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Abstract—In this paper, we study the problem of federated
learning (FL) over a wireless channel, modeled by a Gaussian
multiple access channel (MAC), subject to local differential pri-
vacy (LDP) constraints. We show that the superposition nature of
the wireless channel provides a dual benefit of bandwidth efficient
gradient aggregation, in conjunction with strong LDP guarantees
for the users. We propose a private wireless gradient aggregation
scheme, which shows that when aggregating gradients from K
users, the privacy leakage per user scales as (’)( \/%) compared
to orthogonal transmission in which the privacy leakage scales
as a constant. We also present analysis for the convergence rate
of the proposed private FL aggregation algorithm and study the
tradeoffs between wireless resources, convergence, and privacy.

1. INTRODUCTION

Federated learning (FL) [1] is a framework that enables
multiple users to jointly train a learning model. In prototypical
FL, a central server interacts with multiple users to train a
ML model in an iterative manner as follows: users compute
gradients for the ML model on their local data sets, and gra-
dients are subsequently exchanged for model updates. There
are several motivating factors behind the surging popularity of
FL: a) centralized approaches can be inefficient in terms of
storage/computation, and FL provides natural parallelization
for training, and can leverage increasing computational power
of devices and b) local data at each user is never shared,
but only gradient computations from each user are collected.
Despite the fact that in FL, local data is never shared by a user,
even exchanging gradients in a raw form can leak information,
as shown in recent works [2]-[4].

Motivated by these factors, there has been a recent surge
in designing FL algorithms with rigorous privacy guarantees.
Differential privacy (DP) [5] has been adopted a de facto
standard notion for private data analysis and aggregation.
Within the context of FL, the notion of local differential
privacy (LDP) is more suitable in which a user can locally
perturb and disclose the data to an untrusted data cura-
tor/aggregator [6]. LDP has been already adopted and used
in current applications, including Google’s RAPPOR [7] for
website browsing history aggregation, and by Microsoft for
privately collecting telemetry data [8]. In the literature, there
has been several research efforts to design FL algorithms
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satisfying LDP [9]-[15]. While LDP provides stronger privacy
guarantees (compared to a centralized solution), this comes
at the cost of lower utility. In particular, to achieve the same
level of privacy attained by a centralized solution, significantly
higher amount of noise/perturbation is needed [16]-[20].
Another parallel recent trend is to study the feasibility of
FL over wireless channels. As the prototypical computation
for FL training involves gradient aggregation from multiple
users, the superposition property of the wireless channel can
naturally support this operation much more efficiently. This
has led to several recent works [21]—[31] under the umbrella of
FL at the wireless edge, where distributed users interact with a
parameter server (PS) over a shared wireless medium for train-
ing ML models. Several methodologies have been proposed to
study wireless FL, which can be broadly categorized into either
digital or analog aggregation schemes. In digital schemes,
quantized gradients from each user are individually transmitted
to the PS using orthogonal transmission. For analog schemes,
on the other hand, the gradient computations are rescaled and
transmitted directly over the air by all users simultaneously.
The superposition nature of the wireless medium makes analog
schemes more bandwidth efficient compared to digital ones.
In this paper, we focus on the following question: Can
the superposition property of wireless also be beneficial for
privacy? If yes, how can we optimally utilize the wireless
resources, and what are the tradeoffs between convergence
of FL training, wireless resources and privacy?
Main Contributions: In this paper, we consider the problem
of FL training over a flat-fading Gaussian multiple access
channel (MAC), subject to LDP constraints. We propose
and study analog aggregation schemes, in which each user
transmits a linear combination of a) local gradients and b)
artificial Gaussian noise, subject to power constraints. The
local gradients are processed as a function of the channel
gains to align the resulting gradients at the PS, whereas the
artificial noise parameters are selected to satisfy the privacy
constraints. We show that the privacy level per user scales
as (’)(\/%) compared to orthogonal transmission in which
the privacy leakage scales as a constant. We also provide
the privacy-convergence trade-offs for smooth and convex
loss functions through convergence analysis of the distributed
gradient descent algorithm. We show that the training error
decreases as the number of users increases and converges to
the centralized algorithm where all points are available at the
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PS. To the best of our knowledge, this is the first result on
wireless FL with LDP constraints.

II. SYSTEM MODEL & PROBLEM STATEMENT

Wireless Channel Model: We consider a single-antenna
wireless FL system with K users and a central PS as shown
in Fig. 1. The input-output relationship at time ¢ is

y(i) =Y hawy(i) + mi), (1)
k=1

where () is the signal transmitted by user & at time ¢, and
y(4) is the received signal at the PS. Here, hy = |hs|e?®* is
the complex valued channel coefficient between the k-th user
and the PS, and and m(7) is the independent additive zero-
mean unit-variance (AWGN) Gaussian noise. The channel
coefficients are assumed to be time invariant, and each user
can transmit subject to maximum power constraint of Py. Each
user is assumed to know its local channel gains, whereas we
assume that the PS has global channel state information.
Federated Learning Problem: Each user k has a private
local dataset Dj, of size \D% data points, denoted as Dy =
{(ugk),vfk))}g’{‘, where ul(.k is the ¢-th data point and vfk)
is the corresponding label at user k. Users communicate with
the PS through the Gaussian MAC described above in order
to train a model by minimizing the loss function F'(w), i.e.,

K |Dkl

1 k) (k
Do 2 2 (o)),

k=1 i=1

w* = argmin F(w) £

where w € R? is the parameter vector to be optimized,
fr () is the loss function for user k, and Dia = UK Dy
denotes the entire dataset used for training. The minimiza-
tion of F'(w) is carried out iteratively through a distributed
gradient descent (GD) algorithm. More specifically, in the ¢-
th training iteration, the PS broadcasts the global parameter
vector w; from the last iteration to all users. Each user k
computes his local gradient over the local | Dy, | data points, i.e.,
gr(wy) = ﬁzg’il ka((uz(-k),vl(k));w), and sends back
the computed gradient to the PS. For the scope of this paper,
we assume that |Dy| = |D|, therefore |Diotall = K|D|. The
global parameter w; is updated according to

K
1
Wil =Wy — 1) ;gk(wt)y 2

where 7, is the learning rate of the distributed GD algorithm at
iteration ¢. The iteration process continues until convergence.
In addition, the gradient descent (GD) algorithm for wireless
FL should also satisfy local differential privacy (LDP) con-
straints for each user, as defined next.

Definition 1. ((¢,6)-LDP [32]) A randomized mechanism M :
X — R% is (¢,6)-LDP if for any pair x,2' € X and any
measurable subset O C Range(M), we have

Pr(M(z) € O) < e Pr(M(z') € O) + 6. 3)
The case of § = 0 is called pure e-LDP.

Parameter server
b

Update

Wit1

LDP Mechanism X1

Users g1(wi)

Fig. 1. TIllustration of the private wireless FL framework: Users collaborate
with the PS to jointly train a machine learning model over a Gaussian MAC.
The interaction between the users and the PS must satisfy local differential
privacy (LDP) constraints for each user.

Problem Statement. The main goal of this paper is to explore
the benefits of wireless gradient aggregation for privacy in FL.
In addition, we investigate tradeoffs between the convergence
rate of GD, wireless channel conditions and resources (such
as power, SNR), subject to the privacy budgets of the users.

III. MAIN RESULTS & DISCUSSIONS

In this Section, we present a general gradient aggregation
scheme for wireless FL, where each user transmits a linear
combination of its local gradients and artificial noise. We
then specialize this scheme in which the part of transmission
containing gradients are designed in a manner so that this
component is aligned at the PS. We analyze this scheme and
obtain the privacy leakage under LDP for each user, as a func-
tion of the wireless channel conditions, and the transmission
parameters. Finally, we present the convergence rate of the
private FL algorithm, and maximize the convergence rate by
optimizing the local perturbations of each user for privacy.

A. FL Transmission Scheme over Gaussian MAC

The overall FL scheme consists of 7' training iterations,
where each iteration comprises of d uses of the wireless
channel described in (1). At each iteration ¢, each user k
transmits the computed gradient vector g (w;) € R? together
with additive Gaussian noise for privacy. In particular, the
transmitted signal of user & at iteration ¢ is given as:

vV Ozkpk
1 slw

local gradient estimate

=e I ) + VBPng | . @)

N ——’
local perturbation

Xkt

Here, each user k performs local phase correction (i.e., input
is multiplied by e~7%*) so that the received channel coefficient
is non-negative, i.e., |hy|. We assume that the gradient vectors
have a bounded norm, i.e., ||gx(w¢)||2 < L, Vk, and normalize
the gradient vector by L. Also, o, € [0, 1] denotes the fraction
of power dedicated to the gradient vector gi(w;), whereas
Bk € [0,1 — a] is the fraction of power dedicated to artificial
Gaussian noise ny, ;, whose elements are i.i.d., and drawn from
N(0,1). These parameters satisfy oy + S; < 1 so that the
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maximum power constraint of Py is satisfied. From (1) and
(4), the received signal at the PS can be written as:

K
Vo P
e = Z|hk| { Lk kgk(Wt) + kaknk,t:| + my
k=1

I
M=

K

Vo P

2y Lk kgk(Wt)+Z|hk|mﬂk,t+mn
k=1

o~
Il
—

aggregated gradient at PS aggregated noise at PS

&)

where m, € R? is the independent Gaussian noise, whose
elements are i.i.d. drawn from N(0,¢2)). In order to carry out
the summation of the local gradients over-the-air, and receive
an unbiased estimate of the true aggregated gradient, all users
pick the coefficients ays in order to align their transmitted
local gradient estimates. Specifically, user k£ picks «y, so that

hi |V o P
[V By, Vka — VE, ©)
. . 2r2
where c is a constant. From (6), we obtain aj = ”fkligpk, and

using the fact that oy < 1, for all k, we can upper bound

\/min; [h;[2P; -

the constant ¢ as follows: ¢ < % To maximize the
signal power of the aligned gradient, we choose ¢ to match
this upper bound, i.e.,

B \/minj |hj|2pj

= 7
i @)
Plugging this back in (6), we obtain the choice of ay as
min; |h;|?P;
oy = J | ]| J (8)

| |* P

The above choice shows that alignment of gradients is effec-
tively limited by the user with the worst effective SNR, i.e.,
min; |h;|*P;. For the alignment scheme described above, the
received signal by the PS in iteration ¢ in (5) simplifies to:

K K
ye=cY_ ge(wi)+ Y [helv/BePings +my. (9
k=1 =1

The PS subsequently performs post-processing on y; as fol-
lows:

. 1
gt = e XYt
1 & 1 K
e kz_lgk(Wt) + Ke X L; ||/ BePeng s + my |,
VF(wy) Z¢

(10)

where z; ~ N(0,0%1,) is the effective noise at the PS, and
o = Zszl |hi |85 P —i—aﬁl}. Thus, we can write

z

g = VF(wy) + z;. As z; is zero mean, g; is an unbiased
estimate of VF(w;), with variance of g; being equal to o2.

B. Local Differential Privacy Analysis

We next analyze the privacy level achieved by the transmis-
sion scheme for each user, as per the definition of LDP. Recall,
that the local perturbation noise is drawn from Gaussian
distribution. This well-known technique is known as Gaussian
mechanism and can provide rigorous privacy guarantees based
on LDP, as defined next.

Definition 2. (Gaussian Mechanism - Appendix A of [32])
Suppose a user wants to release a function f(X) of an input
X subject to (e,0)-LDP. The Gaussian release mechanism is
defined as:

M(X) 2 f(X)+ N(0,0°T). (11)

If the sensitivity of the function is bounded by Ay, i.e.,
|f(z) — f(@)]l2 < Ay, Vz,&, then for any § € (0,1],
Gaussian mechanism satisfies (€,0)-LDP, where

1.25

2log 5

In the next Theorem, we make use of the above result, and

present the per-user privacy achieved by the proposed wireless

FL scheme as a function of the noise power allocation pa-

rameters {3}, transmit powers {P;}& |, and the channel
coefficients {hy }5_,.

A
Y,
ag

12)

Theorem 1. For each user k, the proposed transmission
scheme achieves (e, 0)-LDP per iteration, where

\/2 log % (13)

2/min; |h;]2P;
€r =
VI (B8P, + 02,

Proof. The final received signal at the PS from (9) can be
expressed as: y; = chzl gr(wy) + Kcz;. We first observe
that the variance of the effective Gaussian noise, i.e., variance
of Kezy is 02 = Y1 |28k P + 02, In order to invoke
the result of the Gaussian mechanism, we next obtain a bound
on the sensitivity for user k. To bound the local sensitivity
of CZszl gr(wy), consider any two different local datasets
D;. and D;C at user k, while fixing the datasets (and thus the
gradients) of the remaining (K —1) users. The local sensitivity
of user k can then be bounded as

Ay = max ||y, — yl[2 = max ||c(gr(wi) — gl (we))l]2
Dy, D,

kD

(a)
< ¢ max |[gr(wi)ll2 + [[gr(We)|l2 < 2¢L
Dy, D},

(22 m_in\hj|2Pj,
\) J

where in step (a), we used the fact that ||gg(w;)||2 < L,VE,
and (b) follows from (7). Hence, using the sensitivity bound in
(14) together with the variance o2 = Y4, |hp|? Bk Pr + 02,
in (12), we arrive at the proof of Theorem 1.

(14)

O
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Privacy Scaling as a function of K
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Fig. 2. Total per-user privacy leakage as a function of K, number of users
for different values of 7', the number of training iterations.

Remark 1. From Theorem 1, we can observe the privacy
benefits of wireless gradient aggregation. We can further upper
bound the achievable ¢y, in Theorem 1 as follows:

2 h;|?P; 1.2
min; |h;|? 91og 55
\/Zk 1 || B P + o3,
- 2/min; [h;[2P; \/210g 1.25
v Sk 1wl P
1.25

L 2y/min; |h;]2P;
/ming |hg|? By Py
which shows that asymptotically, the per-user privacy level

behaves like O(1/VK). In contrast, privacy achieved by
orthogonal transmission can be shown to be:

Orthogonal _ zlhk|m 1.25 (15)
g |hie|? B Pr + o7, ’

which scales as a constant, and does not decay with K.

Remark 2. While Theorem 1 shows the per-iteration leakage,
we can use advanced composition results for LDP using the
Gaussian mechanism to obtain the total privacy leakage when
the wireless FL algorithm is used for T iterations. Using
existing results in [33], it can be readily shown that the total
leakage over T iterations (per-user) of the proposed scheme
s (e,(CT), Té + 6" )-LDP for §' € (0,1] where,

GIE:T) = 1/2T 1log(1/6" )ex, + Teg (e — 1).

We illustrate the total per-user privacy leakage as a function
of K, the number of users in Fig. 2 for various values of T'. As
is clearly evident, the leakage provided by wireless FL goes
asymptotically to 0 as K — oo.

(16)

K
- @< Z Ak
k=1
k-1
[Zk =min | Ag, (T =Y Ui)+]
i=1

K User

Fig. 3. An example for the iterative solution: Z1 + Z2 + Z3 > V¥, Z} =
0,k=4,--- K.

Theorem 2. Suppose the loss function F' is \-strongly convex
and p-smooth with respect to w*. Then, for a learning rate
n: = 1/At and a number of iterations T, the convergence rate
of the private wireless FL algorithm is

E[F(wr)] - (W*)
< /\22!; X L2 K2 5 |:Z|hk ﬁkP}g-i-O' 1 (17)

Theorem 2 is proved in Appendix I. We next show that arti-
ficial noise parameters {3, }%_; can be optimized to maximize
the convergence rate in (17) while satisfying a desired privacy
level (ex, d)-LDP at each user.

Theorem 3. The optimized convergence rate of the private
wireless FL algorithm is given as follows:

E[F(wr)] — F(w")
20 X
2
< 27 X Y Ziton||. (8
k=1
where 7, = min [)\k, (U — Zf:_ll Ui)ﬂ where
(@)* 2  max(0,a), A\ = |*P(l — ag),
U = max; 2 109 125 62 and U; = |hi|>Pi;.

i

Proof. Maximizing the convergence rate in (17) is equivalent
to minimizing the term that depends on {34} . Therefore,
we solve the following optimization problem:

K

{m}m > |hkl?BiPe such that 0 < By, <1 — oy, VE,
k lk 1

8min; |h;|>P, 1.25
& h|? B P Jil —o2.
Z| k" BrPr = 2 5 " Om

For given target privacy levels {e;} |, this is feasible when
K

C. Convergence rate of private FL Z |hk|2Pk(1 — o) > m?x %1 1 ;5 an.
We next analyze the performance of private wireless FL k=1 x. i
under the assumption that the global loss' function F(w) S we design By, vk as follows:
smooth and strongly convex. Due to privacy requirements
and noisy nature of wireless channel, the convergence rate Br = Z k=1, K. (19)
is penalized as shown in the following Theorem. |hie|? P,
2607
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Impact of number of users

Orthogonal vs Non-orthogonal

Impact of transmit power
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Fig. 4. Impact of a) number of users, b) orthogonal vs non-orthogonal transmission, and c) transmit power, on the training loss as a function of iterations.
As we see from the figures, as T increases, the variance term due to the local privacy perturbation and the noisy channel becomes dominant.

where Z;, = min [)%(\I/—Z’:l Ui)+} k=1, K,
1.25

U = max; Mlg — o2, and U; = |h|?B:P;.
As seen in Fig. 3, we first rank the left-over powers from the
users after aligning the gradients, i.e., { A}/ —1 in an ascending
order. We then allocate the powers Z; such that a subset of
users S satisfies 22:1 Zi >, S < K, to satisfy privacy
constraints. This completes the proof of Theorem 3. O

IV. SIMULATION RESULTS

In this Section, we provide some simulation results to assess
the performance of private wireless FL model. We consider a
linear regression task on a synthetic dataset. The regularized
loss function at the kth user is given as:

|Dk|

WAOBMON. A

Our synthetic dataset con51sts of 3000 ii.d. samples drawn
from N(0,I441), where u( e R 0™ € R and d = 30. We
assume that each user has |Dy| = 20 data points. For the GD
algorithm, the regularization parameter A is 1072 and T =
1000 training iterations. The channel coefficients are drawn
from CA/(0, 1), and the channel noise variance is set to o2, =
1. Also, we assume that each user requires the same privacy
level (¢,6) = (1.2,10=*)-LDP.

In Fig. 4(a), we show the impact of the number of users on
the training loss for P, = 30 dBm for all k. As we increase
the number of users, the training loss decays faster with 7'.
In Fig. 4(b), we compare with the private orthogonal scheme
for KTy = 11 = T iterations and P, = 30 dBm for all k.
Interestingly, the non-orthogonal scheme is more efficient in
terms of the bandwidth and accuracy. In Fig. 4(c), we show
the impact of the transmit power on the training loss where the
error decays faster with 7" as we increase the transmit power.

fr(w) = (20)

V. CONCLUSION & FUTURE DIRECTIONS
We studied the problem of wireless federated learning sub-
ject to local differential privacy (LDP) constraints. We showed
that the wireless channel provides a dual benefit of bandwidth
efficiency together with strong LDP guarantees. Using the
proposed wireless aggregation scheme, privacy leakage was

shown to scale as O(L) compared to orthogonal transmis-
sion in which the privacy leakage scales as a constant. We also
analyzed and optimized the convergence rate of the proposed
private FL training algorithm and studied the tradeoffs between
wireless resources, convergence, and privacy.

There are several interesting directions for future work, such
as generalization to multiple-antennas at the users and the
PS. In the proposed scheme, all users align their gradients,
which limits the effective SNR by a user with the worst
channel conditions. A possible direction would be to explore
generalizations of this scheme, by selecting and aligning
gradients from a smaller subsets of users.

APPENDIX I: PROOF OF THEOREM 2
To prove the convergence rate of the proposed algorithm,
we recall that the gradient estimate at the PS in (10) satisfies:
(a) Unbiasedness, i.e., E[g] = E[VF(w,)], since the total
additive noise is zero mean; and (b) Bounded second moment,
E [||&:/3] < G?, which we prove as follows:

E [||§t\|§] =IE [”VF(Wt) + Zt||§]
=E[|VF(wo)[3] + 2B [VF(w) 2] + E [[|z]3]

@
HVﬂWMb+ENmH]

<L (ank wll) + B [l

© 1
< 53 X (KL)*

K
Z |hi|? B Pr. + 1
k=1

K
d
<L+ 15 [§ |he*BrPr+ 1| £ G, (2]
k=1

where (a) follows from the fact that |E [VF (wt)th} =0, (b)
follows from Cauchy-Schwarz inequality, and (c) from the
assumption that ||gx(w¢)||2 < L, i.e., the Lipschitz constant
Vk. We next invoke standard results [34] on convergence of
SGD for p-smooth and A-strongly convex loss, which states

. 2G>
F(w*) < T

Plugging G? from (21) in (22), we arrive at Theorem 2.

E [F(wr)] — (22)
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