, the set of candidate variants were
ranked using two criteria—the impact category for a variant and its
frequency bin (lower frequencies rank higher; details in Section 2.5.).

Figure 4 shows the counts of candidate variants in each category
from selected genomes, for each profile. For all clinical profiles, the
fraction of candidate variants in Category 6 (noncoding variants) is the
highest (on average 83%, 5-10 variants per included genome), followed
by the variants in C2 (loss of function [LOF] and other high impact
coding variants including missense, on average 7%, 0-1 variants per
genome) and then in C3 category (possibly high impact missense

variants, on average 5%, 0-1 variants per genome). Where a clinical

profile contains very few HPO terms (such as eye disorder cases) with
less discriminating weights among the terms the gene scoring scheme is
less able to discriminate between genes in final reporting. This usually
results in the inclusion of more than five genes per genome with the
same score. One such eye disorder case included an average of 30 Cé6
candidate variants (Figure 4, last row, third column). Figure S3 shows
the scores for candidate variants in the genomes selected for one
clinical profile.

Comparison of each selected gene’s OMIM description with the
clinical profile together with filtering by ethnicity and inheritance
patterns eliminated most of the genes and thus the variants within
them. The remaining candidate variants were further prioritized by
population frequency and confidence categories. The result is a total
of 35 variants (Table S1) for all 24 clinical profiles. Figure 5 shows the
distribution of these 35 prioritized variants by category
and frequency bins. A total of 46% (16 out of 35) of the prioritized
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FIGURE 3 SickKids5 data quality analysis in terms of Ts/Tv ratio, Het/Hom alternate allele ratio, total SNV count, and rare (<1% population
frequency) SNV counts in whole genomes. Only variants with “Pass” status are included. The 1000 Genome EUR and AFR data and GIAB data
provide controls. Abbreviations used: GIAB—Genome in a bottle data, KG_EUR—1000 Genome Caucasian (EUR) data, KG_AFR—1000 Genome
African (AFR) data, SickKids5_AFR—SickKids5 African (AFR) data and SickKids5_other—all other SickKids5 data excluding Africans. Although
there are some differences to the GIAB data controls, generally the Sickkids data appear to be of high quality

variants are in Category 6% and 44% (7 out of 16) of these are novel
—that is not seen in the 1000 Genome, ExAc or gnomAD databases.
The next highest relative occurrence of novel variants (3) and
total prioritized variants (8) is in the C2 category, which includes loss
of function variants together with predicted high impact nonsynon-
ymous variants. There were four prioritized variants each in the C1

and C3 categories and three variants in the C4 category.

3.4 | Molecular mechanism underlying the
prioritized variants

Figure 6 shows the distribution of the 35 prioritized causative
variants according to the probable underlying molecular mechanisms.
A total of 46% are missense (including those occurring in categories

1, 2, 3, and 4) and 46% are intronic or UTR variants. There are three

frameshift insertion/deletion variants (9%). The missense variants
have a range of impact confidence, from very high in C1 (based on
clinical observation), high in C2, uncertain in C3, to predicted benign
in C4. All intronic and UTR variants are predicted high impact by the
Gerp++ criterion, implying conserved features at that position. Two
intronic variants and one UTR variant are also predicted high impact
by CADD.

Figure 7a,b shows how the distribution of variant impact
categories changed from the initial set to the candidate causative
variants set to the final prioritized set. There is a 99% reduction in
the number of variants going from the initial set (outermost circle
in Figure 7a, all rare variants present in the genomes) to the
candidate causative variants set (middle circle in Figure 7a,
candidate causative variants in the selected genes). The reduction
is in all three variant sets (exonic, intronic, and UTR; Figure 7b),
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each of the six impact categories is shown. Variants are colored by the genome of origin. The large majority of selected variants are in the Cé

category: impact variants in UTRs and introns

and is a result of only a small fraction of these variants meeting the
impact selection criteria from the selected genes. Exonic variants
are reduced by about 92%. The lowest range of decrease is for
missense variants (from 4.34 to 3.50, reduced by 85%) and loss of
function variants, for example, nonframeshift indel (from 3.32 to
2.39 on the logyg scale), frameshift indel (from 3.21 to 2.04), stop
gain/loss (2.75-1.72). In the prioritized variants set submitted for
the challenge, only missense, indels, intronic, and UTR variants
were selected.

We also compared the variant compositions of the SickKids5
and SickKids4 data (Figure 7c). The initial compositions are very

similar, but for the candidate and prioritized variants set, there is a

dramatic shift from a large majority of exonic variants in Sickkids4
to a large majority of intronic variants in Sickkids5 set. The
percent of UTR variants in the intronic and UTR sets also
increased in SickKids5 set, by about two- to threefold. This is
due to the introduction of intronic and UTR variant impact

predictions in the SickKids5 analysis.

3.5 | Performance in CAGI5—matching of disease
classes and exact matches

Table 1 shows the performance of the method in the SickKids5
challenge. Overall, we were able to identify the correct disease class
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TABLE 1 Performance of the method in CAGI SickKids5 challenge

Number of cases with

Total number  correct disease class

Broad disease class of cases assignment
Connective-tissue 11 6

disorder
Eye disorder 6 3
Neurological disorder 7 3

Abbreviation: CAGI, Critical Assessment of Genome Interpretation.

of a genome for 12 cases and exactly matched clinical profiles to the
correct genome for five cases. Disease class matching is the most
successful for connective-tissue disorders (six cases, 55%), second
highest for eye disorders (three cases, 50%) and least successful
(three cases, 43%) for neurological disorders. The five correct profile/
genome matches are composed of two connective-tissue disorder
cases, two for eye disorders, and one for a neurological disorder.
According to the data provider (who was also the challenge
assessor), out of the five exact match cases, the genes carrying two
eye disorder diagnostic variants and one of the genes for connective-
tissue disorder diagnostic variants are possibly correct (Table 1 and
Table S1). The eye disorder diagnostic variants are: (a) compound
heterozygous coding-intronic variants (conserved by Gerp++ scores)
in the USH2A gene—annotated for recessive retinitis pigmentosa and
(b) compound heterozygous variants, one clinical missense variant
and a coding-intronic variant (conserved by Gerp++ score) in the
ABCA4 gene—annotated for retinitis pigmentosa, rod-cone dystrophy
and other eye disorders. For the connective-tissue disorder case, we
prioritized two heterozygous variants in the FBN1 gene, for an
autosomal dominant inheritance pattern (information not provided in
the clinical profile). One variant is in the 3'-UTR region, conserved by
Gerp++ score, and the other is a novel coding-intronic variant,

conserved by Gerp++ and an impact variant according to CADD. We
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FIGURE 5 Stacked bar plot of the impact categories and
frequency ranges of the 35 prioritized probable causative variants.
Almost half are in the Category 6 of UTR and intronic variants
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match between clinical profile
and genome

Number of cases with proposed
diagnostic genes considered probable
by the assessor

1

prioritized both variants as either might be the correct diagnostic
variant, and we could not distinguish between them. The noncoding
variants were checked for possible regulatory effects with Regulo-
meDB. The FBN1 intronic variant has a score of 3a, indicating partial
evidence for transcription factor binding (the RegulomeDB annota-
tion was not used in the variant selection procedure). Variants in the
other two genes (ABCA4 and USH2A genes) have RegulomeDB scores
>4 (implying lack of evidence for the variant disrupting the

transcription factor-binding site).

3.6 | lllustrative example of matching a genome to
a phenotypic profile

Clinical profile N is of an 11-year-old female whose indication for the
referral is “Cerebral arteriovenous malformation.” The “Clinical
symptoms and physical findings” section for this patient also note
“aortic dilation” and “joint hypermobility,” both described as “border-
line.” In the subjective weighting of these HPO terms, we put the
highest weight on “Cerebral arteriovenous malformation,” a lower
weight on “joint hypermobility” and related HPO terms and a further

missense: C1,
11.4%
Frameshift
insert/delete:
C2, 8.6%
Prediciod Predicted
Impact High-impact
Totroolc: C6 missense: C2,
37.1% ’ 14.3%
Uncertain
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. missense:

P;“i?"ed C3, 11.4%

missense: C4,
8.6%

FIGURE 6 Distribution of prioritized variants by a probable
molecular mechanism
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patients. The outer most circle shows the distribution of all rare (allele frequency <1%) variants present in the genomes. The middle circle shows
the distribution of candidate causative variants in the selected genes for each clinical profile for its matching genome. The innermost circle
shows the distribution of final prioritized causative variants, submitted for the challenge. (b) The upper table shows the changes in variant
composition at different stages of the selection process. (c) The lower table shows the comparison of variant composition (in %) between the
SickKids4 and SickKids5 data at different stages of the selection process. The heat map highlights the differences in composition between the
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noncoding exonic; NFS, nonframeshift indel; NS, missense; PGL, stop gain/loss; SA, splice acceptor; SD, splice donor; SN, synonymous; TGL, start
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lower weight on “aortic dilation” related terms. The least weight was
set for the neurological “Headache” symptom. With these weights,
we selected the top-scoring genomes for profile N. In this case, there
were many equally scoring genes, resulting in all 13 female genomes
being selected. Three of these genomes contained the same three
highest scoring genes: ACVRL1, ENG, and SMAD4 with matching
terms for only “Headache” and “Cerebral arteriovenous malforma-
tion.” The next highest scoring gene was FBN1 with matching terms
for “joint hypermobility” and “aortic dilation.” FBN1 was considered
more relevant (according to the OMIM disease description for
Marfan syndrome, which matches the presumed disease class of
connective-tissue disorder in the profile) than any of the three top-
scoring genes. So we selected all variants in that gene for further
analysis. We found FBN1 variants in a total of seven genomes. These
are all category 6 variants, falling in the UTR and intronic regions.
The frequency criteria were used to select the final variant. The
variants span all four frequency bins (described in Section 2.5.). Two
are novel, and so were given priority. One of these, in genome 056, is
annotated as pathogenic by two methods (GERP++ and CADD) and

on that basis, we selected genome 056 for clinical profile N. This is a
case where we successfully matched the clinical profile with the

correct genome.

3.7 | Puzzling cases—limitation of phenotype-
weighted scoring

One of the most critical factors in the phenotype-weighted scoring
strategy is to correctly rank the importance of symptoms in a clinical
profile, otherwise, the predictions will be erroneous. This informa-
tion, which is usually obvious to physicians, is typically absent from
the clinical profile documentation. In the SickKids5 challenge, we
considered the “indication for referral” field to understand the
relative importance of clinical symptoms. We failed to identify the
proper disease class for one neurological disorder patient (J) because
the indication for referral was “mitochondrial disorder” and this
patient also has multiorgan failure, including severe eye problems,
seizures, and connective-tissue disorders. For this patient, we found a

ClinVar variant in chromosome M, with a disease description very
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similar to that of the patient. Table S2 documents this and two other
puzzling cases where high confidence loss of function variants are not
causative. In one, for clinical profile “I”, we found a nonframeshift-
deletion variant in the ELN gene for one genome and in the same
gene, we found a 5’-UTR variant in a different genome. According to
our prioritization criteria, we selected the loss of function variant
(nonframeshift-deletion) as the causative variant. However, the
genome with the 5’-UTR variant in ELN was the correct match.

3.8 | Re-evaluation of the genome to clinical profile
matches in the postsubmission phase

The availability of the answer key in the postsubmission phase
allowed us to examine the genes in the correct genome more
critically for the matched profile, followed by prioritizing suitable
impact variant(s) as we did for the challenge. Table S3 lists 44 such
prioritized variants in 26 genes for 24 SickKids5 patients. As these
are all cases where the conventional bioinformatics pipeline did
not identify diagnostic variants (implying no suitable clinical
variant or loss of function variants or coding variants of unknown
significance were found), we expected the task to be difficult.
Often it seems that there are disparate symptoms that can only be
accommodated by potential causative variants in two different
genes, rather than one. One such example is for clinical profile F,
where for the connective-tissue disorder, we identified a rare
coding-intronic variant in the COL5A2 gene. However, this patient
also has very fragile skin and a food intolerance problem. We
identified another novel 5’-UTR5 variant in the PLEC gene
consistent with these additional symptoms.

Figure S4 shows that the fraction of noncoding variants (intronic
and UTR) is much higher in the postsubmission analysis (46% in
submitted predictions vs. 77% in postsubmission predictions) with
38% (13 out of 34 C6 category variants) being novel. Accordingly, the
missense variant fraction is reduced to 20% compared with 46% in
the submitted predictions.

Validation of these noncoding variants is difficult. To check
for any probable regulatory effects of these variants, we noted
the RegulomeDB scores <4 (see the Section 2.8.) in Table S3. Out
of 44 prioritized variants, 36 returned a RegulomeDB score <4.
We found three variants with a score of 2 and two variants with a
score of 3 out of the 36 variants. These variants are a
neurological disorder case with a score of 2a (rare—<0.05%
allele frequency, an intronic variant in CHD2, related to
myoclonic encephalopathy). Two connective-tissue disorder
cases with score 2b—one is the novel 5'-UTR variant in the PLEC
gene (described above) and another one is rare—<0.01% allele
frequency—missense variant in the TNXB gene, predicted to be
deleterious by half of the methods used (so a C3 category
variant). We found one neurological variant with score 3a (novel
coding-intronic variant in ARID1B, related to developmental delay
with seizures). Another novel connective-tissue disorder variant
in the FBN1 gene with score 3a was already included at the
challenge stage (described in Section 3.5.).

3.9 | Predictive secondary variants

Table S4 lists the eight predicted secondary variants we submitted,
found in six SickKids5 patients. There are three novel secondary
variants (a clinical missense variant in KCNH2 for Long QT syndrome,
a nonframeshift-deletion in MSH2 for Lynch syndrome, and a
nonframeshift-deletion in BRCA2 for hereditary breast cancer) found
in one neurological disorder patient (of African origin). The other
predicted secondary variants are clinical variants in the MSHé and
MSH2 genes for Lynch syndrome and in the LMNA gene for
hypertrophic cardiomyopathy. The same novel MSH2 variant was
found in two patients (genome 081 and 091) and according to the
challenge assessor (Kasak et al., 2019), these might be sequencing
errors. The alternate allele fraction (alt allele counts/ref allele counts)
of these variants (Table S4) are poor, 0.36 and 0.42 for genomes 081
and 091, respectively, supporting the sequencing error hypothesis.

4 | DISCUSSION

The CAGI SickKids5 challenge provided an opportunity to assess
methods for correlating whole-genome sequencing data to clinical
information. Participants were asked to predict the disease class (eye,
neurological, and connective-tissue disorders) of 24 undiagnosed whole
genomes and to identify which genome matches to each clinical profile.
To address this challenge, we developed a semi-automated gene-centric
method. The method builds on one we had previously implemented for
identifying causative variants based on clinical information in the CAGI4
SickKids challenge (Pal et al., 2017). The key CAGI5 innovation is the
introduction of a phenotype weighting scheme to evaluate the match of
gene descriptions and clinical profiles, using HPO (Kohler et al., 2014)
terms. Using this approach, we were able to identify correct disease
classes for 12 of the 24 genomes and to match five genomes to the
correct clinical profiles. Analysis of the method's performance and
results have provided a number of insights into issues related to the
scoring scheme, nature of prioritized variants, the methodology used,

and key factors in extracting clinical information from a whole genome.

4.1 | Phenotype-weighted scoring scheme
for genes

The success of the phenotype-weighted scoring scheme depends on
how effectively the clinical documentation portrays patients’
symptoms. SickKids clinical profiles are constrained to terms in
the HPO, and phenotypes associated with specific genes are also
available in that form. Thus, the HPO-based gene by gene matching
to a clinical profile provides a strategy for the selection of genes
that are most likely to harbor causative variants. However, simply
looking for overlap between gene and profile HPO terms is a not
sensitive enough matching algorithm. Instead, we assigned a weight
to each of the clinical profile terms, depending on the prominence of

the term in the description (e.g., up-weighting referral terms), and
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down-weighting terms that are characterized as less severe and
those that do not match the disease class.

Although this approach did allow us to match a significant number of
genomes to profiles, it has issues in some specific circumstances.
Generally, too few terms in a clinical profile are not informative enough.
For example, in one eye disorder case (case W), there were only two
effective HPO terms in the profile, resulting in low discriminatory power
and the selection of a large number of genes. As a consequence, there are
a very large number of candidate variants (Figure 4, last row and third
column). Although more terms are usually better, term combinations are
of varying discriminatory power. For example, in one neurological
disorder (case J), the patient has HPO terms for all three disease classes.
As a result, we failed to identify the correct disease class and so did not
assign appropriate weights, resulting in an erroneous choice of the
genome for the profile. A limitation of the current scoring method is that
it does not penalize for missing terms—ones that are not present for a
gene but are in a profile or conversely ones that are not present in a
profile but are there for a gene. For example, there are some genes
related to eye disorders that are also related to hearing problems, and
some that are not. The method as used in CAGI5 would select all these
genes even if the profile includes hearing HPO terms (e.g., case X). These

limitations will be addressed in future versions of the method.

4.2 | Nature of prioritized variants

In SickKids4 (Pal et al., 2017) we mostly prioritized coding variants (88%
of all types of variant in SickKids4 vs. 54% in SickKids5, Figure 7c). The
high proportion of noncoding candidate variants in SickKids5 is a
consequence of introducing two more noncoding variant impact analysis
methods, GERP++ (Davydov et al., 2010) and Eigen (lonita-Laza et al.,
2016), in addition to CADD (Kircher et al., 2014), which was also used in
CAGI4. GERP++ turned out to select many more variants than CADD,
whereas Eigen returned none. While CADD for coding missense
variants is considered to have a reasonable performance (Anderson &
Lassmann, 2018), CADD scores for noncoding variants have been found
to have limited clinical utility in one study of rare noncoding variants in
a hereditary cancer panel (Mather et al., 2016). There is no such
benchmarking data for rare noncoding variants available for GERP++
scores. The authors of the method report an overall very low (0.86% in;
Davydov et al., 2010) false-positive rate. A general problem at present is
that methods for noncoding variants are less mature than those for
coding. Nevertheless, noncoding variants do play a critical role in our
analysis (four out of five exact match cases in our predictions were

identified using noncoding variants).

4.3 | Scope for improvement

The cases in the Sickkids5 challenge were unresolved by a traditional
pipeline. Although we and another group did better than random at
matching genomes to profiles and the assessors considered some
prioritized genes promising, most of the cases remain a mystery. And,

as noted earlier, in general, rare disease pipelines have a success rate
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below 50% (Clark et al., 2018). There is a number of possible
explanations for the low yield of diagnostic variants, even given
whole-genome sequencing data. We conclude by considering the
most relevant of these, and the prospects for progress:

(A) New genes related to specific disease phenotypes are continually
being discovered (Friedman et al, 2019; Guelfi et al, 2019)
implying that there are many more still to be found. A strategy that
might help address this problem is to consider all putative impact
variants in all genes, and see if any of these genes have phenotype
descriptions that offer some clue to a possible match (a genotype
to phenotype approach; Hu et al, 2013; Wang et al,, 2010). As
more rare disease genome data accumulate, it will be possible to
look for enrichment of impact variants in particular genes in the
presence of particular phenotypes, and this is likely to prove a
powerful approach providing a long-term solution. In the meantime,
for analysis of a single genome, and even more so for the Sickkids5
challenge with 24 genomes, the large number of putative impact
variants makes the strategy very difficult. If we consider only C2
variants—not clinically recognized but confidently predicted high
impact, there is an average of about one in every eight genes, so
that in a single full genome there will be about 3,000 variants to
screen. When considering 24 genomes, there will be about 70,000
such variants. Nevertheless, it may be possible to develop a tuned
version of the phenotype scoring scheme we used in the challenge
to filter the variants. Consideration of knockout or knock-in data in
model organisms (Smedley et al., 2015) together with such clues
may be partially effective.

(B) In some complicated clinical profiles (such as for connective-tissue
disorders or neurological disorders), contributions from more than
one gene may be present. Indeed, one study estimates that this
occurs in 5% of rare disease cases (Yang et al., 2014) and this likely
is a considerable underestimate. We see evidence for the
involvement of multiple genes in three cases (Table S3). For
example, for clinical profile F, a connective-tissue disorder, we
originally predicted a novel missense variant in EP300 as causative,
with an OMIM disease description of Rubinstein-Taybi syndrome.
According to the assessor, even though we selected the correct
genome, this disease description is not an adequate match to the
patient’s symptoms. On further inspection of the genome, knowing
it is a correct match, we found an intronic variant in COL5A2, which
is related to the classic Ehlers-Danlos syndrome (a partial match of
patient’s symptoms). We also found two other novel impact UTR
variants in PLEC (the gene has an autosomal recessive inheritance
pattern in OMIM), with an OMIM disease description of
epidermolysis bullosa with pyloric atresia, related to the patient’s
fragile skin and food intolerance symptoms.

(C) As discussed above, present methods for identifying noncoding
impact variants are not mature. Recent strong CAGI results for
predicting which variants affect expression are encouraging in this
regard (Shigaki et al., 2019), and it would be interesting to see how
some of the more successful methods used there perform on the
SickKids data.
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(D) Nonstandard descriptions in clinical reports: an advantage of the
Sickkids data is the use of HPO terms to describe patients’
symptoms (Girdea et al, 2013). That greatly facilitated the
identification of candidate genes, and its broader adoption by
other analysis centers will improve performance. In addition, some
kind of weighting scale would also help—it may be obvious to a
physician that a particular HPO is not central to a patient’s
phenotype, but at present, that information is often not available in
the record.

(E) The role of variants affecting so far poorly understood the
function, particularly those that may affect chromatin structure.
Examples of these have already been found in cancer (Fudenberg
& Pollard, 2019; Makova & Hardison, 2015). It is not clear how
well general noncoding impact methods will work on such
variants, and they may be very far from genes, requiring a much
larger total number of variants to be considered, with an
accompanying rise in false positives. Advances in resolving
three-dimensional chromatin structure and how it varies (Kishi
& Gotoh, 2018; Marti-Renom et al., 2018; Qi & Zhang, 2019) hold

long-term hope for progress here.

ACKNOWLEDGMENTS

We are grateful to Dr. Stephen Meyn at the Hospital for Sick
Children, Toronto for generously making the challenge data set
available. This work was partially supported by NIH RO1GM120364
and RO1GM104436 to JM. The CAGI experiment coordination is
supported by NIH U41 HG007346 and the CAGI conference by NIH
R13 HG006650.

DATA AVAILABILITY STATEMENT

The prediction files are available to registered users from the CAGI
website (https://genomeinterpretation.org/SickKids5_clinical_genomes).
Restrictions apply to the availability of the genomic data, which were
used for this study under license from the Hospital for Sick Children.
Genomic data are available from Dr. Stephen Meyn with the permission
of the Hospital for Sick Children.

ORCID

Lipika R. Pal http://orcid.org/0000-0002-3390-110X
Kunal Kundu http://orcid.org/0000-0002-4452-4290
Yizhou Yin http://orcid.org/0000-0002-5365-2294
John Moult http://orcid.org/0000-0002-3012-2282
REFERENCES

Adzhubei, 1. A., Schmidt, S., Peshkin, L., Ramensky, V. E., Gerasimova, A,
Bork, P., ... Sunyaev, S. R. (2010). A method and server for predicting
damaging missense mutations. Nature Methods, 7, 248-249. https://
doi.org/10.1038/nmeth0410-248

Anderson, D., & Lassmann, T. (2018). A phenotype centric benchmark of
variant prioritisation tools. NPJ Genomic Medicine, 3, 5. https://doi.org/
10.1038/s41525-018-0044-9

Auton, A, Abecasis, G. R, Altshuler, D. M., Durbin, R. M., Abecasis, G. R,,
Bentley, D. R,, ... Abecasis, G. R. (2015). A global reference for human
genetic variation. Nature, 526(7571), 68-74. https://doi.org/10.1038/
nature15393

Blake, J. A, Christie, K. R., Dolan, M. E., Drabkin, H. J., Hill, D. P., Ni, L., ...
Westerfeld, M. (2015). Gene ontology consortium: Going forward.
Nucleic Acids Research, 43, D1049-D1056. https://doi.org/10.1093/
nar/gkul179

Boyle, A. P., Hong, E. L., Hariharan, M., Cheng, Y., Schaub, M. A,, Kasowski,
M., ... Snyder, M. (2012). Annotation of functional variation in
personal genomes using RegulomeDB. Genome Research, 22,
1790-1797. https://doi.org/10.1101/gr.137323.112

Carter, H., Douville, C., Stenson, P. D., Cooper, D. N., & Karchin, R. (2013).
Identifying Mendelian disease genes with the variant effect scoring
tool. BMC Genomics, 14, S3. https://doi.org/10.1186/1471-2164-14-
$3-S3

Cingolani, P., Patel, V. M., Coon, M., Nguyen, T., Land, S. J., Ruden, D. M., &
Lu, X. (2012). Using Drosophila melanogaster as a model for genotoxic
chemical mutational studies with a new program, SnpSift. Frontiers in
Genetics, 3, https://doi.org/10.3389/fgene.2012.00035

Cingolani, P., Platts, A, Wang, L. L., Coon, M., Nguyen, T., Wang, L., ...
Ruden, D. M. (2012). A program for annotating and predicting the
effects of single nucleotide polymorphisms, SnpEff: SNPs in the
genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly, 6,
80-92. https://doi.org/10.4161/fly.19695

Clark, M. M,, Stark, Z., Farnaes, L., Tan, T. Y., White, S. M., Dimmock, D., &
Kingsmore, S. F. (2018). Meta-analysis of the diagnostic and clinical
utility of genome and exome sequencing and chromosomal microarray
in children with suspected genetic diseases. NPJ Genomic Medicine, 3,
16. https://doi.org/10.1038/s41525-018-0053-8

Cooper, G. M,, & Shendure, J. (2011). Needles in stacks of needles: Finding
disease-causal variants in a wealth of genomic data. Nature Reviews
Genetics, 12(9), 628-640. https://doi.org/10.1038/nrg3046

Daiger, S. P. (2004). |dentifying retinal disease genes: How far have we
come, how far do we have to go? Novartis Foundation Symposium, 255,
17-27. discussion 27-36, 177-178. http://www.ncbi.nlm.nih.gov/
pubmed/14750594

Davydov, E. V., Goode, D. L., Sirota, M., Cooper, G. M., Sidow, A, &
Batzoglou, S. (2010). Identifying a high fraction of the human genome
to be under selective constraint using GERP++. PLoS Computational
Biology, 6, €1001025. https://doi.org/10.1371/journal.pcbi.1001025

Delgado, J., Radusky, L. G., Cianferoni, D., & Serrano, L. (2019). FoldX 5.0:
Working with RNA, small molecules and a new graphical interface.
Bioinformatics, 35, 4168-4169. https://doi.org/10.1093/
bioinformatics/btz184

Eppig, J. T., Blake, J. A, Bult, C. J,, Kadin, J. A., & Richardson, J. E., Mouse
Genome Database Group. (2015). The Mouse Genome Database
(MGD): Facilitating mouse as a model for human biology and disease.
Nucleic Acids Research, 43(Database issue), D726-D736. https://doi.
org/10.1093/nar/gku967

Friedman, J.,, Smith, D. E., Issa, M. Y., Stanley, V., Wang, R., Mendes, M. |, ...
Gleeson, J. G. (2019). Biallelic mutations in valyl-tRNA synthetase
gene VARS are associated with a progressive neurodevelopmental
epileptic encephalopathy. Nature Communications, 10, 707. https://doi.
org/10.1038/s41467-018-07067-3

Fudenberg, G., & Pollard, K. S. (2019). Chromatin features constrain
structural variation across evolutionary timescales. Proceedings of the
National Academy of Sciences of the United States of America, 6,
2175-2180. https://doi.org/10.1073/pnas.1808631116

Georgi, B., Voight, B. F., & Bucan, M. (2013). From mouse to human:
Evolutionary genomics analysis of human orthologs of essential genes.


https://genomeinterpretation.org/SickKids5_clinical_genomes
http://orcid.org/0000-0002-3390-110X
http://orcid.org/0000-0002-4452-4290
http://orcid.org/0000-0002-5365-2294
http://orcid.org/0000-0002-3012-2282
https://doi.org/10.1038/nmeth0410-248
https://doi.org/10.1038/nmeth0410-248
https://doi.org/10.1038/s41525-018-0044-9
https://doi.org/10.1038/s41525-018-0044-9
https://doi.org/10.1038/nature15393
https://doi.org/10.1038/nature15393
https://doi.org/10.1093/nar/gku1179
https://doi.org/10.1093/nar/gku1179
https://doi.org/10.1101/gr.137323.112
https://doi.org/10.1186/1471-2164-14-S3-S3
https://doi.org/10.1186/1471-2164-14-S3-S3
https://doi.org/10.3389/fgene.2012.00035
https://doi.org/10.4161/fly.19695
https://doi.org/10.1038/s41525-018-0053-8
https://doi.org/10.1038/nrg3046
http://www.ncbi.nlm.nih.gov/pubmed/14750594
http://www.ncbi.nlm.nih.gov/pubmed/14750594
https://doi.org/10.1371/journal.pcbi.1001025
https://doi.org/10.1093/bioinformatics/btz184
https://doi.org/10.1093/bioinformatics/btz184
https://doi.org/10.1093/nar/gku967
https://doi.org/10.1093/nar/gku967
https://doi.org/10.1038/s41467-018-07067-3
https://doi.org/10.1038/s41467-018-07067-3
https://doi.org/10.1073/pnas.1808631116

PAL ET AL

PLoS Genetics, 9(5), e1003484. https://doi.org/10.1371/journal.pgen.
1003484

Girdea, M., Dumitriu, S., Fiume, M., Bowdin, S., Boycott, K. M., Chénier, S.,
... Brudno, M. (2013). PhenoTips: Patient phenotyping software for
clinical and research use. Human Mutation, 34, 1057-1065. https://
doi.org/10.1002/humu.22347

Guelfi, S., Botia, J. A, Thom, M. Ramasamy, A. Perona, M,
Stanyer, L., .. Matarin, M. (2019). Transcriptomic and genetic
analyses reveal potential causal drivers for intractable partial
epilepsy. Brain, 142, 1616-1630. https://doi.org/10.1093/brain/
awz074

Habegger, L., Balasubramanian, S., Chen, D. Z., Khurana, E., Sboner, A,
Harmanci, A,, ... Gerstein, M. (2012). Vat: A computational framework
to functionally annotate variants in personal genomes within a cloud-
computing environment. Bioinformatics, 28 , 2267-2269. https://doi.
org/10.1093/bioinformatics/bts368

Hamosh, A, Scott, A. F., Amberger, J. S., Bocchini, C. A., & McKusick, V. A.
(2005). Online Mendelian Inheritance in Man (OMIM), a knowledge-
base of human genes and genetic disorders. Nucleic Acids Research, 33,
D514-D517. https://doi.org/10.1093/nar/gki033

Hecht, M., Bromberg, Y., & Rost, B. (2015). Better prediction of functional
effects for sequence variants. BMC Genomics, 16, S1. https://doi.org/
10.1186/1471-2164-16-58-S1

Hoskins, R. A,, Repo, S., Barsky, D., Andreoletti, G., Moult, J., & Brenner, S.
E. (2017). Reports from CAGI: The critical assessment of genome
interpretation. Human Mutation, 38, 1039-1041. https://doi.org/10.
1002/humu.23290

Hu, H., Huff, C. D., Moore, B., Flygare, S., Reese, M. G., & Yandell, M.
(2013). VAAST 2.0: Improved variant classification and disease-gene
identification using a conservation-controlled amino acid substitution
matrix. Genetic Epidemiology, 37, 622-634. https://doi.org/10.1002/
gepi.21743

loannidis, N. M., Rothstein, J. H., Pejaver, V., Middha, S., McDonnell, S. K.,
Baheti, S., ... Sieh, W. (2016). REVEL: An ensemble method for
predicting the pathogenicity of rare missense variants. American
Journal of Human Genetics, 99(4), 877-885. https://doi.org/10.1016/j.
ajhg.2016.08.016

lonita-Laza, I., McCallum, K., Xu, B., & Buxbaum, J. D. (2016). A spectral
approach integrating functional genomic annotations for coding and
noncoding variants. Nature Genetics, 48(2), 214-220. https://doi.org/
10.1038/ng.3477

Jian, X., Boerwinkle, E., & Liu, X. (2014). In silico prediction of splice-
altering single nucleotide variants in the human genome. Nucleic Acids
Research, 42(22), 13534-13544. https://doi.org/10.1093/nar/
gku1206

Kalia, S. S., Adelman, K., Bale, S. J,, Chung, W. K, Eng, C., Evans, J. P,, ...
Miller, D. T. (2017). Recommendations for reporting of secondary
findings in clinical exome and genome sequencing, 2016 update
(ACMG SF v2.0): A policy statement of the American College of
Medical Genetics and Genomics. Genetics in Medicine, 19(255), 249.
https://doi.org/10.1038/gim.2016.190

Kasak, L., Hunter, J. M., Udani, R., Bakolitsa, C., Hu, Z., Adhikari, A. N,, ...
Meyn, M. S. (2019). CAGI SickKids challenges: Assessment of
phenotype and variant predictions derived from clinical and genomic
data of children with undiagnosed diseases. Human Mutation, 40,
1191-1622. https://doi.org/10.1002/humu.23874

Katsonis, P., & Lichtarge, O. (2017). Objective assessment of the
evolutionary action equation for the fitness effect of missense
mutations across CAGI-blinded contests. Human Mutation, 38,
1072-1084. https://doi.org/10.1002/humu.23266

Kircher, M., Witten, D. M., Jain, P., O'Roak, B. J., Cooper, G. M., &
Shendure, J. (2014). A general framework for estimating the relative
pathogenicity of human genetic variants. Nature Genetics, 46(3),
310-315. https://doi.org/10.1038/ng.2892

WiLEy—L3¢

Kishi, Y., & Gotoh, Y. (2018). Regulation of chromatin structure during
neural development. Frontiers in Neuroscience, 12, https://doi.org/10.
3389/fnins.2018.00874

Kramer, A., Shah, S., Rebres, R. A, Tang, S., & Richards, D. R. (2017).
Leveraging network analytics to infer patient syndrome and identify
causal genes in rare disease cases. BMC Genomics, 18, 551. https://doi.
org/10.1186/s12864-017-3910-4

Kumar, P., Henikoff, S., & Ng, P. C. (2009). Predicting the effects of coding
non-synonymous variants on protein function using the SIFT
algorithm. Nature Protocols, 4(7), 1073-1081. https://doi.org/10.
1038/nprot.2009.86

Kéhler, S., Doelken, S. C., Mungall, C. J., Bauer, S., Firth, H. V., Bailleul-
Forestier, 1., ... Robinson, P. N. (2014). The Human Phenotype
Ontology project: Linking molecular biology and disease through
phenotype data. Nucleic Acids Research, 42, D966-D974. https://doi.
org/10.1093/nar/gkt1026

Landrum, M. J,, Lee, J. M., Benson, M., Brown, G., Chao, C., Chitipiralla, S.,
... Maglott, D. R. (2016). ClinVar: Public archive of interpretations of
clinically relevant variants. Nucleic Acids Research, 44(D1),
D862-D868. https://doi.org/10.1093/nar/gkv1222

Lek, M., Karczewski, K. J., Minikel, E. V., Samocha, K. E., Banks, E., Fennell,
T., ... Consortium, E. A. (2016). Analysis of protein-coding genetic
variation in 60,706 humans. Nature, 536(7616), 285-291. https://doi.
org/10.1038/nature19057

Liu, X., Wu, C,, Li, C., & Boerwinkle, E. (2016). dbNSFP v3.0: A one-stop
database of functional predictions and annotations for human
nonsynonymous and splice-site  SNVs. Human Mutation, 37(3),
235-241. https://doi.org/10.1002/humu.22932

Makova, K. D., & Hardison, R. C. (2015). The effects of chromatin
organization on variation in mutation rates in the genome. Nature
Reviews Genetics, 16(4), 213-223. https://doi.org/10.1038/nrg3890

Marti-Renom, M. A., Almouzni, G., Bickmore, W. A, Bystricky, K., Cavalli,
G, Fraser, P,, ... Torres-Padilla, M.-E. (2018). Challenges and guidelines
toward 4D nucleome data and model standards. Nature Genetics,
50(10), 1352-1358. https://doi.org/10.1038/s41588-018-0236-3

Mather, C. A, Mooney, S. D., Salipante, S. J., Scroggins, S., Wu, D,
Pritchard, C. C., & Shirts, B. H. (2016). CADD score has limited clinical
validity for the identification of pathogenic variants in noncoding
regions in a hereditary cancer panel. Genetics in Medicine, 18,
1269-1275. https://doi.org/10.1038/gim.2016.44

McLaren, W., Pritchard, B., Rios, D., Chen, Y., Flicek, P., & Cunningham, F.
(2010). Deriving the consequences of genomic variants with the
Ensembl APl and SNP Effect Predictor. Bioinformatics, 26(2070), 2069.
https://doi.org/10.1093/bioinformatics/btq330

Pal, L. R,, Kundu, K., Yin, Y., & Moult, J. (2017). CAGI4 SickKids clinical
genomes challenge: A pipeline for identifying pathogenic variants.
Human Mutation, 38, 1169-1181. https://doi.org/10.1002/humu.
23257

Park, H., Bradley, P., Greisen, P., Liu, Y., Mulligan, V. K., Kim, D. E., ...
Dimaio, F. (2016). Simultaneous Optimization of biomolecular energy
functions on features from small molecules and macromolecules.
Journal of Chemical Theory and Computation, 12, 6201-6212. https://
doi.org/10.1021/acs.jctc.6b00819

Pejaver, V., Mooney, S. D, & Radivojac, P. (2017). Missense variant
pathogenicity predictors generalize well across a range of function-
specific prediction challenges. Human Mutation, 38, 1092-1108.
https://doi.org/10.1002/humu.23258

Pollard, K. S., Hubisz, M. J., Rosenbloom, K. R., & Siepel, A. (2010). Detection
of nonneutral substitution rates on mammalian phylogenies. Genome
Research, 20, 110-121. https://doi.org/10.1101/gr.097857.109

Pruitt, K. D., Brown, G. R,, Hiatt, S. M., Thibaud-Nissen, F., Astashyn, A,
Ermolaeva, O., ... Ostell, J. M. (2014). RefSeq: An update on
mammalian reference sequences. Nucleic Acids Research, 42(Database
issue), D756-D763. https://doi.org/10.1093/nar/gkt1114


https://doi.org/10.1371/journal.pgen.1003484
https://doi.org/10.1371/journal.pgen.1003484
https://doi.org/10.1002/humu.22347
https://doi.org/10.1002/humu.22347
https://doi.org/10.1093/brain/awz074
https://doi.org/10.1093/brain/awz074
https://doi.org/10.1093/bioinformatics/bts368
https://doi.org/10.1093/bioinformatics/bts368
https://doi.org/10.1093/nar/gki033
https://doi.org/10.1186/1471-2164-16-S8-S1
https://doi.org/10.1186/1471-2164-16-S8-S1
https://doi.org/10.1002/humu.23290
https://doi.org/10.1002/humu.23290
https://doi.org/10.1002/gepi.21743
https://doi.org/10.1002/gepi.21743
https://doi.org/10.1016/j.ajhg.2016.08.016
https://doi.org/10.1016/j.ajhg.2016.08.016
https://doi.org/10.1038/ng.3477
https://doi.org/10.1038/ng.3477
https://doi.org/10.1093/nar/gku1206
https://doi.org/10.1093/nar/gku1206
https://doi.org/10.1038/gim.2016.190
https://doi.org/10.1002/humu.23874
https://doi.org/10.1002/humu.23266
https://doi.org/10.1038/ng.2892
https://doi.org/10.3389/fnins.2018.00874
https://doi.org/10.3389/fnins.2018.00874
https://doi.org/10.1186/s12864-017-3910-4
https://doi.org/10.1186/s12864-017-3910-4
https://doi.org/10.1038/nprot.2009.86
https://doi.org/10.1038/nprot.2009.86
https://doi.org/10.1093/nar/gkt1026
https://doi.org/10.1093/nar/gkt1026
https://doi.org/10.1093/nar/gkv1222
https://doi.org/10.1038/nature19057
https://doi.org/10.1038/nature19057
https://doi.org/10.1002/humu.22932
https://doi.org/10.1038/nrg3890
https://doi.org/10.1038/s41588-018-0236-3
https://doi.org/10.1038/gim.2016.44
https://doi.org/10.1093/bioinformatics/btq330
https://doi.org/10.1002/humu.23257
https://doi.org/10.1002/humu.23257
https://doi.org/10.1021/acs.jctc.6b00819
https://doi.org/10.1021/acs.jctc.6b00819
https://doi.org/10.1002/humu.23258
https://doi.org/10.1101/gr.097857.109
https://doi.org/10.1093/nar/gkt1114

PAL ET AL

2 | wiLEY-

Qi, Y., & Zhang, B. (2019). Predicting three-dimensional genome
organization with chromatin states. PLoS Computational Biology,
15(6), €1007024. https://doi.org/10.1371/journal.pcbi.1007024

Rentzsch, P., Witten, D., Cooper, G. M., Shendure, J., & Kircher, M. (2019).
CADD: Predicting the deleteriousness of variants throughout the
human genome. Nucleic Acids Research, 47, D886-D894. https://doi.
org/10.1093/nar/gky1016

Safran, M., Dalah, I., Alexander, J., Rosen, N., Iny Stein, T., Shmoish, M, ...
Lancet, D. (2010). GeneCards Version 3: The human gene integrator.
Database: The Journal of Biological Databases and Curation, 2010, 2010.
https://doi.org/10.1093/database/baq020

Schriml, L. M., Mitraka, E., Munro, J., Tauber, B., Schor, M., Nickle, L., ...
Greene, C. (2019). Human Disease Ontology 2018 update: Classifica-
tion, content and workflow expansion. Nucleic Acids Research, 47,
D955-D962. https://doi.org/10.1093/nar/gky1032

Schwarze, K., Buchanan, J., Taylor, J. C., & Wordsworth, S. (2018). Are
whole-exome and whole-genome sequencing approaches cost-effec-
tive? A systematic review of the literature. Genetics in Medicine,
20(10), 1122-1130. https://doi.org/10.1038/gim.2017.247

Schymkowitz, J. W. H., Rousseau, F., Martins, I. C., Ferkinghoff-Borg, J.,
Stricher, F., & Serrano, L. (2005). Prediction of water and metal
binding sites and their affinities by using the Fold-X force field.
Proceedings of the National Academy of Sciences, 102, 10147-10152.
https://doi.org/10.1073/pnas.0501980102

Shen, L., Attimonelli, M., Bai, R., Lott, M. T., Wallace, D. C., Falk, M. J,, &
Gai, X. (2018). MSegDR mvTool: A mitochondrial DNA Web and API
resource for comprehensive variant annotation, universal nomencla-
ture collation, and reference genome conversion. Human Mutation,
39(6), 806-810. https://doi.org/10.1002/humu.23422

Shigaki, D., Adato, O., Adhikar, A. N., Dong, S., Hawkins-Hooker, A., Inoue,
F., ... Beer, M. A. (2019). Integration of multiple epigenomic marks
improves prediction of variant impact in saturation mutagenesis
reporter assay. Human Mutation, 40, 1280-1291. https://doi.org/10.
1002/humu.23797

Siepel, A., Bejerano, G., Pedersen, J. S., Hinrichs, A. S, Hou, M,
Rosenbloom, K., ... Haussler, D. (2005). Evolutionarily conserved
elements in vertebrate, insect, worm, and yeast genomes. Genome
Research, 15, 1034-1050. https://doi.org/10.1101/gr.3715005

Singleton, M. V., Guthery, S. L., Voelkerding, K. V., Chen, K., Kennedy, B.,
Margraf, R. L., ... Yandell, M. (2014). Phevor combines multiple
biomedical ontologies for accurate identification of disease-causing
alleles in single individuals and small nuclear families. American Journal
of Human Genetics, 94, 599-610. https://doi.org/10.1016/j.ajhg.2014.
03.010

van Slyke, C. E., Bradford, Y. M., Westerfield, M., & Haendel, M. A. (2014).
The zebrafish anatomy and stage ontologies: Representing the
anatomy and development of Danio rerio. Journal of Biomedical
Semantics, 5, 12. https://doi.org/10.1186/2041-1480-5-12

Smedley, D., Jacobsen, J. O. B., Jager, M., Kohler, S., Holtgrewe, M.,
Schubach, M., ... Robinson, P. N. (2015). Next-generation diagnostics
and disease-gene discovery with the Exomiser. Nature Protocols,
10(12), 2004-2015. https://doi.org/10.1038/nprot.2015.124

Smedley, D., & Robinson, P. N. (2015). Phenotype-driven strategies for
exome prioritization of human Mendelian disease genes. Genome
Medicine, 7, 81. https://doi.org/10.1186/s13073-015-0199-2

Smedley, D., Schubach, M., Jacobsen, J. O. B., Kéhler, S., Zemojtel, T.,
Spielmann, M, ... Robinson, P. N. (2016). A whole-genome analysis
framework for effective identification of pathogenic regulatory

variants in mendelian disease. The American Journal of Human Genetics,
99(3), 595-606. https://doi.org/10.1016/j.ajhg.2016.07.005

Smith, C. L., & Eppig, J. T. (2009). The mammalian phenotype ontology:
Enabling robust annotation and comparative analysis. Wiley Inter-
disciplinary Reviews: Systems Biology and Medicine, 1, 390-399. https://
doi.org/10.1002/wsbm.44

Stelzer, G., Plaschkes, I., Oz-Levi, D., Alkelai, A., Olender, T., Zimmerman,
S., ... Lancet, D. (2016). VarElect: The phenotype-based variation
prioritizer of the GeneCards Suite. BMC Genomics, 17, 444. https://doi.
org/10.1186/s12864-016-2722-2

Stenson, P. D., Mort, M., Ball, E. V., Shaw, K., Phillips, A., & Cooper, D. N.
(2014). The Human Gene Mutation Database: Building a comprehen-
sive mutation repository for clinical and molecular genetics, diag-
nostic testing and personalized genomic medicine. Human Genetics,
133(1), 1-9. https://doi.org/10.1007/s00439-013-1358-4

Wang, K., Li, M, & Hakonarson, H. (2010). ANNOVAR: Functional
annotation of genetic variants from high-throughput sequencing data.
Nucleic Acids Research, 38, e164. https://doi.org/10.1093/nar/gkq603

Yang, H., Robinson, P. N., & Wang, K. (2015). Phenolyzer: Phenotype-
based prioritization of candidate genes for human diseases. Nature
Methods, 12, 1-6. https://doi.org/10.1038/nmeth.3484

Yang, Y., Muzny, D. M,, Xia, F., Niu, Z., Person, R,, Ding, Y., ... Eng, C. M.
(2014). Molecular findings among patients referred for clinical whole-
exome sequencing. Journal of the American Medical Association,
312(18), 1870-1879. https://doi.org/10.1001/jama.2014.14601

Yin, Y., Kundu, K, Pal, L. R, & Moult, J. (2017). Ensemble variant
interpretation methods to predict enzyme activity and assign
pathogenicity in the CAGI4 NAGLU (Human N-acetyl-glucosamini-
dase) and UBE2l (Human SUMO-ligase) challenges. Human Mutation,
38(9), 1109-1122. https://doi.org/10.1002/humu.23267

Yue, P., Li, Z., & Moult, J. (2005). Loss of protein structure stability as a
major causative factor in monogenic disease. Journal of Molecular
Biology, 353(2), 459-473. https://doi.org/10.1016/j.jmb.2005.08.020

Yue, P, & Moult, J. (2006). Identification and analysis of deleterious
human SNPs. Journal of Molecular Biology, 356(5), 1263-1274. https://
doi.org/10.1016/j.jmb.2005.12.025

Zook, J. M,, Catoe, D., McDaniel, J., Vang, L., Spies, N., Sidow, A, ... Salit, M.
(2016). Extensive sequencing of seven human genomes to character-
ize benchmark reference materials. Scientific Data, 3, 160025. https://
doi.org/10.1038/sdata.2016.25

SUPPORTING INFORMATION

Additional supporting information may be found online in the
Supporting Information section.

How to cite this article: Pal LR, Kundu K, Yin Y, Moult J.
Matching whole genomes to rare genetic disorders:
Identification of potential causative variants using phenotype-
weighted knowledge in the CAGI SickKids5 clinical genomes
challenge. Human Mutation. 2020;41:347-362.
https://doi.org/10.1002/humu.23933



https://doi.org/10.1371/journal.pcbi.1007024
https://doi.org/10.1093/nar/gky1016
https://doi.org/10.1093/nar/gky1016
https://doi.org/10.1093/database/baq020
https://doi.org/10.1093/nar/gky1032
https://doi.org/10.1038/gim.2017.247
https://doi.org/10.1073/pnas.0501980102
https://doi.org/10.1002/humu.23422
https://doi.org/10.1002/humu.23797
https://doi.org/10.1002/humu.23797
https://doi.org/10.1101/gr.3715005
https://doi.org/10.1016/j.ajhg.2014.03.010
https://doi.org/10.1016/j.ajhg.2014.03.010
https://doi.org/10.1186/2041-1480-5-12
https://doi.org/10.1038/nprot.2015.124
https://doi.org/10.1186/s13073-015-0199-2
https://doi.org/10.1016/j.ajhg.2016.07.005
https://doi.org/10.1002/wsbm.44
https://doi.org/10.1002/wsbm.44
https://doi.org/10.1186/s12864-016-2722-2
https://doi.org/10.1186/s12864-016-2722-2
https://doi.org/10.1007/s00439-013-1358-4
https://doi.org/10.1093/nar/gkq603
https://doi.org/10.1038/nmeth.3484
https://doi.org/10.1001/jama.2014.14601
https://doi.org/10.1002/humu.23267
https://doi.org/10.1016/j.jmb.2005.08.020
https://doi.org/10.1016/j.jmb.2005.12.025
https://doi.org/10.1016/j.jmb.2005.12.025
https://doi.org/10.1038/sdata.2016.25
https://doi.org/10.1038/sdata.2016.25
https://doi.org/10.1002/humu.23933



