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Abstract

Precise identification of causative variants from whole‐genome sequencing data,

including both coding and noncoding variants, is challenging. The Critical Assessment

of Genome Interpretation 5 SickKids clinical genome challenge provided an

opportunity to assess our ability to extract such information. Participants in the

challenge were required to match each of the 24 whole‐genome sequences to the

correct phenotypic profile and to identify the disease class of each genome. These are

all rare disease cases that have resisted genetic diagnosis in a state‐of‐the‐art pipeline.
The patients have a range of eye, neurological, and connective‐tissue disorders. We

used a gene‐centric approach to address this problem, assigning each gene a

multiphenotype‐matching score. Mutations in the top‐scoring genes for each

phenotype profile were ranked on a 6‐point scale of pathogenicity probability,

resulting in an approximately equal number of top‐ranked coding and noncoding

candidate variants overall. We were able to assign the correct disease class for 12

cases and the correct genome to a clinical profile for five cases. The challenge assessor

found genes in three of these five cases as likely appropriate. In the postsubmission

phase, after careful screening of the genes in the correct genome, we identified

additional potential diagnostic variants, a high proportion of which are noncoding.
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1 | INTRODUCTION

Identification of the variant(s) causing a patient’s clinical symptoms is

one of the key challenges in rare disease diagnostics. The problem has

assumed increasing urgency, with recent advances in sequencing

technology and a decrease in the sequencing cost (Schwarze,

Buchanan, Taylor, & Wordsworth, 2018), leading to vast amounts of

data to interpret. While whole‐genome sequencing data provides more

comprehensive coverage than other more restricted sequencing

technologies (such as gene panel data, exome sequencing data, or

chromosomal microarray data), identification of potential causative

variant(s) out of the approximately four million variants found in a

genome resonates with finding a needle in a haystack (Cooper &

Shendure, 2011). The variant diagnostic rate (rate of causative,

pathogenic, or likely pathogenic genotypes in known disease genes

for children) from whole‐genome sequencing data is currently only

about 40% (Clark et al., 2018) with the implication that there remain

substantial deficiencies in the current methodology. Many factors

contribute to this shortfall, but there is a clear need for improved

methods from the computational biology community. The Critical
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Assessment of Genome Interpretation (CAGI; https://

genomeinterpretation.org) is a platform for community experiments

in genome interpretation. Typically, the experiments take the form of

blinded prediction of the phenotypic impacts of genomic variation

followed by an objective independent assessment of the results

(Hoskins et al., 2017). The SickKids5 experiment is one

such challenge (https://genomeinterpretation.org/SickKids5_clinical_

genomes) and follows an earlier CAGI SickKids4 one (https://

genomeinterpretation.org/content/4‐SickKids_clinical_genomes). Here,

we report our methods and the results obtained for this challenge and

draw conclusions on directions for future improvement.

Participants were provided with a set of 24 whole‐genome

sequencing data and 24 clinical profiles for pediatric patients and

asked to match each genome to the corresponding phenotype profile.

Two general strategies have been developed: genotype to phenotype

and phenotype to genotype. In a genotype to phenotype approach, a

patient’s clinical profile is not utilized to prioritize potential causative

genes and variant(s)—rather all deleterious variants in a genome are

identified from genotype data. Several variant annotation programs

(such as VAAST (Hu et al., 2013), ANNOVAR (Wang, Li, & Hakonarson,

2010), SnpEff (Cingolani, Platts et al., 2012), VAT (Habegger et al.,

2012), and VEP (McLaren et al., 2010)), utilize population allele

frequency data and evolutionary conservation information together

with appropriate disease inheritance models to prioritize disease‐
relevant genes and variants in a genome, without explicitly considering

a specific patient phenotypic profile. Conversely, the common theme

of a phenotype to genotype approach is that a set of patient‐specific
phenotypes, either in the form of Human Phenotype Ontology (HPO,

Köhler et al., 2014) terms or other clinical descriptors, is used to

generate a list of relevant genes and only variants in these genes are

considered for further analysis. A number of strategies have been

developed for the incorporation of patient‐specific gene prioritization

information. The information may come from various biomedical

ontologies, including human‐specific ontologies, like HPO (Köhler

et al., 2014), Disease Ontology (DO, Schriml et al., 2019), Gene

Ontology (GO, Blake et al., 2015; such as used in Phevor; Singleton

et al., 2014) and other model organism‐specific ontologies, such as

Mammalian Phenotype Ontology (MPO, Smith & Eppig, 2009),

Zebrafish Phenotype Ontology (ZPO, van Slyke, Bradford, Westerfield,

& Haendel, 2014; used in Exomiser; Smedley et al., 2015). Several

computational tools leverage gene‐disease‐phenotype relationships

and phenotype information, for instance, phenolyzer (Yang, Robinson,

& Wang, 2015) and Phenotype Driven Ranking (PDR, Krämer, Shah,

Rebres, Tang, & Richards, 2017). Also, some tools extract phenotype

information using keyword search from the text (used in GeneCards;

Safran et al., 2010), or free‐text boolean search (used in VarElect;

Stelzer et al., 2016).

Prioritization of variants in prioritized genes includes evaluation of

the likely impact on gene function and pruning variants on the basis of

population frequency data (rare disease implies rare variants). Computa-

tional tools use a variety of methodologies to assess the likely impact of

coding and noncoding variants. Evaluation of coding variants is usually

divided into loss of function (frameshifts, direct splice site impact, and

stop gain or loss), and missense. Many methods have been developed to

estimate the effect of missense mutations based on sequence conserva-

tion properties (e.g., Sorting Intolerant From Tolerant [SIFT] (Kumar,

Henikoff, & Ng, 2009), PolyPhen‐2 (Adzhubei et al., 2010), SNPs3D

profile (Yue & Moult, 2006), SNAP2 (Hecht, Bromberg, & Rost, 2015),

and evolutionary action (Katsonis & Lichtarge, 2017)) and on protein

stability, as estimated from protein structure (e.g., SNPs3D stability (Yue,

Li, & Moult, 2005), Rosetta (Park et al., 2016), and FoldX (Delgado,

Radusky, Cianferoni, & Serrano, 2019; Schymkowitz et al., 2005)). Some

methods also include functional information (e.g., MutPred2; Pejaver,

Mooney, & Radivojac, 2017). Noncoding variant analysis methods utilize

features including regional purifying selection, enrichment with func-

tional elements such as transcription factor‐binding sites and DNase

hypersensitivity as well as DNA‐based evolutionary conservation.

Example methods are PhastCons (Siepel et al., 2005), PhyloP (Pollard,

Hubisz, Rosenbloom, & Siepel, 2010), and Gerp++ (Davydov et al., 2010).

Features are often combined using machine‐learning approaches (such

as those used in Genomiser (Smedley et al., 2016) and CADD (Rentzsch,

Witten, Cooper, Shendure, & Kircher, 2019)). In one analysis (Smedley &

Robinson, 2015), phenotype‐driven approaches were found to have

substantially better performance than variant driven ones. So far, most

of these methodologies have only been benchmarked against simulated

data, and there has been very limited blind testing.

In the Sickkids5 challenge, participants were provided with clinical

profiles in the form of a set of PhenoTips terms (Girdea et al., 2013;

represented using HPO terms) and whole‐genome sequencing data for

the 24 pediatric patients. These are all difficult cases where the

standard SickKids analysis pipeline failed to find any reportable

diagnostic variants (Kasak et al., 2019). The challenge was to assign

each genome to one of three disease classes (eye disorders, neurological

disorders, and connective‐tissue disorders) and to match each genome

to the appropriate clinical profile. An additional optional part of the

challenge was the identification of specific diagnostic variants for each

patient. The identification of predictive secondary variants (related to

the risk of other serious diseases and with no phenotypes reported in

the clinical descriptions) was also optional. In the earlier SickKids4

challenge, participants were asked to identify diagnostic variants as well

as predictive secondary variants from whole‐genome sequencing data

for 25 pediatric patients. Unlike in SickKids5, matches between the

clinical profiles and the genome data were available.

Here, we report our approach and results for the SickKids5

challenge. We used a phenotype to genotype approach, selecting only

clinical symptom‐specific genes. For this purpose, we developed a

phenotype‐weighted scoring scheme to select the set of genes

associated with each clinical profile. Each variant in the selected

genes was assigned to one of six impact‐related categories. The final

selection of a genome for each clinical profile included a subjective

evaluation of the match of each gene’s online mendelian inheritance

in man (OMIM) description (Hamosh, Scott, Amberger, Bocchini, &

McKusick, 2005) with the clinical profile. The results were analyzed

in a number of ways, especially the role of clear clinical documenta-

tion in developing the phenotype‐weighted scoring scheme and types

of prioritized variants.
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2 | MATERIALS AND METHODS

2.1 | SickKids5 clinical profile data

The SickKids Genome Clinic at the Hospital for Sick Children in

Toronto (http://www.sickkids.ca/) provided the clinical profiles for

the challenge. The profiles for the 24 patients included an overall

disease class, with six eye disorder cases, seven neurological, and 11

connective‐tissue disorders cases. Additional profile information for

each patient included gender, age, indication for referral and clinical

symptoms in the form of a set of terms from the hierarchical HPO

(Köhler et al., 2014) entered through the PhenoTips interface (Girdea

et al., 2013). Inheritance information was also provided for some

patients: Six were described as autosomal recessive cases and

pedigree charts were given for 14 patients (including two of the six

autosomal recessive cases). Ethnicity information was also provided

for 19 out of 24 patients, none of whom were declared as African

origin. We used in‐house software to identify genomes of African

origin (described in Pal, Kundu, Yin, & Moult, 2017). In the

postchallenge submission phase, using the answer key, we found

that one patient with declared Philippine ethnicity is genetically of

African origin, and this caused a prediction error.

2.2 | SickKids5 whole‐genome data: annotation of
variant call format (VCF) files and quality control
(QC) filters

Anonymized whole‐genome data for all 24 patients were available via

the CAGI SickKids5 challenge website (https://genomeinterpretation.

org/SickKids5_clinical_genomes) in the form of VCF files produced by

the Illumina HiSeq X system. We annotated single nucleotide variants

(SNVs) and Indels in the VCF files using Varant (https://doi.org/10.

5060/D2F47M2C), including region of occurrence (intron, exon,

splice site, or intergenic), observed minor allele frequencies, mutation

type, predicted impact on protein function (methods used in this step

are listed in Section 2.5.), and associated phenotypes reported in

ClinVar (Landrum et al., 2016). The RefGene (Pruitt et al., 2014) gene

definition file was used for gene and transcript annotations in Varant.

In addition, in‐house scripts were used to annotate variants with the

human gene mutation database (HGMD, Stenson et al., 2014)

disease‐related information and with dbscSNV (Jian, Boerwinkle, &

Liu, 2014) information on potential splicing effects. We also used

Annovar annotations (Wang et al., 2010) to add Genome Aggregation

Database (GnomAD) frequency data (Lek et al., 2016), Eigen scores

(Ionita‐Laza, McCallum, Xu, & Buxbaum, 2016), and GERP++ scores

(Davydov et al., 2010) information for each variant. Chromosome M

was annotated and searched for pathogenic variants using MSeqDR

mv (Shen et al., 2018). We used only high quality (graded “PASS” in

the VCF file) variants for further analysis. We used SnpSift (Cingolani,

Patel et al., 2012) to calculate Ts/Tv and Het/Hom alternate allele

ratios from the VCF file data. We only considered variants for which

the highest population frequency is <1% in all the referenced

databases (GnomAD exomes and GnomAD genomes, ExAC database

(Lek et al., 2016), and 1000 Genomes (Auton et al., 2015)).

2.3 | Method rationale

To address the challenge of matching genomes to clinical profiles and

identifying the disease class of each genome, we used a phenotype to

genotype approach, first identifying genes compatible with clinical

profile information, and then analyzing variants in those genes. If we

are able to identify an appropriate candidate causal variant (or pair if

variants for a recessive trait) for a specific profile, which is taken as

evidence of a genome and profile match, and will also imply the disease

class of that genome. The steps in the method are: (a) collection of

disease‐relevant genes for a particular clinical profile from all 24

genomes (details in Section 2.4.); (b) identification of rare variants (less

than 1% population frequency) in the relevant genes (as mentioned

earlier in “SickKids5 whole genome data” section); (c) search for impact

variants (both coding and noncoding) in the relevant genes and

assignment of these to one of the six categories of impact confidence

(details in Section 2.5.); (d) use of a subjective scoring scheme of the

clinical profile (depending on the presumed disease class to which that

particular profile belongs) to score each disease‐relevant gene in a

genome for each clinical profile (details in Section 2.6.); (e) selection of

the top five scoring genomes for each clinical profile, and within those,

selection of top five scoring genes; and (f) manual screening of the

variants selected for each profile for appropriate inheritance model,

ethnicity compatibility, and the full match of the OMIM disease

description associated with each gene to the clinical profile (details in

Section 2.7.). The workflow of the method is shown in Figure 1.

2.4 | Candidate gene list generation

For each patient, we extracted the HPO‐based terms from the

PhenoTips annotations provided in the clinical profile. Relevant genes

for each profile were identified by matching the profile HPO terms to

those associated with each gene in the HPO database (Build #139;

Köhler et al., 2014) and in the dbNSFP database (version 3.5a; Liu, Wu,

Li, & Boerwinkle, 2016). The latter includes genes related to phenotypes

observed in humans as well as similar phenotypes included in the mouse

database (Eppig et al., 2015; Georgi, Voight, & Bućan, 2013). We also

used the list of 319 genes from the RetNet database (RetNet; http://

www.sph.uth.tmc.edu/RetNet/; Daiger, 2004) to search for eye disorder‐
related variants. The gene list for secondary variants, containing 59

genes, was taken from Table 1 in the 2017 ACMG (The American

College of Medical Genetics and Genomics) guidelines (Kalia et al., 2017).

2.5 | Categorization of variants according to their
likely pathogenic impact

As outlined in the rationale, for each genome we identified 24 different

sets of possible candidate causative variants, one for each of the clinical

profiles. Only variants with less than 1% population frequency were
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considered. Each selected variant was assigned to one of six categories,

based on the likelihood of pathogenicity and variant type, as follows:

Category 1 (C1): Variants with HGMD annotation of either DM

(disease‐causing mutation) or DP (disease‐associated polymorph-

ism), and/or reported in ClinVar with pathogenic or likely

pathogenic clinical significance status.

Category 2 (C2): Nonsense mutation, frameshift or nonframeshift

indel, a mutation disrupting either a splice donor or acceptor

site, splice altering variants (splicing consensus regions around

direct splice sites) predicted by the dbscSNV (Jian et al.,

2014), and missense mutations predicted as damaging by

SNPs3D profile and stability methods (Yue & Moult, 2006;

Yue et al., 2005), SIFT (Kumar et al., 2009), PolyPhen‐2

F IGURE 1 The workflow of the method

for identification of probable causative
variants
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(Adzhubei et al., 2010), Vest (Carter, Douville, Stenson,

Cooper, & Karchin, 2013), REVEL (Ioannidis et al., 2016),

and CADD (Kircher et al., 2014). For inclusion of a missense

mutation in Category 2, at least 60% of reporting methods

were required to return a prediction of deleterious. This

threshold is based on calibration against HGMD (Yin, Kundu,

Pal, & Moult, 2017).

Category 3 (C3): Missense mutations predicted as damaging by one

or more of the above missense impact prediction methods, with

the fraction of deleterious predictions <0.6.

Category 4 (C4): Benign missense mutations (zero reporting missense

methods predicting deleterious).

Category 5 (C5): Variants annotated as close (within 12 bases) to a

splice acceptor or splice donor site.

Category 6 (C6): Noncoding variants annotated as untranslated

region (UTR) and intronic with at least one of the following

conditions satisfied: CADD phred score >20 (Kircher et al., 2014),

Eigen score ≥4 (Ionita‐Laza et al., 2016), or Gerp++ score ≥2

(Davydov et al., 2010).

Variants in all categories were further subdivided on the basis of

population frequency data:

Frequency bin 1: Novel mutations (not seen in any of 1000 Genomes,

ExAC, gnomAD exomes, and gnomAD genomes databases).

Frequency bin 2: Variants with population frequency >0 and ≤0.001.

Frequency bin 3: Variants with population frequency >0.001 and

≤0.005.

Frequency bin 4: Variants with population frequency >0.005 and

<0.01.

Variants were assigned to autosomal dominant, autosomal

recessive, compound heterozygous, pseudo‐autosomal recessive, or

X‐linked recessive models based on the OMIM inheritance pattern

for the corresponding gene (https://www.ncbi.nlm.nih.gov/omim).

The subset of selected genes in a genome that contains one or

more impact variants is then considered in the scoring of genome’s

match to a clinical profile.

2.6 | Gene scoring scheme for selection of genomes
best matching to a clinical profile

For each clinical profile, each HPO term (T) was assigned a subjective

weight (W) from 0 to 1, according to its importance (1 =most

important and 0 = least important) in that profile, taking into account

the presumed disease class. Usually, the most important terms were

inferred from the “indication for referral” description. For example, if

a connective‐tissue disorder (presumed disease class of that clinical

profile) is the most dominant and definitive term in the profile in the

“indication for referral” description, it has scored the highest. If the

seizure is also part of that profile but with the borderline occurrence,

then that was assigned a lower value than would be the case if the

term occurred in a profile where the seizure is the most significant

phenotype in the “indication for referral” field.

We started with the set of genes containing impact variants

identified in each genome. For each clinical profile, each selected

gene “i” of a genome was assigned a scoreGSi based on the weights of

its associated HPO terms. The score is a sum over the “n” HPO terms

associated with a gene, and the weight for each term in the sum is

that assigned to that HPO term in the clinical profile analysis

described above.

= ( ) × ( )GS P GPhenoTips terms gender factori i i

∑=
=

P Wwhere ,i
j

n

T
1

j

=Gand 1, if gender of phenotypic profile and genotypic profile

are the same,

i

= ,

.

G 0 if gender of phenotypic profile and genotypicprofile are

NOT the same

i

For each clinical profile, we ranked the genomes according to

the highest GSi score of any gene. The five top‐ranked genomes for

each clinical profile were used for further analysis. If there are

multiple genomes with the same score, more than five genomes

will be considered for a particular clinical profile. For each of these

top‐ranked genomes, we selected the five top‐scoring genes (i.e. a

total of at least 25 genes per profile). There may be multiple genes

with similar scores in a genome, in which case more than five may

be selected. The selected genes were further filtered, removing

those that do not exhibit the appropriate inheritance pattern or

the appropriate ethnicity. The set of categorized variants in the

remaining genes formed the set of candidate causal variants for a

patient.

2.7 | Prioritized causative variants for a genome

The selection of candidate genes by weighted HPO term matching is

an effective automated approach for generating an inclusive shortlist,

but final gene selection required further manual pruning. For this

purpose, the OMIM disease description (Hamosh et al., 2005) of each

selected gene was compared with the associated clinical profiles.

Most genes were eliminated on this basis. Previously selected

variants in the remaining genes formed the set for final prioritization.

Variants in lower frequency bins were prioritized over those with

higher frequency. For example, a novel variant in a gene will be

preferred over a variant in the 0.01% frequency bin in the same gene.

Confidence levels of the categories were C1>C2>C3>C4>C5>C6.

For example, a variant in a gene in Category 2 is preferred over a

variant in Category 6 in the same gene. If the same gene is matched

from two different genomes for a particular clinical profile, then we

applied frequency and confidence criteria to select one of the two

genomes.
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2.8 | Probable regulatory effects of prioritized
variants

To check for any probable regulatory effects of the prioritized

variants, we noted the RegulomeDB (Boyle et al., 2012) scores, which

are <4 and so possibly part of a regulatory motif. These scores were

not used for the initial prioritization of variants. A RegulomeDB score

of 1a–1f implies an eQTL. As all of the variants of interest are rare,

none was found in this category. A score of 2a–2c implies that

variants at that position may directly impact a transcription factor‐
binding site with subcategories (2a, 2b, and 2c) for different types of

evidence. A score of 3a and 3b implies less strong evidence for

impact on a transcription factor‐binding site with subcategories (3a

and 3b) indicating different types of evidence.

2.9 | Searching for predictive secondary variants

Here, we followed the rules in ACMG (2017; Kalia et al., 2017) to

extract predictive secondary variants from 59 genes. We searched

only for clinically known pathogenic and loss of function variants in

those genes, as defined in Table 1 of (Kalia et al., 2017).

3 | RESULTS

3.1 | Demographics, clinical symptoms, and
relevant genes

The SickKids5 challenge data consists of the whole‐genome sequen-

cing data and clinical profiles for 24 pediatric patients, of whom 11

are male and 13 female. The age range was from 5 to 19 years with

an average age of 10.7 years. The challenge description included the

information that there are six eye disorder cases, seven neurological

disorder cases, and 11 Ehlers–Danlos syndrome connective‐tissue
disorder cases.

As mentioned in Section 2.1., clinical annotations of the 24

patients were provided in the form of HPO terms. Notable points are

that some specific HPO terms co‐occur in multiple patients, some

terms occur in all three classes of disease, and complex diseases co‐
occur with rare disease symptoms (Figure 2). Some examples:

Connective‐tissue disorder patients exhibit symptoms involving a

large number of organs such as the gastrointestinal tract including

irritable bowel syndrome and Crohn’s disease (four cases), cardio-

vascular/hypertension (four cases), eye defects (four cases), devel-

opmental/motor delay (five cases), scarring of tissue (three cases),

and bruising susceptibility (four cases). Similarly, neurological

disorder patients often exhibit developmental delays or motor

delays. Autism is manifested in one patient out of the seven

neurological disorder cases. One neurological disorder patient is

affected by an eye disorder as well as musculoskeletal disorders,

including scoliosis and osteopenia. Similarly, an eye disorder patient

is also affected by other musculoskeletal disorders, including hyper‐
extensibility of the joints and ear defects. Altogether, 10 of the 24

cases have symptoms in two or more disease classes.

In total, there are 213 unique HPO terms for the 24 cases. These

terms were used to compile a total 6,239 potentially relevant genes

from the HPO (Köhler et al., 2014) and dbNSFP (Liu et al., 2016)

databases and the 319 genes in the RetNet eye disorder database

(Daiger, 2004). The number of genes related to each clinical profile

ranges from 350 to 4,000, with an average of 1,600. Figure S1 shows

the number of genes for each case, grouped by disease class. Eye

disorder patients have an average of 770 candidate genes.

Neurological clinical profiles are usually associated with more genes,

with an average of 2,300 genes. Connective‐tissue disorder patients

have the widest range, from 400 to 2,800 genes.

3.2 | SickKids5 data quality

Figure 3 shows the SickKids5 challenge data quality in terms of Ts/Tv

ratio, Het/Hom alternate allele ratio, total SNV counts and rare (<1%

population frequency) SNV counts. We compared these data with

that for the corresponding ethnicities in the 1000 Genome set (Auton

et al., 2015) and the high‐quality reference Genome in a Bottle

(GIAB) data (Zook et al., 2016).

In the previous SickKids challenge (https://genomeinterpretation.

org/content/4‐SickKids_clinical_genomes), we observed an excess of

rare and novel variants for 25 patients with sequencing data

provided by Complete Genomics (Pal et al., 2017), relative to 1000

Genome data. Compared with the Complete Genomics data, the

CAGI5 Illumina HiSeq X data are of better quality—the data have

comparable Ts/Tv ratio, Het/Hom alternate allele ratio, and total

SNV counts to that of 1000 Genome data (Figure 3). Rare SNV

counts in SickKids5 AFR data are comparable to that with 1000

Genome AFR data. Non‐AFR rare SNV counts in SickKids5 are closer

to that in GIAB than 1000 Genome EUR data. The excess of rare

variants in both GIAB and SickKids5 data compared with 1000

Genome data may be due to the increasing identification of rare

variants in recent years as a result of improved sequencing

technologies. Nevertheless, there is a small excess of rare as well

as total variant counts for SickKids5 data compared with GIAB data,

not unexpected given the very high quality of the GIAB data. To

investigate this discrepancy in data quality, we checked the alternate

allele fraction (alt allele counts/ref allele counts) distribution for

heterozygous calls in both GIAB and SickKids5 data for all “PASS”

variants (Figure S2). This distribution has a broader range even

within “PASS” variants for SickKids5 data compared with GIAB,

indicating a higher noise level in the SickKids5 data. If we restrict this

alternate allele fraction distribution in SickKids5 data to the range as

observed in GIAB data, the SNV counts agree.

3.3 | Distribution of candidate variants

As described in Section 2, for each clinical profile, we identified the

five or more top‐scoring (best HPO term matches) genes in the five

(or more) top scoring genomes. Genes in the female 13 genomes

are matched to the female profiles and genes in the 11 male genomes

are matched to the male profiles. An average of 35 genes per profile
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were selected, resulting in a total of 342 unique genes for all 24

profiles for further analysis. There is an average of five variants in

each of the five genes selected in each genome, with an average total

of about 116 candidate variants per clinical profile. For eye disorder

clinical profiles, we also included candidate variants in the 319

RetNet genes. For each profile, the set of candidate variants were

ranked using two criteria—the impact category for a variant and its

frequency bin (lower frequencies rank higher; details in Section 2.5.).

Figure 4 shows the counts of candidate variants in each category

from selected genomes, for each profile. For all clinical profiles, the

fraction of candidate variants in Category 6 (noncoding variants) is the

highest (on average 83%, 5–10 variants per included genome), followed

by the variants in C2 (loss of function [LOF] and other high impact

coding variants including missense, on average 7%, 0–1 variants per

genome) and then in C3 category (possibly high impact missense

variants, on average 5%, 0–1 variants per genome). Where a clinical

profile contains very few HPO terms (such as eye disorder cases) with

less discriminating weights among the terms the gene scoring scheme is

less able to discriminate between genes in final reporting. This usually

results in the inclusion of more than five genes per genome with the

same score. One such eye disorder case included an average of 30 C6

candidate variants (Figure 4, last row, third column). Figure S3 shows

the scores for candidate variants in the genomes selected for one

clinical profile.

Comparison of each selected gene’s OMIM description with the

clinical profile together with filtering by ethnicity and inheritance

patterns eliminated most of the genes and thus the variants within

them. The remaining candidate variants were further prioritized by

population frequency and confidence categories. The result is a total

of 35 variants (Table S1) for all 24 clinical profiles. Figure 5 shows the

distribution of these 35 prioritized variants by category

and frequency bins. A total of 46% (16 out of 35) of the prioritized

F IGURE 2 Disease classes and selected

PhenoTips terms for 24 cases. Each row
shows the data for one patient and the
total number of PhenoTips terms for each

patient is given in the last column, shaded
gray. Most patients have multiple
symptoms and some symptoms occur in

multiple patients. Further, some symptoms
occur in all three classes of disease.
Complex disease symptoms are also noted
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variants are in Category 6% and 44% (7 out of 16) of these are novel

—that is not seen in the 1000 Genome, ExAc or gnomAD databases.

The next highest relative occurrence of novel variants (3) and

total prioritized variants (8) is in the C2 category, which includes loss

of function variants together with predicted high impact nonsynon-

ymous variants. There were four prioritized variants each in the C1

and C3 categories and three variants in the C4 category.

3.4 | Molecular mechanism underlying the
prioritized variants

Figure 6 shows the distribution of the 35 prioritized causative

variants according to the probable underlying molecular mechanisms.

A total of 46% are missense (including those occurring in categories

1, 2, 3, and 4) and 46% are intronic or UTR variants. There are three

frameshift insertion/deletion variants (9%). The missense variants

have a range of impact confidence, from very high in C1 (based on

clinical observation), high in C2, uncertain in C3, to predicted benign

in C4. All intronic and UTR variants are predicted high impact by the

Gerp++ criterion, implying conserved features at that position. Two

intronic variants and one UTR variant are also predicted high impact

by CADD.

Figure 7a,b shows how the distribution of variant impact

categories changed from the initial set to the candidate causative

variants set to the final prioritized set. There is a 99% reduction in

the number of variants going from the initial set (outermost circle

in Figure 7a, all rare variants present in the genomes) to the

candidate causative variants set (middle circle in Figure 7a,

candidate causative variants in the selected genes). The reduction

is in all three variant sets (exonic, intronic, and UTR; Figure 7b),

F IGURE 3 SickKids5 data quality analysis in terms of Ts/Tv ratio, Het/Hom alternate allele ratio, total SNV count, and rare (<1% population
frequency) SNV counts in whole genomes. Only variants with “Pass” status are included. The 1000 Genome EUR and AFR data and GIAB data

provide controls. Abbreviations used: GIAB—Genome in a bottle data, KG_EUR—1000 Genome Caucasian (EUR) data, KG_AFR—1000 Genome
African (AFR) data, SickKids5_AFR—SickKids5 African (AFR) data and SickKids5_other—all other SickKids5 data excluding Africans. Although
there are some differences to the GIAB data controls, generally the Sickkids data appear to be of high quality
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and is a result of only a small fraction of these variants meeting the

impact selection criteria from the selected genes. Exonic variants

are reduced by about 92%. The lowest range of decrease is for

missense variants (from 4.34 to 3.50, reduced by 85%) and loss of

function variants, for example, nonframeshift indel (from 3.32 to

2.39 on the log10 scale), frameshift indel (from 3.21 to 2.04), stop

gain/loss (2.75–1.72). In the prioritized variants set submitted for

the challenge, only missense, indels, intronic, and UTR variants

were selected.

We also compared the variant compositions of the SickKids5

and SickKids4 data (Figure 7c). The initial compositions are very

similar, but for the candidate and prioritized variants set, there is a

dramatic shift from a large majority of exonic variants in Sickkids4

to a large majority of intronic variants in Sickkids5 set. The

percent of UTR variants in the intronic and UTR sets also

increased in SickKids5 set, by about two‐ to threefold. This is

due to the introduction of intronic and UTR variant impact

predictions in the SickKids5 analysis.

3.5 | Performance in CAGI5—matching of disease
classes and exact matches

Table 1 shows the performance of the method in the SickKids5

challenge. Overall, we were able to identify the correct disease class

F IGURE 4 Impact distribution of selected variants for each of the 24 clinical profiles. For each profile, the number of variants falling into

each of the six impact categories is shown. Variants are colored by the genome of origin. The large majority of selected variants are in the C6
category: impact variants in UTRs and introns
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of a genome for 12 cases and exactly matched clinical profiles to the

correct genome for five cases. Disease class matching is the most

successful for connective‐tissue disorders (six cases, 55%), second

highest for eye disorders (three cases, 50%) and least successful

(three cases, 43%) for neurological disorders. The five correct profile/

genome matches are composed of two connective‐tissue disorder

cases, two for eye disorders, and one for a neurological disorder.

According to the data provider (who was also the challenge

assessor), out of the five exact match cases, the genes carrying two

eye disorder diagnostic variants and one of the genes for connective‐
tissue disorder diagnostic variants are possibly correct (Table 1 and

Table S1). The eye disorder diagnostic variants are: (a) compound

heterozygous coding‐intronic variants (conserved by Gerp++ scores)

in the USH2A gene—annotated for recessive retinitis pigmentosa and

(b) compound heterozygous variants, one clinical missense variant

and a coding‐intronic variant (conserved by Gerp++ score) in the

ABCA4 gene—annotated for retinitis pigmentosa, rod‐cone dystrophy

and other eye disorders. For the connective‐tissue disorder case, we

prioritized two heterozygous variants in the FBN1 gene, for an

autosomal dominant inheritance pattern (information not provided in

the clinical profile). One variant is in the 3′‐UTR region, conserved by

Gerp++ score, and the other is a novel coding‐intronic variant,

conserved by Gerp++ and an impact variant according to CADD. We

prioritized both variants as either might be the correct diagnostic

variant, and we could not distinguish between them. The noncoding

variants were checked for possible regulatory effects with Regulo-

meDB. The FBN1 intronic variant has a score of 3a, indicating partial

evidence for transcription factor binding (the RegulomeDB annota-

tion was not used in the variant selection procedure). Variants in the

other two genes (ABCA4 and USH2A genes) have RegulomeDB scores

>4 (implying lack of evidence for the variant disrupting the

transcription factor‐binding site).

3.6 | Illustrative example of matching a genome to
a phenotypic profile

Clinical profile N is of an 11‐year‐old female whose indication for the

referral is “Cerebral arteriovenous malformation.” The “Clinical

symptoms and physical findings” section for this patient also note

“aortic dilation” and “joint hypermobility,” both described as “border-

line.” In the subjective weighting of these HPO terms, we put the

highest weight on “Cerebral arteriovenous malformation,” a lower

weight on “joint hypermobility” and related HPO terms and a further

TABLE 1 Performance of the method in CAGI SickKids5 challenge

Broad disease class

Total number

of cases

Number of cases with
correct disease class

assignment

Number of cases with exact
match between clinical profile

and genome

Number of cases with proposed
diagnostic genes considered probable

by the assessor

Connective‐tissue
disorder

11 6 2 1

Eye disorder 6 3 2 2

Neurological disorder 7 3 1 0

Abbreviation: CAGI, Critical Assessment of Genome Interpretation.

F IGURE 5 Stacked bar plot of the impact categories and
frequency ranges of the 35 prioritized probable causative variants.

Almost half are in the Category 6 of UTR and intronic variants

F IGURE 6 Distribution of prioritized variants by a probable

molecular mechanism
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lower weight on “aortic dilation” related terms. The least weight was

set for the neurological “Headache” symptom. With these weights,

we selected the top‐scoring genomes for profile N. In this case, there

were many equally scoring genes, resulting in all 13 female genomes

being selected. Three of these genomes contained the same three

highest scoring genes: ACVRL1, ENG, and SMAD4 with matching

terms for only “Headache” and “Cerebral arteriovenous malforma-

tion.” The next highest scoring gene was FBN1 with matching terms

for “joint hypermobility” and “aortic dilation.” FBN1 was considered

more relevant (according to the OMIM disease description for

Marfan syndrome, which matches the presumed disease class of

connective‐tissue disorder in the profile) than any of the three top‐
scoring genes. So we selected all variants in that gene for further

analysis. We found FBN1 variants in a total of seven genomes. These

are all category 6 variants, falling in the UTR and intronic regions.

The frequency criteria were used to select the final variant. The

variants span all four frequency bins (described in Section 2.5.). Two

are novel, and so were given priority. One of these, in genome 056, is

annotated as pathogenic by two methods (GERP++ and CADD) and

on that basis, we selected genome 056 for clinical profile N. This is a

case where we successfully matched the clinical profile with the

correct genome.

3.7 | Puzzling cases—limitation of phenotype‐
weighted scoring

One of the most critical factors in the phenotype‐weighted scoring

strategy is to correctly rank the importance of symptoms in a clinical

profile, otherwise, the predictions will be erroneous. This informa-

tion, which is usually obvious to physicians, is typically absent from

the clinical profile documentation. In the SickKids5 challenge, we

considered the “indication for referral” field to understand the

relative importance of clinical symptoms. We failed to identify the

proper disease class for one neurological disorder patient (J) because

the indication for referral was “mitochondrial disorder” and this

patient also has multiorgan failure, including severe eye problems,

seizures, and connective‐tissue disorders. For this patient, we found a

ClinVar variant in chromosome M, with a disease description very

F IGURE 7 (a) Postanalysis of the distribution of variant types (log10 scale) in the total set of 6,239 genes selected for the 24 SickKids5
patients. The outer most circle shows the distribution of all rare (allele frequency <1%) variants present in the genomes. The middle circle shows

the distribution of candidate causative variants in the selected genes for each clinical profile for its matching genome. The innermost circle
shows the distribution of final prioritized causative variants, submitted for the challenge. (b) The upper table shows the changes in variant
composition at different stages of the selection process. (c) The lower table shows the comparison of variant composition (in %) between the
SickKids4 and SickKids5 data at different stages of the selection process. The heat map highlights the differences in composition between the

datasets. CI, coding intronic; CSA, close to splice acceptor; CSD, close to splice donor; FS, frameshift indel; NCI, noncoding intronic; NCE,
noncoding exonic; NFS, nonframeshift indel; NS, missense; PGL, stop gain/loss; SA, splice acceptor; SD, splice donor; SN, synonymous; TGL, start
gain/loss; UTR, UTR variants
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similar to that of the patient. Table S2 documents this and two other

puzzling cases where high confidence loss of function variants are not

causative. In one, for clinical profile “I”, we found a nonframeshift‐
deletion variant in the ELN gene for one genome and in the same

gene, we found a 5′‐UTR variant in a different genome. According to

our prioritization criteria, we selected the loss of function variant

(nonframeshift‐deletion) as the causative variant. However, the

genome with the 5′‐UTR variant in ELN was the correct match.

3.8 | Re‐evaluation of the genome to clinical profile
matches in the postsubmission phase

The availability of the answer key in the postsubmission phase

allowed us to examine the genes in the correct genome more

critically for the matched profile, followed by prioritizing suitable

impact variant(s) as we did for the challenge. Table S3 lists 44 such

prioritized variants in 26 genes for 24 SickKids5 patients. As these

are all cases where the conventional bioinformatics pipeline did

not identify diagnostic variants (implying no suitable clinical

variant or loss of function variants or coding variants of unknown

significance were found), we expected the task to be difficult.

Often it seems that there are disparate symptoms that can only be

accommodated by potential causative variants in two different

genes, rather than one. One such example is for clinical profile F,

where for the connective‐tissue disorder, we identified a rare

coding‐intronic variant in the COL5A2 gene. However, this patient

also has very fragile skin and a food intolerance problem. We

identified another novel 5′‐UTR5 variant in the PLEC gene

consistent with these additional symptoms.

Figure S4 shows that the fraction of noncoding variants (intronic

and UTR) is much higher in the postsubmission analysis (46% in

submitted predictions vs. 77% in postsubmission predictions) with

38% (13 out of 34 C6 category variants) being novel. Accordingly, the

missense variant fraction is reduced to 20% compared with 46% in

the submitted predictions.

Validation of these noncoding variants is difficult. To check

for any probable regulatory effects of these variants, we noted

the RegulomeDB scores <4 (see the Section 2.8.) in Table S3. Out

of 44 prioritized variants, 36 returned a RegulomeDB score <4.

We found three variants with a score of 2 and two variants with a

score of 3 out of the 36 variants. These variants are a

neurological disorder case with a score of 2a (rare—<0.05%

allele frequency, an intronic variant in CHD2, related to

myoclonic encephalopathy). Two connective‐tissue disorder

cases with score 2b—one is the novel 5′‐UTR variant in the PLEC

gene (described above) and another one is rare—<0.01% allele

frequency—missense variant in the TNXB gene, predicted to be

deleterious by half of the methods used (so a C3 category

variant). We found one neurological variant with score 3a (novel

coding‐intronic variant in ARID1B, related to developmental delay

with seizures). Another novel connective‐tissue disorder variant

in the FBN1 gene with score 3a was already included at the

challenge stage (described in Section 3.5.).

3.9 | Predictive secondary variants

Table S4 lists the eight predicted secondary variants we submitted,

found in six SickKids5 patients. There are three novel secondary

variants (a clinical missense variant in KCNH2 for Long QT syndrome,

a nonframeshift‐deletion in MSH2 for Lynch syndrome, and a

nonframeshift‐deletion in BRCA2 for hereditary breast cancer) found

in one neurological disorder patient (of African origin). The other

predicted secondary variants are clinical variants in the MSH6 and

MSH2 genes for Lynch syndrome and in the LMNA gene for

hypertrophic cardiomyopathy. The same novel MSH2 variant was

found in two patients (genome 081 and 091) and according to the

challenge assessor (Kasak et al., 2019), these might be sequencing

errors. The alternate allele fraction (alt allele counts/ref allele counts)

of these variants (Table S4) are poor, 0.36 and 0.42 for genomes 081

and 091, respectively, supporting the sequencing error hypothesis.

4 | DISCUSSION

The CAGI SickKids5 challenge provided an opportunity to assess

methods for correlating whole‐genome sequencing data to clinical

information. Participants were asked to predict the disease class (eye,

neurological, and connective‐tissue disorders) of 24 undiagnosed whole

genomes and to identify which genome matches to each clinical profile.

To address this challenge, we developed a semi‐automated gene‐centric
method. The method builds on one we had previously implemented for

identifying causative variants based on clinical information in the CAGI4

SickKids challenge (Pal et al., 2017). The key CAGI5 innovation is the

introduction of a phenotype weighting scheme to evaluate the match of

gene descriptions and clinical profiles, using HPO (Köhler et al., 2014)

terms. Using this approach, we were able to identify correct disease

classes for 12 of the 24 genomes and to match five genomes to the

correct clinical profiles. Analysis of the method's performance and

results have provided a number of insights into issues related to the

scoring scheme, nature of prioritized variants, the methodology used,

and key factors in extracting clinical information from a whole genome.

4.1 | Phenotype‐weighted scoring scheme
for genes

The success of the phenotype‐weighted scoring scheme depends on

how effectively the clinical documentation portrays patients’

symptoms. SickKids clinical profiles are constrained to terms in

the HPO, and phenotypes associated with specific genes are also

available in that form. Thus, the HPO‐based gene by gene matching

to a clinical profile provides a strategy for the selection of genes

that are most likely to harbor causative variants. However, simply

looking for overlap between gene and profile HPO terms is a not

sensitive enough matching algorithm. Instead, we assigned a weight

to each of the clinical profile terms, depending on the prominence of

the term in the description (e.g., up‐weighting referral terms), and
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down‐weighting terms that are characterized as less severe and

those that do not match the disease class.

Although this approach did allow us to match a significant number of

genomes to profiles, it has issues in some specific circumstances.

Generally, too few terms in a clinical profile are not informative enough.

For example, in one eye disorder case (case W), there were only two

effective HPO terms in the profile, resulting in low discriminatory power

and the selection of a large number of genes. As a consequence, there are

a very large number of candidate variants (Figure 4, last row and third

column). Although more terms are usually better, term combinations are

of varying discriminatory power. For example, in one neurological

disorder (case J), the patient has HPO terms for all three disease classes.

As a result, we failed to identify the correct disease class and so did not

assign appropriate weights, resulting in an erroneous choice of the

genome for the profile. A limitation of the current scoring method is that

it does not penalize for missing terms—ones that are not present for a

gene but are in a profile or conversely ones that are not present in a

profile but are there for a gene. For example, there are some genes

related to eye disorders that are also related to hearing problems, and

some that are not. The method as used in CAGI5 would select all these

genes even if the profile includes hearing HPO terms (e.g., case X). These

limitations will be addressed in future versions of the method.

4.2 | Nature of prioritized variants

In SickKids4 (Pal et al., 2017) we mostly prioritized coding variants (88%

of all types of variant in SickKids4 vs. 54% in SickKids5, Figure 7c). The

high proportion of noncoding candidate variants in SickKids5 is a

consequence of introducing two more noncoding variant impact analysis

methods, GERP++ (Davydov et al., 2010) and Eigen (Ionita‐Laza et al.,

2016), in addition to CADD (Kircher et al., 2014), which was also used in

CAGI4. GERP++ turned out to select many more variants than CADD,

whereas Eigen returned none. While CADD for coding missense

variants is considered to have a reasonable performance (Anderson &

Lassmann, 2018), CADD scores for noncoding variants have been found

to have limited clinical utility in one study of rare noncoding variants in

a hereditary cancer panel (Mather et al., 2016). There is no such

benchmarking data for rare noncoding variants available for GERP++

scores. The authors of the method report an overall very low (0.86% in;

Davydov et al., 2010) false‐positive rate. A general problem at present is

that methods for noncoding variants are less mature than those for

coding. Nevertheless, noncoding variants do play a critical role in our

analysis (four out of five exact match cases in our predictions were

identified using noncoding variants).

4.3 | Scope for improvement

The cases in the Sickkids5 challenge were unresolved by a traditional

pipeline. Although we and another group did better than random at

matching genomes to profiles and the assessors considered some

prioritized genes promising, most of the cases remain a mystery. And,

as noted earlier, in general, rare disease pipelines have a success rate

below 50% (Clark et al., 2018). There is a number of possible

explanations for the low yield of diagnostic variants, even given

whole‐genome sequencing data. We conclude by considering the

most relevant of these, and the prospects for progress:

(A) New genes related to specific disease phenotypes are continually

being discovered (Friedman et al., 2019; Guelfi et al., 2019)

implying that there are many more still to be found. A strategy that

might help address this problem is to consider all putative impact

variants in all genes, and see if any of these genes have phenotype

descriptions that offer some clue to a possible match (a genotype

to phenotype approach; Hu et al., 2013; Wang et al., 2010). As

more rare disease genome data accumulate, it will be possible to

look for enrichment of impact variants in particular genes in the

presence of particular phenotypes, and this is likely to prove a

powerful approach providing a long‐term solution. In the meantime,

for analysis of a single genome, and even more so for the Sickkids5

challenge with 24 genomes, the large number of putative impact

variants makes the strategy very difficult. If we consider only C2

variants—not clinically recognized but confidently predicted high

impact, there is an average of about one in every eight genes, so

that in a single full genome there will be about 3,000 variants to

screen. When considering 24 genomes, there will be about 70,000

such variants. Nevertheless, it may be possible to develop a tuned

version of the phenotype scoring scheme we used in the challenge

to filter the variants. Consideration of knockout or knock‐in data in

model organisms (Smedley et al., 2015) together with such clues

may be partially effective.

(B) In some complicated clinical profiles (such as for connective‐tissue
disorders or neurological disorders), contributions from more than

one gene may be present. Indeed, one study estimates that this

occurs in 5% of rare disease cases (Yang et al., 2014) and this likely

is a considerable underestimate. We see evidence for the

involvement of multiple genes in three cases (Table S3). For

example, for clinical profile F, a connective‐tissue disorder, we

originally predicted a novel missense variant in EP300 as causative,

with an OMIM disease description of Rubinstein–Taybi syndrome.

According to the assessor, even though we selected the correct

genome, this disease description is not an adequate match to the

patient’s symptoms. On further inspection of the genome, knowing

it is a correct match, we found an intronic variant in COL5A2, which

is related to the classic Ehlers–Danlos syndrome (a partial match of

patient’s symptoms). We also found two other novel impact UTR

variants in PLEC (the gene has an autosomal recessive inheritance

pattern in OMIM), with an OMIM disease description of

epidermolysis bullosa with pyloric atresia, related to the patient’s

fragile skin and food intolerance symptoms.

(C) As discussed above, present methods for identifying noncoding

impact variants are not mature. Recent strong CAGI results for

predicting which variants affect expression are encouraging in this

regard (Shigaki et al., 2019), and it would be interesting to see how

some of the more successful methods used there perform on the

SickKids data.
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(D) Nonstandard descriptions in clinical reports: an advantage of the

Sickkids data is the use of HPO terms to describe patients’

symptoms (Girdea et al., 2013). That greatly facilitated the

identification of candidate genes, and its broader adoption by

other analysis centers will improve performance. In addition, some

kind of weighting scale would also help—it may be obvious to a

physician that a particular HPO is not central to a patient’s

phenotype, but at present, that information is often not available in

the record.

(E) The role of variants affecting so far poorly understood the

function, particularly those that may affect chromatin structure.

Examples of these have already been found in cancer (Fudenberg

& Pollard, 2019; Makova & Hardison, 2015). It is not clear how

well general noncoding impact methods will work on such

variants, and they may be very far from genes, requiring a much

larger total number of variants to be considered, with an

accompanying rise in false positives. Advances in resolving

three‐dimensional chromatin structure and how it varies (Kishi

& Gotoh, 2018; Marti‐Renom et al., 2018; Qi & Zhang, 2019) hold

long‐term hope for progress here.
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