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Abstract: In this paper, the K-user interference channel with secrecy constraints is considered with
delayed channel state information at transmitters (CSIT). We propose a novel secure retrospective
interference alignment scheme in which the transmitters carefully mix information symbols with
artificial noises to ensure confidentiality. Achieving positive secure degrees of freedom (SDoF)
is challenging due to the delayed nature of CSIT, and the distributed nature of the transmitters.
Our scheme works over two phases: Phase one, in which each transmitter sends information symbols
mixed with artificial noises, and repeats such transmission over multiple rounds. In the next phase,
each transmitter uses the delayed CSIT of the previous phase and sends a function of the net
interference and artificial noises (generated in previous phase), which is simultaneously useful for
all receivers. These phases are designed to ensure the decodability of the desired messages while
satisfying the secrecy constraints. We present our achievable scheme for three models, namely:
(1) K-user interference channel with confidential messages (IC-CM), and we show that %(ﬁ —6)
SDoF is achievable; (2) K-user interference channel with an external eavesdropper (IC-EE); and (3)
K-user IC with confidential messages and an external eavesdropper (IC-CM-EE). We show that for the
K-user IC-EE, %(\/K — 3) SDOF is achievable, and for the K-user IC-CM-EE, %(\/K — 6) is achievable.
To the best of our knowledge, this is the first result on the K-user interference channel with secrecy
constrained models and delayed CSIT that achieves an SDoF which scales with /K, square-root of
number of users.

Keywords: interference channel; secure retrospective interference alignment; secure degrees of
freedom (SDoF); delayed CSIT

1. Introduction

Delayed channel state information at transmitters (CSIT) can impact the spectral efficiency of
wireless networks, and this problem has received significant recent attention. Maddah Ali and Tse
in [1] studied the delayed CSIT model for the K-user multiple-input single-output (MISO) broadcast
channel, and showed that the optimal sum degrees of freedom (DoF) is given by K/ (1 + % + -+ %)
which is strictly greater than one DoF (with no CSIT) and less than K DoF (with perfect CSIT). For the
K-user single-input single-output (SISO) X network, % is maximum DoF with perfect CSIT [2].
In [3], Ghasemi et al. devised a transmission scheme for the X channel with delayed CSIT, and showed
that for the K-user SISO X channel under delayed CSIT, % - m DoF are achievable. The problem
of delayed CSIT for interference channels has been studied in several works [3-7]. The main drawback
of these schemes is that the achievable DoF does not scale with the number of users. In a recent work [8],
anovel transmission scheme for the K-user SISO interference channel is presented which achieves @
DoF almost surely under delayed CSIT model. The result in [8] is particularly interesting, as it shows

that the sum DoF for the K-user interference channel does scale with \/K even with delayed CSIT.

Entropy 2019, 21, 1092; d0i:10.3390/€21111092 www.mdpi.com/journal/entropy


http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0002-6182-6098
https://orcid.org/0000-0002-4073-0273
http://dx.doi.org/10.3390/e21111092
http://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/21/11/1092?type=check_update&version=2

Entropy 2019, 21, 1092 2 of 26

Another important aspect in wireless networks is ensuring secure communication between
transmitters and receivers. Many seminal works in the literature (see comprehensive surveys [9-11])
studied the secure capacity regions for multi-user settings such as wiretap channel, broadcast,
and interference channels. Since the exact secure capacity regions for many multi-user networks
are not known, secure degrees of freedom (SDoF) for a variety of models have been studied in [12-18].
More specifically, for the K-user MISO broadcast channel with confidential messages, the authors
in [18] showed that the optimal sum SDoF with delayed CSIT is given by K/ (1 + % +ee 4 % + %)
The achievability scheme is based on a modification of the (insecure) Maddah Ali and Tse’s scheme
in [1] along with a key generation and exploitation method which uses delayed CSIT. The expression
of the sum SDoF in [18] is almost the same as in [1] except a penalty term due to secrecy constraints.
For the K-user SISO interference channel with confidential messages under perfect CSIT, Xie and
Ulukus showed in [19] that the optimal sum SDoF is K2(11<<:11 ) n [20], for the K-user interference channel
with an external eavesdropper, it has been showed % SDoF is optimal for the interference channel
with no eavesdropper CSIT. Also, there are various other works for different CSIT assumptions such as
MIMO wiretap channel with no eavesdropper CSIT [21], broadcast channel with alternating CSIT [22].

In this work, we consider the K-user SISO interference channel with secrecy constraints and
delayed CSIT. More specifically, we study three channel models (see Figure 1), namely: (1) K-user
interference channel with confidential messages, (2) K-user interference channel with an external
eavesdropper, and (3) K-user interference channel with confidential messages and an external

eavesdropper. We focus on answering the following fundamental questions regarding these channel
models: (a) is positive SDoF achievable for the interference channel with delayed CSIT?, and (b) if yes,
then how does the SDoF scale with K, the number of users?
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(a) K-user IC-CM. (b) K-user IC-EE. (c) K-user IC-CM-EE.

Figure 1. K-user interference channel (IC) with secrecy and delayed CSIT. The model in (a) has
confidential message (CM) constraints, model in (b) assumes the presence of an external eavesdropper
(EE), and the model in (c) has both confidentiality and secrecy constraints (CM and EE).

Contributions: We answer the above questions for all the three channel models in the affirmative
by showing that positive SDoF is indeed achievable for all these models, for a large number of users, K.
We show that for the K-user interference channel with confidential messages (IC-CM), %(\/K —6) SDoF
is achievable. Also, we show that for the K-user interference channel with an external eavesdropper
(IC-EE), %(\/E — 3) SDOoF is achievable, and for the K-user with confidential messages and an external
eavesdropper (IC-CM-EE), %(\/K — 6) is achievable. In Table 1, we summarize the main results for
the K-user IC under various secrecy constraints, and different CSIT assumptions (i.e., perfect CSIT,
delayed CSIT and no CSIT).
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Table 1. Summary of results on the K-user interference channel with different secrecy constraints and
channel state information at transmitters (CSIT) models. The highlighted results are from this paper.
These results show that sum secure degrees of freedom (SDoF) scales with VK.

Perfect Delayed No
CSIT CSIT CSIT
K 1
No Secrecy E > i(vK —1) 1
Confidential K(K-1) --------------------- 0
Messages oKk —1 [ :
External K-1 ]
Eavesdropper 92 : : 0
Confidential Messages _ AR (RS, y
and E > — (VK —6) 0
Eavesdropper 2 L2

These results highlight the fact that in presence of delayed CSIT, there is negligible DoF scaling
loss due to the secrecy constraints in the network compared to the no secrecy case [8]. Our main
contribution is a novel secure retrospective interference alignment scheme, that is specialized for the
interference channel with delayed CSIT. Our transmission scheme is inspired by the work of [8] in terms
of the organization of the transmission phases. One of the main differences is that the transmitters
mix their information symbols with artificial noises so that the signals at each unintended receiver are
completely immersed in the space spanned by artificial noise. However, this mixing must be done with
only delayed CSIT, and it should also allow successful decoding at the respective receiver. Our scheme
works over two phases: Phase one, in which each transmitter sends information symbols mixed with
artificial noises, and repeats such transmission over multiple rounds. Subsequently, in the next phase,
each transmitter carefully sends a function of the net interference and artificial noises (generated
in previous phase), which is simultaneously useful to all receivers. The equivocation analysis of
the proposed scheme is non-trivial due to the repetition and retransmission strategies employed by
the transmitters.

Organization of the paper: The rest of the paper is organized as follows. Section 2 describes
the system models. The main results and discussions are presented in Section 3. Section 4 provides
the achievable scheme under delayed CSIT and confidential messages. Sections 5 and 6 discuss two
other secrecy constraints: (1) K-user interference channel with an external eavesdropper (IC-EE), and
(2) K-user interference channel with confidential messages and an external eavesdropper (IC-CM-EE),
respectively. We conclude the paper and discuss the future directions in Section 7. Finally, the detailed
proofs are deferred to the Appendices.

Notations: Boldface uppercase letters denote matrices (e.g., A), boldface lowercase letters are used
for vectors (e.g., a), we denote scalars by non-boldface lowercase letters (e.g., x), and sets by capital
calligraphic letters (e.g., X). The set of natural numbers, integer numbers, real numbers, and complex
numbers are denoted by IN, Z, R, and C, respectively. For a general matrix A with dimensions of
M x N, AT, and A" denote the transpose and Hermitian transpose of A, respectively. We denote the
partitioned matrix of two matrices Ay« and By« as (A : B). We denote the identity matrix of the
order M with Iy;. Let h(x) denote the differential entropy of a random vector x, and I(x;y) denote the
mutual information between two random vectors x and y. We denote a complex-Gaussian distribution
with a mean y and a variance 02 by CN(u, 0%). For rounding operations on a variable x, we use | x| as
the floor rounding operator on x and [x] as the ceiling rounding operator on x.
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2. System Model

We consider the K-user interference channel with secrecy constraints and delayed CSIT (shown in
Figure 1). The input-output relationship at time slot ¢ is

K
yi(t) = hge(D) () + Y Iy (0)x(8) + me(8), €))
j=Li#k
Zg, ) +n=(t), )

where y;(t) is the signal received at receiver k at time t, Ii;(t) ~ CN(0,1) is the channel coefficient
at time t between transmitter j and receiver k, and xi(t) is the transmitted signal from transmitter
k at time t with an average power constraint E{|x;(t)|?} < P. The additive noise ny(t) ~ CA'(0,1)
at receiver k is independent and identically distributed (i.i.d.) across users and time. z(t) is the
received signal at the eavesdropper at time t, gj(t) ~ CN(0,1) is the channel coefficient at time ¢
between transmitter j and the external eavesdropper, and n;(t) ~ CN(0,1) is the additive noise at
the eavesdropper. The channel coefficients are assumed to be i.i.d. across time and users. We assume
perfect CSI at all the receivers. We further assume that the CSIT is delayed, i.e., CSI is available at each
transmitter after one time slot without error. Also, we assume that the external eavesdropper’s CSI is
not available at the transmitters (i.e., no eavesdropper CSIT).

Let Ry = w denote the rate of message Wy intended for receiver k, where |Wy| is the
cardinality of the kth message. A (27R1,27R2 . 27Rk 1) code is described by the set of encoding
and decoding functions as follows: the set of encoders at the transmitters are given as: {wt(k)
Wi x {H(t) 1 — x(t )}, Vk =1,...,K, where the message W is uniformly distributed over the
set Wy, and H(t ( ) = {hy(t') },Ile/ 118 the set of all channel gains at time . The transmitted signal from

transmitter k at time slot ¢ is given as: x (¢ ) l/Jt(Wk, {H(t)}, 1) The decoding function at receiver

k is given by the followmg mapping: ¢ : y ) % {H(t)}{_; = Wy, and the estimate of the message at
receiver k is defined as: Wi = ¢ ({y,(t), H(t) _1)- The rate tuple (Ry, ..., Rk) is achievable if there
exists a sequence of codes which satisfy the decodability constraints at the receivers, i.e.,

lim sup Prob (Wi # Wi] <er,Vk=1,...,K 3)
and the corresponding secrecy requirement is satisfied. We consider three different

secrecy requirements:

1. IC-CM, Figure 1a, all unintended messages are kept secure against each receiver, i.e.,

Tlgrolosup I (WKk,yk | Wy, ) <er,Vk=1,...,K (4)
where ez — 0as T — oo, WK, £ {W;, Wy, ..., W }\{Wi}, and Q £ {H(t), G(t)}[_, is the set of
all channel gains (i.e., legitimate receivers and external eavesdropper) over the channel uses.

2. IC-EE, Figure 1b, all of the messages are kept secure against the external eavesdropper, i.e.,

Tlgx;tosup I (Wl,Wz,...,WK;z<T)|Q) <e,Vk=1,...,K (5)

3. IC-CM-EE, Figure 1c, all of the messages are kept secure against both the K — 1 unintended
receivers and the external eavesdropper, i.e., we impose both secrecy constraints in
Equations (4) and (5).
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The supremum of the achievable sum rate, Ry £ Zszl Ry, is defined as the secrecy sum capacity

Cs. The optimal sum secure degrees of freedom (SDoF*) is then defined as follows:

. Cs
DoF* £ ] )
Sho P log (P) ©)

SDoF* represents the optimal scaling of the secrecy capacity with log(P), where P is the
transmitted power, i.e., it is the pre-log factor of the secrecy capacity at high SNR.

In the next Section, we present our main results on the achievable sum SDoF with the three
different secrecy constraints and delayed CSIT.

3. Main Results

Theorem 1. For the K-user IC-CM with delayed CSIT, the following secure sum degrees of freedom is achievable:

KR(K — R —2)

SDoFic.cu > SDOFIEem = (1) [RER+ 1) T K]’ @)

where,
KK x 14 &K(Kfz) .
[ - | ®)

We next simplify the above expression and present a lower bound on the achievable SDoF. Using
this lower bound, we observe that the achievable SDoF scales with v/K, where K is the number of users.

Corollary 1. For the K-user IC-CM with delayed CSIT, the achievable SDoF in Equation (7) is lower bounded as

1
SDoFiciem > 5 (VK= 6)7, ©)
where (x)* = max(x,0).
We present the proof of Theorem 1 and Corollary 1 in Section 4.

Theorem 2. For the K-user IC-EE with delayed CSIT, the following secure sum degrees of freedom is achievable:

. R(K—R—1)
SDOFIC—EE Z SDOPIaé}_lEE = m, (10)
where,
R=|VK|-1. (11)

Fach.

We next simplify the above expression and present a lower bound on the SDoFg_ ;.

Corollary 2. For the K-user IC-EE with delayed CSIT, the achievable SDoF in Equation (7) is lower bounded as
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1
SDOFicg > 5 (VK —3)*. (12)
We present the proof of Theorem 2 and Corollary 2 in Section 5.

Theorem 3. For the K-user IC-CM-EE with delayed CSIT, the following secure sum degrees of freedom
is achievable:

KR(K—R—2)
* > ach. —
SDoFjc.cm-ge > SDOFiCemEE (K—1) x[R(R+1) +K]’ (13)
where,
K4 K x /14 EDE2) ”
In the next Corollary, we simplify the above expression and present a lower bound on the
SDoFah: .

Corollary 3. For the K-user IC-CM-EE with delayed CSIT, the achievable SDoF in Equation (7) is lower
bounded as

1
SDoFe kg > 5(& —6)*. (15)
We present the proof of Theorem 3 and Corollary 3 in Section 6.
Remark 1. We next compare the secure sum DoF of the previous Theorems to that of [8] (i.e., without secrecy

constraints). For the K-user interference channel without secrecy constraints, the achievable sum DoF in [8] is
given as:

K
DoFach. — , 16
> WK 7)
Y IVE-1)", (18)

where (a) follows from the fact that | x| > x — 1. Comparing these results together, we can conclude that the
scaling behavior of the sum SDoF is still attainable and there is negligible scaling loss in sum SDoF compared to
no secrecy case for sufficiently large K (see Figure 2). Also, we present numerical evaluations for the sum SDoF
in Table 2.
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Table 2. Numerical comparison between the sum SDoF with the sum DoF in [8].

K 5 6 7 8 9 10 11 12
SDOF\ = SDoFid pp 03571 04500 05185 05714 06136 0.8333 09059  0.9697
SDoF;c: 04286 05000 0.5556 0.6000 0.8000 0.8750 0.9412 1.0000
DoF*h- [8] 14286 15 155 16 18 1875 19412 2
18

—==1C-CM, IC-CM-EE [Theorem 1, 3]
——No secrecy [8]
IC-EE [Theorem 2]

_
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Figure 2. Comparison of achievable degrees of freedom (DoF) with delayed CSIT: with and without
secrecy constraints.

4. Proof of Theorem 1

In this Section, we present the proof of Theorem 1. The transmission scheme consists of
T transmission blocks, where each block is of duration B. Across blocks, we employ stochastic
wiretap coding (similar to the techniques employed in the literature on compound wiretap channels,
see [19,23,24]). Within each block, the transmission is divided into two phases, which leverages
delayed CSIT. In order to analyze the rate of the proposed scheme, we first take the limit of number of
blocks T — oo, followed by the limit B — co. For a given block, if we denote the (B-length) input of
transmitter 7 as x;, and output of receiver i as y;, then the secure rate achievable by stochastic wiretap
coding is given by:

I(s;;yi| Q) — max;; I(s;; yj[s;, Q)

Rl: B ’ i:1/2/"'/K/ (19)

where s; is the vector of information symbols sent by transmitter i. Figure 3 gives an overview for these
steps: stochastic encoding over blocks, and the two-phase scheme within each block that leverages
delayed CSIT.

Block | — 1 Block [ Block I +1
Phase One Phase Two Phase One Phase Two Phase One Phase Two
I I I I O vl I T N I Il I Il (X s e s I I vl v e |
< RT > < K+ > <+—— R —>< K(n+1)Y > < RT > < K(n+1)" >
4——— B=RT+Kn+1)V > < B=RT+Kn+1nN > < B=RT+K(n+1)N —p

Figure 3. Stochastic encoding over transmission blocks for our proposed scheme.

4.1. Overview of the Achievability Scheme and SDoF Analysis

In this subsection, we present our secure transmission scheme. We consider a transmission
block of length RT + K(n + 1)N = R(RnN + (n 4+ 1)N) + K(n + 1)V, where R denotes the number of
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transmission rounds and N = RK(K — 1), and 7 is an integer. The transmission scheme works over
_ N
two phases. The goal of each transmitter is to securely send Ty = RnN + (n +1)N — [W}

information symbols to its corresponding receiver. In the first phase, each transmitter sends random

_ N
[%1 artificial noise

linear combinations of the T; information symbols and the T, =
symbols in T time slots. Each transmitter repeats such transmission for R rounds, and hence, phase
one spans RT time slots.

By the end of phase one, each receiver applies local interference alignment on its received signal
to reduce the dimension of the aggregate interference. In the second phase, each transmitter knows the
channel coefficients of phase one due to delayed CSIT. Subsequently, each transmitter sends a function
of the net interference and artificial noises (generated in previous phase) which is simultaneously
useful to all receivers. More specifically, each transmitter seperately sends (1 + 1)V linear equations of
the past interference to all receivers. Therefore, phase 2 spans K(n + 1)N time slots.

By the end of both phases, each receiver is able to decode its desired T; information symbols
while satisfying the confidentiality constraints. The main aspect is that the parameters of the scheme
(i.e., number of artificial noise symbols, number of repetition rounds, and durations of the phases)
must be carefully selected to allow for reliable decoding of legitimate symbols, while satisfying the
confidentiality constraints.

Therefore, the transmission scheme spans RT + K(n + 1)V time slots, this scheme leads to the
following achievable SDoF:

KR(K —R —2)
(K—1)x [R(R+1)+ K]’

SDoFad = (20)

We calculate the achievable sum SDoF of this scheme in full detail in Section 4.3. Before we
present the details of the scheme, we first optimize the achievable SDoF in Equation (20) with respect
to the number of rounds R and also simplify the above expression, which leads to the expression in
Corollary 1.

Lemma 1. The optimal value of R* which maximizes Equation (20) is given by

. —K+Kx 1.,.%
R _{ — J

(21)

Now, in order simplify the obtained expression in Equation (20), we state the following Corollary.
Corollary 4. The optimal value of number of rounds R* is lower bounded by
R* > VK—5=Ry,. (22)

We present the proof of Lemma 1 and Corollary 4 in Appendix A.
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Figure 4 depicts a comparison of between the two values of R (i.e., optimal R* and lower bound
Ryp). By substituting Ry, in Equation (20) leads to a lower bound on SDOF?(C:]E"CM as follows:

ach. _ KR(K_R_Z)

SDokicem = R =1y x R(R+ 1) + K’ @)
R(K-R-2) (VK-5)(K-vK+3) 24)
R(R+1)+K (VK-5)(VK—4)+K
(@) KVK — 6K +8vVK —15 25)
- 2K—9vVK+20
. K\/E—6K2—|I;8\/f— 15, 26)
VK—6 8VK-15

T S @7)
Y %(\/K —6)%, (28)

where in (a), the term —9v/K + 20 in the denominator is negative, VK > 5, so neglecting this term
gives us Equation (26). In step (b), since the term 8VK —15is positive, VK > 4, hence omitting this
term gives Equation (28). To this end, we get Equation (28) which shows the scaling of the achievable
SDoF with K, the number of users.

30
R [Lemma 1] -
251 ----Rlb [Corollary 4] Pl
201 - 1
Z15f Lo :
c s
> s
e -
~ ‘/
o 107 e 1
'/
‘/
7/
50/ / b
/
/
lll
Or/ B
]
5 ‘ ‘ ‘ ‘
0 200 400 600 800 1000

K (users)

Figure 4. Comparison between the optimal value of R (number of rounds in phase one of the scheme)
and its lower bound.

4.2. Detailed Description of the Achievability Scheme

Figure 5 depicts an overview of the two transmission phases. We now present the transmission
scheme in full detail. For our scheme, we collectively denote the L symbols transmitted over L time
slots as a super symbol and call this as the L symbol extension of the channel. With the extended
channel, the signal vector at the kth receiver can be expressed as

K
yi = ) Hix; +ny, (29)
=1
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where x; is a L x 1 column vector representing the L symbols transmitted by transmitter k in L time
slots. Hy; is a L x L diagonal matrix representing the L symbol extension of the channel as follows:

H; = diag (hk]'(l)/hkj(z)r' : -rhkj(L)) , (30)

where ;(t) is the channel coefficient between transmitter j and receiver k at time slot f. Now we
proceed to the proposed scheme which works over two phases.

Phase One

Transmit information symbols
and artificial noises from |, | Repetition over R il S ETSE

o rounds aggregation at receivers
Phase Two
) ) @) ) )
Time Duration of Phase One Time Duration of Phase Two
Round 1 Round 2 Round R Sub-phase 1, Sub-phase 2 | ,Sub-phase K
| T | T T| |(n+1)N|(n+1)N| |(n+1)N|
(b) - —
RT — Kn+ 1) ——

Figure 5. (a) Block diagram for the transmission scheme and (b) time duration of the phases.

4.2.1. Phase 1: Interference Creation with Information Symbols and Artificial Noises

Recall that the goal of each transmitter is to send T; information symbols securely to its respective
receiver. This phase is comprised of R rounds, where, in each round, every transmitter j sends linear
combinations of the T; information symbols s; € CT*1 mixed with T, artificial noises u; € chx1,
where the elements of u; are drawn from complex-Gaussian distribution with average power P. Hence,
the signal sent by transmitter j in each round r can be written as

x; =V [Zf}} vi=12,...K, (31)

where Vj, Vj=1,2,...,Kis arandom mixing matrix of dimension T x T whose elements are drawn
from complex-Gaussian distribution with zero mean and unit variance at transmitter j. V;,Vj =

1,2,...,Kis known at all terminals (all transmitters and receivers). The received signal at receiver k for
round r € {1,2,...,R} is given by

=

Yk = ) Higxj +ng, (32)

]

Il
—_

where x; is the T x 1 column vector representing the T symbol extension of the transmitted symbols
from transmitter j, and n; represents the receiver noise in round r at receiver k. This phase spans RT
time slots where R € IN is the number of transmission rounds and T = RnN + (n + 1)V time slots
where n € Nand N = RK(K —1).

¢ Interference Aggregation at Receivers

At the end of phase 1, each receiver k has the signals y; = {y}}X ;, over R rounds. Each receiver
performs a linear post-processing of its received signals in order to align the aggregate interference
(generated from symbols and artificial noises) from the (K — 1) unintended transmitters. In particular,
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each receiver multiplies its received signals in the rth block with a matrix W (of dimension T x n™)
as follows:
K
v = Whyl = wH( Hijx; + n;), (33)
j=1
= WiHpx, + ) WIH x; + WHnj, (34)
j7#k
= WHHx + Y WHHx; + i (35)
j#k
The goal is to design the matrices W and X such that
wHH,Qj<x,\7k:1,2,...,1<,k7éj,\¢r:1,z,...,R, (36)

where X € C"*DVXT Here the notation A < B means that the set of row vectors of matrix A is a
subset of the row vectors of matrix B. To this end, we choose W and X as follows:

(")
w=| J] #H,")f1:0<n), <n-1}, (37)
(r,m,i)eS
H
()
X=| JI ®\,;")fr:0<n), <n| , (38)
(rm,i)eS

where 1 is the all ones column vector and the set S = {(r,m, i) : Vr € {1,...,R},Vm #i e {1,...,K} }.
Note that the set S does not contain the channel matrix Hj, that carries the information symbols
intended to receiver k. However, multiplying with any channel gain that appears in W results
in aligning this signal within X asymptotically. It is worth noting that, X defines all the possible
interference generated by the transmitters at all receivers. Hence, this choice of X and W guarantees that
the alignment condition Equation (36) is satisfied. Therefore, the received signal after post-processing
in round r at receiver k can be written as

yr = WHleckxk + Z WHH,’C].x]- + WHn,r{, (39)
j#k

= WHH]x; + ) T1 Xx; + W'nj, (40)
7k

where [T y S o x (141N is 4 selection and permutation matrix. Now after the end of phase 1, receiver
k has RnN equations of T desired symbols (which are composed of T; information symbols and T,
artificial noises generated by the transmitter k) plus (K — 1) interference terms, which are of dimension
(n + 1)N. Figure 6 gives a detailed structure for the first phase of the transmission scheme.

4.2.2. Phase 2: Re-Transmission of Aggregate Interference with Delayed CSIT

For the second phase, each transmitter k uses (1 + 1)V time slots to re-transmit the aggregated
interference (Xxx) generated in the first phase at the receivers, which is sufficient to cancel out the
interference term at receiver j # k, and to provide additional (n + 1)V equations of the desired symbols
to receiver k. Then, this phase spans K(n + 1)V time slots. The transmitted signal from transmitter k is
as follows:

7 =X xi,Vk=1,2,...,K. (41)
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RX1 RX1
RX2 RX2
N L ) :
v
(a) Received signals at receivers before interference (b) Received signals at receivers after interference
alignmentat r = 1. alignmentat r = 1.

RX1 RX1
RXQ RX2
v v
(c) Received signals at receivers before interference (d) Received signals at receivers after interference
alignmentat 1 = R. alignmentat r = R.

Figure 6. Graphical representation for the first phase of the proposed scheme.

¢ Decoding at Receivers

At the end of phase 2, the interference at receiver k is removed by subtracting the terms
Y14k H,Vq.X x; from the equalized signal §;, i.e., (ignoring the additive noise n})

WiH =51 — ) T X x;. (42)
j=Lj#k

Canceling the interference terms leaves each receiver k, Vk € {1,...,K} with Rn" useful linear
equations besides (1 + 1)N useful equations from transmitter k (from phase 2). At the end of phase 2,

receiver k will collectively get the following signal,

xH, (WHH,ﬁk)H,...,(wHH,Ijk)H}HVk [iﬁ] . (43)

By

Therefore, at the end of phase 2, each receiver has enough linear equations of the desired symbols.
In order to ensure decodability, we need to prove that B,V is full rank and hence each receiver will
be able to decode its desired T; information symbols. First, we notice that Vy is full rank matrix and
hence rank(B;Vy) = rank(By) [25]. In Appendix B, we show that By is full rank. Figure 7 gives a
detailed structure for the second phase of the transmission scheme.

Before we start the achievable secure rate analysis, we want to highlight first on the dimensions
of the information symbols s; € CT1*1 and the artificial noises u; € C2*1,vi =1,2,...,K.
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TX1 TX2

Rx; Rxo Rxg
T = 1 o -ITLN
N
o -In

o -ITLN

m+ ™| (3| [ —

(n+1)"]

|

(n+1)"] — ] . B e e
b -
Time slot v
(a) Aggregate interference retransmission. (b) Total received interference-free signals at receivers after

cancelling the interference terms.
Figure 7. Graphical representation for the second phase of the proposed scheme.
4.2.3. Choice of T1 and T, to Satisfy the Confidentiality Constraints

Without loss of generality, let us consider receiver 1. After decoding s and uy, receiver 1 will have
RT equations of {s;}X,, {u;}X, from phase one, and (K — 1)(n 4+ 1)N equations of {s;}X,, {u;}X,
from phase two. Then, the total number of equations seen at receiver 1is RT + (K — 1) (n +1)N. Hence,
in order to keep the unintended information symbols of (K — 1) transmitters at this receiver secure, we
require that the number of these equations must be at most equal to the total number of the artificial
noise dimensions of the (K — 1) transmitters, i.e.,

RT+ (K-1)(n+1)N < (K-1)Tn. (44)

Therefore, we choose T» as

_[RT+(K-1)(n+1)N
T, = { X1 . (45)
Note that since T = T; + T3, so we can get T7 as follows:
RT + (K —1 )N
leRanL(n—i-l)N—[ + Ki)l(’” ) w (46)

We next compute the achievable secrecy rates and SDoF for the K-user interference channel with
confidential messages and delayed CSIT.

4.3. Secrecy Rate and SDoF Calculation

Using stochastic encoding described in Appendix XII of [26], for a block length B = RT + K(n +
1)N, the following secure rate is achievable:

o I(s;;yi|Q)) — max;; I(si;yj\slfi,())
t RT +K(n+1)N ’

i=12,... K (47)

where I(s;;y;|Q)) is the mutual information between the information symbols vector s; and y;,
the received composite signal vector at the intended receiver i, given the knowledge of the channel
coefficients. I(s;; yj|slf i»Q) is the mutual information between s; and y;, the received composite
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signal vector at the unintended receiver j, i.e., the strongest adversary with respect to transmitter i,
conditioned on the information symbols sk ; - In terms of differential entropy, we can write,

Term A: I(s;y;|Q) = h(y;:|Q) — h(yils;, QY), i=1,2,...,K, (48)
Term B: I(s;;y;[sX;, Q) = h(y;|sX;, Q) — h(yj|s},Q), j=1,2,...,Kj #i. (49)

We collectively write the received signal y; at receiver i over RT + K(n + 1)V time slots as follows:

yi=AVq+n;,Vi=12,... K (50)
where,
HY OHL o H)
A = G Ci— Hz2l szz H.IZK ’
i : : :
HY MY o HE
D; = blkdiag(H;1 X, ..., HixX), (51)

where A; has dimensions of (RT + K(n +1)N) x KT. Note that A; is partitioned into two sub matrices
C; and D;. C; consists of block matrices, where each block matrix has dimensions of T x T whose
elements are i.i.d. drawn from a continuous distribution and hence, it is full rank, almost surely (i.e.,
rank(C;) = RT). D; has a block diagonal structure (each block matrix has dimensions of (1 +1)N x T)
since the transmission in phase two of the scheme is done in TDMA fashion. Note that each block is
a full rank matrix (i.e., rank (H;;X) = rank(X) = (n + 1)N,Vj =1,...,K). The matrix X is a full rank
matrix as proved in [26]. The matrix V can be written as follows:

V = blkdiag(Vy, Vy, ..., V), (52)

where V is the block diagonal matrix with dimensions of KT x KT. Furthermore, we write
T T T T T 17
q=1s; u s, u, --- Ssg uK} (53)

as a column vector of length KT, which contains the information symbols and the artificial noises of
transmitters 1,..., K.

Before we proceed, we present two Lemmas; we provide the proof of Lemma 2 in Appendix C.
For Lemma 3, we follow similar steps as in [17], the proof of this Lemma is provided in [26].

Lemma 2. Let A be a matrix with dimension M x N and X = (x1,...,xn)" be a zero-mean jointly complex
Gaussian random vector with covariance matrix PI. Also, let N = (ny, ... ,nM)T be a zero-mean jointly
complex Gaussian random vector with covariance matrix 021, independent of X, then

rank(A)
h(AX+N) =log(me)™ + Y~ log(A;P + ¢?), (54)
i=1
where {)\i};a:nf () are the singular values of A.
Lemma 3. Consider two matrices Apxn and By p where M < N. The elements of matrix B are chosen
independently from the entries of A at random from a continuous distribution. Then,
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rank(AB) = rank(A), almost surely. (55)

Without loss of generality, let us consider the first transmitter. The received signal at the first
receiver after removing the (K — 1) interference terms is written as follows:

wi o (N H}, n}

0 WH 0 0 H?, n?
S

y1 = : Vi ]| (56)

1

0 0 WH Hﬁ ——— I‘liz

0 0 0 I I:IHX X n;

e

Y Fl ng

o Lower Bounding Term A

We note that s; — x; — y1 — ¥1 forms a Markov chain, thus

I(x1;¥1|Q) > I(s1;y1]1Q2) > I(s1;¥1]Q2), (57)
= h(y11Q) — h(y1]s1, Q). (58)

Using Equation (56), we can write h(y1|Q2) as follows:

h(f’l‘Q) = h(¥(F1x1 +nq)), (59)
= h(F1xq + n;) + log(det('¥)), (60)
r(Fy)
= log(ne)RT+("+1)N + ) log(A;P+ 0?) + log(det(¥)), (61)
i=1
T
@ log(7'ce)RT+(”+1)N + Y log(A:P + o) +log(det(¥)), (62)

i=1

where {/\i}lrfll) are the singular values of F;. In (a), we note that By = ¥F; is full rank. Using full rank
decomposition Theorem [25], we conclude that F; is also full rank, i.e., rank(F;) = T.
Now, we write h(y1]s1, Q) as follows:

h(y1ls1,Q) = (¥ (Frug + 1)), (63)
= h(Fju; +ny) + log(det(¥)), (64)
v TE) ,
= log(re)RTH+1™ 4 Y log(A; P+0?) +log(det(¥)), (65)
i=1
N b ’
< log(me)RT+( DT 1 ¥ log(A; P + 0?) + log(det(¥)), (66)
i=1
where,
Hj)
Hi,
fr=1| @ | Vi, (67)
Hij
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where F; has dimensions of RT + (n + 1)N x Ty, and {A;}:(:Fll) are the singular values of F;. Vi,
has dimensions of T x T,. Note that, we can view the mixing matrix V; being composed of two parts
ie,V;=(Vis : Viy) Vi€ 1,2,...,Kwhere V; s corresponding to the information symbol s; and
Vi, y; corresponding to the artificial noise u;.

From the substitution of Equations (62) and (66) into Equation (58), we obtain

I(x1;y11Q) = I(s1;y1|Q) = I(s1;§1/Q2), (68)
T T ,
> Y log(AiP+0%) — Y log(AP +0?). (69)
i=1 i=1

Before calculating the second term, i.e., Term B. We collectively write the received signal y; at
receiver j over RT + K(n + 1)N time slots as follows:

yj =AjVa+n;, (70)
where A; is written as follows:
H}, Hj H}
L)
HY HY - HE
D; = bikdiag(H; X, ..., I:I]-KX). (71)

where A; has dimensions of (RT + K(n + 1)N) x KT. The matrix V is written as follows:
V = blkdiag(Vy, Vy,..., Vi), (72)
where V is the block diagonal matrix with dimensions of KT x KT. Furthermore, we write
T T T T T
q=18; W S u; -+ Sk “K} (73)

as a column vector of length KT, which contains the information symbols and the artificial noises of
transmitters 1, ..., K.

o Upper Bounding Term B

Now, we can compute Term B, i.e., I(sy; yj|slfl, Q) as follows:

I(s1;y;ls%1, Q) = h(y;ls®1, Q) — h(yjls}, Q), (74)
=h(A;jVq+nj) — h(A;Vg +n;)), (75)

where V is a truncated version of V with dimensions KT x (T; 4+ KT,). Furthermore, we write
5 T T )"
q= [51 u; e uK} (76)

as a column vector of length T + KT, which contains T; information symbols and KT artificial noises
of transmitters. Also, V is a truncated version of V with dimensions KT x KT,. Furthermore, we write

q=[uf o] - uIE]T (77)

as a column vector of length KT,, which contains only KT, artificial noises of transmitters.
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Using Equation (70), we can write h(y;|Q2) as follows:

(@)

h(yjls%1, Q) = h(A;Vq +n)) (78)
r(AV)
= log(me)RTHKm+DY Z log(A;P + 0?), (79)
=1
r(A}V)
< log(re) RTHK(n+DN 2 log(A;P + 0?), (80)
i=1
) r(A))
2 Jog(rre) RTHK(m+D)Y 2 log(A;P + o2). (81)
i=1

In (a), we used Lemma 2. {A;},",/ " are the singular values of A;V. Note that in (b), V is an
invertible matrix with rank KT, therefore rank(A;V) = rank(A;).
Now, we write h(y]-|s{<, Q) as follows:

r(A;V)
h(yj|sk, Q) = log(re) \THKIDY 4 Y Jog(A;P +0?), (82)

i=1

(ﬂ) r A] v ) ,

> log(me)RTHKM+DY | log(A;P + 0?), (83)
i=1

(b) v A ,

= log(rme)RTHKIUT Y™ Jog(A;P + %), (84)

i=1

where {A;}lr(:?] v) are the singular values of A]-V. In (a), V is a truncated version of V with dimensions
of KT x (RT + K(n + 1)N), therefore, r(A; \7) > r(Aj V). In (b), we used Lemma 3, i.e., rank(A; V) =
rank(A;). The mult1p11cat10n of A; and V can be viewed as RT + K (n + 1)N linear combinations
of the KT rows of matrix V, whose elements are generated independently of A; from a continuous
distribution. In Appendix XI of [26], we show that multiplying A; with a non-square random matrix \Y
does not reduce the rank of matrix A< almost surely. Hence, from the above argument, in order to
ensure that rank(Aj\:/) = rank(A;), we must pick RT + (K —1)(n + 1)N < (K —1)T,, which gives the
reasoning behind the choice of the parameter Tp.

From the substitution of Equations (81) and (84) into Equation (75), we obtain

r(A)) r(Aj) )
I(sl;yj|Q) < Z 1og(AiP—|—(72) — Z log(AiP—i—(Tz). (85)
i=1 i=1

Combining Equations (69) and (85), we have

Z,‘T:1 log(A;P + 02) - ZiTil log(A;P + 02) - (Z;(:?j) log(A;P + 02) - Z:gj) log(A;P + 02)>
RT+ K(n+1)N

TlOg()\mmP-Hf ) — T log(AmaP + 02) - (r(Aj)log(AmaXP+(72) _r(Aj)log(AmlnP+(7 ))

. (86)

1=

RT +K(n+1)N RT +K(n+1)N @7
Term 1 Term 2
/ ’ AV
where Apin = min;{A; }l i ), Amax = max;{A; }:(Fll , Apin = min{A, }r( ) and Amax =

max;{A; }:(:1?’ V) .
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We now simplify the two terms as follows:

T10g(AminP + 02) — Tr 10g (A P + 02)

Term 1 = RT +K(n+ )N , (83)
(RN 4 (14 1)) o (e -+ 0%) — | ERLE VD0 g 1 o o2
- RRoN + (n+ H)N) + K(n + )N ’ ®9)
@ (RN + (1 +1)N) log(AminP + 02) — (R(R”N“”“),fﬁ KD))Y 1) 10g(AmaxP + 0%)
>
= RRAN + (1 + V) + K(n + D)V 0
where in (a), we used the property that [x] < x + 1. Also,
(A7) (108(AmaxP + 0?) ~ log(Ary P+ 2) )
Term 2 = RT + K(n + DN , 91)
T(A]) (log(AmaxP + 02) - 10g(A;mnP + 0’2))
- RRAN + (n+ )Ny +K(n+ 1)V ' ©2)
< (R(RnN + (1 +1)N) + K(n + D)) (10g(AmaxP +02) — 10g(Ary P+ ) ”
- R(RnN 4+ (n+1)N) 4+ K(n+1)N ’ ©3)
= log(AmaxP +07) — log(A;ninP +0?). (94)

Combining Equations (90) and (94) in Equation (87) and taking the limit n — oo, we get
the following:

(R +1) log(AminP + 02) — (Rgfjf) + 1) log(AmacP + 02)
lim R; =
noeo L R(R+1)+K
—10g(AmaxP + %) + 10g(Apyin P + 02). (95)

Dividing R; by log(P) and letting P — co, we get

2
R R+ - (1)
1= P Tog (P) RR+1)+K '
R(K—R-2)
pr— . 96
(K=1) x RR+1) + K] 6)
Therefore, the achievable secure sum degrees of freedom (SDoFi&f., /) is obtained as

SDoF{&% KR(K~R ~2) (97)

ICEM ™ (K=1) x [R(R+1) + K]’
Hence, this completes the proof of Theorem 1.

5. Proof of Theorem 2

We follow a similar achievability scheme presented in Section 4, however, the main differences
are the number of information symbols, the artificial noises used for transmission and the number of
rounds in the first phase of the scheme. The goal of each transmitter is to securely send T; = Rn™N +
(n+1)N — [W} information symbols to its corresponding receiver and keeping all messages
secure against the external eavesdropper.
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The total number of equations seen at the eavesdropper is RT + K(n + 1)N of {s;}X |, {u;}
Hence, in order to keep the unintended information symbols of K transmitters at this receiver secure,
we require that the number of these equations must be at most equal to the total number of the artificial
noise dimensions of the K transmitters, i.e.,

K
i=1

RT +K(n+1)N <KD. (98)

Therefore, we choose T» as

N
T, = [RT+K(n+1) " 99)
K
Since T = T; + T, so we can get T; as follows:
N N [RT+Kmn+1)N N N
Th=Rn"+n+1)" —|——|, T=Rn"+(n+1)". (100)
To this end, this scheme leads to the following achievable SDoF:

i = RRTD) 1K

Since the achieved SDoF in Equation (101) is a concave function of R. Hence, getting the optimal
R* is obtained by equating the first derivative of the function with zero. Therefore, the optimal R* is

R* = |VK| -1, (102)
>VK-2. (103)

Now we approximate the obtained SDoF as follows:

ach. __ (\/E—Z)(K— \/R+1)

SDoF = , 104
ok kg (VE—2)(VE—1)+ K (104)
@K\/E—3K+3\/E—z (105)
2K —3vK+2
KVK—3K+3VK—-2
> oK , (106)
® VK-3 3VK-2
=t (107)
> %(\/E— 3)%, (108)

where in (a), the term —3v/K + 2 in the denominator is negative, YK > 1, so neglecting this term
gives us Equation (106). In step (b), since the term 3v/K — 2 is positive, hence omitting this term gives
Equation (108).

Secrecy Rate and SDoF Calculation

For a transmission of block length B = RT + K(n + 1)V, the achievable secure rate
R;,i = 1,2,...,Kis defined as

I(si;yilQ) — I(s;; 2|s;, Q)
R, = ! ,i=1,2,...,K, 109
’ RT + K(n+ )N : (109)
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where I(s;;y;|Q)) is the mutual information between the information symbols vector s; and y;,
the received composite signal vector at the intended receiver i, given the knowledge of the channel
coefficients. I(s;; z|sIf i Q) is the mutual information between s; and z, the received composite signal
vector at the external eavesdropper, conditioned on the information symbols s¥,. Note that z is
collectively written as

z=A;Vq;+n, (110)
where,
& & oG
AZ = 7 CZ = . . . 7
DZ : . P :
Gf G§ . GE
D, = blkdiag(Clx,. .y CKX). (111)

where A has dimensions of (RT + K(n + 1)) x KT = KT, x KT. Each G is a matrix represents the
channel gains between each transmitter and the external eavesdropper.

The analysis of the achievable secure rate and SDoF follows similar steps as those in Section 4.3.
This completes the proof of Theorem 2.

6. Proof of Theorem 3

We follow the same transmission scheme presented in Section 4. The goal of each transmitter
is to securely send Ty = RnM + (n + 1)N — (W} information symbols to its
corresponding receiver and keeping all messages secure against the external eavesdropper and the
unintended receivers.

We have two secrecy constraints must be satisfied, i.e.,

RT 4 (K —1)(n+1)N < (K —1)T,, (confidential messages), (112)
RT 4 K(n+1)N < KT, (eavesdropper), (113)

Equation (113) can be re-written as
RT+(K-1)n+1DN+n+1)N < (K-1)Tr + T (114)

So if we pick T as

_ [RT+(K-1)(n+1)N
T, = [ — (115)
we need to check that T, > (1 4 1)N. T, can be written as
N N — N
TZ:[R(Rn +(n+1)N)+ (K—1)(n+1) W (116)
K—1
N N — N
_ R(Rn +(n+1)K)_+1(I< D(n+1) Y (117)
2N N _ N
_ RaNA R+ DN+ (K=D(n+ DN (118)
K—1
2
@ RN R i )N )N =1 > ()Y, (119)

(K-1) K—1
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where in (a), the first two terms are positive, hence, T is strictly greater than (n + 1)N. To this end,
we conclude that the two secrecy constraints are satisfied. Hence, we achieve the same SDoF of
Theorem 1, i.e.,

1

K—1) x [R(R+1) +K]
Secrecy Rate and SDoF Calculation

For a transmission of block length B = RT + K(n + 1)V, the achievable secure rate R;,i =
1,2,...,Kis defined as

I(s;;yi|Q) — max [max;; I(s;;y;|s;, Q), [(s;;2]s*, Q)]
RT+K(n+1)N

R; = ,1=12,...,K (121)
The analysis of the achievable secure rate and SDoF follows similar steps as those in Section 4.3.
This completes the proof of Theorem 3.

7. Conclusions

In this paper, we studied the K-user interference channel with three secrecy constrained channel
models and delayed CSIT: We showed that for the K-user interference channel with confidential
messages, the sum secure degrees of freedom (SDoF) is at least %(\/E — 6), and scales with square
root of the number of users. Also, we showed that for the K-user interference channel with an external
eavesdropper, %(\/K — 3) SDoF is achievable. For the K-user interference channel with confidential
messages and an external eavesdropper, we showed that %(\/I? — 6) is achievable. To achieve these
results, we have proposed novel secure retrospective interference alignment schemes which satisfy
both secrecy and decodability at receivers. To the best of our knowledge, this is the first result showing
scaling of SDOF for the interference channel with secrecy constraints and delayed CSIT. An interesting
open problem is to investigate the optimality of these schemes, and finding upper bounds on SDoF
with delayed CSIT for these channel models.
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Appendix A. (Proof of Lemma 1 and Corollary 4)

By taking the first derivative of Equation (20) with respect to the number of rounds R, we get

d
< SDOFia(K,R) =

K(K? — K(R?+2R +2) + R?)
(K—1)(K+ R2 +R)?

(A)
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For R < R*, the function SDoFj¢’ CM(K R) strictly increases and for R > R* the function strictly
decreases, where R* is given by

“K+Kx1/1+ w
R* = . A2
Alternatively,
;; SDoFidy (K, R) > 0,VR < R, (A3)
% SDoFadh-\ (K, R) < 0,¥R > R*. (A4)

Figure A1 shows the behavior of the achievable sum SDoF as a function of the number of rounds R.
The optimal value of R can be obtained by equating the first derivative of SDoFsym to zero as follows:

i ach. i KR(K —R- 2) _
aRSDoFIC_CM(K,R)K,R) SR (K—1) x [R(R<1) K =0, (A5)
o R(K—R—2)
“IRRERIDFK (A6)
2 T T
—K=10

2 4 6 8 10 12 14
R (rounds)

Figure Al. Plot for the achievable sum SDoF as a function of the number of rounds R for different
number of user K.

After differentiating Equation (A6), we will get the following:

R?*(K —1) +2KR — K(K — 2) = 0. (A7)
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The solution of the previous equation is

RO v | (A8)
—K+K x /14 KE=2)
> | . | (A9)
:{—1+\/1+(K_1)(K_2)J, (A10
K
b _ _
0 [K-DK-2) , (A1)
K
2 _
N TS (A12)
K
K2 —3K
>/ == -2 (A13)
=VK=3-2, (A14)
<>C>\/I?—3—2 (A15)
= VK—5=Ryp, (A16)

where in (a), since R* € IN, we apply the floor rounding operator on the obtained value of R. In (b),
we used the property of the floor operator, i.e., [x| > x — 1. In (c), the term /K — 3 is greater than
VK—=3,VK > 1.

Appendix B. (Proof of Linear Independence in Equation (43))

In this Appendix, we show that by the end of the transmission scheme, each receiver gets
T = RnN + (n + 1)N linear independent equations of the desired signals (i.e., the information symbols
and the artificial noises). Then, we need to show that the following matrix

H
B = X7, (WHHL)M, ..., (WHHE)H | (A17)

is full rank. Since By is a square matrix, then it is sufficient to show that det(B;) #0,Vk =1,2,...,K.
Without loss of generality, we consider receiver 1 which has the following matrix

H
B = [X", (WHHL)Y, . (WHHE)H] . (A18)
Since det(B;) = det(B!!), we will instead show that det(BH) # 0, which is given as follows:
B = X", (m})"w,..., (Hf) W], (A19)

Note that W and X are function of the diagonal entries of the channels { (H}, j)H Frtis
Vk,j=1,...,Kandr =1,2,...,R. More specifically, the entries of (H]Zj)H are h]r(j(t),Vt =12,...,T.
B, depends on {(H%)H}k# plus (H{l)H whose elements are hi,(t),Vt =1,...,Tand, Vr =1,...,R.
For notation convenience, let us denote these channel coefficients as ¢, Vt = 1,2,...,T and Vim =

1,2,...,N + R. The elements of B{{ are written as a monomial function of the random variables
i, Vi=1,..., N+ Rand Vt =1,2,..., T as follows:

N+R

Bi'(t,p) = 1} (uie)"P), (A20)
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where n;(p) € Z is the exponent of the random variable ;. Note that for two different columns

p1 and py, (ni1(p1),n2(p1),...,nN+r(p1)) # (m1(p2),n2(p2), ..., nn+r(p2)). More specifically,
the structure of X is as follows:

Lopnn g - WiHy -
XH _ 1 P"lz V'zz V?z?‘gz‘-'-ﬂnNz , (A21)
Lopir war oo Mithor-- BN
and for (H,)"W as
Kl Kjp1n o Kipor - Kixgj
g yw — |2 T e (A22)
Sy S e R

where ] = yN4rp, ¥t =1,2,...,T,¥r =1,2,...,Rand th_l = w15, ... ufy,. The full matrix Bfl is
written as follows:

1o Tl kR Ry
Bi' = szl . K%X.gil N K? o Kf)(;*l (A23)
i o X;% K'lT . KlTX‘rjl“_l o K? KIT{X‘r%—l
The determinant of matrix B{{ can be written as follows:
det(BY) = a1,Cy1 +a12C1p+ - +ay,rCir, (A24)

where C; ; is the cofactor matrix corresponding after removing the 1st row and the jth column with
coefficient a1 ;. Now we will show that BI! is full rank by contradiction. The zero determinant
assumption implies one of the following two events:

1. ppn,m € {1,2,...,N + R} takes a value equal to one of the roots of the polynomial equation.
2. All the cofactors of the polynomials are zero.

For the first event, none of the cofactors depends on the random variables 1, m € {1,2,...,N +
R}. Note that p,,m € {1,2,..., N+ R} are drawn from a continuous distribution, then the probability
of these random variables that take finitely many values as a solution for the polynomial is zero almost
surely. Therefore, the second event happens with probability greater than zero, which implies

Cip=0VYpe{l,...,T}h (A25)

Then C; 7 = 0 with probability higher than zero. C; r = 0 implies that the determinant of the
matrix obtained by stripping off the first row and last column of B is equal to zero with non-zero
probability. Repeating the process of stripping off each row and column, it will end up with 1 x 1
matrix with value one which contradicts the assumption that C; r = 0. It is worth noting that stripping
off the rows and columns procedure preserves the structure of the matrix which means that the
cofactors do not depend on the coefficients. To conclude, the determinant of B{{ does not equal zero
almost surely, which implies that the desired symbols are decoded successfully at the receiver side
with probability one.
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Appendix C. (Proof of Lemma 2)

Note that AX + N is a jointly complex Gaussian vector with zero mean and covariance PAAH +

0?1. From [27], h(AX + N) is written as

h(AX + N) = log(re)Mdet (PAAH + JZIM) . (A26)

It is worth noting that AA™ is positive semi-definite, with eigenvalue decomposition QDQ",

where D is a diagonal matrix with » non-zero eigenvalues Ay, Ay, ..., A, where r = rank(AAH ) =
rank(A). Then,

h(AX + N) = log(me)Mdet (PQDQH + a2IM) . (A27)

Next, we use the Sylvester’s identity for determinants, i.e., det(I+ AB) = det(I + BA). Using

this identity, we have

h(AX + N) = log(re)Mdet (pDQH Q-+ UZIM) . (A28)

Since Q is a unitary matrix, (i.e., QHQ = QQf =1), we have the following:
r
H(AX+N) = log(me)" [ (AiP + (72> , (A29)
i=1
,
— log(me) + Y log (A,»P + (72) . (A30)
i=1

This completes the proof of Lemma 2.
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