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The application of Materials Informatics to polymer nanocomposites
would result in faster development and commercial implementation of
these promising materials, particularly in applications requiring a unique
combination of properties. This chapter focuses on a new data resource
for nanocomposites — NanoMine — and the tools, models, and algorithms
that support data-driven materials design. The chapter begins with a brief
introduction to NanoMine, including the data structure and tools available.
Critical to the ability to design nanocomposites, however, is developing
robust structure–property–processing (s–p–p) relationships. Central to this
development is the choice of appropriate microstructure characterization
and reconstruction (MCR) techniques that capture a complex morphology
and ultimately build statistically equivalent reconstructed composites for
accurate modeling of properties. A wide range of MCR techniques is
reviewed followed by an introduction of feature selection and feature extrac-
tion techniques to identify the most significant microstructure features
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for dimension reduction. This is then followed by examples of using a
descriptor-based representation to create processing–structure (p–s) and
structure–property (s–p) relationships for use in design. To overcome the
difficulty in modeling the interphase region surrounding nanofillers, an
adaptive sampling approach is presented to inversely determine the inter-
phase properties based on both FEM simulations and physical experiment
data of bulk properties. Finally, a case study for nanodielectrics in a
capacitor is introduced to demonstrate the integration of the p–s and s–p
relationships to develop optimized materials for achieving multiple desired
properties.

1. Introduction

The past 5 years have seen substantial growth in access to digital materials
data with the goal to accelerate materials design under the national Mate-
rials Genome Initiative (MGI).1–4 New materials informatics techniques4–10

are being developed to centralize materials data and include information
across a significant range of length and time scales in order to improve
use of data mining, statistics, image processing and visualization, and
predictive analytics over the lifecycle development of materials systems.
However, unlike the metallic and inorganic alloy fields, polymers and their
nanocomposites are less developed in both database system and data-
driven analytical protocols. The complexity and high dimensionality of
the polymer and polymer nanocomposite data space, including details on
processing conditions, nanoscale filler dispersion, as well as properties, make
it challenging to implement a universal standard that could archive all
possible nanocomposite data and facilitate the intentional design of polymer
nanocomposites. Additionally, small changes in processing conditions or
surface chemistry can result in drastic changes in filler–matrix interaction
and filler microstructure, which can cause significant changes in composite
properties.11 These factors all hinder the establishment of a comprehensive
methodology to fully incorporate processing, structure, and property (p–s–
p) information for nanocomposite materials into the design process. Instead,
the design and development of new nanocomposite materials remains largely
dependent on Edisonian, trial-and-error iterations. To improve our ability
to design nanocomposites, it is essential to gain a deeper mechanistic
understanding of, and the ability to map and quickly search, the p–s–p space
for new polymer nanocomposite systems.

To meet these challenges, this chapter presents a data-centric approach to
accelerate the development of next-generation nanostructured polymers with
unprecedented and predictable combinations of properties. The proposed
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approach integrates physics-based models, empirical data, machine learning
approaches, and a robust interphase model built using curated and custom-
generated data, within a novel microstructural analysis and optimal design
framework. The implementation of this approach is further enhanced by
creating an open nanocomposite data resource (“NanoMine”a), an integral
part of the national effort under the MGI and the Integrated Computational
Materials Engineering (ICME) initiative.12 However, a data resource itself
is not sufficient for innovative material design. The data resource must
be coupled with newly developed tools, models, and algorithms for data-
driven material design. Critically, new models for interphase properties, both
physics-based and from machine learning, are needed to create meaningful
p–s–p work flows.

In this chapter, we present the architecture of the NanoMine data system
and the backbone behind it, an integrated framework for microstructural
analysis, and optimal material design. Microstructure analysis plays a key
role in assessing p–s–p relationships and in the design of micro- and
nanostructured materials systems like polymer nanocomposites. Central
to microstructural analysis is the method of MCR, which consists of
statistical methods to quantitatively represent the microstructure and its
possible inherent randomness (aka characterization) and build ensembles of
statistically equivalent microstructures13 (aka reconstruction). MCR allows
one to systematically go beyond the limits where empirical data are
available and build forward and inverse p–s–p links through simulation-based
analysis and design. While the nanocomposite materials design problem
can be formulated as an optimization problem through parametric-based
microstructure representation, two challenging research questions remain: (1)
how to quantitatively represent a heterogeneous microstructure system using
a small set of physically meaningful variables (“microstructure representa-
tion”), and (2) how to effectively explore the vast, high-dimensional design
space to search for optimal material designs that can be readily synthesized
through processing (“design synthesis”).

As shown in Figure 1, our proposed microstructural analysis and optimal
materials design framework is a multi-phase process in which image analysis
is first utilized to analyze physical samples made from existing processes.
After a digital representation of filler and matrix materials is obtained

aNanoMine can be accessed at http://nanomine.org. The site is still under development;
the tools will be continuously updated and new capabilities will be added.

http://nanomine.org
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Figure 1: Microstructural analysis and optimal materials design framework.

through “Image Preprocessing”, a range of techniques can be considered
for MCR. We have developed and implemented a suite of MCR techniques
in NanoMine, such as correlation functions,14 descriptor-based methods,15,16

and spectral density functions (SDFs). As indicated by details provided in
Section 3, there are pros and cons associated with each technique; some of the
techniques are either too high-dimensional, prohibitive for 3D digital recon-
struction, or not applicable to arbitrary shaped nanofillers and local aggre-
gation. For physically meaningful p–s–p mappings and quick exploration of
microstructure designs that include processing feasibility, there is a need for
“Dimension Reduction and Machine Learning” to identify the reduced-order
representation of microstructures. In this chapter, we will present the use
of machine learning17 and structure equation modeling (SEM) techniques18

to determine the key microstructure descriptors and processing descriptors
in studying the processing–structure and structure–property relationships.
In addition, physics-aware dimension-reduction methods, such as the SDF-
based approach, are presented as powerful techniques for representing general
material systems with high dimensionality and complex, irregular shapes of
microstructures. In the last stage of “Material Design Optimization”, either
the descriptor-based or SDF-based microstructure representation enables
efficient reconstructions and allows the use of a parametric optimization
approach to search for the optimal microstructure design.16 In this stage,
high-throughput simulation data is used to construct surrogate metamodels
for rapid design evaluations, and multi-criteria optimization is utilized
to generate a set of materials design solutions for achieving multiple
properties.

In the remaining part of this chapter, we first describe the major
components of the NanoMine data system and a robust ontology for polymer
nanocomposites supporting organization, search, and visualization services
of the material data (Section 2). This is followed by an introduction of
multiple MCR techniques (Section 3). Dimension reduction techniques for
managing the complexity of microstructure representation are presented in
Section 4. In Section 5, we provide details of using data mining techniques



October 26, 2019 12:21 Handbook on Big Data and. . . — Vol. 1 – 9.61in x 6.69in b3639-v1-ch03 3rd Reading page 69

Materials Informatics and Data System 69

for constructing descriptor-based p–s relationships based on experimental
data. Finite-element-based s–p prediction is presented in Section 6 where
a combined physics-based and data-assisted modeling approach is utilized.
While the overall model is physics-based, an adaptive optimization approach
is used to calibrate the interphase model based on the collected physical
data. Finally, in Section 7, a capacitor design problem is used as an example
to demonstrate the full integration of p–s and s–p models presented in
earlier sections for design of nanodielectric materials using multi-criteria
optimization. A model system not typically used for capacitors, but for
which we have significant data, polymethylmethacrylate (PMMA)-based
nanocomposite with silica nanoparticles, surface modified with a monofunc-
tional chlorosilane, is used as the candidate material system for the case
study.

2. NanoMine Data System and Data Resources

During past decades, extensive research efforts have focused on property
enhancement of nano-reinforced polymeric materials using both simulation
and experimental methods.19–21 Results from these studies have generated a
tremendous amount of data in different forms such as images, plots, and
text for a wide range of polymer, particle, and chemistry combinations.
However, most of the research data reported in the literature lack a unified
data format, terminology and uncertainty measures, and are incomplete.
Conventional keyword-based web search engines cannot provide sufficiently
detailed and annotated search results for effective material design or even
simple exploratory query and comparison of facts. Consequently, it is hard
to perform a comprehensive access or search of data according to user-
specified criteria, making the design of new functional materials extremely
inefficient.

Using the Material Data Curator System (MDCS) developed at the
National Institute of Standards and Technology (NIST) and with sponsor-
ship from the National Science Foundation, we have developed a prototype
system for nanocomposite material data curation, exploration, and analysis,
termed “NanoMine” (www.nanomine.org). NanoMine currently consists of a
growing nanocomposite database, a collection of module tools for statistical
learning, MCR, and simulation software to model bulk nanopolymer compos-
ite material response (see Figure 2). The underlying principle of NanoMine
is to create a living, open-source data resource for nanocomposites that
provides data archiving and exchange, statistical analysis, and physics-based
modeling for property prediction and materials design.
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Figure 2: Major features of NanoMine and the key features in each component.

The current NanoMine database contains more than 1,200 samples
with extensive information on p–s–p domains manually curated from over
150 papers as well as unpublished lab-generated data. It contains three
simulation tools for studying the electrical and mechanical response of
composite materials that include explicit representation of the interphase.
Additionally, it has four statistical learning and analysis modules including
downloadable packages that can be used to pre-process and analyze structure
and property data. Continuous efforts have been made to expand the volume
of the database and include state-of-the-art microstructure analysis and
design tools for the community.

2.1. NanoMine database and data schema

The NIST MDCS is an open-source platform providing solutions to collect,
share, and transfer material data. The system provides basic functions for
data curation (data entry using a web-based system) and data exploration
(search data by user specified criterion). MDCS is inherently a No-SQL
database that organizes the data using a user-defined data structure or
schema.

A well-defined data structure, or schema, is crucial to effectively collect
and archive materials data, enable efficient data retrieval, and facilitate
data exchange.22 In order to provide a standard schema to archive the
nanocomposite data, the terminology in the schema should be unified and
the data types for storing the entities should be well-defined and self-
explanatory.23 In order to develop the customized template to archive
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Table 1: Summary of parameters in NanoMine data schema.

Section Description Examples

Data source Metadata of the source of
literature.

DOI, author list, journal
publication year.

Materials Characteristics of constituent
materials, polymer, particle,
and functional groups.

Chemical structure, MW,
density, volume fraction,
surface treatment, graft
density.

Processing Extraction from Experiment
section. Step-by-step
description of synthesis/
characterization conditions.

Solution processing, melt
mixing, polymerization.

Characterization Measurement equipment and
parameters.

SEM/TEM, DMA, DSC, FTIR.

Properties Function data, value, and
observation of properties.

Modulus, dielectric constant,
conductivity.

Microstructure Nanophase dispersion capture in
grayscale images. Quantified
in morphological descriptors.

MAT file containing grayscale
image matrix, descriptors
(e.g., filler nearest center
distance, equivalent radius).

the raw p–s–p parameters from data sources, 30 representative papers on
polymer nanocomposites published within the past decade were investigated
to find the most commonly recurring parameters and terminologies. Based on
the literature survey, a prototype data template was developed and served
as an initial structure to manage all the key parameters associated with
p–s–p along with the metadata. The NanoMine data schema is continuously
updated to incorporate a wider range of parameters such as additional
processing methods or new properties.

As summarized in Table 1, the current NanoMine schema contains the
following six major sections:

(1) Data resource: The metadata of the source of the literature guided by
Dublin core standards which includes the DOI of the cited source, the
authors, title, keyword, time, and source of the publication.

(2) Materials: Material constituent information, including the filler parti-
cle, polymer matrix, and surface treatments. The characteristics of pure
matrix and filler such as the polymer chemical structure and molecular
weight and the particle density can be entered along with compositions
(volume/weight fraction).
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(3) Processing: Sequential description of chemical syntheses and exper-
imental procedures. The current template provides three major cate-
gories: solution processing, melt mixing, and in situ polymerization. For
each processing step, detailed information such as temperature, pressure,
and time can be entered.

(4) Characterization: Information on material characterization equip-
ment, methods, and condition used. This information includes details
on common microscopic imaging (SEM, TEM), thermal mechanical and
electrical measurement, as well as nanoscale spectroscopy.

(5) Properties: Measured data of material properties. Properties include
mechanical, electrical, thermal, and volumetric properties. The property
data could be in the format of a scalar, or in higher dimension such as
in 2D spectroscopy or 3D maps.

(6) Microstructure: Raw microscopic grayscale images capturing the
nanophase dispersion state. Geometric descriptors can also be included
to describe the statistical characteristics of the microstructure.

The three major data types used to store each entity are shown in Figure 3.
Using the schema, the non-relational data structure is well-defined and

the raw XML document containing the nanocomposite data can be filled in
readily, with multiple data formats and dimensionality. The current curation
process focuses on nanocomposites with surface-treated spherical inorganic
fillers, where many analysis and simulation tools have already been developed
internally and the publications contained microscopic images with explicit
dispersion information, well-documented processing and characterization
methods, as well as clearly plotted property data.

Based on the NanoMine data schema, a robust ontology for polymer
nanocomposites has been developed to support organization, search, and
visualization services of the material data.24 This ontology also formalizes
relationships inherent in our XML schema and can act as a translator to
accept multiple XML formats, enhancing the ability to share across different
data resources. On top of the NanoMine ontology, we are building a search
and visualization dashboard to allow users to browse and look up the data
by using a simple query as shown in Figure 4.

2.2. Analysis tools in NanoMine

Apart from the database, NanoMine also provides functionalities for quan-
titative investigation of the curated data to assist in property prediction
and material design. NanoMine aims to provide a practical suite of toolkits
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Figure 3: NanoMine data types: (a) atomic (scalar) values store single-field numerical
quantiles and strings; (b) functional data stores multi-dimensional data, most commonly
property plots in tabular forms; (c) microstructure images are extracted and stored as
8-bit grayscale image files.

customized for the curated data. The current tools are open-source web-
based modules, and the source code of those tools will be ready for download
allowing for user customization. In the beta site, at the current stage, we have
implemented four tools taking advantage of our most recent developments
in microstructure analysis,16,25 interphase property calculation,26 and Prony
series analysis.27 Details of these methods and tools will be presented in
Sections 3–5.

The analysis tools have a user-friendly web interface and other features.
Figure 5 shows a screenshot of the microstructure reconstruction webtool.
The landing page provides detailed instructions guiding the user through
the process step by step. References of the algorithm are also included
to enable the user to learn the algorithm behind the method. The image
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Figure 4: Examples of searching and visualization of NanoMine data shown in a list (only
one entry shown for clarity and space constraints) (a) or a plot (b).

input format, correlation function for characterization/reconstruction, and
number of reconstructed images can be chosen by the user. All computations
are performed on the NanoMine web server, and an email is sent to the
user after their request has been completed. Each user request is associated
with a unique “Job ID” which ensures data privacy and can be used to
retrieve, and download, a result at any time. Figure 5 shows a screenshot
from NanoMine depicting the results of a reconstruction request using the
two-point autocorrelation tool.

2.3. Simulations tools in NanoMine

NanoMine also includes a set of physics-based continuum models and simu-
lation tools for predicting the macroscopic material response. FEA models
have been developed to predict the electrical and viscoelastic response
of the nanocomposite with explicit input of microstructure and detailed
representations of the interphase. The system currently has implemented
two FEA models as web-tools to simulate the viscoelastic28 and dielectrical
properties.29,30 The available data in the database can be used as input
to the FEA model, which then predicts the composite properties. Figure 6
shows the workflow of the simulations tools integrating with the curated data
and analysis tools introduced before. The material constituents, including
molecular structure, can be obtained from the curated data. The material
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Figure 5: Screenshot from the NanoMine platform depicting the results of a reconstruc-
tion result from source images.

molecular structures are used to derive the energetic terms that represent
the surface energy and filler–matrix interaction.31 Those mixing energy
parameters are then applied to predict the interphase properties and the
representative microstructure30 if micrographs are not available. Taking the
input of interphase properties and microstructure dispersion, a 3D FEA
model is built with commercial software (COMSOL/Abaqus) using an API
and subroutine to calculate the composite dielectric spectra or viscoelastic
response. The simulation typically takes 30 minutes for a representative
nanodielectric system of 50 clusters in a representative volume element
(RVE). Similar to the analysis tools, users are assigned unique Job IDs upon
submission of a task. The Job ID can be used to check the status of the job
and retrieve the results.

2.4. Materials design in NanoMine

The workflow of material design using NanoMine is outlined in Figure 7.
Using the platform, the user is able to conduct both property simulation
(from left to right) given specific material constituents and processing
combinations, as well as material design (from right to left) in order to obtain
desired nanocomposite properties. Suppose the user would like to predict
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Figure 7: Application of NanoMine on property prediction and material design. Left to
right: material property prediction from material selection to bulk composite properties.
Right to left: design process starting from target properties to necessary material
characteristics.

dielectric permittivity for a PMMA-based nanosilica filled nanocomposite.
The first step is to query the database for existing property data for PMMA
and nanosilica as material input to the FEA and to calculate the relevant
surface energies using the embedded heuristic approach. Then analysis mod-
ules are applied to reconstruct the microstructure and predict the interphase
properties using statistical correlations among surface energies, processing
parameters, structural descriptors, and interphase property descriptors. The
FEA model is then carried out to compute the dielectric spectra for this
specific sample. This whole process is reversible: the user wants to find
a specific material combination and processing steps that could lead to
a desired property. If such data have already appeared in the literature
and been curated into the database, the solution is simple: just query
the database for such a sample and find the material constituents and
associated processing steps. However, in most the cases, the target property
is not in the database and a user usually wishes to have multiple targets
(such as high dielectric permittivity and elastic modulus). NanoMine is
being further developed to tackle precisely this challenge. Starting from the
existing data, the analysis and simulation modules are coupled with a design
optimization algorithm and metamodeling to explore different combinations
of constituents, microstructure, and interphase descriptors to attain this
goal. A comprehensive predictive framework will be built on top of the
entire set of p–s–p data applying a combination of data mining models,
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optimization methods, and numerical simulations. Details of these techniques
are provided in the upcoming sections.

3. Microstructure Characterization and Reconstruction for
Polymer Nanocomposites

This section provides details of the MCR techniques for polymer nanocom-
posites. As a material’s morphology significantly influences its proper-
ties,32,33 an essential task in the creation of process–structure–property
(p–s–p) linkages is analyzing the morphology of microstructure(s). The
analysis is quantitative, and its outcome is a deep understanding of how
processing conditions influence the formation of microstructure and how
the microstructure in turn affects the properties. Material morphology can
be recorded (in 2 or 3 dimensions) through several imaging techniques —
scanning electron microscopy (SEM), transmission electron microscopy
(TEM), atomic force microscopy (AFM), computer tomography (CT), etc.,
each providing morphological information in a distinct perspective and
chosen based on the type of information one seeks. In their raw form, these
images are stored as an array of pixel intensity values, often containing noise
(random variation of brightness/color), and are not of much use. To analyze
the image and extract useful morphological features, the following three-step
strategy is recommended:

(i) Image binarization: Binarization is the process of converting a
grayscale image to a black and white image (assuming there are only
two phases — filler and matrix) by removing noise and consequently
simplifying the analysis. It is accomplished by determining a threshold
for pixel intensity of filler and matrix components. As its name suggests,
binarized images are essentially an array composed of 0’s (displayed
in black) and 1’s (white). Binarization algorithms are classified as
global (single intensity threshold used for entire image) and adaptive
thresholding (intensity thresholds varies in different regions of the
image). The most widely used image binarization methods are Otsu’s
method34 (global) and the Niblack algorithm35 (adaptive).

(ii) Microstructure characterization: Several methods have been devel-
oped that can convert multi-dimensional microstructure morphology
recorded in images into a set of functions (aka features/descriptors/
predictors) that encode significant morphological details, i.e., charac-
terize the microstructure. As in the case of imaging techniques, users
can choose the characterization method according to the application.
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A common observation in all characterization methods is their statisti-
cal nature, since most material systems are inherently associated with
randomness.

(iii) Microstructure reconstruction: After characterization, one can
reconstruct a statistically equivalent microstructure(s)13 which embod-
ies a prescribed set of features (obtained by image characterization or
provided by user) and can be used as a RVE for simulating material
behavior via finite element analysis (which creates the structure–
property linkage) or serve as a training dataset for machine learning
algorithms.36,37 Reconstruction is often reduced to an optimization
process solved by heuristic methods (due to nonlinearity and high
dimensionality), leading to an ensemble of statistically equivalent
reconstructions.

The choice of characterization method determines the type of reconstruction
method applicable, i.e., the reconstruction algorithm must be consistent
with the characterization method and vice-versa. It must be noted that
although all characterization and reconstruction methods are applicable to
any microstructure in general, certain methods are more suited to a material
system as compared to others. Hence, users must consider properties of inter-
est, their corresponding length scales, and the availability of computational
resources to select an appropriate characterization/reconstruction method.
The rest of this section provides an overview of three MCR techniques
currently included in NanoMine: correlation functions, spectral density
functions, and physical descriptor-based approaches. A brief introduction
of emerging machine learning-based MCR techniques is provided at the end
of this section. A detailed discussion of these methods and other associated
techniques is available in the review article by Bostanabad et al.38

3.1. Correlation functions for MCR

Correlation functions (especially spatial correlation functions), some of the
most widely used MCR methods, contain valuable information about the
relative positioning of phases in an image. They do so by operating on
binarized microstructure images and evaluating the probability distribution
of a group of randomly chosen pixels obeying certain “rules”. Although
correlation functions can be defined for a group of n pixels (aka n-point
correlation function), it has been noticed that two-point (pixel) correlation
functions embody significant details39–41 and will be used in the following
discussion for sake of simplicity. Mathematically, a two-point correlation
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function ϕi
2 for phase i can be expressed as

ϕi
2(r1, r2) = 〈Mr1Mr2〉, (1)

where 〈·〉 denotes the expectation operator and r1 and r2 represent location
vector of points and M is a microstructure indicator functions such that:

M =
{

1 if r1 ∈ phase i

0 otherwise.
(2)

For an isotropic and stationary microstructure, ϕi
2 will only depend on the

distance r between the two points (making computation efficient42,43). As a
result

ϕi
2(r1, r2) = ϕi

2(|Δr12|) = ϕi
2(r). (3)

Based on the type of “rule” imposed on the two points, the following three
two-point correlation functions are defined (refer Figure 8):

(i) Autocorrelation function (Si
2(r))39,40: The probability that two

randomly chosen points are occupied by phase i and is a measure
of dispersion. Since many experimental characterization techniques
provide structural information in the form of Si

2(r), it is one of the
most widely used correlation functions.

(ii) Lineal path correlation (Li
2(r))44: The probability of finding a line

segment connecting two randomly chosen points entirely in phase i.
Li

2(r) is a measure of cluster geometry and connectivity of phase i but
underestimates these features due to the constraint of measuring along
straight lines.

(iii) Cluster correlation (Ci
2(r))32,45,46: The probability that two ran-

domly chosen points, occupied by phase i, are contained in the same
cluster. This correlation contains important information about topolog-
ical connectivity and is a superior structural signature as compared to
Si

2(r) and Li
2(r).

For r = 0, all three correlation functions reduce to the volume fraction
of phase i. Figure 8(d) plots the above three correlation functions as
a function of radial distance r (assuming isotropy) for a silica–PMMA
sample (Figures 8(b) and 8(c)) with silica volume fraction of 0.85%. The
sample was obtained by mixing PMMA and silica (with a chloro-ended
silane surface modification) in a twin screw extruder at 200 RPM with
200 kJ/kg energy input. The three correlations functions defined above
capture morphological details from different perspectives and are very
advantageous when used concurrently.47,48 It is possible to define additional
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Figure 8: MCR using correlation functions: (a) a schematic representation of two-point
correlation functions for white phase; (b) a TEM image of silica-PMMA sample (silica
volume fraction ∼0.008, 1 pixel = 3.246 nm); (c) image (b) binarized using Niblack
algorithm — silica nanoparticles are white and PMMA is black; (d) plot of auto, lineal
path, and cluster correlation function for silica; (e) and (f) two reconstructions of image
(b) using Yeong–Torquato algorithm performed in NanoMine.

two-point correlation functions as well as higher-order functions such as
three-point and four-point correlation functions;32 however, they require
significantly more computational resource.

After characterization, reconstruction of statistically equivalent micro-
structures can be cast as an optimization problem and tackled in the
following way:

(i) Start with a trial microstructure image which has the same volume
fraction as the original image. A convenient initial microstructure used
widely is a randomly generated white noise image.

(ii) Define an energy (cost) function which measures the difference between
the chosen correlation function(s) of the original and trial image.
Mathematically, the energy function can be expressed as

I =
n∑

i=1

m∑
r=0

αi[ϕ̂0,i(r) − ϕt,i(r)]2, (4)
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where n is total number of correlation functions considered, m is the
maximum spatial distance over which the functions are compared, αi

are weights to quantify the importance of each function, and ϕ̂O,i(r)
and ϕt,i(r) are the ith correlation functions of original and trial
microstructure images, respectively.

(iii) Adjust the trial microstructure image by swapping pixels belonging to
different phases to minimize the energy function.

The energy function (I)

I =
n∑

i=1

m∑
r=0

αi[ϕ̂O,i(r) − ϕt,i(r)]2 (5)

is almost always highly nonlinear with several local minimums and therefore
requires a heuristic optimization method such as simulated annealing
(SA)45,47–49 or a genetic algorithm.50–52 Yeong and Torquato47,48 generalized
the SA-based method (YT method) for stochastic reconstruction of 2D
(images) and 3D (volumes) for any random microstructure. Their method,
also centered on swapping two arbitrarily selected pixels of different phases,
employs the Metropolis algorithm as the acceptance criterion — the
probability of acceptance (P ) for a swap is

P (Iold → Inew =
{

1, ΔI < 0
exp

(−ΔI
T

)
, ΔI ≥ 0,

(6)

where ΔI = Inew − Iold and T is temperature which decreases with
each iteration (like annealing of metals and hence the name simulated
annealing) and controls the acceptance probability. Figures 8(e) and 8(f)
show two statistically equivalent reconstructions of silica–PMMA sample
(Figure 8(c)) using the YT method with the autocorrelation (Si

2(r)) of silica
nanoparticles used to construct the energy function. The YT method, in its
original form, is computationally expensive (prohibiting 3D reconstruction).
In addition, the parameters in the correlation functions have no clear physical
meaning nor can they be mapped to the processing conditions easily. Hence,
the correlation function representation is not effective or computationally
feasible for materials design.

3.2. Physical descriptors-based MCR

Physical descriptors (aka features/predictors) provide a meaningful and
convenient approach for direct elucidation of p–s–p relationships. Descriptors
are important structural parameters that are highly related to mate-
rial properties and provide a reduced dimensional representation of the
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microstructure.16 Since several key descriptors (often correlated) exist for
each property, the aim of this approach is to find a small set of uncorrelated
descriptors that sufficiently characterizes the material system of interest
by eliminating (or at least minimizing) the sources of uncertainty in
constructing p–s–p relationships.

Extracting descriptors from a microstructure image involves application
of image segmentation techniques53 to identify clusters of filler mate-
rial followed by analysis of individual clusters. Since there are multiple
descriptors available, the analysis leads to either: (i) extraction of a finite
set of preselected descriptors (based on experience or design of experi-
ments54–56) or (ii) extracting many descriptors yet selecting only a subset
of uncorrelated and informative descriptors for building predictive models.
Feature selection has been studied extensively57 and implemented success-
fully in the creation of insightful p–s–p mappings. Xu et al.17 studied
the damping performance of polymer nanocomposites by using a four-step
descriptor selection method using pairwise correlation analysis and machine
learning-based RReliefF variable ranking.58 The RReliefF algorithm and the
descriptor-based approach are used in Section 5 to establish a relationship
between dispersion of nanocomposites and processing conditions. Techniques
for reducing the dimension of descriptors will be introduced in Section 4.

Descriptors can be categorized in the following ways:

(i) Information scale: Descriptors are hierarchical in terms of the infor-
mation scales they represent. For example, volume fraction represents
the highest scale of information for a microstructure in terms of composi-
tion, followed by nearest neighbor distance (which quantifies the relative
distribution of filler clusters), while aspect ratio is at the lowest scale
since it is associated with an individual cluster. A crude yet convenient
definition is that higher scale descriptors are assigned to microstructure
while lower scale descriptors are associated with an individual cluster.

(ii) Nature of descriptor: A descriptor can be deterministic such as
volume fraction or statistical like aspect ratio/nearest neighbor distance.
A single value is sufficient to quantify a deterministic descriptor, while
a statistical descriptor requires a cumulative distribution function for
representation.

Table 2 lists key descriptors extracted from Figure 8(c) and used for
reconstructing a 3D RVE shown in Figure 8(a). These descriptors can be
obtained using region analysis algorithms.59
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Table 2: Key descriptors extracted from silica — PMMA sample shown in Figure 8(c).

Value

Description Type Mean Std. Deviation

Volume fraction Composition (Deterministic) 0.008 —
Cluster’s nearest center

distance
Dispersion (Statistical) 64.114 nm 43.005 nm

Number of clusters Dispersion (Deterministic) 53 —
Aspect ratio Geometry (Statistical) 1.468 0.527

Reconstruction follows a hierarchical procedure,15–17,31,60,61 with descrip-
tors at higher scales being considered first. Each descriptor may require a
different method for reconstruction but usually involves optimization. Xu
et al.15,16 developed a four-step strategy for 3D reconstruction of isotropic
polymer nanocomposites with ellipsoidal filler clusters. Given a 2D grayscale
or binarized microstructure image, the procedure involves: (a) extracting
descriptors (characterization) using image processing techniques and esti-
mating their values for a 3D volume; (b) matching dispersion descriptor
(nearest neighbor distance) using SA algorithm (discussed in Section 3.1)
by moving cluster centroids; (c) constructing individual filler clusters using
geometric descriptors obtained in step (a) and placing them at locations
derived in step (b) (assuming random orientation); and (d) adjusting
aggregate locations to eliminate overlap (if necessary) and compensating
so that the volume fraction matches the original 2D image. Figure 9 shows
the application of the above algorithm to the silica–PMMA sample shown in
Figure 8(c) using descriptors in Table 2. The scale of reconstructed volume
(Figure 9(a)) is the same as that of the original microstructure; i.e., edge
length of a voxel is equal to edge length of a pixel. Figure 9(c) shows good
agreement between the S2(r) for the target image and mean of 2D slices taken
from the reconstructed volume (Figure 9(a)), thus validating the accuracy of
the reconstruction technique. The significance of these descriptors (and some
others) in developing p–s–p mappings will be illustrated in the subsequent
sections. The reconstructed statistically equivalent 3D microstructures are
RVEs and can be utilized for property prediction using, for example, finite
element analysis.

Unlike correlation functions, which characterize microstructure from a
probabilistic perspective and cannot be easily related to morphological fea-
tures, descriptors offer a straightforward approach to material design. Often,
descriptors are quantities that can be controlled by adjusting processing
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Figure 9: Microstructure reconstruction using descriptors in Table 1: (a) a 3D RVE (300×
300×300 voxels) representing microstructure in Figure 1(c) generated using the algorithm
developed Xu et al.15 blue phase represents silica clusters while the PMMA matrix occupies
the rest of the RVE; (b) and (c) two 2D slices taken from RVE shown in (a); (d) Comparison
of S2(r) of target microstructure (Figure 1(c)) and mean of 2D slices taken from
3D RVE.

conditions and they also have a different impact on properties. Several
investigations in property enhancement of composites have found descriptors
such as volume fraction, size, shape and dispersion to play an important
role.15–17,31,61–67 For example, Karasek et al. observed that large variation
in the size of filler aggregates leads to enhanced electrical conductivity of
carbon black (filler)–rubber (matrix) composites.66 Finally, the descriptor-
based approach allows the use of parametric optimization algorithms to
search the optimal microstructure design that meets the targeted properties.



October 26, 2019 12:21 Handbook on Big Data and. . . — Vol. 1 – 9.61in x 6.69in b3639-v1-ch03 3rd Reading page 86

86 W. Chen et al.

3.3. Spectral density function for MCR

The SDF (aka, Fourier power spectrum) is a low-dimensional representation
of microstructure in the frequency domain where different frequencies
represent real space features at different length scales. It can be evaluated
simply as the squared magnitude of the Fourier transform (FT) of a binary
microstructure image M:

ρ(k) = |F [M]|2, (7)

where F [.] denotes the Fourier transform operator and k is the frequency
vector. Figure 10 depicts three isotropic, quasi-random channel-type nanos-
tructures with ring-shaped SDF. Channel-type nanostructures originate from
bottom-up processes such as phase separation68 or thin film wrinkling.69

Figure 10(a) contains a single dominant frequency, i.e., a single ring, and
manifests in channels with uniform width and connectivity. The channel
width is inversely proportional to ring radius. Figures 10(b) and 10(c) have
additional rings at lower frequencies leading to wider channels with variations
in channel width and increased disorder in nanostructure. Note that the type
of nanostructure (and the form of SDF) is dependent on fabrication methods
and materials used.

For isotropic microstructure, radial averaging can be used to convert
vector k to a scalar (like radial averaging of position vector for correlation
functions). According to the Winner–Khinchin Theorem,70 the inverse
FT of SDF is the two-point autocorrelation function. Previous research
suggests that SDF is sufficient to represent some complex heterogeneous
microstructures with irregular geometries. Studies have also shown that SDF
is a physics-aware MCR technique that can map the SDF parameters to

Figure 10: Three quasi-random nanostructures and their corresponding SDF (shown in
insets).
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properties which largely depend on the spatial correlations of microstruc-
tures, for example optical properties.71 In our recent work, we developed
an SDF-based approach to bridge the gap between structure–performance
for organic photovoltaic cells72 and p–s–p relationships in design of light-
trapping nanostructures made for thin-film solar cells.73,74 Research shows
that SDF provides sufficient representation of quasi-random microstructures
made from bottom-up manufacturing processes such as nanoparticle self-
assembly and nanowrinkling.75–77

The SDF approach significantly reduces the dimensionality of microstruc-
ture representation, as a few parameters (2–5 normally) are sufficient
to represent a unique microstructure morphology. Considering our design
case study using PMMA–silica nanocomposite as an example, from the
samples collected it is found that the gamma distribution, governed by two
parameters k and θ, is sufficient to model the nanocomposite. As illustrated
in Figure 11(a), a narrow SDF represents particles that are clustered and
unevenly distributed in real space. In contrast, with a broader SDF, structure
Figure 11(c) has a well-dispersed pattern.

All examples in Figure 11 are reconstructions that can be generated
in less than a second using the Gaussian random field (GRF) method,78

and they accurately reproduce the irregular shapes and local aggregation
in real material systems as a result of the stochasticity and the embedded
local correlations in GRF. In addition, a disk packing algorithm has been
developed for microstructures with disk-shaped filler clusters.79

Figure 11: SDF approach for unevenly distributed fillers and local aggregations.
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In the design case study shown in Section 7, the SDF representation is
used to rapidly generate samples of microstructures and create metamodels
of s–p relationships for a wide range of microstructural designs.

3.4. Machine learning-based MCR techniques

Though not implemented yet in NanoMine, a few state-of-the-art machine
learning methods for MCR are briefly introduced here. Their ability to model
highly nonlinear functions with nominal user input, coupled with speed
and flexibility make them an attractive proposition. These methods can be
categorized as follows:

(a) Supervised learning80,81: Using a single 2D/3D microstructure sample
as a training dataset, a decision tree is used to learn the conditional prob-
ability distribution of any individual pixel’s value given its surrounding
pixel phases. Reconstruction consists of taking a realization from the
learned model, and rendering the method cost-effective and applicable
to a wide range of material systems.

(b) Instance-based learning37,82: This approach uses a large database of
2D/3D microstructures to search for an instance that is most similar
(using predefined similarity metric) to the microstructure under con-
sideration. Thus, the reconstruction procedure is essentially a rigorous
search through the database.

(c) Deep learning83–85: This technique employs hierarchies of stacked neu-
ral network layers that encode implicit features into hyper-dimensional
spaces through linear multiplications and nonlinear transformations.

The above techniques have shown success in characterization and recon-
struction of polymer nanocomposite systems. However, the potential of these
machine learning techniques for materials design is still being explored. One
challenge is the lack of explicit description of microstructure design variables
and their physical relationships with processing conditions.

4. Dimension Reduction and Machine Learning
of P–S–P Relationships

To manage the dimensionality of microstructure design representation, data
mining and supervised learning techniques have been employed for dis-
covering important microstructure features and determining microstructure
design variables. Recent work has achieved microstructure dimensional-
ity reduction via manifold learning37 and kernel principal components.86
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However, unsupervised learning methods that rely on image data only do
not capture the impact of microstructure on material properties, so that the
reduced parameter set may not be suitable for the purpose of material design.
Limited efforts have been made towards modeling the microstructure–
property relationship using statistical learning and further reducing the
high dimensionality of microstructure features obtained from microscopic
images.

There are two common types of dimension reduction techniques in
machine learning: feature selection and feature extraction. “Feature selection”
reduces the number of variables in a system by selecting a subset of relevant
features, while “feature extraction” projects the original high-dimensional
feature space into a reduced space. Both selection and extraction can be
either supervised or unsupervised. The projection incurred in extraction
methods usually refers to a linear or nonlinear transformation of the original
variables. Extraction methods are not suitable when the physical meaning of
the original variables needs to be preserved. Feature selection, on the other
hand, chooses a subset of more informative features from the original set
and fits many design requirements. A supervised ranking method based on
the Relief algorithm17 has been developed in our earlier work to rank the
importance of microstructure descriptors. However, the method does not
address the redundancy among descriptors and it is also quite subjective in
determining how many descriptors to keep from a ranked list.

We present here an structural equation modeling-based approach18 that
combines feature selection and feature extraction techniques for uncover-
ing latent microstructure features. SEM is a multi-variate data analysis
method often used in social science for problems with latent layers and
path structures.87 We view microstructures as observations of underlying
structural characteristics and apply a measurement model in SEM to
represent the relationship as shown in Figure 12. By introducing latent
layers (structural features) in mapping input and output relationships, we
are able to identify the relationships and dependencies among different
microstructure descriptors. The whole procedure consists of two main parts.
First, exploratory factor analysis (EFA)88 is used to reduce the number of
descriptors as a part of feature selection. Second, for feature extraction, the
original descriptors are grouped under a few latent factors, and each latent
factor is linked to a set of descriptors (called indicators). The extracted
latent factors can be considered categories of microstructure features,
and the grouped structure reflects the correlation patterns of descriptors.
Depending on data availability, responses in an SEM structure may include
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Figure 12: SEM-based learning (X and Y represent observed inputs and outputs, F and
F ′ indicate latent factors associated with X and Y , respectively).

a microstructure correlation function (CF) or material properties, which
are used to identify the underlying descriptor–CF or descriptor–property
relationship. With the identified structure, the partial least square (PLS)
technique89 is employed to estimate the coefficients in SEM modeling; the
coefficients represent the influences of descriptors.

By building an SEM model, we are able to deal with high correlations
among all candidate descriptors, gain more insight into their relationships,
and identify latent factors (e.g., under categories of “composition”, “geome-
try”, and “dispersion”) for categorizing microstructure features. In Ref. [18],
for epoxy-silica microstructures, four descriptors, volume fraction, cluster
size, nearest neighbor distance, and cluster roundness, are found to be
significant through the SEM analysis using CF as the response (image data
only). The sufficiency of these descriptors is validated through confirmation
of the correlation function of the reconstructed images using the reduced
descriptors versus the original one.

Once the reduced dimensionality is determined, machine learning tools
are widely used for establishing metamodels of s–p relationships or p–s
relationships using available data. Figure 13 illustrates the metamodels
created between microstructure key descriptors and permittivity for an
epoxy-silica system18 based on finite element simulations. As shown, smaller
cluster size and larger volume fraction of silica lead to a better dielectric
performance: higher energy storage capability (high ε′) and smaller dielectric
loss (small tan δ) of the epoxy-silica system. This observation is consistent
with the findings in the literature that systems with small particles have high
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Figure 13: Structure–property relationship. Linear relationship between dielectric prop-
erties and key descriptors, only volume fraction and cluster size are considered for
visualization.

surface area-to-volume ratio, which is critical in determining the properties
of nanofilled materials.90 In general cases, the s–p relationship can be more
complicated so we may need to fit nonlinear models, such as Gaussian process
(GP) models.

5. Descriptor-based Processing–Structure Modeling
of PMMA–Silica System

To date, polymer nanocomposites have demonstrated outstanding properties
and played a significant role in scientific discoveries.21,63,91–96 However,
their commercial use is very limited due to the difficulty of processing
such materials on a commercial scale with control over the morphology.
More specifically, because a quantitative p–s–p relationship is lacking, to
obtain the optimized material property,61,97–99 one has to tailor nanoparticle
dispersion by controlling the processing conditions in a trial-and-error
manner.100,101 It is crucial to develop a quantitative modeling approach
which can incorporate the particle/surface chemistry and processing required
to achieve a specific nanofiller dispersion. Such a quantitative model
will provide more in-depth understanding of nanocomposites and greatly
accelerate the design and optimization of advanced materials. In this section,
we present a descriptor-based approach for creating p–s relationships under
non-equilibrium processing conditions. Three separate steps are involved:
processing quantification, microstructure characterization, and processing–
structure relationship development.

Aces
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5.1. Quantification of processing conditions

Processing is usually complex. Typically, for each individual processing
technique, there are many processing conditions and settings to be tweaked
to achieve optimized material properties. Since some of the processing
parameters are correlated and some do not have significant impact in
microstructure dispersion, it is of great importance to select the proper set
of parameters to represent the most significant aspects of processing that
contributes to the dispersion. To this end, we extend the representative
parameters for equilibrium conditions to the ones for non-equilibrium
systems by adding a processing energy descriptor.

Prior work100–102 in developing processing–structure relationships for
nanocomposites primarily considered two different aspects. (1) The first
aspect is how the surface chemistry of nanoparticles controls filler dispersion.
For instance, Natarajan et al.102 developed a quantitative relationship
between interfacial energy and dispersion. The filler is found to be well-
dispersed when the filler and the polymer matrix are thermodynamically
compatible. Agglomeration increases when the work of adhesion between
the fillers exceeds the work of adhesion between the filler and the polymer.
Villmow et al.100 found that the surface energy also determines the mobility
of the interphase, which significantly contributes to material properties such
as glass transition temperature. (2) In contrast, the second aspect of research
studies how processing energy (e.g., specific processing energy input) affects
the filler dispersion. For instance, Kasaliwal et al.101 discovered a power law
rule for the dependence of the dispersion of CNT agglomerates on the specific
processing energy applied.

While the aforementioned studies provide either qualitative or quan-
titative results for developing p–s relationships, they consider only the
surface energy or the processing energy independently. For non-equilibrium
processing methods, we consider the two processing energy parameters
simultaneously: interphase energy and processing energy. Before we formally
illustrate the formation of these two energy parameters, we confine the
factors that potentially contribute to dispersion. Generally, non-equilibrium
processing covers a wide range of processing techniques that result in
kinetically trapped microstructures. The most popular one in industrial
applications is extrusion because it is inexpensive, fast, and simple. Prior
qualitative study has found that to reduce the nanoparticle agglomerate
size, the agglomerate cohesive strength must be overcome. With increasing
shear energy input, the agglomerate size can be further reduced. Several
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components would be involved in the processing of particle deagglomera-
tion101,103–107:

1. Incorporation of the filler into the matrix.
2. Wetting of the filler with matrix material.
3. Infiltration of the matrix into the agglomerate.
4. Breaking up of the agglomerates and erosion of nanoparticles from the

agglomerate surface.
5. Distribution within the matrix.
6. Reagglomeration due to particle collisions during mixing.

These processes are dependent on nine factors:

1. Surface energies of the components;
2. Viscosity of the polymer;
3. Packing density of the agglomerate;
4. Chain stiffness of the polymer;
5. Shear stress;
6. Specific energy input during processing;
7. Agglomerate size;
8. Crystallinity;
9. Agglomerate strength.

Extensive research101,108–113 has been carried out on the quantitative
dependence of some of the listed processes and factors. We encourage readers
to refer to this literature for detailed explanations of the dependencies. In
quantifying the processing conditions in extrusion, we consider four out of
the nine factors: surface energy, polymer viscosity, shear stress, and specific
processing energy input (factors 1, 2, 5 and 6). The other factors are ignored
in this study either because of the limited number of composite systems
in the study (e.g., factors 4 and 8) or difficulty in gaining the needed
information during the applied process (e.g., for studying factors 3 and 5).
For the demonstration example in this section, we narrow our discussion to
the simplest extrusion method, single-screw extrusion as used in Ref. [25]
and the corresponding dataset in Refs. [25 and 114]. Data collected from
experiments has been curated and stored in NanoMine.

We consider silica nanoparticles (15 nm diameter) as a filler that is surface
modified using three monofunctional silanes by the method elucidated by
Natarajan et al.102 The silanes were differentiated by the end group of the
molecule — octyldimethylmethoxysilane, chloropropyldimethylethoxysilane,
and aminopropyldimethylethoxysilane. The polymer matrices of polystyrene,
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polypropylene, and PMMA were used in powder form for the extrusion
process. Each combination of surface modification and polymer matrix
provides a range of interfacial energy interactions.115 Functionalized particles
were precipitated using an antisolvent, mixed with the polymer matrix
powder, and dried to produce a particle–polymer powder mixture, as
explained by Hassinger et al.25

Prior to extrusion, the polymer–particle powders were jet milled to reduce
the size of powder particles. The powders were fed into a single screw
extruder, with screw diameter of 12.7 mm, screw length of 342.9 mm, and
channel width of 9.8 mm. Extrusion was carried out at 180◦C and at varying
screw speeds (20, 100, and 195 RPM) to examine the influence of processing
parameters on the final dispersion state of the particles. More detailed
descriptions of the processing can be found in Ref. [25].

5.2. Interfacial energy descriptor

The final dispersion state depends on deagglomeration and reagglomeration
of the nanoparticles during processing. The simulation by Starr et al.116

shows that when the particle–polymer interaction is weaker than the
particle–particle interaction, the particles agglomerate abruptly. Herein, we
adopt Natarjan et al.102 and Khoshkava et al.’s117 quantification of these
interactions — the ratio of the work of adhesion between filler and polymer
and the work of adhesion of filler to filler (denoted as WPF/WFF) to represent
the interfacial interactions. Table 3 lists the values of the interfacial energy
descriptor, WPF/WFF, for all the composites in the dataset. The cells of the
compatible combinations are marked in gray.

5.3. Processing energy descriptor

The other descriptor that we introduce is the processing energy descriptor,
which essentially measures the energy consumption within the screw during

Table 3: Descriptors describing the interfacial energy of
the various material combinations.

Silica modification Polymer PP PS PMMA

Octyl-mod-silica WPF/WFF 0.94 1.15 1.12
Chloro-mod-silica WPF/WFF 0.84 1.04 1.05
Amino-mod-silica WPF/WFF 0.78 0.95 0.96

Note: The compatible combinations are given in light
grey color.
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processing. We denote the screw channel depth of the extruder as H(L), in
which H is dependent on the length of the screw L. The screw diameter is
denoted as d, while the screw speed is represented by N . Then the shear
rate could be computed by,118

γ̇ =
π(d − 2H(L))N

H(L)
. (8)

Given the viscosity ηP , the shear stress is

τ = ηP · γ̇. (9)

The viscosity of the nanocomposite can be estimated by first determining the
viscosity of the neat polymer using the Cross Law as shown in Equation (10)
and then using the Einstein equation for filled polymers as shown in
Equation (11). In these equations, ηP and ηF are the viscosities of the neat
polymer and filled polymer, respectively, ηP , lim is the viscosity at infinite
shear rate for the neat polymer, ηP ,0 is the viscosity at zero shear rate for
the neat polymer, α is a fitting-factor, and f is the filler fraction, where the
viscosity of the materials could be estimated119:

ηP = ηlim +
(ηP,0 − ηP,lim)
1 − α · Ẏ 2/3

, (10)

ηF = ηP + f · 2.5 + f · 21.42. (11)

Using Lai’s120 theoretical model, the processing energy consumption in a
circular segment with infinitesimal length along the screw length direction
can be calculated as

dw =
πDΩ
60

dFby , (12)

where D is the screw diameter, Ω is the screw speed, and dFby is the tangent
component of the traction on the screw barrel surface (Fby = Sbμbγ̇bcosϕ),
in which Sb is the area of traction on the screw barrel, μb is the viscosity of
the molten polymer and ϕ is the angle between the resultant traction and
the channels. By taking the integral of dw along the length of the screw, the
total energy consumption, w, is obtained. The processing energy descriptor,
namely the energy consumption per mass unit of the throughput, can be
obtained by

Eγ =
w

q̇m
, (13)

where q̇m is the throughput.
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5.4. Microstructure descriptors from characterization

In addition to quantifying the processing conditions, it is also of great
importance to characterize microstructures with a set of low-dimensional
parameters. A necessary step before microstructure characterization is
material phase segmentation. For filler–matrix composites, it is essentially a
binarization process that distinguishes fillers from matrix. While the bina-
rization of TEM images is typically done by setting a global threshold,34,121

we find it does not work well with the TEM images in our dataset. The major
problem is that, in our TEM images, local shades or unevenness would result
in a darker/lighter spot in some particular locations, and these spots would
be misclassified when a global thresholding algorithm is applied. Therefore,
we apply the Niblack algorithm,35 which is a sliding window algorithm that
takes advantage of local pixel statistics to determine the local thresholding
value. Figure 14 demonstrates how the Niblack algorithm outperforms the
global thresholding algorithm, which is clearly seen in the red boxed area
where particles in a shaded region of the original TEM image are better
identified using the Niblack method.

While a range of MCR techniques are available as introduced in
Section 3,38 the descriptor-based characterization approach15 is used as most
of the clusters are spherical. Per Xu et al.,15 the descriptors considered are
listed in Table 4.

While descriptor-based characterization provides a rich set of physical
descriptors that represent the microstructures being studied, the dimen-
sionality is still too high to be correlated to the two processing descriptors
discussed above. Therefore, a supervised learning-based descriptor selection

Figure 14: A demonstration of a sample TEM image with local shades/unevenness
(a) and a comparison between the global thresholding algorithm (b) and Niblack
algorithm35 (c).
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Table 4: Descriptors being characterized in microstructure characterization.

Number
Descriptor Definition Type moments

Category 1:
Composition

VF Volume fraction Deterministic 1

Category 2:
Dispersion

rncd Cluster’s nearest
centroid distance

Statistical 4

rnbd Cluster’s nearest
boundary distance

Statistical 4

θ Principle axis
orientation angle

Statistical 4

Ifiller Surface area of filler
phase

Deterministic 1

N Number of clusters Deterministic 1
LocalVF Local Volume fraction

of the Voronoi cell
Statistical 4

Category 3:
Geometry

rc Cluster’s equivalent
radius

Statistical 4

rp Inscribed circle radius Statistical 4
raw Area-weighted

equivalent radius
(raw = rc/A)

Statistical 4

A Cluster area Statistical 4
δcmp Cluster’s compactness Statistical 4
δrnd Cluster’s roundness Statistical 4
δecc Cluster’s eccentricity Statistical 4
δasp Cluster’s aspect ratio Statistical 4
δrect Cluster’s rectangularity Statistical 4
δttst Cluster’s tortuosity Statistical 4

Table 5: Significance of descriptors learned using RReliefF algorithm.

Rank Descriptor Significance Rank Descriptor Significance

1 Ifiller 0.0505 6 A1 0.0360
2 raw1 0.0500 7 rc2 0.0345
3 VF 0.0500 8 N 0.0328
4 raw2 0.0432 9 rp1 0.0324
5 rc1 0.0370 10 LocalVF1 0.0321

process is conducted. Specifically, similar to Xu et al.,17 the RReliefF
algorithm is applied to assign significance scores to each descriptor with
respect to their impact on the microstructure correlation function.

For each category of descriptors (composition, dispersion, and geometry),
the most significant one is selected, i.e., volume fraction (VF), surface area of
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filler phase (Ifiller), and area weighted equivalent radius (raw1), respectively.
We also find that these three descriptors are linearly correlated. Therefore,
we further condense them into one integrated descriptor — volume fraction
normalized filler surface area (Īfiller = Ifiller/VF).

5.5. Building processing–structure relationships

Table 6 summarizes the values of the processing descriptors and microstruc-
ture descriptors presented above. The impact of each processing descriptor
on the microstructure descriptor is first studied. Then a predictive p–s model
is established by mapping the two sets of descriptors.

First, consider the impact of interfacial energy on the microstructure
descriptor. Recall that a larger value of Īfiller indicates better dispersion. The
materials with the best compatibility (e.g., highest values of WPF/WFF) show
the best dispersion (octyl-modified silica and PS) (Figure 15) as indicated
by the largest normalized interface area.

The microstructure dispersion descriptor Īfiller also depends on the
processing energy descriptor Eγ (Figure 16). In Figure 16, samples with the
same type of polymer and surface modification method are grouped together
and marked with the same symbol. Figure 16 shows that the dispersion of the
samples with the same polymer and surface modification could be improved
by increasing the processing energy.

Table 6: Descriptor values of the composites samples.

Polymer Particle surface modification WPF/WFF Eγ (J/g) Īfiller

PS Octyl 1.15 34.52 0.20
85.73 0.21

Chloro 1.04 33.18 0.15
85.66 0.17

Amino 0.95 33.28 0.12
104.34 0.12
85.76 0.12

PP Octyl 0.94 0.65 0.16
3.03 0.13

Chloro 0.84 0.58 0.07
3.53 0.17

Amino 0.78 0.65 0.09
2.16 0.12
3.08 0.12

PMMA Amino 0.96 103.10 0.11
964.16 0.13
410.92 0.12
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Figure 15: The impact of the filler–matrix compatibility descriptor (WPF/WFF) on the
microstructure dispersion (Īfiller). The dashed line indicates the threshold of 1, beyond
which materials have a wetting angle of 0◦ and the particles wet the polymer.

Natarajan et al.,102 who used solvent mixing, found a very abrupt
aggregation of nanoparticles when the compatibility of the nanoparticles
with the polymer matrix goes from compatible (e.g., WPF/WFF ≥ 1) to not
compatible (e.g., WPF/WFF < 1). The results in this research show that
the aggregation of the nanoparticles with a WPF

WFF
< 1 is less abrupt than

was found by Natarajan et al. for solvent mixed nanocomposites.102 This is
because the materials that are melt processed are not at equilibrium and
the mixing energy and fast cooling prevents aggregation, while for Natarjan
et al. the samples were annealed to a state of quasi-equilibrium.102

These results indicate that dispersion quality, Īfiller, can be correlated to
both the material compatibility (WPF/WFF) and the processing energy (Eγ).
The relationship between these variables was further developed using data
mining techniques to provide a mathematical expression, which could be
used in further analyses and prediction schemes. The results for the three
types of polymer matrix are shown in Figure 17, where the R2 values indicate
that Īfiller is linearly correlated with the combined energetic terms.
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Figure 16: The impact of processing energy descriptor (Eγ) on the microstructure
dispersion (Īfiller) in log scale. The polymer types and the surface modification methods
that correspond to the data points can be found in Table 6.

Figure 17 reveals a few important observations. First, nanoparticles need
more energy input or a better compatibility to be well-dispersed in PS and
PMMA due to the smaller slope compared to that for PP. The difference
between the slopes of the regression models implies that some properties of
the polymer matrix type will have a large influence on the dispersion. The
same result has been found in Ref. [92], where the influence of surface energies
on the dispersion of CNT in different polymer matrices was analyzed.

Given that all the three composites follow a linear trend in this p–s
relationship, we introduce a matrix-dependent term, f(matrix), in the p–s
correlation. Then the linear functions could be generalized as

Īfiller = f(matrix) sinh2(2WPF/WFF − 1) log(Eγ + 1) + C0, (14)

where for PS system, f(matrix) = 0.009947 and C0 = 0.08798; for PP
system, f(matrix) = 0.15039 and C0 = 0.05464; for PMMA, f(matrix) =
0.007548 and C0 = 0.071444.

By conducting the three steps described above, we successfully establish a
generalized, descriptor-based, linear p–s relationship using the dataset of PS,
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Figure 17: Regression model of the influence of interfacial energetics and processing
conditions on the normalized interface of the nanocomposites.

PP, and PMMA composites. This p–s relationship has a matrix-dependent
term that can be further investigated for different types of polymer
matrices.

6. Structure-Property Evaluation with Adaptive Optimization
for Interphase Calibration

In order to simulate and predict continuum level properties for polymer
nanocomposites, finite element (FE) models have been developed.16,29 Using
data on the material constituents (composition) from the curated data,
including polymer matrix and filler particle, combined with knowledge of
the filler spatial distribution and interphase properties, a discretized RVE is
created. RVEs can be simulated in a number of physical property domains
to predict mechanical, electrical, dielectric, or other properties.

One challenge in s–p prediction of nanocomposites is the modeling of
interphase behavior. Researchers have investigated interphase properties and
its origin both analytically and experimentally.122–124 Recent experimental
efforts have shown adequate evidence that the local polymer properties are
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significantly altered in the vicinity of polymer surface, through measuring the
local mechanical properties and by correlating thin film and nanocomposite
data.125,126 Given the limitations of direct measurements of interphase
properties in the experiments, one approach to calculate the interphase
properties is inversely through tuning the parameters in micro-scale model
constitutive equations or finite element analysis using the bulk properties
from experiments.28,127,128

It has been shown in our early work28,29,129 that the interphase properties
can often be described by shifting factors based on the pure matrix
properties, which can be represented by a Prony Series as a parameter
function of multiple relaxation and times and strengths. The interphase
properties in those models can be obtained through a trial-and-error-
based iterative tuning procedure by matching the simulations given specific
experimental data. However, the trial-and-error-based tuning process can
be very time-consuming given the complexity of experimental data and
simulation cost of FEA.

We present here an automated optimization method to solve the inverse
calibration problems. More details about this approach can be found in
our previous paper.26 Using a library of composite-level FE simulations,
key interface modeling parameters (shift factors) are determined to match
experimental properties. An adaptive sampling approach is implemented
in searching for the unknown interphase modeling parameters, and the
method has been tested on both dielectric and viscoelastic interphase
properties. The interphase properties are assumed to be well-represented
by the shifting factors with respect to matrix properties. Therefore, the
optimization objective is to find the shifting factors that will optimally
match the experimental data through applying adaptive optimization. The
key component of our approach is summarized in Figure 18.

(1) Based on our previous understanding of the interphase, empirical bounds
of shifting factors are applied to set the range to sample initial training
shifting factors using optimal Latin hypercube (OLHC). The FEA model
is run using each set of shifting factors to obtain a simulation result. The
objective function is formulated as the difference between the simulation
and experimental result using mean square error (MSE).

(2) A GP model is applied to fit the metamodel that correlates the
objective function (difference F) with features (shifting factors), with
uncertainties.
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Figure 18: The automated adaptive optimization strategy for searching the interphase
properties: (1) FEA is run on each point in the initial shift factor set from DOE and
then processed to formulate our objective function by calculating the difference between
simulated results and experiments using MSE; (2) a GP model is applied to construct the
surrogates for predicting the value of objective function (difference F) within the design
space; (3) EI chooses the best candidate points for additional simulation.

(3) Based on the fitted metamodel, new candidate points for the calibration
parameters are selected based on feedback from the surrogate model by
calculating the expected improvement (EI).130–132

This process is usually identified as an adaptive optimization process, also
called Bayesian optimization, which augments the training shifting factor
sets and drives the subsequent iterative improvement of the surrogate model
and prediction accuracy. The adaptive optimizer is applied to construct the
surrogate model and suggest the next optimal sampling points in order to
minimize the difference between the experiments and simulations and return
the optimal solution iteratively.

Using this automated approach and given the target experimental data,
the interphase properties on dielectric and viscoelastic studies can be
determined automatically. Taking a representative dielectric dataset (for
a nanocomposite composed of 2 wt.% bimodal anthracene–PGMA grafted
silica in epoxy133,134), the method is shown to estimate the interphase
properties with only tens of iterations as shown in Figure 19. The prediction
accuracy at each step is evaluated by calculating the discrepancy between
the simulated data using the predicted shifting factor from the adaptive
optimizer and the given experimental properties using MSE. As the iteration
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Figure 19: Evolving of optimal solution as a function of successive iterations: (a) the
discrepancy between the optimal prediction and the experimental data as a function of
iterations; (b) comparison between experimental data and the simulated result using the
predicted interphase properties given from the adaptive optimizer.

proceeds, the discrepancy keeps decreasing (though not monotonically, likely
due to the model uncertainties) indicating an increase in model accuracy as
new sampling points are added based on maximum EI.

Ideally, minimal discrepancy between simulated and experimental data
across the entire frequency band is desired and should lead to well-matched
data curves. Practically, we find a threshold value C, indicating an acceptable
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fit between the experimental data and simulated results. C may vary
depending the specific applications, but for our case C is set as 0.01.
The iteration stops after the difference is smaller than the threshold. While
the threshold is met at iteration 20, we plot more iterations in order to
show the convergence of our adaptive optimization procedure.

Figure 20: Comparison of matrix, interphase, and composite properties for 2 wt.%
bimodal anthracene–PGMA grafted silica in epoxy.
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By applying the adaptive optimizer above, the optimal shifting factors
that achieve a good match with experimental data can be determined.
Because the interphase shifting factors are the descriptors for the interphase
properties and completely define those properties, the interphase properties
are thus determined. It is important to note that without experimental
verification of these local properties, these represent a reasonable approx-
imation to the actual interphase properties. Figure 20 shows the optimal
interphase properties together with the matrix and composite properties.
The interphase properties determined are significantly different from that
of the matrix. This property difference is expected due to mobility changes
of polymer chains near the particles causing changes in the local physical
properties such as dielectric spectra of the polymer. For this sample,
the interphase region shows a higher permittivity and loss compared
with matrix and composite data. This interphase property agrees with
the experimental data where the addition of functional groups on fillers
enhances the relative permittivity.133 Further work is needed to determine
predictive models for the interphase parameters based on sufficiently detailed
experimental data.

7. Processing–Structure–Property Integration for Design
of Nanodielectric Materials in Capacitors

In this section, the capacitor design problem is used as an example to
demonstrate the design of nanodielectric materials by integrating p–s and
s–p relationships presented in the earlier sections. Capacitor design is a
multi-objective optimization problem where the objectives of maximizing
dielectric constant and minimizing its dielectric loss need to be achieved
simultaneously. Dielectric constant, also known as permittivity, affects
the energy storage capability of capacitors. Dielectric loss quantifies a
dielectric material’s inherent dissipation of electromagnetic energy (e.g.,
heat). Increasing dielectric constant often results in dielectric loss. Multi-
criteria optimization technique will be used to make the trade-off between
competing design objectives.

The remainder of this section is organized as follows. Section 7.1
introduces the silica-PMMA- material system and the formulation of
capacitor design optimization. Section 7.2 provides details of the s–p
modeling, along with the multi-criteria microstructure optimization results.
In Section 7.3, the optimized structure is mapped to processing condi-
tions based on descriptor-based processing–structure mapping presented in
Section 5.
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7.1. Capacitor design case study

The material system of interest is PMMA/amino-modified silica nanocom-
posites with silica loading up to 5%. This model system is chosen because we
have collected significant data for calibration and validation. The inclusion of
silica in PMMA influences the overall permittivity and dielectric loss of the
composites, and the dispersion quality of silica determines the strength of
the effects. PMMA and silica are mixed using a twin screw extruder, and the
high processing input energies tend to make the fillers more evenly dispersed
in the polymer matrix.

The key property of a capacitor is the maximum energy, E it can store,
which is determined by the following equation:

E =
1
2
εAdU2

d , (15)

where ε and Ud are the permittivity and dielectric breakdown strength of the
dielectric material, A is the area of the plate in a parallel plate capacitor,
and d is the gap thickness containing the dielectric material. Since we are
designing the material, the geometry parameters A and d of the capacitor are
not of interest. The breakdown of nanodielectrics is a complex phenomenon
and the FEA simulation model is still under development. Therefore, in
this case study, we assume the breakdown strength Ud is constant and only
consider the permittivity as a major design target for maximizing energy
storage.

Another important property in capacitor design is dielectric loss, which
essentially quantifies the amount of heat generated during the charging and
discharging process. Dielectric loss is usually represented by loss tangent,
and is also known as dissipation factor (DF), and is given by

tan δ = DF =
ε′′

ε′
, (16)

where ε′′ and ε′ are the imaginary part and real part of the dielectric
materials’ permittivity. Lower loss tangent is desired to avoid significant
energy loss during the usage of the capacitor.

In this case study, the microstructure of the composites is optimized based
on FEM-based s–p relationships (Section 6) first and then the empirical p–s
relationship (Section 5) is used to find the optimal processing conditions.
The mathematical formulation of this multi-objective optimization problem
becomes

min
sεS

−E, tan δ, (17)
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where s represents the microstructure to optimize, and S is the set of all
feasible microstructures. Using the physical-descriptor-based MCR approach
introduced in Section 3, the microstructure representation can be reduced to
a small number of design variables (descriptors) d. The above problem can
be reformulated as a simple bounded optimization

min
d

−E, tan δ; s.t. dL ≤ d ≤ dU , (18)

where dL and dU are the lower and upper bounds of design variables. One
common way to deal with multiple objectives in optimization is to use
the weighted sum of those objectives as a single objective. If using multi-
criteria optimization, the Pareto frontier135 is identified to form a set of
non-dominated solutions based on the trade-off between multiple objectives.
Genetic algorithms (GAs)135 have been used widely to find the Pareto
solutions.

7.2. Nanodielectric microstructure optimization based

on s–p relationship

The FE-based approach as introduced in Section 6 is used to build predictive
s–p models. Three major steps are followed:

(1) Use SDF parameters θ and VF as design variables to generate optimal
DOE sample points;

(2) Apply the GRF-based algorithm78 to reconstruct microstructures based
on the parameters generated in step (1);

(3) Evaluate the properties of microstructures reconstructed in step (2)
using FEA simulation models discussed in Section 6.

It is worth noting here that the normalized filler surface area, Īfiller, which has
been found to be the critical structure descriptor in p–s mapping as shown in
Section 5, is not directly used as a design variable in our problem. Instead, we
use the parameter of SDF distribution as one design variable. As explained
in Section 3.3, SDF representation provides significant dimension reduction
in microstructural analysis and design. Its applicability is also confirmed by
image analysis on the material samples made from the processing technique
adopted. By analyzing the microstructures of the PMMA-silica system
(Figure 21), the SDFs are found to be close to Gamma distribution with
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Figure 21: (a)–(c) Microstructures of PMMA–silica system; (d)–(f) corresponding SDF
and the fitted parameter k and θ, along with the normalized interphase fraction Ifiller.

two parameters, k and θ

f(x; k, θ) =
xk−1e−

x
θ

θkΓ(k)
, (19)

where Γ(·) is the Gamma function, k is a shape parameter, and θ is a
scale parameter. The peak (mode) of Gamma distribution described in the
equation above is (k− 1)θ. It is noted from samples collected that the shape
parameter k varies in a very small interval (1.15–1.19) and has little influence
on the profile of SDF. In contrast, the scale parameter θ varies from 0.05
to 1.5 and changes the width of SDF significantly as shown in Figure 21.
In our illustrative design case study, we only use θ as one design variable of
microstructure and fix k to its mean value 1.17. It is also found that the scale
parameter, θ, is strongly correlated with Īfiller, the important microstructure
variable identified earlier, with Īfiller increasing as θ increases. This strong
correlation justifies the use of parameter θ in SDF as a replacement to Īfiller.

We further verify whether the generated DOE sample points using SDF
parameter, θ, are evenly distributed in the normalized interphase dimension.
Figure 22(a) shows the original DOE space using the SDF parameter.
Based on the microstructure reconstructions from step (2), we obtain the
normalized filler surface area, Īfiller, of each microstructure and then present
the sample points in Figure 22(b). We note that the design space of Īfiller

and VF are covered evenly by those sample points.
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Figure 22: (a) 120 DOE points covering VF and SDF parameter space; (b) 120 DOE
points covering VF and the normalized interphase descriptor Ifiller.
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After the DOE samples are created over θ and VF, the next step is
to evaluate the properties of these samples. The s–p evaluation approach
described in Section 6 using physics-based FEA combined with calibrated
interphase parameters is followed. Due to the multiple relaxations observed
in the pure matrix, the interphase properties are described using a set of 5D
shifting factors (Mα and Sα for alpha relaxation, Mβ and Sβ for beta relax-
ation, and C for the intensity shift of permittivity) related to pure matrix
with the alpha and beta relaxation modeled separately. The interphase
shifting factors are calibrated and obtained inversely by optimally matching
a the composite dielectric spectrum from experimental data for amino-
modified silica–PMMA composites via an automated procedure applying
the adaptive optimization presented in Section 6. Since the composition
(filler, matrix, functional group) remains constant for all cases in the DOE,
the interphase shifting factors found in this manner can be used for all
simulation predictions in the design study. In the interphase optimization
process, multiple microstructural images for each sample are used to obtain
the appropriatre structural descriptors for reconstruction, which is then
used in the optimization procedure. With the interphase properties obtained
from the optimization procedure, new microstructure designs are simulated
following the DOE samples to obtain the nanocomposite bulk properties.
From the histogram in Figure 23, we can see the simulated permittivity
ranges from 2.5 to 2.8, and the losses tan δ are roughly in the range of 0.04–
0.063. The distribution of permittivity is close to normal distribution but
slightly right skewed. The dielectric loss has a highly skewed distribution
with concentrations in small values.

Based on the simulation samples, machine learning techniques are
used to build metamodels to replace the expensive s–p simulations. One
common technique applied to approximate expensive computer models is
the GP regression model,136 which is a non-parametric statistical model that
captures nonlinear response surfaces and provides flexibility for assessing
uncertainties in prediction.

A GP y(x) is defined by its mean function m(x) and covariance function
k(xx′):

m(x) = E[y(x)], (20)

k(x,x′) = E[(y(x) − m(x))(y(x′) − m(x′))], (21)

where the vector x indicates the spatial location, and the response y at each
location x follows the multi-variate normal distribution:

y(x) ∼ N(m(x), k(x,x′)). (22)
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Figure 23: (a) Histogram of the simulated permittivity at 1Hz; (b) histogram of simulated
loss tan δ at 1Hz.

For simplicity, the mean function is chosen to be equal to zero and the
covariance function is in the squared exponential form, also known as
Kriging137:

k(xx′) = σ2 exp(−w(x − x′)2), (23)
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where σ is a constant and w is the roughness parameter of GP, whose
dimension is the same as x. Both σ and w are obtained by maximum like-
lihood estimation (MLE). With these notations, the variance of prediction
is also tractable, and the detailed mathematical expression can be found in
Ref. [138].

From Figures 24(a) and 24(b), we found that the fitted GP models lead to
very accurate dielectric property predictions, with R2 in both models above
0.9, which is strong evidence that the GP models are good surrogates of
the more expensive FEA simulation models. To understand the relationship
between the dielectric properties and the microstructure design variables
VF and Īfiller, we provide the contours of the fitted models in Figures
24(c) and 24(d). It is observed that when VF is low (below 2%), as Īfiller

increases, the dielectric constant decreases, while when VF is relatively high,
as Ifiller increases, the dielectric constant becomes larger, reaching maximum
at the upper right region in the contour graph. When the dispersion state is
fixed, with higher loading of fillers, we expect higher dielectric constant. For
dielectric loss tangent, the lower left region is almost constant, which means
that when VF and Īfiller are low, they have little influence on the loss tangent.
In contrast, when VF and Īfiller both are at a relatively high level, they have
strong positive effects on loss tangent. Both properties are maximized around
the upper right region in Figure 24, which indicates a trade-off between them,
since we want to minimize one objective and maximize the other. We will
show how to use a genetic algorithm to tackle the multi-criteria optimization
in Section 7.3.

7.3. Multi-criteria optimization using genetic algorithm

GA is used as a search algorithm for identifying the solutions to multi-criteria
optimization in our design case study. Different from classical optimization
methodologies, genetic algorithms do not require gradient information, and
the search approaches the set of optimal solutions in an evolutionary manner.
In each iteration, a population of solutions is created and the current
population is updated into the next generation by four main operators:
selection, crossover, mutation, and elite-preservation. Intuitively, GA selects
“better” solutions with higher probability in each iteration according to
certain criteria, and then combines and perturbs these solutions to create the
next population of solutions. In the context of multi-objective optimization,
GA favors non-dominant solutions (points in the Pareto frontier). As shown
in Figure 25, for a problem where the objective is to minimize both objective
1 f1 and objective 2 f2, point E is dominated by points A and C: Point A
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Figure 25: Non-dominant points (Pareto frontier) in two-objective minimization problem.

reduces f1 without increasing f2, and at point C, f1 is improved compared
to point E. Point B is dominated by points C and D because C and D both
have one objective less (better) than B, while the other objective equals B.
Therefore, points A, C, and D form the Pareto frontier of this two-objective
optimization example. It is noted that individual optimums are at the two
ends of the Pareto frontier and any other points in between on the Pareto
curve are compromise solutions. At the lower left corner is the utopian point
where both objectives are individually minimized, which is not achievable in
most cases when the two objectives compete with each other.

The fitted GP models based on s–p simulations are used for multi-
criteria optimization. The obtained Pareto frontier is visualized in Figure 26.
Moving along the Pareto frontier from left to the right, the dielectric loss is
decreased while the dielectric constant is also reduced, limiting the energy
storage capability of the capacitor. Note that the negative (−) value of
dielectric constant is plotted. To maximize dielectric constant, the filler needs
to be well-dispersed and uniformly distributed in the polymer matrix as
illustrated by the upper left image. In contrast, with a few large clusters,
the microstructure on the lower right minimizes the dielectric loss while
also decreasing dielectric constant (permittivity). The microstructure in the
middle with moderate dispersion is a compromise result for both dielectric
constant and loss. This observation is consistent with our fitted model
shown in Figure 26: with better dispersion (larger Īfiller), both dielectric
constant and dielectric loss increase. Which point in the Pareto set should
be chosen as the design solution will depend on designer’s preference
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Figure 26: Pareto frontier identified by GA.

function that captures the willingness of making trade-offs between the two
objectives.

Once the optimal microstructure design is identified, the corresponding
processing condition is obtained by mapping the optimized normalized
interphase Ifiller back to processing energy using the p–s relationship
established in Section 5. Here, we choose the point (−2.623, 0.0418) from
Figure 26 as a demonstration. This design at one end of the Pareto frontier
corresponds to the optimal design for minimum dielectric constant but also
minimum dielectric loss. Its corresponding design variables are found to
be V F = 0.0157, Īfiller = 0.2718. In Section 5, we showed the empirical
relationship between processing conditions and the normalized interphase
Īfiller as

Ifiller = 0.07144 + 0.007548 sinh2

(
2WPF

WFF
− 1

)
log(Eγ + 1). (24)

As the filler matrix compatibility WPF
WFF

and the input energy Eγ increase,
Īfiller will also increase. Recall that the material system we studied so far is
PMMA/amino-mod silica, whose surface energy WPF

WFF
= 0.96. Inserting this

quantity into the above equation, we obtain the relationship between Īfiller
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and the input energy Eγ as

Ifiller = 0.07144 + 0.0084 ∗ log(Eγ + 1). (25)

To achieve the optimized Īfiller = 0.2718, the input energy needs to satisfy
2 ∗ 107(kJ/g).

8. Conclusion

In this chapter, we present a data-centric approach that integrates physics-
based models, empirical data, machine learning approaches, and a calibrated
interphase model, to discover new knowledge and accelerate the design of
polymer nanocomposites. The implementation of this approach is supported
by an open nanocomposite data system (“NanoMine”), where both data
resources and tools for microstructural analysis and optimal materials design
are integrated. We illustrate that microstructural analysis and optimal
materials design is a systematic process in which multiple steps of image
preprocessing, microstructure characterization, reconstruction, dimension
reduction, machine learning of p–s–p relationships, and optimal design need
to be followed.

While material informatics heavily relies on existing machine learning and
data mining techniques, a key question of advancing these techniques is what
is the proper microstructure representation for the materials systems of inter-
est? We present in this chapter a range of microstructure representations,
including correlation-function, physical descriptor-based approach, SDF,
and machine learning-based MCR techniques. In addition to considering
the specific microstructure geometry, we illustrate, in this chapter, the
importance of choosing a representation that allows physically meaningful
mappings of p–s–p relationships and rapid microstructure optimization. We
used the PMMA–silica-based nanodielectric polymer for a capacitor design
as a case study to illustrate the creation of descriptor-based p–s relationships
based on experimental data, construction of hybrid physics-based and data-
calibrated interphase model for s–p simulation, and the integration of two
models using the SDF representation for significant dimension reduction in
materials design.

NanoMine now contains over 1,200 distinct material samples, the major-
ity of which are curated from the literature. Most of the data have
extensive information on material constituents and composition, synthesis
and processing methods, processing conditions and associated properties, as
well as micrograph images if reported from the data source. The volume of
the data will continuously grow in our future work by expanding on more
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types of nanocomposite materials, such as high-aspect ratio fillers (carbon
nanotubes, nanofibers, clays, and nanoplates) with anisotropic dispersion
and extended property domains (optical and structural properties).

We are also working on continuously expanding the capabilities of
the NanoMine toolkit and developing more tools based on the p–s–p
parameters by exploring curated data in NanoMine. For example, our
work has shown a combined simulation and optimization approach to
calibrate the interphase property given the bulk composite property and
microstructure. We are building connections for this tool with the curated
data to create an interphase property library for different combinations of
material constituents and surface treatments using the existing material
data. This interphase library will help us build the correlations of interphase
properties with processing steps and material characteristics. This suite
of data and tools could be utilized to achieve a better understanding of
the underlying mechanisms behind the interphase material behavior and
help design the optimal interphase property by controlling the material
constituents or surface treatment. Our modeling and design capability will
be further enhanced by introducing multi-scale modeling and multi-phase
design search engines to predict and optimize nanocomposite properties
with explicit inclusion of constituent chemistry, interfacial energies, intrinsic
and extrinsic interface properties, filler dispersion, matrix morphology, and
uncertainty quantification.
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