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A STABLE ADDED-MASS PARTITIONED (AMP) ALGORITHM
FOR ELASTIC SOLIDS AND INCOMPRESSIBLE FLOW: MODEL
PROBLEM ANALYSIS.*

D. A. SERINOY, J. W. BANKST, W. D. HENSHAWT, AND D. W. SCHWENDEMAN

Abstract.

An analysis is made of a new partitioned scheme for solving fluid-structure interaction problems
involving viscous incompressible flow and compressible elastic-solids. The new scheme is stable,
without sub-time-step iterations, even for light solids when added-mass and added-damping effects
are large. The fluid is updated with an implicit-explicit (IMEX) fractional-step scheme whereby the
velocity is advanced in one step, treating the viscous terms implicitly, and the pressure is computed
in a second step. The key components of the scheme are a Robin (mixed) interface condition for
the fluid pressure, and impedance based interface conditions for the velocity. While the impedance
for the solid is well defined, the fluid impedance is not, and a semi-discrete local-analysis is used
to inform this choice. The properties of the new scheme are analyzed and numerical results are
presented to confirm the stability and accuracy of the scheme.

Key words. fluid-structure interaction, incompressible Navier-Stokes, partitioned schemes,
added-mass, elastic solids
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1. Introduction. We consider the numerical solution of fluid-structure inter-
action (FSI) problems involving incompressible viscous fluids coupled to bulk elastic
solids. Such problems arise in many scientific and engineering applications including
flow-induced vibrations of structures (i.e., aircraft wings, undersea cables, wind tur-
bines, and bridges), and blood flow in arteries and veins. FSI algorithms can either
be categorized as monolithic schemes, where the numerical solutions for the fluid and
solid are advanced implicitly as one large system, or partitioned schemes, where the
solutions are advanced sequentially. Partitioned schemes are generally more modular
and computationally efficient than monolithic schemes. However, depending on the
implementation of the fluid-solid interface conditions (which need to be partitioned
between the fluid and solid), partitioned schemes may suffer from instabilities, espe-
cially for light solids when added-mass effects are large. Typically, partitioned schemes
based on traditional Dirichlet-Neumann coupling use under-relaxed sub-time-step it-
erations together with some acceleration technique to overcome instabilities (at the
cost of degrading performance), see for example, [19, 21]. Reduction of sub-iterations
can also be achieved by considering, for example, Robin-Neumann or Robin-Robin
coupling [26, 12, 2, 22, 15, 14, 13, 16, 3, 23]. Generally the number of sub-time-step
iterations increases as the solid becomes lighter, and thus it would be advantageous
to have a scheme that does not require sub-iterations. The goal of our current work
is to develop such a robust partitioned scheme, without the need for sub-iterations.

In recent work [6], we developed a new class of Added-Mass Partitioned (AMP)
algorithms for FSI problems coupling incompressible flow and elastic solids that are
stable without sub-iterations. The algorithms in [6] were applied to model prob-
lems with infinitesimal interface displacements. The principal goals of the current
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Fic. 1. Flow past five deformable bodies in a fluid channel computed with the new AMP scheme.
Left: overset grids for the fluid and solid domains. Right: contours of the vorticity in the fluid and
norm of the displacement in the solids.

work are to extend the original scheme to finite deformations, and to replace the ex-
plicit fluid solver with a fractional-step IMEX scheme, where the viscous terms are
treated implicitly. In the explicit scheme, the time step is chosen proportional to
the square of the grid spacing. However, the IMEX scheme has a larger stability
region so that the time step can be chosen proportional to the grid spacing. This
can be a significant advantage when the viscous terms are stiff, such as when fine
grids are used near boundaries to resolve boundary layers. The key components of
the AMP algorithm are a Robin (mixed) interface condition for the fluid pressure
and impedance-based interface conditions for the velocity. While the impedance for
the solid is well defined, the impedance for the incompressible fluid is not. A local
analysis of the semi-discrete equations for an FSI model problem is performed which
reveals that the fluid impedance has an inertial component for treating added-mass
instabilities and a viscous component for treating added-damping instabilities. The
formula for the fluid impedance is new, and its use is critical for the stability of the
AMP algorithm when the viscous CFL number becomes large and added-damping ef-
fects are significant. The properties of the new scheme are analyzed for a fundamental
FSI model problem, and numerical results are presented to confirm the stability and
accuracy of the scheme. The companion paper [24] presents the extension of the
new AMP algorithm to treat more complex configurations using overlapping grids,
such as the example shown in Figure 1. Our related work describes AMP algorithms
for other FSI problems involving incompressible viscous flow coupled to thin elastic
structures [7, 20] and rigid bodies [8, 9, 10].

We remark that the AMP algorithm described here was devised through numeri-
cal experimentation and the study of suitable model problems, as well as through our
experience with other FSI regimes. This strategy, based on gaining insight through
an analysis of model problems, has proved to be effective in this work and other cases,
and complements more general approaches such as those based on energy estimates.
Although the analysis presented here does not rigorously prove results for the general
FSI problem, it does provide valuable insight into the approach, as well as a justi-
fication for the success of the numerical results presented here and in [24] for more
general configurations.

2. Governing equations. We consider the coupled evolution of an incompress-
ible fluid and a linear elastic solid. The fluid occupies the domain x € Q(t), where
x = (x1,x2, x3) is a vector of physical coordinates and ¢ is time. The velocity-pressure

2

This manuscript is for review purposes only.



-~

N |

&8
81
82
83
84
85
86
87
88
89
90
91
92

93
94

95
96

form of the incompressible Navier-Stokes equations is given by

(2.1a) pvi + p(v-V)v + Vp = pAv, x € Q(¢t),
(2.1b) Ap=—pVv: (Vv)", x € Q(t),

where v(x,t) is the velocity, p(x,t) is the pressure, p is the (constant) density, and p
is the (constant) dynamic viscosity. The fluid stress tensor is given by o = —pI + 7
where I is the identity matrix and 7(x,t) = p (Vv + (VV)T) is the viscous stress
tensor.

The equations for the solid are written in terms of the Lagrangian coordinate
X = (%1,%2,73) for a reference configuration X € Qg at t = 0. (An overbar is used
here and elsewhere to denote quantities associated with the solid.) The position of the
solid in physical space is determined by the mapping x = X + u(X, t), where a(X,t) is
the displacement of the solid. The Cauchy stress tensor &(X,t) for a linearly-elastic
solid is defined by & = A(Vx - )l + i(Vxzu + (V,—(ﬁ)T), where A and ji are Lamé
parameters (taken to be constants). The solid equations are considered as a first-order
system of PDEs in time and space, following [1], and are given by

(2.2a) i =V, x € Qo,
(2.2b) pv; = Vi - 7, x € Qo,
(22C) o = X(Vg . \7)1 +u (V,ﬂ? + (ViV)T) s X € Qo,

where v(X,t) is the velocity of the solid, and p is its density (assumed constant).

The fluid and solid are coupled at an interface described by x € I'(¢) in physical
space and X € [y in the corresponding reference space. Along the interface, which is
assumed smooth, the following matching conditions hold:

(2.3) V=", on=on, x € I'(¢),

where n(x,t) is the outward unit normal to the fluid domain. Suitable boundary
conditions are applied on the boundaries of the fluid and solid domains not included
in I'(¢), and initial conditions on v, u and v are set to close the problem.

3. AMP interface conditions and algorithm. In this section, we derive the
AMP interface conditions at a continuous level and discuss their implementation in
the AMP algorithm. The derivation follows the work in [6], but there are important
modifications required to accommodate the IMEX fractional-step scheme used in the
AMP algorithm to efficiently advance the fluid. These modifications are guided by a
consideration of the behavior of the AMP interface conditions in the limits of very
light and very heavy solids.

3.1. AMP interface conditions. The starting point for the derivation is the
matching conditions involving velocity and stress in (2.3). Following [6], a linear com-
bination of these conditions are expressed in terms of Riemann variables corresponding
to the the outgoing solid characteristics, i.e.

(3.1a) —p+nTrn+zn’v=n"en+ z,n’v, x € I'(t),

(3.1b) tlm+ztlv=tlon+ztlv, m=12 x € I'(t),

where n is the unit normal, t,,, m = 1,2, are mutually orthogonal unit vectors tangent
to the interface. The Riemann variables in the solid are given by the right-hand side
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of (3.1), and can be obtained from the first-order equations in (2.2b)—(2.2¢) projected
onto the normal to the interface. The impedances, z, = pc, and Zs = pcs, involve
the characteristic velocities of the solid given by ¢, = /(A +21)/p and & = \/ji/p.
In the AMP algorithm, the conditions in (3.1) are interpreted as providing interface
conditions for the fluid in terms of the outgoing characteristic quantities of the solid,
assumed known from a previous stage of the algorithm. While these conditions, along
with V-v = 0 for x € I'(t), are sufficient conditions for the fluid equations in velocity-
pressure form, a further manipulation is required to obtain suitable conditions to
be used for the fractional-step solver. The objective is to separate the conditions
in (3.1) to obtain conditions to be used in the IMEX time-stepping scheme for the
fluid velocity and pressure.

For the Poisson problem for the fluid pressure, the interface condition in (3.1a) is
used with the momentum equation in (2.1a) to derive a Robin condition for the pres-
sure that balances accelerations. The momentum equation involves the acceleration
of the fluid, and this quantity may be obtained on the moving fluid-solid interface
using the Taylor approximation

(3.2) v(x,t — At) ~ (v(x,t) — AtDyv(x,t))

x=P(t—At)

x=73(t)7

where D; = 0;+v-V is the material derivative, P(t) is a point on the moving interface
and At is a time-step. The corresponding approximation for the solid is

(3.3) 9(%,t — At)

~ (V(x,1) — Atvy(x, 1))

x="Pg i:ﬁo ’

where Py is the Lagrangian position associated with P(t). Using (3.2) and (3.3)
in (3.1a), and assuming the fluid and solid velocities match on the interface at times
t — At and t, we obtain

—p+nTrn+ z,Atn” D;v = n’en + z,Atn” v, x € T'(t).

We may now eliminate the fluid acceleration using (2.1a) to obtain the following Robin
condition for the fluid pressure:

(34) —p-— At

dup =n"(on —1n) + z,Atn” (v, + vV x V x v), x € T'(t),

where 0,, = n -V is the normal derivative and v = u/p is the kinematic viscosity
of the fluid. Following [17], we have used the identity, Av = —V x V x v, noting
that V- v = 0, to replace Av on the right-hand side of (3.4) in favor of the curl-
curl operator. This is done for improved stability of the fractional-step scheme. The
condition in (3.4), along with suitable conditions for x € 9Q(t)\I'(¢), is used for the
Poisson equation in (2.1b) for the pressure.

As was noted in [6], the remaining interface conditions in (3.1b), together with
the continuity equation, can be used as boundary conditions to advance the fluid
velocity. This was found to be an effective approach for an explicit integration of the
momentum equations. To ensure that the fluid velocity and tractions match at the
end of the time step, an interface projection is performed to give a common interface
velocity v/ and interface traction o'n. In analogy to the interface projection used
for compressible fluids in [11, 5, 4], which is based on a characteristic analysis, the
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projection for incompressible fluids is also proposed to be of the form of an impedance-
weighted average. A compact definition of this projection operator is given by

2
WI = ZI(vaVaU,Zp,zsvva&) = (nTWI)n+ Z (tgwl)tmv
m=1
T rdef 1 T S T =
nw = Zzim-v+zZn v+n (on—on
Zf+2p{ f P ( )}a
t? w! ef —{ztl v+ 2t v +t] (Gn—on)}, m=1,2.
zf + Zs

In terms of Zj, the velocity and stress projections are

36&) VI :ZI(vavvaazpvzsvva&)v
1

(3.6b) O'In:ZI(z]TI,O',V,Zp_l,ZS_ ,O,V),

noting the order of arguments for o'n. These projections introduce a fluid impedance,
z¢, which is well defined for compressible fluids, but has no obvious definition for
incompressible fluids. However, a local analysis of a semi-discrete approximation to
the governing equations given in Section 4 suggests a form for z; given by

(3.7) zZf dof CAM(%};) +Cap (%),
where h is an appropriate mesh spacing and (Can, Cap) are constants whose approx-
imate values are provided by the analysis.

For the IMEX scheme considered here, a further modification of the previous
approach in [6] is required in the implementation of the interface conditions for the
fluid velocity. The issue is informed by considering the limits of very light and heavy
solids. In the limit of a very light solid (Z,, Zs — 0), for example, the Robin condition
in (3.4) becomes a Dirichlet condition for the pressure, while the interface conditions
in (3.1b) reduce to matching conditions involving the shear stress of the fluid. The
latter conditions, along with the continuity constraint, provide Neumann conditions
on the fluid velocity. These conditions for the fluid pressure and velocity correspond
to those for a free surface, and the latter are suitable for the implicit solution of the
fluid velocity in the IMEX fractional-step scheme.

The difficulty is revealed in the limit of a very heavy solid (Z,,zs — o0). In
this limit, the Robin condition in (3.4) becomes a Neumann condition for the fluid
pressure balancing the acceleration of the interface as determined by the solid. This
condition is analogous to the usual Neumann boundary condition for the pressure
at a rigid boundary obtained from the fluid momentum equations as a compatibility
condition (see [17] for example). The interface conditions in (3.1b) reduce to matching
conditions involving the tangential components of velocity. However, the matching
condition on the normal component of velocity, n’v = n7v, implied by (3.1a) in
the limit of a heavy solid has been lost in the derivation of (3.4). A remedy can be
obtained by using the interface projection for the normal component of the velocity
in (3.6) as a boundary condition for the implicit solution of the fluid velocity in the
IMEX fractional-step scheme. The implementation of this approach is described next
in the discussion of the AMP algorithm.

3.2. AMP algorithm. Algorithm 3.1 provides a concise description of the AMP
time-stepping scheme (see [24] for additional details of the implementation of the
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algorithm). The algorithm advances the solution from a time " to t"*! = " + At. It
is assumed that the fluid domain is represented by a grid consisting of interior points
i € Qp, boundary points i € 9, and interface points i € I'y, where i = (i1,12,13)
is a multi-index. Similarly, the solid reference domain is covered by a grid with
interior points i € €)j,, boundary points i € 9, and interface points i € T';,. Discrete
operators, such as Vj, and Ay, denote approximations of the corresponding differential
operators on the grid.

Algorithm 3.1 Added-mass partitioned (AMP) scheme

// Predictor steps
1. Predict solid:

| o]
:J\

bl

ie
ie
2. Predict fluid grid: advance fluid grid to t"*! using ﬁép) for i € '), and compute grid velocity.

3. Predict fluid velocity:
Vi = i+ B BNV p) = Na (v pl 1) + BE (L (v”) + Lu(vi), i€ Qu\Da,

t2 7P n 4 247 v = t7 6P n 4 2,47 v, icly, 1€y,
Vi v =0, i€,

T (p> — _Ef TP (v® Zp T (P) T (P) _ 4T P ((P) : TeT
n-v; W (v, )+Wn oot =t,, Vi (v;"), i€y, i€y,

Velocity boundary conditions on 9, \I',.

4. Predict fluid pressure:

Ahp§p) = *thv(p) (Va V(p))T + a;iVy 'Vi(p), i€ Qy,
_p§m ZpAf (n-Vp )pm —n (&E(P)n_ ‘r§p)n)
+z,AtnT (9P + 0V, x Vi x vP), i€y, i€y,

Pressure boundary conditions on 9Q,\I'j,.

5. Project solid interface for i € T'y,i € T'y,.
v— = Z/ (2, v(p) ;p)72p72 —l(p)7 —i(p))
&{n — g[(szl7 §13)7‘/.i(17)72p—17 7;1, —i(p)7‘—,i(r'))
v 3l &n « &ln,
Apply solid boundary conditions and set all ghost points.
// Corrector steps
6. Correct fluid grid: recompute grid velocity using \7{ forie Iy

7. Correct fluid velocity:

VI = v+ AL (NR (v p(P) + N (v o)) + AL (L (v ) + La(v])), i€ Qu\Dn,
ta "+1n+z tT 7""1—tTE'InJrzétTv! iel,, iely,
Vi - v"+1 =0, iely,

Z - ? . v =
n vnJrl = zf-f-czp oV, (vt + zf+zp nTV{, tD vt =T vy (v, i€y, i€y,

Velocity boundary conditions on 0Q,\I'},.

8. Correct fluid pressure.

AppPtt = —pvpvi (Vv T 4 vy, vt ieQ,
7p;z+1 _ ZpAt (n Vi ) ntl _ nT(a_In ln+1 )
+sztn ((vt + vV, XV X v"+1) ieTly,, i€y,

Pressure boundary conditions on 9Q,\I'y,.

9. Correct solid interface.
optl = vt iely,iely,
6’;"Jrll’l—o'n+ln7 Tefh,iel“h,
Reset ghost points corresponding to i € T'y,.

The time-stepping scheme uses a predictor-corrector approach. Steps 1-5 of Al-
gorithm 3.1 describe the predictor steps. Predicted values for the solid displacement
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15 are obtained in Step 1 using a Lax-Wendroff-type scheme for (2.2a), while the solid
velocity and stress g = (Vy, 05) are advanced using a Godunov-type scheme for (2.2b)
and (2.2¢) with numerical fluxes an ; corresponding to the Tj,-direction. In Step 2,

the solid displacement is used to compute the deformed fluid grid at time ¢!,

The fluid velocity is predicted in Step 3. Here, N}, and Ly, represent grid operators
associated with the explicit and implicit terms in the velocity update, respectively,
given by

1
N (vi,ps) & —((vi—%3) - V) vi — ;Vhpi, Ly, (vi) € vAyvi,

where X; is the velocity of the grid. The explicit terms are advanced using an Adams-
Bashforth scheme, while the implicit terms use Crank-Nicholson. The boundary con-
ditions on the interface makes use of a predicted velocity, coming from the interior
equation applied on the boundary, and defined by

e At _ _ At
VEP) S+ S (3N pE) = Na(vp ™ pp ) + 5 (La(v?) + Li(v))

In particular, this velocity is used in the impedance-weighted average condition

(3.8) nTvi(p) = ZiffnTVz(vi(p)) + ZipfnT\’/T(p), iely, ieTly,
zf + 2p zf + 2p '
which is obtained from the projection in (3.6). Here the the term involving the jump

in the stress is dropped (as it is apparently not essential to the scheme and simplifies

the implementation, see also [11]). Notice that (3.8) is an implicit condition on Vi(p )

which appears on the left- and right-hand sides. In the light-solid limit (z, — 0),

the boundary condition in (3.8) reduces to nTvi(p) = nTVfL(vi(p)), which simply sets
the normal component of the fluid velocity to be equal to that given by the interior
time-stepping scheme applied on the boundary. In the heavy-solid limit (Z, — 00),
(3.8) becomes nTVi(p ) = nT\’f;(p ), which recovers the desired matching condition. Our
later analysis of a viscous model problem (Section 5) and subsequent numerical results
(Section 6), verify that the boundary conditions used to advance the fluid velocity in
the fractional-step scheme lead to stable and accurate results for all solid densities we
have considered.

Steps 4 and 5 complete the set of steps belonging to the predictor stage of the
algorithm. The predicted fluid pressure is computed in Step 4 by solving a discrete
Poisson problem. This elliptic problem uses a discrete approximation of the Robin
condition in (3.4). Finally, interface values for the solid velocity and traction are
obtained in Step 5 using the impedance-weighted projections in (3.6). These interface
values overwrite the corresponding predicted values of the solid on the boundary.

The set of corrector steps consisting of Steps 69 essentially mirror those of the
predictor. In an important final Step 9, the solid velocity and traction are set equal
to the corrected fluid values.

4. Derivation of the fluid impedance. The focus of this section is an analysis
of an FSI problem that guides the choice for the fluid impedance z; introduced in (3.7)
and required in the interface projections (3.6). Previously in [6], the choice of fluid
impedance was found to be somewhat arbitrary and a choice was made of z; = pH/At,
where H was a measure of the depth of the fluid layer. With the current IMEX scheme,
the viscous CFL number, A = vAt/h?, can be large in which case a new choice for

7
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z¢ is needed to keep the scheme stable; a carefully chosen model problem is used for
this purpose.

Consider an FSI model problem in which the fluid occupies the two-dimensional
domain, €, given by 0 < z < L, y > 0, while the solid exists on the domain, €, for
0 <x < L,y <0. The fluid-solid interface, I, of length L is linearized about a flat
surface, y = 0. The equations governing the model problem are

pov + Vp = pAv, x € €,

(4.1a) Fluid: ¢ Ap =0, x € Q,
V-v=0, xel,
(4.1b) Solid: POV =V 7 x € Oy,
’ 1o =AMV -VI+ (V4 (V)T x e Q,
=V r
(4.1¢) Interface: {v v,i xen
on=an, x eI

Solutions of the model problem are assumed to be periodic in = with period equal to L,
and bounded as y — +oo. The equations governing the fluid and solid are discretized
in the z-direction on a uniform grid, x; = {Ax for £ = 0,1,... N,, with grid spacing
Az = L/N,. Since the problem is periodic, each variable can be represented as a
discrete Fourier series

N./2

(4.2) q(z,y,t) = Z 2R/ L G (1), x €0, L],
k=—N,/2

where i (y, t) are the Fourier coefficient functions and N, is an integer, assumed to be
even for convenience. Taking a finite Fourier transform of the fluid equations in (4.1a)
gives

(4.3a) pOyv1 + ikep = (0 — kv, y >0,
(4.3b) pOLv2 + Oyp = u(ai — k2)va, y >0,
(4.3¢) (85 —k2)p =0, y >0,

where k, = 27k/L. The hats and k subscripts on the coefficient functions in (4.3) have
been dropped for notational convenience. The equations for the Fourier coefficient
functions are now discretized in time. Define the grid functions v"(y) ~ v(y,t")
and p" = p(y,t"), where t" = nAt for a (fixed) time step At. An implicit scheme
to advance the solution from " to t"*!, based on backward-Euler time-stepping, is
given by

(4.4a) ot —op Lot — (92 — E2)n L 0

. 1% At + 1kzp - /J( y w)vl ) y >0,
U§L+1 — vy n+1 2 2y, n+1

(4.4b) p Al + Oyp = H(ay —ky)vy T, y >0,

(4.4c) (02 — K2)p" Tt = 0. y > 0.

Assume that the coefficient functions for the solid variables have been advanced to t =
"1 using an upwind scheme, for example, and that b7 ™! and b7+ are, respectively,
the normal and tangential components of the outgoing characteristic variables of the

8
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solid at ¢"*!. Using (3.1), the boundary conditions for the fluid at y = 0 take the
form
(4.5a) —p" Tt — gt =t y=0,

(4.5Db) st — Zeopth = bt y =0,
where the components of the fluid shear stress in (4.5) are given by
Tt = (ikevs T 00T s = 2p0,05 T

The implicit scheme in (4.4) with boundary conditions in (4.5) at y = 0 and bound-
edness as y — oo determine the grid functions for the fluid at t"*! in terms the fluid
velocity at t" and the outgoing solid data (b2*!,b2F1).

Consider perturbations in the grid functions of the fluid at ¢"*! for y > 0 subject
to perturbations in the interface data bp*' and b7t at y = 0. The variational
equations corresponding to (4.4) are

L5Vi + ik, 6P = (02 — k2)6Vi,  y >0,

At

P
EWQ +0y0P = (02 — k2)6Va,  y >0,
(02 — k2)0P =0, y >0,

where (6V7, Vs, 6 P) are small perturbations corresponding to (v, va ™t pntl). So-
lutions to these equations that remain bounded as y — oo are

1
OVa(y) = —-0,0Va(y)

SValy) = Ve~ Py 4 Rl AP (6—\1%\;, B e—ﬁy) 7
p
5P(y) = (SPOe_‘km‘y’

where 6V = §V2(0), 6Py = 0P(0) and 3 = \/k2 + p/(pAt). Substituting the solution
for the perturbations of the fluid variables into the variational equations corresponding
to (4.5) for the interface conditions leads to the linear system

ai;  aiz Vo | | 0By

as1 22 0Py | | 6B, |’
where a11 = —plk|(2y + 1/Z,), a1 = —1 4+ 2A(y — 1), a1 = ipk, (Y2 + 1 +v/Zs)
and age = —isgn(ks)(1 + A(y — 1)/Z,). Here, (6B, B;) are small perturbations

corresponding to (bpt!, b2T1). The coefficients a;; in the linear system are defined in
terms of the dimensionless parameters

AYURIAL, v Y Bk = VI, Zo % plkal/Ze, a=pors.
The solution of the linear system

(4.8) 5V = a0B, — a12533, 5Py — a116Bs — a216B,

3
11022 — 12021 11022 — A12021

determines the variation in the interface values of the fluid velocity and pressure in
terms of the variations in the outgoing characteristic variables of the solid.

9
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The AMP algorithm uses impedance-weighted averages to set values for the ve-
locity and pressure at the interface. For example, the normal component of veloc-
ity at the interface is given by (3.6a). In terms of the variational problem, (3.6a)

reduces to 6Vy = —0B,/(zf + Zp), assuming that the fluid velocity and stress

on the right-hand side are held fixed. In view of the solution in (4.8), we have

(zf + 2p) ™' = —asa/(a11a22 — a12a21), which, after some manipulation, gives
Zo(v2+1)(1 —2A(y -1

Ay =11+ Zs(v+1))

Of particular interest are the limiting cases when the viscous CFL number, A, is small
and large. A straightforward analysis of the dimensionless parameter R in (4.9) gives
R~ 1/A for A < 1 and R ~ 2 for A > 1. In view of these limits, consider an
approximation to R given by

RY1/A+2.
It is found that 1 < R/]:Z < (V2 +1)/2 ~ 1.21 for all (A, Z,), so that the fluid
impedance given by

(4.10) zp = plka|R = plko| (1/A+2) = p/(|ka| AL) + 20|k,

is a good approximation of the more complicated form given in (4.9). The model
problem analysis of Section 5 confirms that this choice leads to a stable scheme.

Formula (4.10) provides the generic form of the fluid impedance we use, but it
remains to make a choice for k, so that the approximation can be used for a discrete
approximation in physical coordinates (as opposed to the Fourier transformed space).
Note that in a discrete approximation, the magnitude of the possible wave numbers k.
appearing in (4.10) are bounded by approximately 1/h, where h is a measure of the
grid spacing in the tangential direction. For the present model problem with the
the pseudo-spectral approximation (4.2), for example, we have |k,| < 7/Az, while
a second-order difference approximation would roughly imply |k,| < 2/Az. Expe-
rience [8] shows that added-damping instabilities are generally caused by relatively
high-frequency modes on the grid, and this suggests taking |k,| = 1/h which leads to
a definition of the fluid impedance of the form

2 CAM<%};) + CAD(%)v

as was done in (3.7). The extensive numerical results in Section 6 and [24] confirm that
this is an appropriate choice, and furthermore that the scheme is rather insensitive to
the choice of h, Cay and Cap.

5. Stability analysis of an FSI model problem. The stability of the AMP
algorithm is explored in the context of an FSI model problem involving a viscous
incompressible (Stokes) fluid in contact with a simplified elastic solid. This analysis
extends the work in [6] to the case of a viscous fluid where both added-mass and
added-damping effects are important, and for an IMEX-type scheme in the fluid.

We will compare the stability of the AMP scheme to that of the traditional
partitioned (TP) scheme and the anti-traditional partitioned (ATP) scheme. In the
TP scheme, the solid provides a Dirichlet (no-slip) boundary condition for the fluid,
and then the fluid supplies a Neumann (traction) boundary condition for the solid.
The ATP scheme reverses the role of the solid and fluid. In this scheme, the solid
provides a Neumann (traction) boundary condition for the fluid and the fluid supplies
a Dirichlet (no-slip) boundary condition for the solid.

10
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5.1. Model problem. The viscous model problem analyzed here is similar to
the one discussed in Section 4. An incompressible Stokes fluid satisfies the system of
equations in (4.1a) for x € Q. The solid satisfies (4.1b) for x € Qq, but with \ set
equal to —gi. While this choice may not correspond to any actual solid, it is a useful
choice mathematically as is simplifies the equations for the solid somewhat since the
compressive wave speed becomes equal to the shear wave speed, ¢ = 1/fi/p, which is
particularly relevant for the viscous model problem. It is convenient to consider the
hyperbolic equations for the solid in characteristic form. These equations are

(5.1a) Oray — cOyay = &(9yd — Oybs), x € Qo,
(5.1b) Ob1 + €0yb1 = &(0gas — 0,d), x € Qo,
(5.1c) Orag — €0yag = €0,b1, x € Qo,
(5.1d) O¢ba + c0yby = —c0yay, x € Qo,
(5.1e) Oyd = 0, x € o,

where a,, = 0m2 + ZUp, and by, = G2 — ZUpm, for m = 1,2 and Z = p¢, are the
variables associated with the incoming and outgoing characteristics at the interface,
respectively, and d = G117 + G22. The interface is linearized about a flat surface T’
given by y = 0, and the matching conditions between the fluid and the solid are given
in (4.1c).

5.2. Discretization. The discretization of the equations in the z-direction fol-
lows the approach used previously in Section 4. The equations for the fluid are trans-
formed using the finite Fourier series in (4.2), which results in a system of equations
for the corresponding Fourier coefficient functions given in (4.1a). These equations
are then discretized in time using an IMEX scheme given by

YA
(5.2a) T %pn + VAL (—k2 4 92) o+,
(52b) n+1 _ n_g n At (— 2 2\ ,,n+1
. vy T = vy p 0"+ VAL (k2 + 0;) vy,
(5.2¢) (—k2+ 85) p"t =0.

Here, v} (y), v5 (y) and p™(y) approximate vy (y, t™), v2(y, t™) and p(y, t"), respectively,
at t" = nAt for a fixed time step At. Recall that k, = 2rk/L and v = p/p, and that
the hats and k subscripts on the Fourier coefficients have been suppressed. Note that
the components of the fluid velocity are advanced in time using (implicit) backward
Euler for the viscous terms and (explicit) forward Euler for the pressure gradient
terms. An elliptic equation is solved at each time step to update the pressure. It is
convenient to keep the discrete equations for the fluid variables continuous in y, and
we assume that solutions are bounded as y — oo.

The characteristic equations for the solid in (5.1) are similarly transformed using
the finite Fourier series in (4.2), and then the resulting equations are discretized in
time and space using an upwind-type scheme given by

(5.32)  aiit=af; +eAt(al - af ) Ay + ick, At(d - b5,
(5:3b) BT =0y — Aty = Y ) /Ay + icks At(ay T — djT),
(5.3¢) ayy’ = aj; +eAt(ah ;4 — al ;) /Ay +icks Atby T
(5.3d) byt = by — et — b5 )/ Ay — ick,Atal
(5.3¢) ditt = dy,

11
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where, for example, af ; ~ a1(y;,t") with y; = jAy. The grid in the y-direction is
collocated about the interface at y = 0. The terms involving transverse derivatives
are treated implicitly to stabilize the pseudo-spectral approximation. For reference,
the solid velocity and stress are related to the characteristic variables by vy, ; =

5= (am, m.j — Om ), Om2,j = 3 (an U, +bfn7j), m = 1,2. We assume bounded solutions

of (5.3) abyj—> —00.

5.3. Interface coupling. We explore the stability of partitioned schemes for
the model problem that use different interface coupling approaches. For any of the
approaches, corresponding to the AMP, TP, and ATP schemes, the discrete equations
require a certain number of boundary conditions at the interface. For example, the
evolution of the fluid equations in (5.2) require three boundary conditions on the
interface, y = 0, to determine the interface velocity and pressure. Similarly, the
evolution of the solid equations in (5.3) require two boundary conditions at y = 0
corresponding to the two incoming characteristic variables.

We first describe the coupling based on the AMP interface conditions given in
Section 3. We assume the fluid and solid solutions are known at time ¢"™. The solid
variables are advanced first to t"*! on grid points j = 0, —1, —2, . .. using the evolution
equations in (5.3). The solid interface velocity and stress are computed using

—n+1 __ 1 n+1 n+1 —n+1 __ 1 n+1 n+1 _
Um,O_E( b )7 Umg,o—i( +b ), m=1,2.
The fluid velocity is advanced using (5.2a)—(5.2b). Two boundary conditions are
required at y = 0 to obtain the fluid velocity at t"*1. The condition on the outgoing
solid tangential characteristic in (3.1b) becomes

(5.4) p (ko3 ™ + Oyt — Pt = 0{‘;’& - 217?31, y=0.

The normal component of the velocity is projected to obtain the proper limiting
behaviors for heavy and light solids. This condition, taken from (3.8), reduces to

5.5 n+1 Vp n+1 z —TL+1’ _ 0’
(5.5) Cb) zf+z (v3 )+zf+2v2’0 Y

where the fluid impedance is given by z¢ = p/(kyAt) +2pk,, according to the deriva-

tion in Section 4. The predicted velocity, V?(v5 ™), in (5.5) is given by
n+1 At 2 n+1 n+1
(5.6) VP (v )—v2—7yp — vt (k205 + ik, 0,07t y=0.

This definition is analogous to the definition for V? (vi(p )) in Section 3, but with the
substitution 9, v”+1 —iky vl +1 noting that V-v = 0 on the boundary. The pressure
is updated using (5.2¢) along with the AMP pressure condition described in (3.4).
For the present scheme, this condition reduces to

ZAt
—p"t + 273 = 5o + 2ikopoy T — ZAt[o5

(5.7) +v (B2vy ! ik, 007 th)],  y=0,

again using 9,v5 "' = —ik,v]t'. The acceleration of the solid on the interface,
denoted by v"+1 in (5.7), is taken to be vQ‘(‘)' = (vg'gl — v3)/At. After solving for
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the fluid velocity and pressure, interface quantities from the fluid are obtained using

n+l __ “+1 _ n+l _ +1
’Um)f _U;,;:L ) m_1327 pf _pn I

n+1 __ n+1 . n+1 n+1 __ n+1 n+1
Olaf =M (07T +ikguy ™) 09 = —p"" +2u0yv37 ",

where all fluid quantities on the right-hand side are evaluated at y = 0. The interface
velocity and traction are projected from fluid and solid values using (3.6). These
projections reduce to

I _ Zf n+1 z —n+1 1 —n+1 n+1
(B8 = e+ (e o)
zj?l 771 1
(58b) U'TInQ = %UnJrl + 75::5,10 + (52:’01 - ’U;nnffl)’

T A PR 2t + 2
where m = 1, 2. Finally, the ghost points at j = 1 for the incoming solid characteristics
are set using

(5.9) A =al,+ 2l m=12,

which is a first-order accurate approximation (consistent with the order of accuracy
of the upwind scheme).

We next consider the coupling conditions for the TP and ATP schemes. These
conditions can be obtained from the coupling conditions for the AMP scheme in the
limits of heavy (2 — o0) and light (2 — 0) solids. For the AMP algorithm, the
fluid velocity and pressure conditions are given in (5.4), (5.5) and (5.7), while the
final interface values are defined by the projections in (5.8). For the TP algorithm
(Z = o), the AMP conditions in (5.4) and (5.5) reduce to Dirichlet conditions on the
fluid velocity given by

n+1 ~n+1

U, " = Vo> y =0, m=1,2.

The pressure condition in (5.7) becomes a Neumann condition given by

(5.10) Oyp" Tt = —vp it — v (K2op T 4 ik 007ty =0.
For the TP scheme, the interface velocity is taken to be the solid velocity, v}, = T)Ziol,
and the interface traction is taken to be the fluid traction, o , = aZJg}f, m=1,2.

For the ATP scheme, we consider the light-solid limit (z — 0) of the AMP
conditions. In this limit, the condition on the outgoing solid tangential characteristic
in (5.4) reduces to a Neumann condition for the velocity given by

(5.11) p (ikgvy ™ + 007 =5,y =0,
while the condition in (5.5) becomes
(5.12) vty =0,

where VP(v3t1) is given by (5.6). Using (5.2b), it can be shown that the condition
in (5.12) can be replaced by

(5.13) Oy (ikgof ™ + 008ty =0,  y=0,

13
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which is equivalent to setting the fluid velocity to be divergence-free on the interface.
For the ATP scheme, the pressure condition in (5.7) reduces to

(5.14) —p" Tt 4 2#(%1);”1 = 5;;01, y=0.

For the ATP scheme, the interface velocity is taken to be the fluid velocity, v,ﬂl = vfol,

and the interface traction is taken to be the solid traction, ol , = 6%42',10, m=1,2.

5.4. Stability analysis. In order to assess the stability of the AMP, TP and
ATP schemes, we search for normal mode solutions to the discrete evolution equations.
In the fluid, solutions are of the form

(5.15) g (y) = Ao (y),  p"(y) = A"ply), m=12,

where A is an amplification factor. Note that while it is not necessary to assume that
the amplification factors for velocity and pressure are the same in their initial forms,
the condition that these forms satisfy the momentum equations in (5.2a)—(5.2b) would
immediately imply that amplification factors are equal. Substituting (5.15) into (5.2)
and integrating gives

(]
0 - ~ P — |k, — 4

(5.16a) Ba(y) = o) e kel — m (e kaly _ vlmly)’

0

p
5.16b b (1) = 00 e VIkaly —f( ~lkely _ o=lkaly
(>160) taly) = v e o ey (T - e,
(5.16¢) ply) = pheF=lv,

where 1 = pv, v = /1 + (1 — 1/A)/A and A = vk2At. Here, A represents the viscous
CFL number and we have imposed boundedness of the solution in (5.16) as y — oco.

The constants, vy,  and p§, are obtained by imposing the appropriate boundary
conditions at y = 0, namely, (5.4), (5.5) and (5.7) for the case of the AMP scheme.
For the TP scheme, the three constraints are the two boundary conditions for the
components of the velocity in (5.11) and the condition on the pressure in (5.10), while
the ATP scheme uses the boundary conditions in (5.11), (5.13) and (5.14).

Having found solutions for the velocity and pressure of the fluid, these solutions
can be used (along with the appropriate boundary conditions at y = 0 for the AMP,
TP or ATP coupling) to eliminate the fluid variables on the boundary in favor of the
solid variables. The issue of stability, then, reduces to examining the behavior of the
evolution equations for the solid with the appropriate boundary conditions. Solutions
of these evolution equations are sought in the form
(5.17) aj = ¢ AF, al =lay;, b7, a3, b3, d;-’]T,
where ¢ is a spatial eigenvalue and r is a constant eigenvector. The scheme is said to
be weakly stable if there are no non-trivial solutions with |A| > 1. Our strategy for
determining regions of stability will be to search for unstable modes with |A| > 1, and
then identify regions of the parameter space where no non-trivial solutions exist. To
do this, we begin by finding the general solution for the spatial grid functions satisfying
the discrete equations and regularity condition as j — —oo, assuming |A| > 1. We
then apply the conditions at the interface to determine whether non-trivial solutions
exist.

14
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Substitution of the normal mode ansatz (5.17) into the evolution equations for the
solid in (5.3), yields a 5 x 5 homogeneous system of the form F(¢)r = 0. Nontrivial
solutions exist if

def

(5.18) £(8) = det(F (@) = (1 = A) (n(6)n(1/9) + (AXs)2)” =0,

where 7(¢) LA+ (0 —1), Ay def clkz|At and A, o ¢At/Ay. Since we seek
unstable modes with |A| > 1, the determinant cond1t1on in (5.18) is satisfied only

when n(¢)n(1/¢) = —(AX,)2. This leads to the roots given by

_ o (AP 4 (11— A)?

Note that the product of the roots is equal to one (i.e. ¢ ¢d_ = 1). Since we are
searching for solutions that are bounded as j — —oo, we are only interested in the
root with modulus greater than one.

Lemma: If [A| > 1 and if A, and A\, are chosen to satisfy a CFL condition, then
there is precisely one root, either ¢4 or ¢_, denoted by ¢. that has magnitude strictly
greater than one, i.e. || > 1.

This result follows from a similar argument to that given in [18]. We first consider the
scheme applied to the pure initial-value problem (Cauchy problem). Setting ¢ = e*?
n (5.18), we determine a region of the (A\;, A,) plane for which |[A| < 1 for all ¥ €
[0,27]. This stable region is found numerically, and it includes a region satisfying a
reasonable CFL restriction, namely A2 + A2 <1 (see [25]). Next, since [A| <1 when
|¢| = 1, we have that |¢| # 1 when |A| > 1. Thus, if |A| > 1 and if (A;, \y) remains
within the CFL restriction, then ¢ cannot cross the unit circle, |¢| = 1, as (Az, Ay)
vary. It is therefore only necessary to prove that the lemma holds for one set of
parameters. For A\, = 0, the discretization reduces to four uncoupled upwind schemes
for linear advection. In this case, equation (5.18) is equivalent to n(¢)n(1/¢) = 0,
which has solutions ¢4 = (A — 14+ X))/A\y and ¢_ = 1/¢,. When [A| > 1 and
Ay € (0,1], [¢4| > 1 and therefore ¢, = ¢. Thus, the condition holds for all (A;, \y)
provided the CFL condition is satisfied.

The two eigenvectors associated with ¢ = ¢, lead to bounded solutions given by

n(¢+)

J AN
AA¢A

ay ; = kisgn(k, ) ( /d)*)qSJA” by = —kasgn(ky)
af ; = ka¢l A", 5= kiglA",

where k1 and k2 are constants to be determined by the two interface conditions in (5.9).
The application of these interface conditions leads to a 2 X 2 homogeneous system
of the form G(A)k = 0. Solutions for the amplification factor A are roots of the
transcendental equation given by

g(A) = det(G(A)) = 0.

These roots depend on the choice of interface coupling (AMP, TP or ATP) and four
dimensionless parameters (A, Z, A, \y), where z ¢ ,u|k |/Z. (Further details are
given in [25].)

Proving stability of the partitioned scheme for a choice of the interface coupling
and dimensional parameters is equivalent to showing that no roots of g(A) = 0 exist

15
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such that |A| > 1. The number of roots with |A] > 1 can be assessed using the
argument principle. Define

w 1 [ G
271 [¢l=1 G(C)

¢, G(¢) = g(1/q).

There are branch points of G({) in the region |¢| > 1, and a single-valued branch
of G(¢) can be defined so that its branch cuts lie outside the unit disk. Using this
definition, the only singularity of G(¢) in the region |¢| < 1 is a pole of order 2 at
the origin, and thus P = N — 2, where N corresponds to the number of roots of g(A)
with |A] > 1.

Lo AMPstability

103TP and ATP Stability Regions

102 102
10t 10t
< 100 < 10°
10! 10!
102 1072

1073
102 102 107 10° 10' 10% 10° 102 102 107 10° 10' 10% 10°
Z Z
FiG. 2. Left: Green circles represent points for which the AMP algorithm is stable in the CFL
region A2 + )\5 <'1. Right: stability regions for the TP (red) and ATP (blue) schemes.

An analytic evaluation of the integral for P is unavailable, and so we consider
a numerical evaluation. The four-dimensional parameter space (Z,A,\;,A\,) is dis-
cretized on a 31x31x20x20 array. The parameters Z and A are equally spaced on a
logarithmic scale on the interval [10~3, 10?], while \, and Ay are equally spaced on the
interval [0.05,0.95]. At each grid point, P is computed numerically with [P + 2| < ¢
corresponding to stability, where ¢ is a small parameter taken to be 10~5. The results
of this computation are shown in Figure 2 for the AMP, TP and ATP schemes. A
grid point in the (A, Z) plane is marked as stable if the computations of P for all
values of A\, and Ay in the search region are stable. The point is marked as unstable
otherwise. The results shown in the left plot indicate that the AMP scheme applied
to the viscous model problem is stable for all points in the (A, Z) plane, whereas the
results shown in the right plot indicate that the TP and ATP schemes have large
regions of instability. For example, the region in red shows the stable region for the
TP scheme, which occurs for heavy solids (Z small) and coarser meshes (A large).
The stability region for the ATP scheme shown in blue corresponds to light solids
(Z large). The following theorem summarizes the results for the AMP scheme.

Theorem: The AMP scheme applied to viscous model problem is weakly stable |A] < 1
provided \2 + )\5 <1, which gives the usual CFL-type time-step restriction

1/2
sret [

This is a sufficient but not a necessary condition. The proof follows from the argument
principle and a numerical evaluation of P.
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6. Numerical results for an elastic piston. We now present numerical results
for two FSI problems to verify the accuracy and stability of the AMP scheme. The
two FSI problems considered involve the interaction of a fluid column with an elastic
piston. In the first problem, we examine longitudinal motion of the piston (which
primarily involves added-mass effects), while transverse motion of the piston (which
primarily involves added-damping effects) is considered in the second problem. Exact
solutions are found for both FSI problems, and these are used to verify the accuracy
and stability of the AMP algorithm for a range of the problem parameters.

y=H y=H y=H
fluid: Q(t
fluid: ©(0) uid: (t) fluid: Q(t)
interface: T'(t)
interface: T'(0) y=yr(t) interface: T'(t)
o —0
Y Y
_ lid: Q(t _
solid: ©(0) solid: £(¢) solid: Q(t)
Y= —H Y= -H Y= —-H
z=0 x=1L z=0 x=1L z=0 x=1L

Fic. 3. FSI problem coupling an incompressible viscous fluid and an elastic piston: Configura-
tion at t =0 (left), lonngitudinal motion for t > 0 (middle) and shear motion for t > 0 (right).

Longitudinal motion of an elastic piston. The geometry of the elastic piston prob-
lem is shown in Figure 3. The plot on the left shows the configuration at t = 0. The
fluid occupies the physical domain between y = 0 and y = H initially, while the solid
lies in its reference domain between § = —H and § = 0. It is assumed that there
is no dependence in the z-direction so that the fluid-solid interface remains flat at a
position y = y;(t) as shown in the plot on the right. In the fluid domain, (), it is
assumed that the horizontal component of velocity vy is zero, and thus the vertical
component vy is a function of ¢ alone according to the continuity equation.

Solutions to this FSI problem can be constructed for a specified motion of the
fluid solid interface, see [25] for more details. We choose an interface position yp(¢)
that oscillates in the vertical direction with frequency w and an amplitude a given by

yr(t) = asin(wt), a = 2asin(wH /e,).

Numerical results are obtained for the case H = 1,p = 1 and u = 0.01 for the
fluid, and using H = 0.5 and fi = A = p = J for the solid. The interface position is
specified by @ = 0.1 and w = 27. The density ratio, p/p = 4, is taken to be 1073, 1 and
103, representing FSI problems with light, moderate and heavy solids, respectively.
Numerical solutions are computed using the AMP algorithm on a two-dimensional
rectangular configuration (as shown in Figure 3) with periodic boundary conditions
taken at * = 0 and x = L consistent with a one-dimensional solution. Table 1
gives the maximum-norm errors for solutions computed using the AMP algorithm at
tanal = 0.6 with grid resolutions h = 1/(205) for j = 1,2,4, 8. The errors in the table
indicate that the solution is converging at second-order accuracy.

Transverse motion of an elastic piston. Exact solutions can also be constructed
for an FSI problem involving transverse motion of an elastic piston, see Figure 3.
For this case, the vertical components of the fluid velocity and solid displacement are
taken to be zero, while the corresponding horizontal components are assumed to be
functions of y and t alone. As a result, the interface only moves horizontally so that
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TABLE 1
Longitudinal motion of an elastic piston: Mazximum-norm errors and convergence ratios of the
numerical solution at tgna = 0.6 computed using the AMP algorithm for p/p = § = 103, 1 and 103.

Heavy solid (6 = 103):
h E® r EM r E@ r EM™ r E®@) r
1/ 20 6.0e-04 5.9e-05 4.0e-05 5.9e-05 1.9e-01
1/ 40 1.4e-04 4.2 1.7¢-05 3.5 9.6e-06 4.2 1.7e-05 3.5 4.5e-02 4.2
1/ 80 3.4e-05 4.1 4.4e-06 3.8 2.3e-06 4.1 4.4e-06 3.8 1.1e-02 4.1
1/160 8.5e-06 4.1 1.1e-06 3.9 5.8e-07 4.1 1.1e-06 3.9 2.7¢-03 4.1

Medium solid (§ = 1):

h E® r EM r E@ T EM r E©@) T
1/ 20 1.8e-05 4.9e-05 1.2e-05 4.9e-05 5.0e-05
1/40 7.5e-06 2.4 1.2e-05 4.0 3.0e-06 4.2 1.2e05 4.0 1.3e05 3.7
1/80 2.3e-06 3.3 3.0e-06 4.0 7.1e-07 4.1 3.0e-06 4.0 3.6e-06 3.8
1/160 6.3e-07 3.6 7.4e-07 4.0 1.8e-07 4.1 7T7.4e-07 4.0 9.2¢e-07 3.9

Light solid (6§ = 1073):
h E® r EM) r E@ r EM) r E®@) r
1/20 8.0e-07 6.5e-07 3.3e-06 2.4e-05 1.3e-07
1/ 40 2.4e-07 3.3 1.6e-07 4.0 5.3e-07 6.3 4.2e-06 5.7 3.4e-08 3.9
1/80 6.6e-08 3.7 4.1e-08 4.0 89e-08 59 83e-07 50 88e09 3.9
1/160 1.7e-08 3.8 1.0e-08 4.0 2.3e-08 3.8 1.8¢-07 4.5 2.2e-09 4.0

yr(t) = yr(0) = 0, and the solid reference coordinate g is equivalent to the physical
coordinate y.

For this problem, the equations governing the horizontal components of the fluid
velocity and solid displacement reduce to v1 ¢ = vvy gy, for 0 < y < H, and 41,4 =
¢y, for —H < y < 0, and there are time periodic solutions with v1(y,t) =
01(y)e™t and 1y (y,t) = u1(y)e’! for certain values of the eigenvalue w (see [25] for
further details).

Solutions to this problem are computed for selected values of w (as noted in
Table 2) for H =1, H = 0.5, p =1 and p = 0.1, and for different values of § = p =
i = A. The magnitude of the interface displacement in the z-direction at ¢ = 0 is
taken as uyp = 0.1. Table 2 gives the maximum-norm errors for solutions computed
using the AMP algorithm. The results are presented for solutions at tg,, = 0.3 using
grid resolutions h = 1/(20j), for j = 1,2,4,8. The errors in the table indicate that
the solution is converging at second-order accuracy.

7. Conclusions. A stable added-mass partitioned (AMP) algorithm was devel-
oped for fluid-structure interaction problems involving viscous incompressible fluids
and compressible elastic solids. The new algorithm is stable, without sub-time-step
iterations, for both heavy and very light solids thus effectively suppresses both added-
mass and added-damping effects. The fluid is advanced using a fractional-step IMEX
scheme with the viscous terms treated implicitly. Key elements of the new AMP
scheme are a Robin interface condition for the pressure and an impedance-weighted
interface projection based on a new form for the fluid impedance. The fluid impedance
is derived from the analysis of a carefully chosen FSI model problem. Stability of the
AMP scheme is analyzed for a related model problem. A set of elastic-piston bench-
mark problems was developed to verify the stability and accuracy of the AMP scheme.
These solutions are exact and include finite interface deformations either normal or
tangential to the surface.
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TABLE 2
Transverse motion of an elastic piston: Maximum-norm errors and convergence ratios of the

numerical solution at tana = 0.3 computed using the AMP algorithm for p/p = § = 103, 1 and 103.

Heavy solid (6 = 103, w = 3.141 4+ i7.930 - 10~4):

h E®) r EM r E® r E®™ r E@) r

1/20 6.0e-04 5.9e-05 4.0e-05 5.9e-05 1.9e-01

1/ 40 1.4e-04 4.2 1.7¢-05 3.5 9.6e-06 4.2 1.7e-05 3.5 4.5e-02 4.2
1/80 3.4e05 4.1 4.4e-06 3.8 2306 4.1 4.4e-06 3.8 1.1e-02 4.1
1/160 8.5e-06 4.1 1.1e-06 3.9 5.8e-07 4.1 1.1e-06 3.9 2.7¢-03 4.1

Medium solid (§ = 1, w = 2.351 +75.433 - 107 1):

h E®) r EM r E@ r EM™ r E©@) r

1/ 20  1.8e-05 4.9e-05 1.2e-05 4.9e-05 5.0e-05

1/40 7.5e-06 24 1.2e-05 4.0 3.0e-06 4.2 1.2e-05 4.0 1.3e-05 3.7
1/ 80 2.3e-06 3.3 3.0e-06 4.0 7.1e-07 4.1 3.0e-06 4.0 3.6e-06 3.8
1/160 6.3e-07 3.6 7.4e-07 4.0 1.8e-07 4.1 7.4e-07 4.0 9.2e-07 3.9

Light solid (6§ = 1073, w = 6.285 +41.784 - 1073):

h E® r EM r E@ r EM™ r E®@) r

1/ 20  8.0e-07 6.5e-07 3.3e-06 2.4e-05 1.3e-07

1/40 24e-07 3.3 1.6e-07 4.0 53e07 6.3 4.2e06 57 3.4e-08 3.9
1/80 6.6e-08 3.7 4.1e-08 4.0 8.9e-08 5.9 83e-07 50 8809 39
1/160 1.7e-08 3.8 1.0e-08 4.0 2.3e-08 38 1.8e-07 45 2.2e09 4.0

The present AMP algorithm assumes a linear elastic constitutive model for the

finite deformation of the solid. This was done as a first step towards an extension to
nonlinear hyperelastic models, such as neo-Hookean or Saint Venant-Kirchoff. Such
an extension was considered previously in [4] for FSI problems involving inviscid
compressible fluids. In that paper, the AMP interface conditions used a linearization
of the nonlinear model locally about points along the interface, and so the linear elastic
model considered here should provide useful information for an analogous extension
to FSI problems coupling viscous incompressible fluids and nonlinear solids. Such an
extension is planned for future work.
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