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Abstract. Leveraging protein-protein interaction networks to identify groups of
proteins and their common functionality is an important problem inbioinformatics.
Systems-level analysis of protein-protein interactions is made possible through
network science andmodeling of high-throughput data. From these analyses, small
protein complexes are traditionally represented graphically as complete graphs or
dense clusters of nodes. However, there are certain graph theoretic properties that
have not been extensively studied in PPI networks, especially as they pertain to
cluster discovery, such as planarity. Planarity of graphs have been used to reflect
the physical constraints of real-world systems outside of bioinformatics, in areas
such as mapping and imaging.

Here, we investigate the planarity property in network models of protein com-
plexes. We hypothesize that complexes represented as PPI subgraphs will tend to
be planar, reflecting the actual physical interface and limits of components in the
complex. When testing the planarity of known complex subgraphs in S. cerevisiae
and selected mammalian PPIs, we find that a majority of validated complexes
possess this planar property. We discuss the biological motivation of planar ver-
sus nonplanar subgraphs, observing that planar subgraphs tend to have longer
protein components. Functional classification of planar versus nonplanar com-
plex subgraphs reveals differences in annotation of these groups relating to cel-
lular component organization, structural molecule activity, catalytic activity, and
nucleic acid binding. These results provide a new quantitative and biologically
motivated measure of real protein complexes in the network model, important for
the development of future complex-finding algorithms in PPIs. Accounting for
this property paves the way to new means for discovering new protein complexes
and uncovering the functionality of unknown or novel proteins.
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1 Introduction

1.1 A Brief History and Motivation

In the early stages of bioinformatics research, many studies focused on data generation
approaches along with standard analysis of this data, to take advantage of the rapid
advancement of biomedical technologies. The lack of data availability in the early days
of bioinformaticsmeant that every attemptwasmade to take full advantageof all available
data. These large, aggregated databasesmake datasets frommultiple research groups and
experiments available but has also led to certain practices that impedes the quality of the
data if attention is not paid to details of the dataset provenance. Such practices include
aggregation of data collected under different experimental conditions or incorporating
relationships obtained via prediction rather than observed experiments.

Recently, with the massive explosion of available data in the bioscience and med-
ical domains, the attention has shifted towards a focus on validation, data quality, and
in-depth data analysis. To achieve these objectives, there is a need to develop advanced
validation mechanisms to assess the quality of the large currently available biological
data. We posit that an important step in this direction is to study underlying properties
or features associated with current datasets and use these futures to validate the vari-
ous databases and assess the quality of their data items. In this work, we explore how
studying the underlying structural properties of biological networks can lead to a better
understanding of the nature of the network data. In particular, we look into the impact
of the physical aspects that are associated with protein interaction networks and how
the physical restrictions of the interactions enforce certain properties in such networks.
Our primary hypothesis is that protein complexes are likely to form planar underly-
ing structures when represented as a subgraph of a protein-protein interaction network,
particularly if their domains or subcomponents are large. Proving such hypothesis will
open the door to a new direction in utilizing the large amount of data associated with
biological networks and objectively assess their quality.

1.2 Overview of Network Modeling of PPIs

Modeling of protein-protein interaction (PPI) networks has grown in popularity since
1999 with the advancement of open source community databases for sharing PPI data,
a rapidly growing body research on the link between network models and biological
functionality (Barabasi and Albert 1999; Barabasi and Oltvai 2004; Jeong et al. 2001),
and the development of algorithms and tools for clustering proteins to identify common
functionality (Barabasi and Albert 1999; Barabasi and Oltvai 2004; Jeong et al. 2001;
Brohee and van Helden 2006). A number of popular algorithms designed specifically
for clustering proteins from PPI networks are now available, including (but certainly
not limited to) ClusterONE for finding overlapping protein complexes (Nepusz, Yu
and Paccanaro 2012), HC-Pin for functional complex discovery (Wang et al. 2011),
Altaf-Ul-Amin’s 2006 algorithm for detecting complexes in large PPI networks (Altaf-
Ul-Amin et al. 2006), PRODISTIN for prediction of cellular function in PPI complexes
(Brun, Herrmann and Guénoche 2004), as well as MCODE (Bader and Hogue 2003),
MINE (Rhrissorrakrai and Gunsalus 2011), and SPICi (Jiang and Singh 2010). All of
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these aforementioned approaches are a part of a large majority of clustering algorithms
built for protein-protein interaction networks that use a density measure or function
to some extent to identify clusters or complexes within a protein-protein interaction
network. While nearly all of the aforementioned literature notes explicitly in their work
that density is not the only factor with weight in clustering edges in a protein-protein
interaction network, amajority of algorithms can simplify protein complex identification
with the justification that complexes are represented as densely connected clusters in a
PPI network. This is typically done using a hard-clustering approach (Pu et al. 2007),
but performance is mixed.

1.3 3D Structure of Protein Complexes in Vivo

Inherently, any clustering algorithm that uses density as a major component of its algo-
rithm makes an assumption that a denser subgraph is the desired outcome, which may
not always be the case. As a protein complex grows in size (in length of protein complex
components and/or number of interaction partners), it becomes more and more unlikely
that all components of a protein complex will have space to physically interface with
one another. Inherently, a protein chain in its tertiary or quaternary form can typically
only be bound to one partner per interface at a time (Keskin et al. 2008). It is known
that the stability of protein-protein interactions can be measured by affinity as transient
or permanent if they are part of a non-obligate PPI complex (Acuner Ozbabacan et al.
2011). Further information is known about the stability and permanence of protein-
protein interactions; for example, interactions between homodimeric proteins tend to be
more stable in their PPI interfaces than heterodimers (Jones and Thornton 1996) and
also tend to be easier to predict (Keskin et al. 2008). One reasoning behind this is that
the interfaces of heterodimers tend to be flatter than homodimers (Jones and Thornton
1996).

Note that a PPI network is only a model. For example, due to the nature of the tech-
niques used to infer PPIs at the systems level (such as tandem affinity purification, mass
spectrometry, or older techniques such as the Y2H experimental system,), a protein com-
plex as it is found within its quaternary form in the cellular machine may not necessarily
be accurately represented by the PPI network. Many of these techniques present a pro-
tein of interest (bait) and determine through affinity which other proteins (prey) interact
with it outside of their normal functioning in the cell, meaning that the PPIs measured
represent physical interactions but not their spatial arrangement or temporal stability
(Uetz et al. 2000). Therefore, a number of factors, such as protein interactor length,
binding affinity, experimental system used to determine the interaction, and stability of
the interaction may or may not be represented in a PPI network.

1.4 Planarity in Graph Theory

The term “planar graph” denotes a well-known graph theoretic property indicating that
a graph is planar if it can be embedded on a plane without having its edges cross. This
notion differs from “planarity” that has been used to describe shape and size of a protein’s
interface with another within its 3D structure (Janin, Bahadur and Chakrabarti 2008;
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Jones and Thornton 1996). Henceforth, when referring to planarity or planar graphs, we
refer to the graph theoretic definition, as in Definition 1 below.

Definition 1. A graph G = (V, E) has a planar embedding if it can be drawn on a
plane without crossing any of its edges. A graph is planar if it has at least one planar
embedding (West 1996).

In this paper, we assume complexes are represented within PPI networks as an
induced subgraph G = (V, E) where G is a simple graph, meaning it contains neither
self-loops normultiple edges, and edges representing interaction relationships are binary
(0= does not exist, 1= exists). Subgraphs are not required to be connected graphs. (See
the example given in Fig. 1).

Fig. 1. Three examples of 3D protein structures and a dummy graph model of their PPI rep-
resentation. The top row shows a given protein complex with its different protein components
highlighted with a different color; the bottom row provides an example of how that complex
might be represented graphically. Note that interactions/edges in the graphical model are drawn
where there is a physical interface within the 3D protein structure. In the middle, we provide
dummy examples of measures of number of nodes, edges, and density, as well as planarity and
completeness of each complex. (Color figure online)

Interestingly, there appears to be no prior research into the planarity of subgraphs
representing protein complexesmined fromprotein-protein interaction networks.A2010
model submitted to arXiv notes that while some interactions are too complex to be
reliably represented in the “protein – edge – protein” format of the PPI, it is possible to
model the relationship between PPI network topology and relative protein abundance on
the assumptions that there exists a subset of protein interactions tend to be flat, stable,
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and ordered (Heo, Maslov and Shakhnovich 2010). However, a search for applications
of planar graphs reveals no prior research in biological networks.

1.5 Characterizing a Graph as Planar

There exist several algorithms for testing whether a given graph is planar. The most
well-known ones use a direct application of Kuratowski’s basic planarity theorem which
states that a graph is planar if and only if it does not contain K5, K3,3, or any of their
subdivisions as an induced subgraph. Note that K5 denotes a complete graph (clique)
of five vertices and K3,3 denotes a complete bipartite graph of six vertices with three
vertices in each set. However, Kuratowski’s method is expensive to test in practice,
particularly for large graphs. Linear time planarity testing algorithms include expanding
a smaller planar graphby addingpaths (path addition,Hopcroft andTarjan 1974), vertices
(vertex addition, Even and Tarjan 1976) or edge (edge addition, Boyer and Myrvold
2004). Parallel algorithms for planarity testing have also been developed (Klein and
Reif 1988). Several graph softwares such as the Boost Graph Library (Siek, Lumsdaine
and Lee 2002) and Library of Efficient Data Types (LEDA) (Mehlhorn and Näher 1989)
include algorithms for testing the planarity of graphs.

2 Results

In this work we investigate the planarity of known protein complexes as represented
by induced subgraph in the well-characterized model organism S. cerevisiae and other
mammalian model organisms. We provide evidence that a large portion of these com-
plexes are planar in our datasets. To highlight our work, we provide the following results
and their supporting evidence for twomanually curated datasets with a combined total of
808 known complexes in S. cerevisiae, CYC2008 (n = 408) and YHTP2008 (n = 400),
and othermammalian complexes from the Comprehensive Resource ofMammalian Pro-
tein Compleses (CORUM) dataset (SeeMethods for more detailed information). Briefly,
we extracted the induced subgraph for each complex from the PPI network by pulling
all intra-protein interactions available from the Biological General Repository for Inter-
action Datasets (BioGRID) database for all proteins in the complex lists provided by

Table 1. The average lengths in amino acid (AA) residues for all proteins in planar and nonplanar
subgraphs in S. cerevisiae datasets CYC2008 and YHTP2008 is given below. This table also
includes the absolute value of difference (�) in averages between planar and nonplanar protein
lengths. An unpaired Wilcoxon Rank Test was performed on the lengths of the proteins in each
dataset (planar vs. nonplanar) and the averages are significantly different (p-value <<< 0.001).

Dataset Avg. protein
length (AA)

� (AA) P-value

Planar Non-
planar

CYC2008 546.62 463.39 83.24 1.17 E−07

YHTP2008 598.90 520.72 78.18 2.13 E−06
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the datasets. Only interactions that are classified as “physical” were analyzed to reflect
the spatial nature of the interaction, so only “physical” experimental system edges were
kept.

2.1 Protein Complexes as a Graph Tend to Be Planar

We applied a planarity checking algorithm (seeMethods) to the 3,129 validated complex
subgraphs from yeast and other model organisms to characterize each one as either “pla-
nar” or “nonplanar”. We find that 2,619 (83.6%) were planar graphs, and the remaining
510 subgraphs (16.3%) were nonplanar. Further, for each subgraph in our dataset, 100
random graphs with the same number of nodes (n) and edges (m) were also evaluated for
planarity. Interestingly, we observe that 99.38% of planar subgraphs maintained their
planar quality even when edges were randomly shuffled within their structure. This con-
sistency would imply that the planar nature of the subgraphs is primarily a result of
size and density. We hypothesize that this relationship between planarity of an induced
subgraph and complex size may be a result of the inherent properties of the interactors
in the complex.

The length of a protein involved in a planar subgraph is longer on average than the
length of a protein involved in a nonplanar complex. Each subgraph used is made up of
a list of ORF ids and interactions. There were 506 planar ORFs and 1,415 nonplanar
ORFs in the CYC2008 dataset, and 854 planar ORFs and 1,223 nonplanar ORFs in the
YHTP2008 dataset. Lengths in AA residues for proteins involved in both planar and
nonplanar subgraphs were retrieved from the Saccharomyces Genome Database using
their ORF IDs. Lengths of these proteins were compared, and on average, proteins in
planar subgraphs tended to be ~78 to 83 AA longer than proteins involved in nonplanar
subgraphs (in the YHTP2008 and CYC2008, respectively) as shown in Table 1. The
differences in means were found to be significant (p-value < 0.001) in both datasets
using a Wilcoxon Rank unpaired test. However, it can be argued that any subgraph with
n = 4 proteins or less will automatically be planar as there is a planar embedding for
all iterations and subgraphs of a K4 graph. When we examine the planarity of only
subgraphs with 5 or more nodes in all datasets we find that only 31.22% of subgraphs
total are planar (combined dataset, n = 236), and the remaining subgraphs (n = 520,
68.78%) are not planar, as shown in Table 2. Unfortunately, this result is not significant
by a paired t-test (p-value> 0.01) and so does not provide sufficient evidence to speculate
on the biological motivation, if any, versus circumstantial or coincidental planar quality
of subgraphs. We can speculate, however, that as subgraph size (by node count) grows,
it is likely that a subgraph will lose its planar quality, further investigated “Density in
validated protein subgraphs in S. cerevisiae” section.

2.2 Function of Proteins Involved in Planar and Nonplanar Subgraphs in Yeast

A measured difference in planar versus nonplanar subgraphs leads one to question if
the planar quality of subgraphs in these S. cerevisiae datasets is biologically motivated,
circumstantial, or coincidental. To further probe this question, we annotated the planar
and nonplanar datasets for CYC2008 and YHTP2008 using the PANTHER Functional
Classification Tool for the GO Biological Process tree, the GOMolecular Function tree,
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Table 2. Count of valid planar and nonplanar subgraphs in the datasets where the number of
nodes is greater than or equal to 5. Planar/nonplanar column refers to those subgraphs labeled as
such by our algorithm. Each column has a count for the number of subgraphs characterized as
such, and the percent of the total that it represents for that dataset.

Table 2 Planar NonPlanar
Dataset Count % Count % Total
CYC2008 11 10.48% 94 89.52% 105
YHTP2008 18 20.69% 69 79.31% 87
Bovine 1 100.00% 0 0.00% 1
Dog 0 0.00% 0 0.00% 0

Human 156 30.83% 350 69.17% 506
Mouse 36 85.71% 6 14.29% 42
Rabbit 0 0.00% 0 0.00% 0
Rat 14 93.33% 1 6.67% 15

Total 236 31.22% 520 68.78% 756

and the PANTHER Protein Class ontology. Here, we report those annotations with a
strong representation (>5% of hit against input) and/or annotations which differed (not
necessarily significantly) between planar and nonplanar subgraphs. The goal of this
exercise was to determine if there were biologically motivated differences on a broader
level between proteins involved in planar versus nonplanar subgraphs. We observed
that there were specific annotations within each classification that showed differences
between planar and nonplanar graphs (Fig. 2).

Specifically, we observe differences in the GO Biological Process result for cellular
component organization or biogenesis, where planar-involved proteins have a lower
representation than nonplanar involved proteins. We also see a minor difference in the
GO Biological Process result for response to stimulus (GO:0005198), where planar-
involved proteins have a higher annotation rate than non-planar-involved proteins.When
examining the GOMolecular Function result, there is a larger difference between planar
proteins (3.4% and 5.4% for CYC2008 and YHTP2008, respectively) and nonplanar
proteins (14.9% and 12.9% for CYC2008 andYHTP2008, respectively) in the structural
molecule activity annotation. Per the Gene Ontology website, this annotation is defined
as “the action of [the] molecule contributes to the structural integrity of a complex or its
assembly within or outside of a cell.” Interestingly, this would imply that proteins found
in nonplanar subgraphs in yeast are more likely to play a role in structural molecule
activity. We also observe a higher rate of planar proteins annotated with the GO term
catalytic activity (GO:0003824), (35.5% and 42.0% in planar CYC2008 and YHTP2008
versus 26.2% and 22.9% in nonplanar CYC2008 and YHTP2008, respectively). This
annotation is typically given to molecules that catalyze biochemical reactions. Finally,
we observe a difference in annotation rates in the PANTHER Protein Class annotation
for nucleic acid binding (PC00171), with rates of 17.5% and 14.5% for planar CYC2008
and YHTP2008, respectively, compared to 31.1% and 31.6% for nonplanar CYC2008
and YHTP2008. This annotation designates molecules that bind to nucleic acids (i.e.
DNA or RNA), which would imply that proteins involved in planar subgraphs are less
likely to engage DNA or RNA binding compared to their nonplanar counterparts.
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Fig. 2. Selected PANTHER functional classification results for GO Biological Process (top), GO
Molecular Function (middle), and PANTHER Protein Class (bottom). The x-axis represents the
annotation label or name given, and the y-axis represents the % of input against hit, or effectively
the number of proteins in the given dataset labeled with that annotation versus the total number
of proteins in the dataset.

2.3 Density in Validated Protein Subgraphs in S. Cerevisiae

When comparing the relative size of each complex, we find that there appears to be a
natural boundary for planar subgraphs in terms of node size. In Fig. 3, we plot the number
of nodes (x-axis) against the edge density (y-axis) for each cluster and include planar and
nonplanar labels. Although the number of planar subgraphs far outweighs the number of
nonplanar subgraphs, it is apparent in both datasets that the more nodes a subgraph has,
the less likely it is to be planar. In both datasets, there are no subgraphs with more than
n = 16 nodes that are planar. The average edge densities for all subgraphs with enough
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Fig. 3. Scatterplots of node count (x-axis) versus edge density (y-axis) of planar and nonplanar
complexes for all S. cerevisiae and CORUM complexes combined. The plots do not reflect the
volume of planar complexes (there are far more planar complexes than nonplanar, but they all have
similar node size and density and as such overlap in the graph). Both plots show that the majority
of complexes are small - there are no planar complexes beyond n = 16 nodes.

entries to measure statistical significance and n > 4 nodes is reported in Table 3. We
also observe that for both planar and nonplanar subgraphs, there are a not-insignificant
number of known, validated subgraphs that have lower than average edge density, which
furthers the argument while density should certainly play a role determining complex
membership when performing clustering on PPI networks, using it alone will exclude
some portion of real complexes in the data.

Table 3. The average edge density of complexes in all evaluated datasets where there are enough
complexes to measure statistical significance. Average edge density in complex subgraphs with
n = 5 nodes or more only is reported, with associated p-value for a Student’s T-test of unequal
variance between means between planar and nonplanar complex subgraphs.

Dataset Average edge density of complex
subgraphs

Non-planar Planar P-value

CYC2008 89.72% 77.10% 0.0175

Human (CORUM) 79.33% 49.18% 8.3326 E−33

Mouse (CORUM) 72.88% 26.26% 0.0021

YHTP2008 77.86% 63.57% 0.0168
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Table 4. Count of valid planar and nonplanar subgraphs in the 3did DDI datasets, where a
subgraph consists of individual protein complexes, nodes represent domains with a protein,
and edges represent interactions between domains. Each column has a count for the number
of subgraphs characterized as such, and the percent of the total that it represents for that dataset

Planar Nonplanar Totals

Count % Count %

All complexes 733 84.64% 133 15.36% 866

Complexes with >4 DDIs 231 63.46% 133 36.54% 364

2.4 Planarity of Domain-Domain Interactions

It could be argued that the planarity or lack thereof in protein subgraphs can be attributed
to the domain-domain interactions of the proteins themselves, not the entirety of the
protein. Domain-domain interactions (DDIs) are the physical contact points for protein-
protein interactions, where one protein component of a complex may have many inter-
actions, and the domains of a protein are where proteins physically interface with them-
selves and other subcomponents. Therefore, we captured all known and validated DDIs
for S. cerevisiae from the 3did dataset (https://3did.irbbarcelona.org/) and examined
the planarity of known DDI’s within a validated RSCB PDB protein complex. We find
that regardless of inclusion of ‘small’ complexes (≤4 DDIs or less), the majority of
complexes have DDIs that form planar subgraphs, the opposite of what is found with
examining PPI complexes (Table 4).

We re-examined complex subgraphs from S. cerevisiae at the DDI level, identifying
352 PSCB PDB complexes with known DDIs and their corresponding planarity. In this
work, the length of the DDI in amino acid residues is measured, and the results show
that planar complexes have a longer physically interacting regions (35.4 AA residues
on average, n = 173) than nonplanar ones (29.9 AA residues on average, n = 176). The
difference between the means is statistically significant (p < 0.0005 using an unpaired
Student’s t-test with unequal variance). These results suggest that on average, planar
interactions at the complex level correspond with longer DDI interactions.

3 Methods

3.1 Data Download and Pre-processing

We chose to begin our study of planarity in PPI networks in Saccharomyces cerevisiae
due to the extensive body of research on PPIs in the organism itself (Fields and Song
1989; Ho et al. 2002; Krogan et al. 2006; Schwikowski, Uetz and Fields 2000; Uetz et al.
2000; Von Mering et al. 2002a; Von Mering et al., 2002b), including the sentinel paper
by Jeong et al. in 2001 examining centrality and essentiality in yeast PPIs (Jeong et al.
2001). We used two datasets of protein complexes described by Pu et al. 2007, curated
through a multi-step procedure of clustering densely connected subunits of the yeast
PPI network, and mapping to a high-quality consolidated PPI network (Pu et al. 2007).

https://3did.irbbarcelona.org/
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The result of this work is two catalogs of protein complexes in yeast, the first focusing
on literature-validated, heteromeric protein complexes derived from small-scale exper-
imentation (CYC2008, n = 408) and the second focusing on complexes derived from
high-throughput assays (YHTP2008, n = 400) with interactions supported by literature
(Pu et al. 2008). These complexes and their components given as ORF id numbers are
available as node lists from http://wodaklab.org/cyc2008 in multiple file formats and
were downloaded in September 2018. We also included the Comprehensive Resource of
Mammalian Protein Complexes (CORUM) non-redundant complex dataset downloaded
on June 27, 2019 from their website https://mips.helmholtz-muenchen.de/corum/#dow
nload. This website contains over 4,000 validated protein complexes from H. sapi-
ens, B. Taurus (bovine), C. familiaris (dog), M. musculus (mouse), R. norvegicus (rat),
and O. cuniculus (rabbit). The complexes from the Wodak and CORUM datasets were
then mapped to their respective protein-protein interaction networks downloaded from
BioGRID’s August 2018 release (3.4.164, file BIOGRID-ORGANISM-3.4.164.tab.zip)
to elucidate their network structure. One subgraph of this PPI was generated for each S.
cerevisiae protein complex in the YHTP2008 and CYC2008 datasets, and the same was
performed for allH. sapiens datasets in theH. sapiensBioGRIDPPI, for theC. familiaris
(dog) dataset and the C. familiaris PPI, and so on. Complex subgraphs were generated
in the following manner: First, the set of the proteins involved in each individual com-
plex were extracted from the two complex datasets. Then, for each set of proteins, the
interaction network was searched for edges such that both nodes coincident with the
edge were in the given complex. Duplicate edges and self-loops were removed from this
network before evaluation of planar structure. Edges are undirected. Edges and nodes
not explicitly named in the PPI catalogs were removed. The resulting simple subgraph
induced by this process was then extracted and stored for further analysis. The result
was a total of 3,129 protein subgraphs (as separate connected network components) with
nodes and edges as they exist in PPI format.

We also collected domain-domain interactions for proteins for which high-resolution
three-dimensional structures are known in S. cerevisiae using the 3did database. We
downloaded all 4,451 PDB IDs for complexes in yeast on January 16, 2020. The DDI’s
contained in the 3did dataset were mapped to their PDB ID using Pfam domains. Each
PDB ID represented one complex with domains represented as nodes and domain-
domain interactions mined from 3did represented edges. These complex subgraphs were
then analyzed for planarity by our algorithm implementation.

3.2 Planarity Testing

The planarity of the subgraphs was tested using the Boyer and Myrvold planarity test
(Boyer et al. 2004), an O(n) planarity test based on embeddings via edge addition and
Kuratowski subdivisions. This algorithm returns a result of “True” if the graph G given
as input is planar and “False” if it is not. In addition to the testing of the planarity of
the subgraphs themselves, for each individual subgraph a series of 100 random graphs
with the same number of nodes (n) and edges (m) were also evaluated for planarity.
These random graphs were created by generating m random edges where the endpoints
of each edge were randomly chosen from the set of all n nodes. The generated edges
were filtered to prevent duplicate edges and self-loops, resulting inm unique, unordered

http://wodaklab.org/cyc2008
https://mips.helmholtz-muenchen.de/corum/#download
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pairs of distinct nodes. Our code for checking the planarity of subgraphs has been made
available at https://github.com/ndcornelius/complex-graphs.

3.3 Validation for Nonplanar Subgraphs

Thecomplete interactiondatasets for themodel organismdatasetswere downloaded from
BioGrid onMay 20, 2019 from the version 3.5.172 release archive. ORF ids were used to
identify nodes and all other data included was stored as node or edge attributes. We only
wanted to investigate physical interactions so we removed any “genetic” Experimental
System types. As an example, the S. cerevisiae network as downloaded, after removal of
genetic interactions, self-loops, multiple edges, and direction, included 6,313 nodes and
110,596 edges (0.56% edge density). There was a total of 17 different types of physical
experimental systems included in the BIOGRID filtered network that resulted, and all
17 measure a physical interaction of protein to protein or RNA with varying levels of
quality based on experimental system (types available upon request).

3.4 Functional Analysis of S. Cerevisiae Subgraphs with >4 Nodes

The four sets of ORF ids from both datasets (CYC2008, planar and nonplanar as well
as YHTP2008, planar and nonplanar) was analyzed to characterize functionality with
the online PANTHER Classification system (version 14.1) using their functional clas-
sification tool using the S. cerevisiae reference genome. This tool reports a number of
measures, including an annotation label or name according to the ontology being used,
the accession number of that annotation, and the “% hit against input”, or the number
of IDs in the input against the total number of IDs in the input. We performed func-
tional classification of all four subsets across five ontologies: GO Biological Process,
GOMolecular Function, GO Cellular Component, PANTHER Protein Class, and PAN-
THER Pathway. In this work, we report those annotations with a strong representation
(>5% of hit against input) and/or annotations which differed (not necessarily signifi-
cantly) from planar to nonplanar subgraphs. The goal of this exercise was to identify
any broad functional differences between planar/non-planar complexes quantitatively.

3.5 Comparison of Protein Length in Planar vs. Nonplanar Subgraphs

Subgraphs were sorted into two types (planar and nonplanar) and gene lists (using ORF
as an id) for each complex were generated using in-house Python scripts. Thus, we
were able to compile a list of all ORF ids for proteins involved in planar and nonplanar
subgraphs for both the CYC2008 and YHTP2008 datasets. We used the Saccharomyces
Genome Database (www.yeastgenome.org) to pull protein lengths for all ORF ids in
planar and nonplanar subgraphs. Average protein lengths (in AA residues) for each
group were calculated, and within datasets, length of proteins involved in planar and
nonplanar subgraphs were compared using an unpaired Wilcoxon rank-sum test.

https://github.com/ndcornelius/complex-graphs
http://www.yeastgenome.org
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4 Discussion

Bioinformatics as a scientific discipline has gone through various stages of maturity in
the last few decades. In its next stage, it is anticipated that rigorous validation and verifi-
cation studies will play significant roles in solidifyingmajor Bioinformatics findings and
will increase their impact in advancing biomedical research. The reported work of this
paper represents a step in this direction by employing biologically motivated concepts
to analyze and measure of the quality of the widely-used biological networks.

Subgraph density has long been ameasure of importancewhen determining the func-
tional potential of a network structure in protein-protein interaction networks. While
there is no doubt that density plays a role in finding complexes in protein-protein inter-
action networks, there are other underlying physical properties of proteins in complex
that can be revealed with application of more advanced graph theoretic concepts. In
this work, we have applied a planarity checking algorithm to 2 datasets of known PPI
complexes in S. cerevisiae and found that a majority of protein subgraphs possess this
planar property. We have identified a relationship between this planar property that may
be linked to physical and spatial constraints of protein interactions at the cellular level
and should be investigated with further studies. In the reported results, we find that in
the broad majority of planar subgraphs, the planar embedding is not random. We also
find that proteins in planar subgraphs tend to be 78–83 amino acid residues longer than
proteins in nonplanar subgraphs.We do identify some functional properties of these sub-
graphs that differ between planar and nonplanar proteins. However, this is a preliminary
study and we do realize that further work is needed to determine if this difference is
significant. In the future, we plan to expand our research to more high confidence PPI
datasets and more model organisms to further confirm our original hypothesis, that due
to the physical nature of protein interactions, protein subgraphs are likely to form planar
underlying structures, particularly if their domains or subcomponents are large.

This research is important for the study of protein-protein interaction networks for
several reasons. First, it offers a new structural measure that is readily identifiable from
the network structure, without any biological annotation or input. This could allow for
the improvement or development of protein complex finding algorithms by uncovering
subgraphs that were previously undiscoverable because they were not necessarily dense
(for example, having 40% edge density versus 75%), but have this planar component.
Secondly, it opens the door to further analysis of structure of domain-domain interac-
tions, a subfield of protein-protein interaction research; we preliminarily find that DDI
networks in yeast also maintain this planar component, perhaps even more stringently.
Thirdly, it allows for the re-use and re-analysis of existing PPI datasets with the justifica-
tion that this planar property may reveal previously unknown or partially known protein
complexes, opening the door for discovery from our existing community databases. We
look forward to expanding our proposed work and investigating further this interesting
planar property in PPI networks.
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