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Abstract— We investigate the secure degrees of freedom (SDoF)
of the multiple-input multiple-output (MIMO) wiretap channel
with intersymbol interference (ISI) in the presence of a multi-
antenna cooperative jammer. We focus on the practically relevant
setting with no channel state information at the transmitters
(CSIT). More specifically, the legitimate transmitter and the coop-
erative jammer only have statistical knowledge of the channel in
terms of the effective number of ISI channel taps, i.e., channel
impulse response (CIR) lengths, toward the legitimate receiver
and the eavesdropper. Our main contribution is to show that in
the absence of CSIT, positive SDoF can be achieved by carefully
exploiting: 1) the heterogeneity of the CIR lengths toward both
receivers and 2) the relative number of antennas at the four
terminals. To achieve secrecy, we propose a scheme in which
the transmitter strategically sends a mixture of information and
artificial noise symbols in a way that exploits the heterogeneity
of CIR lengths. Additionally, the cooperative jammer transmits
artificial noise symbols in a way that completely masks all the
information symbols that are received at the eavesdropping node.
Under the proposed scheme, positive SDoF can be achieved, even
when the number of antennas at the legitimate receiver is less
than the number of antennas at the eavesdropper.

Index Terms— MIMO wiretap channel, cooperative jammer,
intersymbol interference (ISI) heterogeneity, secure degrees of
freedom (SDoF), statistical channel state information (CSI).

I. INTRODUCTION

THE key idea behind achieving physical (PHY) layer secu-
rity lies in the exploitation of the inherent randomness

in the wireless channel such as fading or noise. Starting
from the pioneering work of Wyner [1] on the degraded
wiretap channel, the capacity of the non-degraded wiretap
channel was characterized by Csiszár and Körner [2]. The
capacity of Gaussian wiretap channel was obtained in [3].
Subsequently, numerous other multi-terminal problems, and
architectures/methodologies have been studied with secrecy
constraints. For instance, cooperative jamming refers to a
scenario in which a cooperative jammer (in addition to the
information bearing transmitter) purposefully transmits inter-
fering artificial noise to jam the eavesdropper’s signal while
minimizing the impact at the legitimate receiver [4]–[9].
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The majority of aforementioned developments have been
made under the assumptions of availability of channel
state information at the transmitter (CSIT)–be it instantane-
ous [10]–[12], delayed [13], [14], or alternating [15]. For
the MIMO Gaussian wiretap channel, recent work [16] has
shown that even in the absence of CSIT, positive SDoF can
be achieved whenever the number of antennas at the eaves-
dropper is less than the number of antennas at the legitimate
receiver. Most of the research progress has been particularly
focused on memoryless channels with secrecy constraints.
We refer the reader to [17]–[19] for detailed surveys on this
topic.

Within the class of channels with memory, an important
sub class are channels with intersymbol interference (ISI).
The capacity of the Gaussian ISI channel was characterized
in [20] (also see multi-user generalizations in [21], [22]).
Recently, the capacity of the MIMO wiretap channels with
ISI and with full CSIT was characterized in [23]. In partic-
ular, [23] uses the discrete Fourier transform (DFT) methods
introduced in [20]–[22] to create an equivalent set of parallel
memoryless MIMO wiretap channels from the original MIMO
ISI wiretap channel. Subsequently, the results on the capacity
of parallel wiretap channels [24] are then leveraged to char-
acterize the capacity of MIMO wiretap channel with ISI and
full CSIT.

In this paper, we focus on the MIMO ISI wiretap channel
with a cooperative jammer as shown in Fig. 1. The system
consists of a transmitter (Alice) who wishes to communi-
cate securely to Bob, in presence of an eavesdropper (Eve),
through the help of a cooperative jammer (Charlie). All the
channels are ISI channels, and most importantly, there is no
instantaneous knowledge of CSI at either Alice or Charlie.
The main novel aspect of this paper is to show that in
the presence of statistical heterogeneity in ISI link lengths,
statistical channel knowledge alone is in fact sufficient to
achieve positive SDoF. This exploitation of ISI heterogeneity
(the difference in channel impulse response (CIR) lengths
towards Bob and Eve) is particularly practical for Ultra-
wideband (UWB) systems that tend to have several hundreds
of channel taps [25]–[27]. CSI at the transmitters (CSIT)
is traditionally obtained through piloting mechanisms where,
after estimating the channel coefficients, the receiver feeds
them back to the transmitter. This, however, is not prac-
tically feasible in the wiretap channel setting since an
eavesdropper cannot be expected to cooperate with the legit-
imate transmitter in such manner. For robust and realistically
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Fig. 1. The (K , M, N) MIMO ISI Wiretap Channel with a Q-antenna
Cooperative Jammer. L B A(L BC ) and L E A(L EC ) denote the number of
effective channel taps for the channels between Alice (Charlie) and Bob (Bob)
and Alice (Charlie) and Eve (Eve), respectively.

secure communication, it thus remains imperative to devise
schemes that can achieve security with little or no knowledge
of CSI.

Contributions: We now summarize our main contributions:
• We show that for the MIMO ISI wiretap channel with a

cooperative jammer, positive SDoF are achievable even in the
absence of CSIT. The legitimate transmitter (Alice) and the
cooperative jammer (Charlie) only have statistical knowledge
of the channels in terms of the effective number of channel taps
(i.e., CIR lengths) between the transmitting and the receiving
terminals.

• We present a general methodology to leverage the ISI
heterogeneity, in terms of CIR lengths between the transmit-
ting and the receiving terminals. Using this statistical knowl-
edge about the ISI channel, the legitimate transmitter uses
varying number of transmit antennas to strategically send a
mixture of information and artificial noise symbols. Similarly,
the cooperative jammer transmits artificial noise symbols only
in a manner that, along with the artificial noise symbols from
the information bearing transmitter, allows the decodability of
information symbols at the legitimate receiver while keeping
these information symbols fully immersed in artificial noise at
the eavesdropper.

• We obtain a general SDoF expression for the proposed
scheme as a function of the number of antennas at the four
terminals and the characteristics of the ISI channels (in terms
of CIR length parameters). We further show that, when each
of the four terminals has only one antenna, the result of this
paper becomes a generalization of the single-input single-
output (SISO) model studied in [28]. Furthermore, the result
of this paper reverts to the result that we presented in [29],
when the cooperative jammer is absent. Moreover, we also
present numerical results which illustrate the ergodic secrecy
rate behavior of the proposed scheme under finite signal-to-
noise (SNR) regime.

II. SYSTEM MODEL

We consider the MIMO ISI wiretap channel, where
Alice (A) (with K antennas) wants to securely communicate
with Bob (B) (with M antennas) in the presence of an
eavesdropper, Eve (E) (equipped with N antennas) through the
help of a cooperative jammer, Charlie (C) (with Q antennas)
as shown in Fig. 1. The channels from Alice (Charlie) to Bob
(Bob) and Eve (Eve) are assumed to be ISI channels, where{

h(m,k)
B A [�]

}L B A

�=1
denotes the channel impulse response (CIR)

between the kth antenna at Alice and the mth antenna at Bob,
where k = 1, . . . , K and m = 1, . . . , M . Here, L B A is the ISI
link length parameter, i.e., the number of effective channel taps

between Alice and Bob. Similarly,
{

h(n,k)
E A [�]

}L E A

�=1
denotes the

CIR between the kth antenna at Alice and the nth antenna at
Eve, where k = 1, . . . , K and n = 1, . . . , N . Furthermore,{

h(m,q)
BC [�]

}L BC

�=1
denotes the CIR between the qth antenna at

Charlie and the mth antenna at Bob, where q = 1, . . . , Q

and m = 1, . . . , M while
{

h(n,q)
EC [�]

}L EC

�=1
denotes the CIR

between the qth antenna at Charlie and the nth antenna at Eve,
where q = 1, . . . , Q and n = 1, . . . , N . All CIR coefficients
are assumed to be independent and identically distributed
(i.i.d.) and drawn from a continuous distribution. Moreover,
we assume that the CIR coefficients are time invariant over
the transmission block.

The assumptions on CSI availability are as follows:
• Alice and Charlie do not have any CSI, i.e., do not know

any channel coefficients (CIRs). They only know the ISI link
length parameters L B A, L BC , L E A , and L EC .

• Bob only knows his local channel coefficients. That is{
h(m,k)

B A [�]
}L B A

�=1
, k = 1, . . . , K and m = 1, . . . , M , and{

h(m,q)
BC [�]

}L BC

�=1
, q = 1, . . . , Q and m = 1, . . . , M , which are

necessary for coherent decoding at Bob.
• Eve has access to all channel coefficients, i.e., can access

all CIRs, which is the worst case scenario.
Let XA[t] of size K × 1 and XC[t] of size Q × 1 be

the respective input signal vectors transmitted by Alice and
Charlie at time t , then the respective output signal vectors
seen at Bob and Eve are given by

YB[t] =
L B A∑
�=1

HBA[�]XA[t − � + 1]

+
L BC∑
�=1

HBC[�]XC[t − � + 1] + ZB[t] (1)

YE[t] =
L E A∑
�=1

HEA[�]XA[t − � + 1]

+
L EC∑
�=1

HEC[�]XC[t − � + 1] + ZE[t], (2)

where (HBA[�])(m,k) = h(m,k)
B A [�], (HBC[�])(m,q) = h(m,q)

BC [�],
(HEA[�])(n,k) = h(n,k)

E A [�], and (HEC[�])(n,q) = h(n,q)
EC [�].
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ZB[t] and ZE[t] are channel noise vectors respectively
received at Bob and Eve at time t and whose elements are
complex Gaussian circularly independent zero-mean and unit-
variance random variables. The input signal vectors XA[t] and
XC[t] must satisfy the following average power constraints:

E
[
||XA[t]||2

]
≤ P, E

[
||XC[t]||2

]
≤ P. (3)

Remark 1: We note here that Alice and Charlie can always
obtain the ISI link lengths, L B A and L BC, from the legitimate
receiver Bob. Furthermore, if Alice and Charlie are not able
to directly obtain L E A and L EC , one plausible scenario is that
they may only have bounds on L E A and L EC . For instance,
if one wants to provide secrecy guarantee in a particular
geographical environment, then, from past measurements from
legitimate receivers, the transmitters can obtain estimates on
the range of the ISI link lengths. These estimates can serve
as bounds on the ISI link lengths for any receiver present in
the same environment. For the scope of this paper, we assume
that Alice and Charlie know the ISI link lengths from both
Bob and Eve.

A secure rate of communication Rs = log(|W |)
L is achievable,

if there exists an L-length code that, for any ε → 0 and
L → ∞, satisfies both the reliability and secrecy constraints:

Pr [W �= Ŵ ] ≤ ε (4)
1

L
H (W |YE

(L)) ≥ Rs − ε, (5)

where (4) represents the decoding error probability and (5)
represents the uncertainty about the transmitted message W
given YE

(L) = {YE[v]}L
v=1, the signal observed at Eve. Ŵ =

g(YB
(L)), where YB

(L) = {YB[v]}L
v=1 is the signal observed

at Bob and g(.) represents a decoding operation.
The secrecy capacity Cs is defined as the supremum of all

securely achievable rates Rs . We define the secure degrees of
freedom (SDoF) as the pre-log of secrecy capacity

SDoF
�= lim

P→∞
CS

log(P)
. (6)

The next Section provides the main results of this paper
and discusses their immediate consequences as they relate to
different antenna and ISI parameter settings.

III. MAIN RESULTS AND DISCUSSION

We divide the main results and discussion into three
sections. In Section III-A, we present the main result and
provide examples illustrating the core new ideas behind the
transmission scheme. We specialize this result for the MIMO
ISI wiretap channel in Section III-B, and for the symmetric
antenna setting in Section III-C.

A. Main Result and Illustrative Examples
The main contribution of this paper is stated in the following

Theorem wherein we show that, under the stated above CSI
assumptions, positive SDoF is achievable by carefully lever-
aging a) the heterogeneity of the ISI link lengths towards the
receiving terminals, and b) the relative number of antennas at
the four terminals.

Theorem 1: For the (K , M, N) MIMO ISI wiretap channel
with a Q-antenna cooperative jammer and with effective ISI

link length parameters (L B A, L E A, L BC , L EC ), the following
SDoF is achievable without any CSIT

SDoF ≥ (K + Q − N)+
(
μBi − ηE j

)+

μBi + max(L Bi , L E j ) − 1
, (7)

where μBi =
⌈

M(L Bi−1)
K+Q−M

⌉
and ηE j = N(L E j −1)

K+Q−N for i, j ∈
{A, C}, (x)+ �= max(x, 0), and �x	 �= min {n ∈ Z|n ≥ x}.

The expression of inequality (7) corresponds to four cases
where parameters �B = L BC − L B A, �E = L EC − L E A, and
�B = μB A − μBC are related as follows:

• Case 1.a: if �B ≥ max(�B ,�E ),
then (μBi , ηE j ) = (μB A , ηE A ).

• Case 1.b: if �B ≤ �B ≤ �E ,
then (μBi , ηE j ) = (μB A , ηEC ).

• Case 2.a: if �E ≤ �B ≤ �B ,
then (μBi , ηE j ) = (μBC , ηE A ).

• Case 2.b: if �B ≤ min(�B ,�E ),
then (μBi , ηE j ) = (μBC , ηEC ).

The proof of Theorem 1 is provided in Section IV.
We next present illustrative examples that highlight the

core idea of our scheme, and show how to leverage ISI
heterogeneity in order to achieve positive SDoF.

Example 1: Consider the (K , M, N) = (3, 2, 2) MIMO ISI
wiretap channel with a cooperative jammer equipped with
Q = 2 antennas and ISI link length parameters (L B A, L BC ,
L E A, L EC ) = (4, 3, 2, 1). This means that any symbol trans-
mitted by Alice will be seen over L B A = 4 time slots at each
of Bob’s M = 2 antennas and over L E A = 2 time slots at
each of Eve’s N = 2 antennas. Similarly, any symbol sent
by Charlie will be seen over L BC = 3 time slots at each
of Bob’s M = 2 antennas and over L EC = 1 time slot at
each of Eve’s N = 2 antennas. Our goal is to show that
these parameters, which correspond to Theorem 1 Case 1.a,
lead to the SDoF of 4/5. Using direct substitution for the
above antenna and ISI link length parameters, we obtain
μB A =

⌈
M(L B A−1)
K+Q−M

⌉
=

⌈
2(4−1)
3+2−2

⌉
= 2, μBC =

⌈
M(L BC−1)
K+Q−M

⌉
=⌈

2(3−1)
3+2−2

⌉
= 2, ηE A =

⌈
N(L E A−1)
K+Q−N

⌉
=

⌈
2(2−1)
3+2−2

⌉
= 1,

�B = L BC − L B A = −1, �B = L EC − L E A = −1, and
�B = μB A − μBC = 0. Therefore, since �B ≥ max{�B ,�E },
this corresponds to Theorem 1 Case 1.a. This in turn implies
that (μBi , ηE j ) = (μB A , ηE A ). Moreover, by direct substitution,
this scheme which is illustrated by Fig. 2, has a transmission
block of duration T =

⌈
M(L B A−1)
K+Q−M

⌉
+ max(L B A, L E A) −

1 = 5 time slots and is able to securely deliver (K +
Q− N)

(⌈
M(L B A−1)
K+Q−M

⌉
− N(L E A−1)

K+Q−N

)
= 4 information symbols,

and thus leads to SDoF ≥
(
(K+Q−N)

(
μB A −ηE A

))+

μB A +max(L B A,L E A)−1 = 4
5 .

We next show how, for the same parameters, the above SDoF is
obtained through the detailed transmission scheme procedure.

1) Transmission by Alice: In the first time slot, respectively
over each of her K = 3 antennas, Alice transmits two
information symbols S1 and S2 followed by an artificial noise
symbol U1, i.e., a vector XA[1] = [S1 S2 U1]
. Similarly,
in the second time slot, Alice transmits two information
symbols S3 and S4 followed by an artificial noise symbol U2,

Authorized licensed use limited to: The University of Arizona. Downloaded on August 27,2020 at 18:32:04 UTC from IEEE Xplore.  Restrictions apply. 



450 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020

Fig. 2. Illustrative example for the (K , M, N) = (3, 2, 2) MIMO ISI wiretap channel with a (Q = 2)-antenna cooperative jammer where
(L B A, L BC , L E A, L EC ) = (4, 3, 2, 1). Here, we can achieve SDoF of 4/5 by securely sending 4 information symbols to Bob over 5 time slots.

i.e., a vector XA[2] = [S3 S4 U2]
. Alice, then remains silent
for the remainder of the transmission block, i.e., over the third,
fourth, and fifth time slots. This can also be viewed as zero-
padding, i.e., XA[3] = XA[4] = XA[5] = [0 0 0]
.

2) Transmission by Charlie: In the first time slot, respec-
tively over each of his K = 2 antennas, Charlie transmits
two artificial noise symbols N1 and N2, i.e., a vector XC [1] =
[N1 N2]
. Similarly, in the second time slot, Charlie transmits
two artificial noise symbols N3 and N4, i.e., a vector XC [2] =
[N3 N4]
. Charlie, then remains silent for the remainder
of the transmission block, i.e., over the third, fourth, and
fifth time slots. This can also be viewed as zero-padding,
i.e., XC [3] = XC [4] = XC [5] = [0 0]
.

3) Decodability at Bob: Since the channel coefficients are
i.i.d continuous random variables, Bob who is equipped with
M = 2 antennas observes M

(⌈
M(L B A−1)
K+Q−M

⌉
+ L B A − 1

)
= 10

independent linear equations over the total transmission block
length, i.e, for t = 1, 2, . . . , 5. See Fig. 2.

Linear combinations seen at the first antenna:

• t = 1: LC(1)
1B (S1, S2, U1, N1, N2)

• t = 2: LC(1)
2B (S1, S2, U1, N1, N2, S3, S4, U2, N3, N4)

• t = 3: LC(1)
3B (S1, S2, U1, N1, N2, S3, S4, U2, N3, N4)

• t = 4: LC(1)
4B (S1, S2, U1, S3, S4, U2, N3, N4)

• t = 5: LC(1)
5B (S3, S4, U2)

Linear combinations seen at the second antenna:

• t = 1: LC(2)
1B (S1, S2, U1, N1, N2)

• t = 2: LC(2)
2B (S1, S2, U1, N1, N2, S3, S4, U2, N3, N4)

• t = 3: LC(2)
3B (S1, S2, U1, N1, N2, S3, S4, U2, N3, N4)

• t = 4: LC(2)
4B (S1, S2, U1, S3, S4, U2, N3, N4)

• t = 5: LC(2)
5B (S3, S4, U2)

From these equations, Bob is able to solve for information
symbols (S1, S2, S3, S4) and discard the remaining artificial
noise symbols (U1, U2, N1, N2, N3, N4).

4) Secrecy at Eve: Eve who has N = 2 antennas receives
N

(⌈
M(L B A−1)
K+Q−M

⌉
+ L E A − 1

)
= 6 independent linear equa-

tions only over the first three time slots, where all the informa-
tion symbols are fully immersed in the artificial noise symbols.
She observes nothing over the remainder of the transmission
block (this is in part due to the zero-padding by Alice and
Charlie during the transmission phase).

Linear combinations seen at the first antenna:

• t = 1: LC(1)
1E (S1, S2, U1, N1, N2)

• t = 2: LC(1)
2E (S1, S2, U1, S3, S4, U2, N3, N4)

• t = 3: LC(1)
3E (S3, S4, U2)

• t = 4, 5: Nothing is received in these time slots.

Linear combinations seen at the second antenna:

• t = 1: LC(2)
1E (S1, S2, U1, N1, N2)

• t = 2: LC(2)
2E (S1, S2, U1, S3, S4, U2, N3, N4)

• t = 3: LC(2)
3E (S3, S4, U2)

• t = 4, 5: Nothing is received in these time slots.

Therefore, Eve who only receives six independent linear
equations (i.e., equivalent to the total number of independent
artificial noise symbols) with ten unknowns over the whole
transmission block length duration is not able to solve for
(S1, S2, S3, S4). This, in turn, means that the devised above
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transmission scheme allows us to securely transmit 4 informa-
tion symbols using 5 time slots, i.e., achieving SDoF of 4/5.
This matches the expression of Theorem 1.

We note here that the formal proof of secrecy and SDoF
calculation will be shown in Section IV-C.

Example 2: For a (3, 2, 2) wiretap channel with a Q =
2 cooperative jammer and ISI link length parameters
(L B A, L BC , L E A, L EC ) = (5, 3, 1, 3), similar substitution
steps as the above lead to Theorem 1 Case 1.b for which
we obtain SDoF of 5/7.

Example 3: For a (3, 2, 2) wiretap channel with a Q =
2 cooperative jammer and ISI link length parameters
(L B A, L BC , L E A, L EC ) = (5, 8, 4, 2), similar substitution
leads to Theorem 1 Case 2.a and SDoF of 3/4.

Example 4: For a (3, 2, 2) wiretap channel with a Q =
2 cooperative jammer and ISI link length parameters
(L B A, L BC , L E A, L EC ) = (3, 4, 1, 2), similar substitution
leads to Theorem 1 Case 2.b and SDoF of 4/5.

The following example illustrates how, under the proposed
scheme, positive SDoF can be achieved through the exploita-
tion of ISI link length heterogeneity when the number of
antennas at the legitimate receiver (Bob) is less than the
number of antennas at the eavesdropper (Eve).

Example 5: Consider the (K , M, N) = (3, 1, 2) MIMO
ISI wiretap channel with a cooperative jammer equipped
with Q = 2 antennas and ISI link length parameters
(L B A, L BC , L E A, L EC ) = (9, 3, 2, 1). We follow similar steps
as those in Example 1. This scheme has a transmission block
of duration T = 10 time slots and is able to securely deliver
four information symbols. Our goal is to show that we can
achieve SDoF of 2/5.

5) Transmission by Alice: In the first time slot, respectively
over each of her K = 3 antennas, Alice transmits two
information symbols S1 and S2 followed by an artificial noise
symbol U1, i.e., a vector XA[1] = [S1 S2 U1]
. Similarly,
in the second time slot, Alice transmits two information
symbols S3 and S4 followed by an artificial noise symbol U2,
i.e., a vector XA[2] = [S3 S4 U2]
. Alice, then remains silent
for the remainder of the transmission block, i.e., from the
third to the tenth time slots. This can also be viewed as zero-
padding, i.e., XA[3] = XA[4] = · · · = XA[10] = [0 0 0]
.

6) Transmission by Charlie: In the first time slot, respec-
tively over each of his K = 2 antennas, Charlie transmits
two artificial noise symbols N1 and N2, i.e., a vector XC [1] =
[N1 N2]
. Similarly, in the second time slot, Charlie transmits
two artificial noise symbols vector XC [2] = [N3 N4]
.
Charlie, then remains silent for the remainder of the trans-
mission block. This can also be viewed as zero-padding,
i.e., XC [3] = XC [4] = · · · = XC [10] = [0 0]
.

7) Decodability at Bob: Bob observes ten independent lin-
ear equations over the total transmission block length (i.e, for
t = 1, 2, . . . , 10). Bob is thus able to solve for information
symbols (S1, S2, S3, S4) and discard the remaining artificial
noise symbols (U1, U2, N1, N2, N3, N4).

8) Secrecy at Eve: Eve only observes six independent
linear equations over the first three time slots (where all the
information symbols are fully immersed in the same subspace

Fig. 3. Illustrative figure of positive SDoF resulting from the four cases
described in Theorem 1.

as the artificial noise symbols), and observes nothing over
the remainder of the transmission block. Consequently, she is
not able to solve for the information symbols (S1, S2, S3, S4).
Hence, this transmission scheme allows us to securely transmit
4 information symbols using 10 time slots, i.e., achieving
SDoF of 2/5. This matches the expression of Theorem 1.

The above four cases of Theorem 1, where positive SDoF
is achievable, are illustrated by the regions in Fig. 3, by com-
paring the parameters �B , �B , and �E . In Fig. 3, region 1
represents positive SDoF for Case 2.b, region 2 represents
positive SDoF for Case 1.a, whereas region 3 represents
positive SDoF for Case 1.b and Case 2.a.

Remark 2 (Interplay between antenna and ISI link length
parameters): From the numerator of equation (7), we have
that positive SDoF is achievable when (K + Q − N) > 0
and

(
μBi − ηE j

)
> 0 for i, j ∈ {A, C}. For example, when

i = A and j = A, then μBi = μB A =
⌈

M(L B A−1)
K+Q−M

⌉
and

ηE j = N(L E A−1)
K+Q−N , which corresponds to the first case. Thus,

as a consequence of algebraic manipulation, we can obtain
following ISI link length parameters and antenna number
relationship for positive SDoF L B A−1

L E A−1 > N(K+Q−M)
M(K+Q−N) . Fur-

thermore, because the numerator of the SDoF in Equation (7)
depends on the product of the two terms as follows (K +
Q − N)

(
μBi − ηE j

)
, if the antenna parameters are fixed, one

would wish to increase the first term of the second factor,
i.e., increase μB A , by increasing L B A. However, although this
increase may seem beneficial, it also leads to the increase in
the transmission block T = μB A + L B A − 1, which is the
denominator of equation (7). We refer the reader to Fig. 4
(for fixed L E A and varying L B A) and Fig. 5 (for fixed L B A

and varying L E A) for parametric examples illustrating how
varying the antenna and ISI link lengths may affect SDoF.
A similar analogy can be followed for other cases of the
Theorem 1.

From Fig. 4, we observe that for fixed values of the ISI
link lengths from Alice to Eve (L E A) and increasing the ISI
link lengths from Alice to Bob (L B A), the SDoF increases.
Of course, as can also be seen from the figure, this also
depends on the number of antennas at all the terminals. From
Fig. 5, we observe that for fixed values of the ISI link lengths
from Alice to Bob (L B A) and increasing the ISI link lengths
from Alice to Eve (L E A), the SDoF decreases towards zero.
Similarly, this also depends on the number of antennas at all
the terminals.
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Fig. 4. SDoF versus varying antenna and L B A parameters.

Fig. 5. SDoF versus varying antenna and L E A parameters.

B. MIMO ISI Wiretap Channel Without CSIT

The following Corollary is an immediate consequence of
setting Q = 0, i.e., removing the cooperative jammer from the
system model. It states that the general result of Theorem 1
reverts to the main result of the MIMO ISI wiretap channel
without CSIT as was derived in [29].

Corollary 1: For the (K , M, N) MIMO ISI wiretap channel
without CSIT and with effective ISI link length parameters
L B A and L E A from Alice to the receivers (Bob and Eve),
respectively, the following SDoF is achievable [29]:

SDoF ≥

(
(K − N)

(⌈
M(L B A−1)

K−M

⌉
− N(L E A−1)

K−N

))+

⌈
M(L B A−1)

K−M

⌉
+ max(L B A, L E A) − 1

. (8)

An interesting aspect about the result of Corollary 1 is that
it implies that positive SDoF can be achieved even when the
number of antennas at the eavesdropper is larger than the
number of antennas at the legitimate receiver. This is the case
when L B A > L E A , i.e, when the number of taps between Alice
and Bob exceeds the number of taps between Alice and Eve.
On the other hand, when L B A < L E A , positive SDoF can still
be achieved when M > N , i.e., when the number of antennas
at Bob is larger than the number of antennas at Eve.

Remark 3 (Difference between the MIMO ISI wiretap chan-
nel with a cooperative jammer and the MIMO ISI wiretap
channel without a cooperative jammer): We note here that the
(K, M, N, Q) MIMO ISI wiretap channel with a cooperative
jammer (of the current paper) differs from the (K+Q, M, N)
MIMO ISI wiretap channel without a cooperative jammer.
That is, if we remove Charlie (who has Q antennas) from
the network and instead equip Alice (who originally has K
antennas) with K + Q antennas, the resulting networks may
differ due to ISI heterogeneity in (L B A, L BC , L E A, L EC ).
For example, by Theorem 1, the (K , M, N, Q) = (5, 2, 3, 4)
MIMO wiretap channel with a helper and with ISI parameters
(L B A, L BC , L E A, L EC ) = (4, 9, 2, 3) leads to achievable
SDoF of 1.09, whereas the (K + Q, M, N, Q) = (9, 2, 3)
MIMO ISI wiretap channel without a helper and with ISI
parameters (L B A, L E A) = (4, 2) leads to achievable SDoF
of 0.75.

C. Symmetric Antenna MIMO ISI Wiretap Channel
With a Cooperative Jammer and No CSIT

The following Corollary is an immediate consequence of
setting K = M = N = Q, i.e., when all the terminals have
an equal number of antennas.

Corollary 2: For the (K , K , K ) MIMO ISI wiretap channel
with a K -antenna cooperative jammer and with effective ISI
link length parameters (L B A, L E A, L BC , L EC ), the following
SDoF is achievable without any CSIT

SDoF ≥ K
(
L Bi − L E j

)+

L Bi + max(L Bi , L E j ) − 2
, (9)

where i, j ∈ {A, C}.
The expression of inequality (9) corresponds to four cases

where parameters �B = L BC − L B A and �E = L EC − L E A

are related as follows:
• Case 1.a: if �B ≥ max(0,�E ),

then (L Bi , L E j ) = (L B A, L E A).
• Case 1.b: if 0 ≤ �B ≤ �E ,

then (L Bi , L E j ) = (L B A, L EC ).
• Case 2.a: if �E ≤ �B ≤ 0,

then (L Bi , L E j ) = (L BC , L E A).
• Case 2.b: if �B ≤ min(0,�E ),

when (L Bi , L E j ) = (L BC , L EC ).
We note that when K = M = N = Q = 1, Corol-

lary 2 becomes a generalization of the result in [28]. That is,
it becomes the SISO ISI wiretap channel with a single antenna
cooperative jammer in the absence of channel state information
at all the transmitting terminals. This is because [28] only
considered the channel impulse response (CIR) link lengths
to be symmetric. The effective number of channel taps from
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Fig. 6. Illustration of transmission block length T for the proposed scheme.

Alice (Alice) to Bob (Eve) was assumed to be equivalent to the
effective number of channel taps from the Charlie (Charlie) to
Bob (Eve). This assumption in [28] of ISI symmetry towards
the receivers, i.e., that L B A = L BC and L E A = L EC , was used
in order to introduce the basic idea behind ISI heterogeneity
exploitation to achieve secrecy. In other terms, the result of
Corollary 2 can be thought of as a secure communication
system consisting of a set of K parallel and independent SISO
ISI wiretap channels, each with a single antenna cooperative
jammer.

On the other hand, we note here that for the non-symmetric
antenna case, as an immediate consequence of having sym-
metric ISI link lengths like those in [28], the general result of
Theorem 1 reverts to the single antenna setting.

IV. PROOF OF THEOREM 1

We divide the proof of Theorem 1 into three Sections.
In Section IV-A, we explain the transmission scheme.
In Section IV-B, we describe the transmitted signal, the
ISI channel matrices, and the received signal vectors.
In Section IV-C, we calculate the secrecy rate and the achiev-
able SDoF of the proposed scheme.

A. Transmission Scheme
The general scheme works over a transmission block of

duration T as shown in Fig 6. Alice transmits a combination
of information symbols and artificial noise symbols during
the first r time slots and remains silent during the last
(max(L B A, L E A)−1) time slots. Therefore, Alice uses a total
of TA = r +max(L B A, L E A)−1 time slots. Similarly, Charlie
transmits artificial noise symbols during the first d time slots
and remains silent during the last (max(L BC , L EC ) − 1)
time slots. Therefore, Charlie uses a total of TC = d +
max(L BC , L EC ) − 1 time slots. The proposed transmission
scheme is under the assumption that the received signals are
observed at discrete and synchronous time slots. This leads to
a transmission block of total duration

T = max(TA, TC )

= max(r + L B A, r + L E A, d + L BC , d + L EC ) − 1. (10)

1) Transmission by Alice: In each of the first r time
slots, Alice sends αt independent information symbols and
(K − αt ) = βt independent artificial noise symbols on her K
antennas, for t = 1, 2, . . . , r . This implies that Alice transmits

a total of
∑r

t=1 αt information symbols (IS) and a total of
r K −∑r

t=1 αt = ∑r
t=1 βt artificial noise (AN) symbols over r

time slots. All ISs and ANs satisfy the power constraints in (3).
Due to ISI heterogeneity resulting from multipath propagation
of wireless signals, symbols transmitted during each such time
slot will be observed over L B A time slots at Bob and over L E A

time slots at Eve.

2) Transmission by Charlie: In each of the first d time slots,
Charlie sends γt independent artificial noise symbols on his
Q antennas, for t = 1, 2, . . . , d , where γt ≤ Q. This implies
that Charlie transmits a total of

∑d
t=1 γt ≤ d Q artificial noise

(AN) symbols, each satisfying power constraints in (3), over
d time slots. Due to ISI heterogeneity, symbols transmitted
during each such time slot will be observed over L BC time
slots at Bob and over L EC time slots at Eve.

3) Decodability at Bob: We guarantee Bob to decode both
information symbols and artificial noise symbols. This is made
feasible by keeping a condition that the total number of
symbols (ISs + ANs), i.e.,

∑r
t=1 αt + ∑r

t=1 βt + ∑d
t=1 γt ≤

r K +d Q, is no larger than the number of linearly independent
equations received at Bob. That is

M (max(r +L B A, d + L BC)−1) ≥
r∑

t=1

αt +
r∑

t=1

βt +
d∑

t=1

γt ,

(11)

where the left hand side of the inequality (11) represents the
number of equations seen at Bob.

4) Secrecy at Eve: In order to preserve secrecy, we guar-
antee that the signal space at Eve be completely immersed in
artificial noise symbols (from Alice and Charlie). In particular,
we must keep the total number of ANs, i.e.,

∑r
t=1 βt +∑d

t=1 γt ≤ r K − ∑r
t=1 αt + d Q, at least as large as the

number of independent equations seen at Eve. This leads to
the constraint

N(max(r + L E A, d + L EC ) − 1) ≤
r∑

t=1

βt +
d∑

t=1

γt , (12)

where the left hand side of the inequality (12) represents the
number of equations seen at Eve. We note that the description
of the above secure scheme is for each block. Moreover,
in order to achieve perfect secrecy, the proposed scheme can
be combined with an outer standard wiretap code [1].

The above decodability and secrecy constraints lead to four
cases:

Case 1.a: M (max(r + L B A, d + L BC) − 1) = M(r +
L B A − 1) and N(max(r + L E A, d + L EC ) − 1) = N(r +
L E A − 1). As a direct consequence of this case, r and d must
thus satisfy

r ≤
⌈

M(L B A − 1)

K + Q − M

⌉
and d ≥

⌈
M(L BC − 1)

K + Q − M

⌉
, (13)

when d ≥ r . From substitution into (10), we obtain the
following expression for the transmission block

T ≤
⌈

M(L B A − 1)

K + Q − M

⌉
+ max(L B A, L E A) − 1). (14)

Case 1.b: M (max(r + L B A, d + L BC) − 1) = M(r +
L B A − 1) and N(max(r + L E A, d + L EC ) − 1) = N(d +
L EC − 1). Similarly, for r and d satisfying the inequalities
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in (13), this case and substitution into (10) lead to

T ≤
⌈

M(L B A − 1)

K + Q − M

⌉
+ max(L B A, L EC ) − 1). (15)

Case 2.a: M (max(r + L B A, d + L BC) − 1) = M(d +
L BC − 1) and N(max(r + L E A, d + L EC ) − 1) = N(r +
L E A − 1). As a direct consequence of this case, r and d must
thus satisfy

r ≥
⌈

M(L B A − 1)

K + Q − M

⌉
and d ≤

⌈
M(L BC − 1)

K + Q − M

⌉
, (16)

where d ≥ r . From substitution into (10), we obtain the
following expression for the transmission block

T ≤
⌈

M(L BC − 1)

K + Q − M

⌉
+ max(L BC , L E A) − 1). (17)

Case 2.b: M (max(r + L B A, d + L BC) − 1) = M(d +
L BC − 1) and N(max(r + L E A, d + L EC ) − 1) = N(d +
L EC − 1). Similarly, for r and d satisfying the inequalities
in (16), this case and substitution into (10) lead to

T ≤
⌈

M(L BC − 1)

K + Q − M

⌉
+ max(L BC , L EC ) − 1). (18)

We will use constraints (11) and (12) for the secrecy rate and
SDoF calculations in Section IV-C.

B. Matrix Representation of Input and Output Signals
Let XA be a composite signal vector of size r K × 1,

consisting of both the information and artificial noise symbols
transmitted by Alice, whose components are the K × 1
subvectors XA[t] transmitted during the tth time slot, for t =
1, 2, . . . , r , satisfying the power constraint in (3). Let XC be a
composite signal vector of size d Q ×1, consisting of artificial
noise symbols transmitted by Charlie, whose components are
the Q × 1 subvectors XC[t] transmitted during the t th time
slot, for t = 1, 2, . . . , d , satisfying the power constraint in (3).
Over the course of the whole transmission block of length T ,
the received signal vectors at Bob and Eve can be written by
means of two equivalent matrix representation forms as shown
next. These representations will be useful in the analysis of
the secrecy rate and the SDoF calculations in Section IV-C.

Combining the properties of the system model equations (1)
and (2) and the described above input vectors, the outputs at
Bob and Eve over the transmission block can be written in
matrix form as follows:

YB = HBAXA + HBCXC + ZB (19)

YE = HEAXA + HECXC + ZE. (20)

To simplify the notation, for the signal vector received at
Bob YB, we will only consider the output vector dimensions
for the case where Lb = max(r +L B A−1, d +L BC −1) = r +
L B A − 1. We note that an analogous received signal structure
can be obtained when Lb = max(r + L B A −1, d + L BC −1) =
d + L BC − 1. Similarly, for the notation of the signal vector
received at Eve YE, we will only consider the case where
Le = max(r + L E A −1, d + L EC −1) = r + L E A −1. We note
that an analogous received signal structure can be obtained
when Le = max(r + L E A − 1, d + L EC − 1) = d + L EC − 1.
In other words, in this proof, we focus on the transmission
Case 1.a. The other cases follow similar steps and are thus
omitted here.

Starting from equation (1), we can write the composite
signal vector YB = [

YB[1]
 YB[2]
 . . . YB[Lb]

]


as
shown in (19), where YB is of size M(r + L B A − 1) × 1.
XA = [

XA[1]
 XA[2]
 . . . XA[r ]
]
 = [
S


α1
U


β1
S


α2

U

β2

. . . S

αr

U

βr

]
 is the r K × 1 composite signal vector
transmitted by Alice over the whole transmission block, where
Sαt is an αt × 1 vector consisting of all the information
symbols transmitted by Alice over αt antennas in the tth time
slot, for t = 1, 2, . . . , r , and Uβt is a (K − αt ) × 1 vector
consisting of all the artificial noise symbols transmitted by
Alice over βt = K − αt antennas in the t th time slot. XC =[
XC[1]
 XC[2]
 . . . XC[d]
]
 = [

N

γ1

N

γ2

. . . N

γd

]
 is the
r Q × 1 composite artificial noise symbols vector transmitted
by Charlie over the whole transmission, where Nγt is a γt × 1
vector consisting of all the artificial noise symbols transmitted
by Charlie over γt ≤ Q antennas in the t th time slot, for t =
1, 2, . . . , d . (HBA[�])(m,k) = h(m,k)

B A [�], for � = 1, 2, . . . , L B A,
and HBA[�] is an M × K matrix. HBA is the composite
M(r + L B A − 1) × r K channel matrix seen at Bob from
Alice. (HBC[�])(m,q) = h(m,q)

BC [�], for � = 1, 2, . . . , L BC , and
HBC[�] is an M × Q matrix. Since for the considered case,
M(d + L BC − 1) ≤ M(r + L B A − 1), we have that HBC is the
composite M(r + L B A − 1) × r Q channel matrix seen at Bob
from Charlie. To preserve vector/matrix addition properties,
we note that the top nonzero matrix portion of HBC in (19),
that we denote as H̃BC, is of size M(d + L BC − 1) × r Q,
whereas ZB is the M(r + L B A − 1) × 1 composite channel
noise vector seen at Bob.

Starting from equation (2), we can write the composite
signal vector YE = [

YE[1]
 YE[2]
 . . . YE[Le]

]


as
shown in (20), where YE is of size N(r + L E A − 1) × 1.
HEA is the composite N(r + L E A − 1) × (r K + d Q) channel
matrix seen at Eve from Alice. (HEA[�])(n,k) = h(n,k)

E A [�],
for � = 1, 2, . . . , L E A , and HEA[�] is an N × K matrix.
Similarly, since for the considered case, N(d + L EC − 1) ≤
N(r + L E A − 1), we have that HEC is the composite N(r +
L E A − 1) × r Q channel matrix seen at Eve from Charlie.
To preserve vector/matrix addition properties, we note that the
top nonzero portion of HEC in (20), that we denote as H̃EC,
is of size N(d + L EC −1)×r Q. (HEC[�])(n,q) = h(n,q)

EC [�], for
� = 1, 2, . . . , L EC , and HEC[�] is an N × Q matrix, whereas
ZE is the N(r + L E A − 1)×1 composite channel noise vector
seen at Eve.

We note that the above received signal representations can
be rearranged further in order to isolate the information and
artificial noise symbols carrying submatrices. Using properties
of the system model equations (1)-(2) and their matrix form
representation in (19)-(20), we can further rewrite YB and YE
by splitting the channel matrices as

YB = HS
BAS + HU

BAU + HN
BCN + ZB (23)

YE = HS
EAS + HU

EAU + HN
ECN + ZE, (24)

where
[
HS

BA HU
BA

] = HBA. HS
BA is the information symbol

carrying submatrix of size M(r + L B A − 1) × ∑r
t=1 αt ,

whereas HU
BA is the artificial noise carrying submatrix of size

M(r + L B A −1)×∑r
t=1 βt . In order to preserve vector/matrix

addition, HN
BC is the artificial noise symbol carrying submatrix
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YB =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

HS
BA[1] 0 . . . 0

HS
BA[2] HS

BA[1] . . . 0
... HS

BA[2] . . .
...

...
...

. . . 0

HS
BA[L B A] ...

. . . HS
BA[1]

0 HS
BA[L B A] ... HS

BA[2]
0 0 . . .

...

...
...

. . .
...

0 0 0 HS
BA[L B A]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
HS

BA

⎡
⎢⎢⎢⎣

Sα1

Sα2
...

Sαr

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
S

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

HU
BA[1] 0 . . . 0

HU
BA[2] HU

BA[1] . . . 0
... HU

BA[2] . . .
...

...
...

. . . 0

HU
BA[L B A] ...

. . . HU
BA[1]

0 HU
BA[L B A] ... HU

BA[2]
0 0 . . .

...

...
...

. . .
...

0 0 0 HU
BA[L B A]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
HU

BA

⎡
⎢⎢⎢⎣

Uβ1

Uβ2
...

Uβr

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
U

+HBCXC + ZB

(21)

YE =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

HS
EA[1] 0 . . . 0

HS
EA[2] HS

EA[1] . . . 0
... HS

EA[2] . . .
...

...
...

. . . 0

HS
EA[L E A] ...

. . . HS
BA[1]

0 HS
EA[L E A] ... HS

EA[2]
0 0 . . .

...

...
...

. . .
...

0 0 0 HS
EA[L E A]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
HS

EA

⎡
⎢⎢⎢⎣

Sα1

Sα2
...

Sαr

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
S

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

HU
EA[1] 0 . . . 0

HU
EA[2] HU

BA[1] . . . 0
... HU

EA[2] . . .
...

...
...

. . . 0

HU
EA[L E A] ...

. . . HU
EA[1]

0 HU
EA[L E A] ... HU

EA[2]
0 0 . . .

...

...
...

. . .
...

0 0 0 HU
EA[L E A]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
HU

EA

⎡
⎢⎢⎢⎣

Uβ1

Uβ2
...

Uβr

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
U

+HECXC + ZE

(22)

of size M(r+L B A−1)×∑d
t=1 γt whose top nonzero submatrix

portion is H̃EC of size M(d + L BC − 1)×∑d
t=1 γt . Similarly,

[HS
EA HU

EA] = HEA. HS
EA is the information symbol carrying

submatrix of size N(r + L E A −1)×∑r
t=1 αt , whereas HU

EA is
the artificial noise carrying submatrix of size N(r +L E A −1)×∑r

t=1 βt . Similarly, HN
EC is the artificial noise symbol carrying

submatrix of size N(r+L E A−1)×∑d
t=1 γt whose top nonzero

submatrix portion is H̃N
EC of size N(d + L EC − 1)×∑d

t=1 γt .

S = [
Sα1


 S

α2

. . . S

αr

]
 is the information symbols

subvector of XA and U = [
Uβ1


 U

β2

. . . U

βr

]
 is
the artificial noise symbols subvector of XA, whereas N =[
N


γ1
N


γ2
. . . N


γd

]
 = XC is the composite artificial noise
vector from Charlie.

Using the above description of (23) and (24), we can thus
explicitly rewrite the received signal vectors at Bob and Eve,
i.e., YB and YE, as shown in (21) and (22), shown at the top
of this page, where both HBA and HEA have been split into
information and artificial noise symbol carrying submatrices.
We next use these received signal structures for secrecy rate
and SDoF calculations.

C. Secrecy Rate and SDoF Calculation

The secure achievable rate Rs over the transmission block
of duration T is defined as follows

Rs = I (S; YB) − I (S; YE)

T
, (25)

where I (S; YB) (respectively, I (S; YE)), is the mutual infor-
mation between the information symbols vector S transmitted
by Alice and the composite signal vector YB received at Bob
(respectively, YE received at Eve). Using differential entropy,
these mutual information terms can be expanded as

I (S; YB) = h(YB) − h(YB|S) (26)

I (S; YE) = h(YE) − h(YE|S). (27)

Furthermore, we now use equation (19) to write h(YB) as

h(YB) = h(HBAXA + HBCXC + ZB) (28)

= h(HBX + ZB) (29)

= log(πe)M(r+L B A−1) det(IB + PHBHB
H), (30)

where equation (29) follows from the notation HB =[
HBA HBC

]
, i.e., the composite channel matrix seen at Bob,

Authorized licensed use limited to: The University of Arizona. Downloaded on August 27,2020 at 18:32:04 UTC from IEEE Xplore.  Restrictions apply. 



456 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020

and X = [
X


A X

C

]
, i.e., the composite input signal vector
comprising of both signal vectors from Alice and Charlie.
Equation (30) follows from [30] and IB + PHBHB

H is the
covariance matrix of YB. IB is an M(r + L B A − 1) × M(r +
L B A − 1) covariance matrix of the channel noise vector ZB.
P is the symbol transmission power from constraints (3).
Lemma 1 shows that the matrix HB is of rank r K +d Q, almost
surely. FH denotes the Hermitian transpose of the matrix F.

Using equation (23), we expand h(YB|S) of (26) as follows

h(YB|S) = h(HS
BAS + HU

BAU + HN
BCN + ZB|S) (31)

= h(HU
BAU + HN

BCN + ZB) (32)

= log(πe)M(r+L B A−1) det(IB + PH[U,N]
B H[U,N]

B
H
),

(33)

where (32) follows due to the independence of S from
(U, N, ZB). IB is the channel noise covariance matrix identical
to the one in (30). H[U,N]

B = [
HU

BA HN
BC

]
, i.e., the noise

carrying submatrix of the composite channel matrix seen
at Bob. Lemma 1 shows that H[U,N]

B is of rank N(r + L E A −1,

almost surely. IB + PH[U,N]
B H[U,N]

B
H

is the covariance matrix
of HU

BAU + HN
BCN + ZB.

By plugging (30) and (33) into (26), we thus obtain

I (S; YB)

= log
det(IB + PHBHB

H)

det(IB + PH[U,N]
B H[U,N]

B
H
)

(34)

= log
det(IB + P�B�B�B

H�B
H)

det(IB + P� [U,N]
B �[U,N]

B �[U,N]
B

H
� [U,N]

B
H
)

(35)

= log
det(IB + PO�B)

det(IBN + PO�[U,N]
B )

(36)

=
rank(HB)∑

i=1

log(1 + P|λBi |2) −
rank(H[U,N]

B )∑
i=1

log(1 + P|λ[U,N]
Bi

|2), (37)

where both the numerator and the denominator of (35) follow
from the singular value decomposition (SVD) of HB into

�B�BVB
H and H[U,N]

B into � [U,N]
B �[U,N]

B V[U,N]
B

H
, respec-

tively. The numerator of (36) is due to Sylvester’s determinant
identity property det(I + AB) = det(I + BA), matrix scalar
multiplication, associativity, and commutativity properties, and
the fact that �B and VB

H are unitary matrices whose product is
an identity matrix. Similarly, the denominator of (36) follows
from the identity det(I + AB) = det(I + BA), matrix scalar
multiplication associativity and commutativity properties, and

the fact that � [U,N]
B and V[U,N]

B
H

are unitary matrices. In (37),
λBi denotes the i th ordered singular value of the matrix HB,
and λ

[U,N]
Bi

denotes the i th ordered singular value of the

matrix H[U,N]
B .

We now use equation (20) to expand the first term of
equation (27) as

h(YE) = h(HEAXA + HECXC + ZE) (38)

= h(HEX + ZE) (39)

= log(πe)N(r+L E A−1) det(IE + PHEHE
H), (40)

where equation (39) follows from the notation HE =[
HEA HEC

]
, i.e., the composite channel matrix seen at Eve and

X = [
XA


 XC

]
. IE + PHEHE

H is the covariance matrix
of YE, whereas IE is an N(r + L E A − 1) × N(r + L E A − 1)
covariance matrix of the channel noise vector ZE. Lemma 2
shows that the matrix HE is of rank N(r + L B A − 1), almost
surely.

Using equation (24), we expand the second term of (27) as

h(YE|S) = h(HS
EAS + HU

EAU + HN
ECN + ZE|S) (41)

= h(HU
EAU + HN

ECN + ZE) (42)

= log(πe)N(r+L E A−1) det(IE + PH[U,N]
E H[U,N]

E
H
),

(43)

where (42) is due to the independence of S from (U, N, ZE).
H[U,N]

E = [
HU

EA HN
EC

]
, i.e., the noise carrying submatrix of

the composite channel matrix seen at Eve. Lemma 2 shows
that H[U,N]

E is of rank N(r + L E A − 1, almost surely. IE is the
channel noise covariance matrix identical to that in (40).

By plugging (40) and (43) into (27), we thus obtain

I (S; YE)

= log
det(IE + PHEHE

H)

det(IE + PH[U,N]
E H[U,N]

E
H
)

(44)

=
rank(HE)∑

i=1

log(1 + P|λEi |2) −
rank(H[U,N]

E )∑
i=1

log(1 + P|λ[U,N]
Ei

|2),

(45)

where (44)-(45) follow from similar arguments as (34)-(37).
We next observe that equations (37) and (45) depend on

the rank of the four matrices, HB, H[U,N]
B , HE, and H[U,N]

E ,
as stated in the following two Lemmas.

Lemma 1: The channel matrices HB, and H[U,N]
B satisfy:

rank(HB)
a.s.= r K + d Q

rank(H[U,N]
B )

a.s.= N(r + L E A − 1),

where a.s. stands for “almost surely.”
Lemma 2: The channel matrices HE, and H[U,N]

E satisfy:
rank(HE)

a.s.= N(r + L E A − 1)

rank(H[U,N]
E )

a.s.= N(r + L E A − 1).
The proofs for Lemmas 1 and 2 are given in Appendix.

The core essense of the transmission scheme is to make sure
that all the information symbols seen at Eve are completely
immersed in the space occupied by artificial noise. This is
formally equivalent to the statement of Lemma 2, i.e., the
ranks of the matrices HE and H[U,N]

E are the same.
Combining the definition of SDoF (6), the definition of

secrecy rate (25), and the expansions of the mutual information
equations (26) and (27) into (37) and (45), we obtain

SDoF ≥ lim
P→∞

Rs

log(P)
(46)

= lim
P→∞

I (S; YB) − I (S; YE)

T log(P)
(47)
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= lim
P→∞

(∑rank(HB)
i=1 log (1 + P|λBi |2)

T log(P)

−
∑rank(H[U,N]

B )

i=1 log (1 + P|λ[U,N]
Bi

|2)
T log(P)

)

− lim
P→∞

(∑rank(HE)
i=1 log (1 + P|λEi |2)

T log(P)

−
∑rank(H[U,N]

E )

i=1 log (1 + P|λ[U,N]
Ei

|2)
T log(P)

)
(48)

= lim
P→∞

(∑r K+d Q
i=1 log (1 + P|λBi |2)

T log(P)

−
∑N(r+L E A−1)

i=1 log (1 + P|λ[U,N]
Bi

|2)
T log(P)

)

− lim
P→∞

(∑N(r+L E A−1)
i=1 log (1 + P|λEi |2)

T log(P)

−
∑N(r+L E A−1)

i=1 log (1 + P|λ[U,N]
Ei

|2)
T log(P)

)
(49)

=
(r K + d Q − N(r + L E A − 1)

T

)

−
( N(r + L E A − 1) − N(r + L E A − 1)

T

)
(50)

= r K + d Q − N(r + L E A − 1)

T
(51)

≥ r(K + Q − N) − N(L E A − 1)

T
(52)

= (K + Q − N)
( r − N(L E A−1)

K+Q−N

T

)
, (53)

where (49) is due to the “decodability at Bob” condition (11),
“secrecy at Eve” condition (12), Lemma 1, and Lemma 2. The
inequality (52) follows from (13). By plugging r and T from
(13) and (14) into (53), we obtain the SDoF expression of
Theorem 1 Case 1.a. The derivations of SDoF expressions for
Theorem 1 Case 1.b, Case 2.a, and Case 2.b follow a similar
analogy as that of the derivation of Case 1.a and, hence, will
be omitted here. This completes the proof of Theorem 1. �

V. SIMULATIONS AND DISCUSSIONS

A. Secrecy Rate Under Finite SNR Regime

In this section, we present numerical simulation results
highlighting the behavior of the ergodic secrecy rate Rs for
the transmission scheme of Theorem 1 under finite signal
transmission power P settings, i.e., under finite SNR regime.

As illustrated by Fig. 7, following the scheme of Theorem 1:
a) We run Monte Carlo simulation using antenna and ISI
link length parameters used in Example 1 for the MIMO
ISI wiretap channel with a cooperative jammer. That is,
for the (K , M, N) = (3, 2, 2) MIMO ISI wiretap chan-
nel with a (Q = 2)-antenna cooperative jammer where
(L B A, L BC , L E A, L EC ) = (4, 3, 2, 1). The resulting ergodic
secrecy rate Rs behavior over the duration of the transmission
block T is illustrated by the blue curve (with diamonds).
b) Similarly, we run Monte Carlo simulation to investigate
Rs behavior for the antenna and ISI link length parameters of

Fig. 7. The secrecy rate Rs behavior under finite SNR regime for the MIMO
wiretap channels with ISI and a cooperative jammer.

Example 5. That is, for the (K , M, N) = (3, 1, 2) MIMO ISI
wiretap channel with a (Q = 2)-antenna cooperative jammer
where (L B A, L BC , L E A, L EC ) = (9, 3, 2, 1). The resulting
ergodic secrecy rate behavior is illustrated by the red curve
(with squares).

To generate these Rs plots, we use the above antenna and
ISI link length parameters to generate random signal vectors
and channel matrices of similar structures as those described
in (19)-(24). We then apply the secrecy rate (25) and SVD
based expressions derived in (37) and (45). These parameters
are used in equation (25) for incrementally increasing signal
transmission power (P), where P is generated under the input
signal power constraint (3). Running Monte Carlo simulations
for both Examples 1 and 5 using 5000 iterations, for each
example, leads to the secrecy rate Rs behavior displayed by
Fig. 4.

At very low values of power P , the secrecy rate Rs

rises very slowly. However, as we slowly increase P up
towards 50 decibels (dB), then the more and more the Rs

values (in bits/sec/hertz) start to increase towards secrecy rate
saturation values. We observe from Fig. 7 that when both the
legitimate receiver (Bob) and the eavesdropper (Eve) have
an equal number of antennas, i.e., when M = N = 2,
the resulting Rs values (as shown by the blue curve (with
diamonds)) are higher than those obtained when Bob has a
lesser number of antennas than the eavesdropper (as shown
by the red curve (with squares)), i.e., when M = 1 and
N = 2. We note that this difference in Rs values under low
SNR parallels that in SDoF values as was numerically shown
by Example 1 and Example 5 under high SNR regime. It is
also interesting to observe from the red curve (with squares)
that positive Rs is still achievable under the ISI link length
heterogeneity exploitation scheme that we have proposed, even
when the number of antennas at the legitimate receiver is less
than that of the number of the antennas at the eavesdropper.
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Fig. 8. The secrecy rate Rs behavior per log(P) for increasing SNR for the
MIMO wiretap channels with ISI and a cooperative jammer.

B. Convergence Towards SDoF Values in High SNR Regime
In this section, we present numerical simulation results

highlighting the SDoF behavior for the transmission scheme of
Theorem 1 under an increasing signal transmission power P
settings, i.e., under high SNR regime.

As illustrated by Fig. 8, following the scheme of Theorem 1,
we run Monte Carlo simulation using antenna and ISI link
length parameters for MIMO ISI wiretap channel with a
cooperative jammer as those used in: a) Example 1. That is, for
(K , M, N, Q) = (3, 2, 2, 2) and (L B A, L BC , L E A, L EC ) =
(4, 3, 2, 1). The resulting ergodic secrecy rate Rs over log(P)
during the transmission block T is illustrated by the blue curve
(with diamonds). b) Example 5. That is, for (K , M, N, Q) =
(3, 1, 2, 2) and (L B A, L BC , L E A, L EC ) = (9, 3, 2, 1). The
resulting ergodic SDoF behavior is illustrated by the red curve
(with squares).

To generate these plots, we use the above antenna and
ISI link length parameters to generate random signal vectors
and channel matrices of similar structures as those described
in (19)-(24). We then apply the secrecy rate (25) and SVD
based expressions derived in (37) and (45). These parameters
are used in equation (6) for increasing signal transmission
power P , generated under the input power constraint (3).
We run the Monte Carlo simulations for both Examples 1 and 5
using 5000 iterations, each.

At low values of power P , the SDoF values rise fast.
However, as P approaches 2000 decibels (dB), then the
resulting values converge towards the SDoF values 4

5 and 2
5

obtained in Example 1 and Example 5, respectively.

VI. CONCLUSION

We have presented a novel approach to leverage ISI het-
erogeneity to achieve positive SDoF for the MIMO ISI
wiretap channel with a cooperative jammer in the absence
of CSIT. In particular, we showed that Alice can use the

CIR lengths towards Bob and the eavesdropper (Eve) to
carry out a transmission that mixes both the information and
artificial noise symbols and, along with the artificial noise
from Charlie, be able to achieve secure communication. This
scheme remains robust against eavesdropping, even when the
number of antennas at the eavesdropper is larger than the
number of antennas at the legitimate receiver. The proposed
methodology can serve as a foundation for several future
research directions: a) application to multi-user networks
to achieve robust secrecy without any instantaneous CSIT;
b) extension to the MIMO wiretap channel with ISI where
CSI from the legitimate receiver (Bob) is available at the
transmitters; c) further investigation to obtain information-
theoretic upper bounds on the SDoF with no CSIT for the
current model; and d) generalization to correlated channel
distributions.

APPENDIX

We now provide proofs of ranks of the channel matrices
HB, H[U,N]

B , HE, and H[U,N]
E that were essential in the proof

of Theorem 1.

A. Proof of Lemma 1
Proof: Here, we provide the proof of the rank of HB.

The rank for its noise carrying submatrix H[U,N]
B follows

similar arguments, and hence will be omitted here due to space
limitations. In order to prove the rank for HB, we first consider
the explicit structure of the received channel matrix at the mth
antenna at Bob. Let Hm

B = [
Hm

BA Hm
BC

]
, the composite channel

matrix received at the mth antenna at Bob, be a channel
matrix of size (r + L B A − 1) × (r K + d Q) whose nonzero
elements in the first K columns C(m, 1)

BA , C(m, 2)
BA , . . . , C(m, K )

BA
are the i.i.d. continuous random channel coefficients from
the kth antenna at Alice, for k = 1, 2, . . . , K , to the
mth antenna at Bob, for m = 1, 2, . . . , M , such that

C(m, K )
AB =

[
h(m, k)

B A [1] h(m, k)
B A [2] . . . h(m, k)

B A [L B A] 0 . . . 0
]


.
Let the subsequent r K − K columns of Hm

B be r − 1
simultaneous vertically circular permutations of the first K
columns, respectively. Then, after these first r K columns, let
the next Q columns of Hm

B be C(m, 1)
BC , C(m, 2)

BC , . . . , C(m, Q)
BC ,

the i.i.d. continuous random channel coefficients from the
qth antenna at Charlie, for q = 1, 2, . . . , Q, to the mth
antenna at Bob, for m = 1, 2, . . . , M , such that C(m, q)

BC =[
h(m, q)

BC [1] h(m, q)
BC [2] . . . h(m, q)

BC [L BC ] 0 . . . 0
]


. Let the sub-
sequent d Q − Q columns of Hm

B be d − 1 simultaneous
vertically circular permutations of the previous Q columns,
respectively.

Consider the first K columns C(m, 1)
BA , C(m, 2)

BA , . . . , C(m, K )
BA of

the matrix Hm
BA and let � = [θ1 θ2 . . . θr K ]
 be some vector

of size r K × 1. Then, consider the top left corner L B A × K
submatrix of Hm

BA whose structure is described above, i.e., the
nonzero portion of the first K columns. Next, consider the first
Q columns C(m, 1)

BC , C(m, 2)
BC , . . . , C(m, Q)

BC of the matrix Hm
BC and

let � = [
σ1 σ2 . . . σd Q

]
 be some vector of size d Q × 1.
Then, consider the top left corner L BC × Q submatrix of Hm

BC
whose structure is described above, i.e., the nonzero portion of
the first Q columns. We can deduce the following four cases:
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•Case 1: min(K , L B A) = K and min(Q, L BC) = Q.
For min(K , L B A) = K : Since each column of the L B A ×K

nonzero submatrix of the first K columns of Hm
B is formed

by i.i.d. continuous random channel coefficients, this implies
that θ1C(m, 1)

BA + θ2C(m, 2)
BA + · · · + θK C(m, K )

BA = 0, if and
only if [θ1 θ2 . . . θK ] = [0 0 . . . 0], almost surely. That
is rank

([
C(m, 1)

BA , C(m, 2)
BA . . . C(m, K )

BA

]) = K . By inductively
following the same logical argument for the subsequent K
columns of Hm

BA, i.e, for C(m, K + 1)
BA C(m, K + 2)

BA . . . C(m, 2K )
BA ,

and repeating this for a total of r times, we reach the
conclusion that rank(Hm

BA) ≥ r + K − 1. Also, recall that
r+K−1 ≤ r+L B A−1 since min(K , L B A) = K . Here we note
that doing simultaneously circular shifts of the first K columns
for a total of r shifts as stated above leads to a matrix of size
(r + L B A − 1) × r K . This newly created (r + L B A − 1) × r K
matrix thus contains a full rank maximally square submatrix
of size min(r + L B A − 1, r K ) × min(r + L B A − 1, r K ). This
directly implies that rank(Hm

BA) = min(r+L B A−1, r K ). Here
we are assuming that min(r + L B A − 1, r K ) = r + L B A − 1,
otherwise, there is nothing to prove because r K represents
the total number of information and artificial noise symbols
(transmitted by Alice) that we want to solve for. Moreover,
rank(Hm

BA) = min(r + L B A − 1, r K ) = r + L B A − 1 instead
of r + K −1 because, given that K ≤ L B A, we can have the r
circular permutations to be of the top left L B A × K submatrix
of Hm

BA instead of K × K submatrix.
For min(Q, L BC ) = Q: Since each column of the L BC × Q

nonzero submatrix of the first Q columns of Hm
BC is formed

by i.i.d. continuous random channel coefficients, this implies
that σ1C(m, 1)

BC + σ2C(m, 2)
BC + · · · + σQC(m, Q)

BC = 0, if and

only if
[
σ1 σ2 . . . σQ

] = [0 0 . . . 0], almost surely. That

is rank
([

C(m, 1)
BC , C(m, 2)

BC . . . C(m, Q)
BC

]) = Q. By inductively
following the same logical argument for the subsequent Q
columns of Hm

BC, i.e, for C(m, Q + 1)
BC C(m, Q + 2)

BC . . . C(m, 2Q)
BC ,

and repeating this for a total of d times, we reach the conclu-
sion that rank(Hm

BC) ≥ d+Q−1. Also, recall that d+Q−1 ≤
d + L BC − 1 since min(Q, L BC ) = Q. Here we note that
doing simultaneously circular shifts of the first Q columns for
a total of d shifts as stated above leads to a matrix of size
(d + L BC − 1)×d Q. This newly created (d + L BC − 1)×d Q
matrix thus contains a full rank maximally square submatrix
of size min(d + L BC − 1, d Q)× min(d + L BC − 1, d Q). This
directly implies that rank(Hm

BC) = min(d + L BC − 1, d Q).
We assume that min(d + L BC − 1, d Q) = d + L BC − 1,
otherwise, there is nothing to prove because d Q represents
the total number of all artificial noise symbols (transmitted by
Charlie) that we want to solve for. Moreover, rank(Hm

BC) =
min(r + L BC − 1, d Q) = r + L BC − 1 instead of r + Q − 1
because, given that Q ≤ L BC , we can have the d circular
permutations to be of the top left L BC × Q submatrix of Hm

BC
instead of Q × Q submatrix.

Recall that, for the purpose of this proof, we are only
considering the case where Lb = max(r + L B A − 1, d +
L BC − 1) = r + L B A − 1 as provided in the description
of (19). Therefore, using the fact that Hm

B = [
Hm

BA Hm
BC

]
is a horizontal concatenation of the two matrices whose
rank properties are described above, we deduce that its rank

is max(rank(Hm
BA), rank(Hm

BC)) = max(r + L B A − 1, d +
L BC − 1) = r + L B A − 1. Now, consider the M(r +
L B A − 1) × (r K + d Q) composite channel matrix HB seen
at Bob, which is a vertical concatenation of M independent
channel matrices H1

B, H2
B, . . . , HM

B respectively seen at each
of his M antennas. This matrix, by definition, consists of
M(r + L B A − 1) rows whose elements are the random i.i.d
channel coefficients. From this, we therefore conclude that
rank(HB) = min(M(r + L B A − 1), r K + d Q) = r K + d Q,
by the “decodability at Bob” condition in (11) which is a direct
consequence of the devised transmission scheme. We refer
the reader to [31], [32] for more on ranks of concatenated
matrices.

•Case 2: min(K , L B A) = L B A and min(Q, L BC ) = L BC .
For min(K , L B A) = L B A: Since each column of the L B A ×
K nonzero submatrix of the first L B A columns of Hm

B is
formed by i.i.d. continuous random channel coefficients, this
implies that θ1C(m, 1)

BA + θ2C(m, 2)
BA + · · · + θL B A C(m, L B A)

BA = 0,

if and only if
[
θ1 θ2 . . . θL B A

] = [0 0 . . . 0], almost

surely. That is rank
([

C(m, 1)
BA , C(m, 2)

BA . . . C(m, L B A)
BA

]) = L B A.

By inductively following the same logical argument for the
subsequent K columns of Hm

BA, i.e, for C(m, K +1)
BA C(m, K +2)

BA
. . . C(m, 2K )

BA , and repeating this for a total of r times, we reach
the conclusion that rank(Hm

BA) = r + L B A − 1. Here we note
that doing simultaneously circular shifts of the first K columns
for a total of r shifts as stated above leads to a matrix of size
(r + L B A − 1) × r K . This newly created (r + L B A − 1) × r K
matrix thus contains a full rank maximally square submatrix
of size min(r + L B A − 1, r K ) × min(r + L B A − 1, r K ). This
directly implies that rank(Hm

BA) = min(r + L B A − 1, r K ).
We also assume that min(r + L B A − 1, r K ) = r + L B A − 1,
otherwise, there is nothing to prove. Moreover, min(r +L B A−
1, r K ) = r + L B A − 1 because, given that K ≥ L B A, then
we have r K − (r + L B A − 1) = r(K − 1) − (L B A − 1) ≥
r(K − 1) − (K − 1) = (K − 1)(r − 1) ≥ 0 for K , r ≥ 1.

For min(Q, L BC) = L BC: Since each column of the
L BC × Q nonzero submatrix of the first L BC columns of Hm

BC
is formed by i.i.d. continuous random channel coefficients, this
implies that σ1C(m, 1)

BC + σ2C(m, 2)
BC + · · · + σL BC C(m, L BC)

BC = 0,

if and only if
[
σ1 σ2 . . . σL BC

] = [0 0 . . . 0], almost

surely. That is rank
([

C(m, 1)
BC , C(m, 2)

BC . . . C(m, L BC)
BC

]) = L BC .
By inductively following the same logical argument for the
subsequent Q columns of Hm

BC, i.e, for C(m, Q+1)
BC C(m, Q+2)

BC
. . . C(m, 2Q)

BC , and repeating this for a total of d times, we reach
the conclusion that rank(Hm

BC) = d + L BC − 1. Here we note
that doing simultaneously circular shifts of the first Q columns
for a total of d shifts as stated above leads to a matrix of size
(d + L BC − 1)×d Q. This newly created (d + L BC − 1)×d Q
matrix thus contains a full rank maximally square submatrix
of size min(d + L BC − 1, d Q)× min(d + L BC − 1, d Q). This
directly implies that rank(Hm

BC) = min(d + L BC − 1, d Q).
We assume that min(d + L BC − 1, d Q) = d + L BC − 1,
otherwise, there is nothing to prove. Moreover, min(d+L BC −
1, d Q) = d + L BC − 1 because, given that Q ≥ L BC , then
we have d Q − (d + L BC − 1) = d(Q − 1) − (L BC − 1) ≥
d(Q − 1) − (Q − 1) = (Q − 1)(d − 1) ≥ 0 for Q, d ≥ 1.
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Recall that, for the purpose of this proof, we are only
considering the case where Lb = max(r + L B A −1, d + L BC −
1) = r + L B A −1 as provided in the description of (19). Using
the fact that Hm

B = [
Hm

BA Hm
BC

]
is a horizontal concatenation

of the above two matrices, we can thus infer that its rank
is max(r + L B A − 1, d + L BC − 1) = r + L B A − 1. Now,
consider the M(r + L B A −1)× (r K +d Q) composite channel
matrix HB seen at Bob, which is a vertical concatenation of M
independent channel matrices H1

B, H2
B, . . . , HM

B . This matrix,
by definition, consists of M(r+L B A−1) rows whose elements
are the random i.i.d channel coefficients. From this, we can
infer that rank(HB) = min(M(r + L B A − 1), r K + d Q) =
r K +d Q, by the “decodability at Bob” condition in (11) which
is a direct consequence of the devised transmission scheme.

•Case 3: min(K , L B A) = K and min(Q, L BC) = L BC .
Following analogous arguments to those used in Case 1

for min(K , L B A) = K and those used in Case 2 for
min(Q, L BC ) = L BC , we obtain that Hm

B = [
Hm

BA Hm
BC

]
is of

rank max(r + L B A −1, d + L BC −1) = r + L B A −1. Similarly,
with arguments analogous to those in the cases 1 and 2 above,
we can obtain that the composite channel matrix HB is of rank
rank(HB) = min(M(r + L B A − 1), r K + d Q) = r K + d Q,
by the “decodability at Bob” condition in (11) which is a direct
consequence of the devised transmission scheme.

•Case 4: min(Q, L BC ) = Q and min(K , L B A) = L B A.
Following analogous arguments to those used in Case 1

for min(Q, L BC) = Q and those used in Case 2 for
min(K , L B A) = L B A, we obtain that Hm

B = [
Hm

BA Hm
BC

]
is of

rank max(r + L B A −1, d + L BC −1) = r + L B A −1. Similarly,
with arguments analogous to those in the cases 1 and 2 above,
we can obtain that the composite channel matrix HB is of rank
rank(HB) = min(M(r + L B A − 1), r K + d Q) = r K + d Q,
by the “decodability at Bob” condition in (11) which is a
direct consequence of the devised transmission scheme. This
concludes the proof of Lemma 1. �

B. Proof of Lemma 2
Proof: Here, we provide a brief for the proof of the

rank of HE. The rank for its noise carrying submatrix
H[U,N]

E follows similar arguments, and hence will be omitted
here due to space limitations. We now consider the explicit
structure of the received channel matrix at the nth antenna
at Eve. Let Hn

E = [
Hn

EA Hn
EC

]
, the composite channel

matrix received at the nth antenna at Eve, be a channel
matrix of size (r + L E A − 1) × (r K + d Q) whose nonzero
elements in the first K columns C(n, 1)

EA , C(n, 2)
EA , . . . , C(n, K )

EA
are the i.i.d. continuous Gaussian random channel coeffi-
cients from the kth antenna at Alice, for k = 1, 2, . . . , K ,
to the nth antenna at Eve, for n = 1, 2, . . . , N , such

that C(n, k)
EA =

[
h(n, k)

E A [1] h(n, k)
E A [2] . . . h(n, k)

E A [L E A] 0 . . . 0
]


.
Let the subsequent r K − K columns of Hn

E be r − 1
simultaneous vertically circular permutations of the first K
columns, respectively. Then, after these first r K columns,
let the next Q columns of Hn

E be C(n, 1)
EC , C(n, 2)

EC , . . . , C(n, Q)
EC ,

the i.i.d. continuous random channel coefficients from the
qth antenna at Charlie, for q = 1, 2, . . . , Q, to the

nth antenna at Eve, for n = 1, 2, . . . , N , such that C(n, q)
EC =[

h(n, q)
EC [1] h(n, q)

EC [2] . . . h(n, q)
EC [L EC ] 0 . . . 0

]

. Let the sub-

sequent d Q − Q columns of Hn
E be d − 1 simultaneous

vertically circular permutations of the previous Q columns,
respectively. The matrix HE is thus a vertical concatenation of
N independent channel matrices H1

E, H2
E . . . , HN

E respectively
seen at each of the N antennas at Eve. Similarly to the proof
of Lemma 1, we can deduce four cases from the structure
of Hn

E, for which the arguments are analogous to those of
Lemma 1, and use the “secrecy at Eve” constraint in (12).
We omit the detailed steps as they follow in a similar manner
as in Lemma 1. �
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