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ABSTRACT
Canonical correlation analysis (CCA) is a cornerstone of linear dimen-
sionality reduction techniques that jointly maps two datasets to
achieve maximal correlation. CCA has been widely used in appli-
cations for capturing data features of interest. In this paper, we
establish a range constrained orthogonal CCA (OCCA) model and
its variant and apply them for three data analysis tasks of datasets
in real-life applications, namely unsupervised feature fusion, multi-
target regression and multi-label classification. Numerical experi-
ments show that the OCCA and its variant produce superior accuracy
compared to the traditional CCA.
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1. Introduction

Originally proposed by Hotelling in 1936 [16], canonical correlation analysis (CCA)
is a classical linear dimensionality reduction technique that jointly maps two datasets
to achieve maximal correlation. Modern treatments and enrichments include [13,21].
Specifically, given two datasets in the form of two data matrices

Xa ∈ R
n×q, Xb ∈ R

m×q, (1)

respectively, where n and m are the dimensions of the two data sets, respectively, and q
is the number of data points in each of the two sets. Without loss of generality, we may
assume that both Xa and Xb are centred, i.e. Xa111q = 0 and Xb111q = 0, where 111q ∈ R

q is the
vector of all ones; otherwise, we may preprocess Xa and Xb as

Xa ← Xa − 1
q
(Xa111q)111Tq , Xb ← Xb − 1

q
(Xb111q)111Tq .

Sometimes the columns of Xa and Xb are normalized, too, to unit vectors, although
not always. For a given pair of transformation vectors {pa, pb}, the canonical correlation
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ρ(pa, pb) between pTaXa and pTbXb is given by

ρ(pa, pb) = pTaCpb√
(pTaApa)(pTb Bpb)

,

where

A = XaXT
a ∈ R

n×n, B = XbXT
b ∈ R

m×m, C = XaXT
b ∈ R

n×m. (2)

The traditional CCA seeks first pair {pa1, pb1} of canonical vectors bymaximizing ρ(pa, pb)
under the constraint pTa1Apa1 = pTb1Bpb1 = 1 (see Remark 2.1 below for more discus-
sions on constraints). For a positive integer k (1 ≤ k ≤ min{m, n, q}), the pairs (pai, pbi)
for i = 2, 3, . . . , k then can be obtained sequentially by maximizing canonical correlation
ρ(pa, pb) subject to additional A- and B-orthogonality constraints for pa and pb, respec-
tively, against those pairs that are already computed. It turns out (see, e.g. [5]) that the
transformation matrices Pa = [pa1, . . . , pak], Pb = [pb1, . . . , pbk] of the traditional CCA
can be equivalently obtained by the following optimization problem

max
Pa∈Rn×k, Pb∈Rm×k

tr(PTa CPb)√
tr(PTa APa)tr(PTb BPb)

, (3a)

subject to PTa APa = PTb BPb = Ik. (3b)

The traditional CCA (3) is well-posed only when k ≤ min{rank(Xa), rank(Xb)}; other-
wise, for example, if k > rank(Xa) = rank(A), then PTa APa = Ik can never be satisfied.
The solution of (3) is not unique. In fact, if (Pa,Pb) is a pair of the maximizers and so is
(−Pa,−Pb). Such non-uniqueness bas been conveniently overlooked. The solution of (3)
can be obtained by solving a generalized eigenvalue problem or the singular value decom-
position (SVD) and some efficient numerical techniques can be found in, e.g. [3,13,23] (see
also Section 2.1). In terms of the SVD, a complete description of the solutions to (3) can
be found in [3, Theorem 3.2].

The optimal Pa and Pb of CCA (3) in general do not have orthonormal columns and
that can be disadvantageous and less effective, as argued in [5]. Orthogonal CCA (OCCA)
is a term that was coined broadly as a collection of variants of the traditional CCA (3) that
produce two matrices Pa and Pb with orthonormal columns to serve practical purposes
similar to those by the ones of the traditional CCA.

Our main goals in this paper are two-fold: (1) establish a range constrained OCCA
model and a variant and (2) apply them to three data science tasks, namely unsupervised
feature fusion,multi-target regression, andmulti-label classification. Ourmodel is inspired
by that the pair (Pa,Pb) of maximizers to CCA (3) can be constructed one column of each
Pa and Pb at a time [3, Theorem 3.1]. A similar idea was used by Shen et al. [24], but we
introduce range constraints that enable us to design algorithms based on the SVD, a widely
used and well-proven numerical linear algebra technique. For this reason, our algorithms
are robust, whereas the algorithm in [24] may not work properly. This will be discussed
in detail in Section 2.2. Our models, together with our numerical solutions, often improve
the results by CCA. Sometimes the improvements are dramatic.

The rest of this paper is organized as follows. Section 2.1 introduces range constrained
CCA which will serve as the building block for implementing new CCA variants in the
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rest of the paper. In Section 2.2, we start by stating the orthogonal CCA (OCCA) model
of Shen et al. [24] and explaining its major numerical difficulty, and then propose a range
constrained OCCA model and its robust implementation based on the well-proven SVD.
A partial OCCA model is discussed in Section 4. Section 5 details our extensive numeri-
cal experiments that aim to demonstrate superior performance of our OCCA models on
real-world data for three data science tasks. Finally, conclusions and remarks are drawn in
Section 6.

Notation: Rm×n is the set of all m × n real matrices, Rn = R
n×1, and R = R

1. In (or
simply I if its dimension is clear from the context) is the n × n identity matrix. The super-
script ‘·T’ takes transpose. For a matrix X,R(X) is the column space. For a vector x ∈ R

n,
‖x‖2 =

√
xTx is its �2-norm, and ‖x‖B =

√
xTBx is its B-semi-norm, where B ∈ R

n×n is
positive semi-definite. Throughout the rest of this paper, Xa, Xb,A, B, C are reserved as the
ones given in (1) and (2) except within our algorithm descriptions, where Xa and Xb are
updated. But we do not think this will cause any confusion.

2. Related work

2.1. Range constrained CCA

Intuitively, the maximization in (3) looks for the transformation matrix pair (Pa,Pb) such
thatXT

a Pa andXT
b Pb are best aligned. Any component of Pa and that of Pb in the orthogonal

complements ofR(Xa) andR(Xb) are annihilated in the calculations of XT
a Pa and XT

b Pb,
respectively. Thus it is sensible to also enforce, besides (3b), the range constraintsR(Pa) ⊂
R(Xa) andR(Pb) ⊂ R(Xb). As a result, we are naturally led to a variant of the traditional
CCA (3), the so-called range constrained CCA:

max
Pa∈Rn×k, Pb∈Rm×k

tr(PTa CPb)√
tr(PTa APa)tr(PTb BPb)

, (4a)

subject to PTa APa = PTb BPb = Ik, (4b)

R(Pa) ⊂ R(Xa), R(Pb) ⊂ R(Xb). (4c)

This variant can be solved by the SVD as follows (see also [3]). Let the SVDs of Xa and
Xb be

Xa = Ua�aVT
a , Ua ∈ R

n×ra , Va ∈ R
q×ra , �a ∈ R

ra×ra , (5a)

Xb = Ub�bVT
b , Ub ∈ R

m×rb , Vb ∈ R
q×rb , �b ∈ R

rb×rb , (5b)

where ra = rank(Xa) and rb = rank(Xb), and, without loss of generality, the diagonal
entries of �a and �b are arranged in nonincreasing order. With the SVDs in (5), we have
for A, B, and C defined in (2)

A = Ua�
2
aU

T
a , B = Ub�

2
bU

T
b , C = Ua�aVT

a Vb�bUT
b .

Set P̂a = �aUT
a Pa ∈ R

ra×k and P̂b = �bUT
b Pb ∈ R

rb×k. Under (4c), we will have

Pa = Ua�
−1
a P̂a, Pb = Ub�

−1
b P̂b. (6)
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The optimization problem (4) is then transformed into an equivalent problem:

max
P̂Ta P̂a=P̂Tb P̂b=Ik

tr(̂PTa V
T
a VbP̂b), (7)

which can also be solved by the SVD. Specifically, let

VT
a Vb = U�VT (8)

be the SVD of VT
a Vb, where U ∈ R

n×r, V ∈ R
m×r, r = rank(VaVT

b ), and � ∈ R
r×r is

diagonal. Then a pair of maximizers for (7) can be given by

(̂Pa, P̂b) =
{

(U(:,1:k),V(:,1:k)) if r ≥ k,
([U,U⊥], [V ,V⊥]) if r < k,

(9)

where, in the case of r< k, U⊥ ∈ R
n×(r−k) and V⊥ ∈ R

m×(r−k) can be arbitrary so long
as P̂Ta P̂a = P̂Tb P̂b = Ik are ensured. Finally, a pair of maximizers Pa and Pb for the range
constrained CCA (4) can be recovered by (6) with (9).

2.2. Orthogonal CCA

Although, solutions to the traditional CCA (3) and the range constrained CCA (4) can be
completely described and robustly implemented via the SVD, the maximizers Pa and Pb
do not have orthonormal columns. Naturally one would think of simply postprocessing
the obtained Pa and Pb by orthogonalizing their columns, respectively. Evidence suggests
that the resulting Pa and Pb may not be effective for tasks that follow [5], also as our later
numerical experiments will show.

In 2013, Shen et al. [24] proposed the following orthogonal CCA (OCCA)model, here-
after called Shen-Sun-Yuan OCCA model, to define a transformation orthogonal matrix
pair (Pa,Pb) as a set of orthonormal vector pairs (pa�, pb�), one at a time. The basic idea is
very much similar to the SVD which can be constructed sequentially one singular triplet
at a time.

Shen-Sun-Yuan OCCA model:
(1) Define the first pair, denoted by (pa1, pb1), as the pair of maximizers of

max
‖pa‖2=‖pb‖2=1

pTaCpb√
(pTaApa)(pTb Bpb)

,

i.e. (3a) with k = 1.
(2) Suppose that (pai, pbi) for 1 ≤ i ≤ � − 1 have already been defined. The next pair

(pa�, pb�), normalized to have ‖pa�‖2 = ‖pb�‖2 = 1, is defined as the pair of maximizers
of

max
‖pa‖2=‖pb‖2=1

pTaCpb√
(pTaApa)(pTb Bpb)

subject to pTa Pa (�−1) = 0, pTb Pb (�−1) = 0,

where Pa (�−1) = [pa1, pa2, . . . , pa (�−1)] and Pb (�−1) = [pb1, pb2, . . . , pb (�−1)].
(3) The process is repeated as necessary.



OPTIMIZATION METHODS & SOFTWARE 791

Remark 2.1: In [24], both maximization problems in Steps 1 and 2 above were stated
with the constraint pTaApa = pTb Bpb = 1, instead of ‖pa‖2 = ‖pb‖2 = 1. This discrepancy
is mathematically inconsequential because of the objective function

ρ(pa, pb) := pTaCpb√
(pTaApa)(pTb Bpb)

is invariant with respect to the transformations pa ← αpa and pb ← βpb for any positive
scalars α, β ∈ R. Consider three possible constraints on pa and pb, respectively:

pTaApa = 1, ‖pa‖2 = 1, pa �= 0, (10a)

pTb Bpb = 1, ‖pb‖2 = 1, pb �= 0. (10b)

Maximizing the quotient ρ(pa, pb) subject to pa satisfying any one of the constraints
in (10a) and pb satisfying any one of constraints in (10b) (besides pTa Pa (�−1) =
0, pTb Pb (�−1) = 0 in Step 2) yield the same optimal pa and pb in direction. Here we pick
the constraint ‖pa‖2 = ‖pb‖2 = 1 to avoid explicit normalization after optimal pa and pb
in direction are determined.

A numerical method is also proposed in [24] to realize this OCCA model. They used
the SVD approach as outlined in Section 2.1 for computing the first pair (pa1, pb1). For the
subsequent pairs (pa�, pb�), they established a theorem [24, Theorem 1] which says that
(pa�, pb�) can be recovered from the eigenvector associated with the largest eigenvalue of a
nonsymmetric eigenvalue problem. It is this step that is most problematic computationally
because, as we attempted to repeat the numerical results in [24], we found that the largest
eigenvalue of the nonsymmetric eigenvalue problem in [24, Theorem 1] may not be well-
defined. Numerically, we (and the authors of [24] themselves too1) have often encountered
that the largest many eigenvalues (in magnitude) are complex. That leads to an impasse
with no sensible way to go forward.

3. Range constrained orthogonal CCA

Drawing inspiration from the range constrained CCA (4) as an improved variant of
CCA (3), we propose yet a new OCCA model as a variant of the Shen-Sun-Yuan OCCA
model, by adding range constraints.

Range constrained OCCA model:
(1) Define the first pair, denoted by (pa1, pb1), as the pair of maximizers of

max
‖pa‖2=‖pb‖2=1

pTaCpb√
(pTaApa)(pTb Bpb)

subject to pa ∈ R(Xa), pb ∈ R(Xb),

i.e. (4) with k = 1.
(2) Suppose that (pai, pbi) for 1 ≤ i ≤ � − 1 have already been defined. The next pair

(pa�, pb�) is defined as the pair of maximizers of

max
‖pa‖2=‖pb‖2=1

pTaCpb√
(pTaApa)(pTb Bpb)

(11a)
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subject to pTa Pa (�−1) = 0, pTb Pb (�−1) = 0, (11b)

pa ∈ R(Xa), pb ∈ R(Xb), (11c)

where Pa (�−1) = [pa1, pa2, . . . , pa (�−1)] and Pb (�−1) = [pb1, pb2, . . . , pb (�−1)].
(3) The process is repeated as many times as needed.

To numerically realize the model, for Step 1, we can use the SVD approach that we
outlined above from (5a) to (9) to compute (pa1, pb1). To solve (11a), similar to the deflation
idea for the sparse PCA [20], we first establish Lemma 3.1 and Theorem 3.1.

Lemma 3.1: Let Wa ∈ R
n×t , and suppose that WT

a Wa = It and R(Wa) ⊆ R(Xa). Then
pTaWa = 0 and pa ∈ R(Xa) if and only if pa ∈ R(X̃a), where

X̃a = (I − WaWT
a )Xa. (12)

Proof: NoticeR(Wa) ⊆ R(Xa) to get

R(X̃a) = R(Xa − WaWT
a Xa) ⊆ R(Xa)

and noticeWT
a Wa = It to get

WT
a X̃a = (WT

a − WT
a WaWT

a )Xa = (WT
a − WT

a )Xa = 0.

Therefore, if pa ∈ R(X̃a), then pTaWa = 0 and pa ∈ R(Xa). On the other hand, sup-
pose pTaWa = 0 and pa ∈ R(Xa). By pTaWa = 0, we have WT

a pa = 0 ⇒ WaWT
a pa = 0.

Therefore

pa = pa − WaWT
a pa = (I − WaWT

a )pa.

Since also pa ∈ R(Xa), there exists a vector za such that pa = Xaza. Hence

pa = (I − WaWT
a )Xaza = X̃aza ∈ R(X̃a),

as expected. �

Theorem 3.1: Let Wa ∈ R
n×t , Wb ∈ R

m×t . Suppose that WT
a Wa = WT

b Wb = It ,
R(Wa) ⊆ R(Xa) andR(Wb) ⊆ R(Xb). Then the following maximization problem

max
‖pa‖2=‖pb‖2=1

pTaCpb√
(pTaApa)(pTb Bpb)

(13a)

subject to pTaWa = 0, pTbWb = 0, (13b)

pa ∈ R(Xa), pb ∈ R(Xb), (13c)

is equivalent to

max
‖pa‖2=‖pb‖2=1

pTa C̃pb√
(pTa Ãpa)(pTb B̃pb)

(14a)

subject to pa ∈ R(X̃a), pb ∈ R(X̃b), (14b)
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in the sense that both have the same pair of maximizers, where X̃a = (I − WaWT
a )Xa, X̃b =

(I − WbWT
b )Xb, Ã = X̃aX̃T

a , B̃ = X̃bX̃T
b and C̃ = X̃aX̃T

b .

Proof: By Lemma 3.1, we see that the constraints of (13) and these of (14) are the same.
Next, For (pa, pb) satisfying the constraints, we have

X̃T
a pa = XT

a (I − WaWT
a )Tpa = XT

a (pa − WaWT
a pa) = XT

a pa, X̃T
b pb = XT

b pb.

Therefore, pTaApa = pTa Ãpa, pTb Bpb = pTb B̃pb, and p
T
aCpb = pTa C̃pb, implying the two objec-

tive functions have the same value. �

The importance of Theorem 3.1 is that it relates the maximization problem (13) to (14).
The pair of maximizers of (14) can be again solved robustly by the SVD approach out-
lined from (5a) to (9) in Section 2.1. Since the range constrained OCCA problem (11) is
in the form of (13) withWa = Pa (�−1) andWb = Pb (�−1), the problem (11) can be solved
robustly by the SVD approach. In actual implementation, we may overwrite Xa and Xb for
X̃a and X̃b and update them one vector at time as soon as a new pair is computed.We sum-
marize the method for solving the the range constrained OCCA model in Algorithm 1.

Algorithm 1 rc-OCCA: range constrained OCCA
Require: Xa ∈ R

n×q andXb ∈ R
m×q (both centred and, optionally, columns normalized),

integer 1 ≤ k ≤ min{m, n, q};
Ensure: Pa = [pa1, . . . , pak] ∈ R

n×k and Pb = [pb1, . . . , pbk] ∈ R
m×k that solve the range

constrained OCCA model and satisfy PTa Pa = PTb Pb = Ik.
1: compute the SVDs in (5);
2: compute the SVD (8), and let pa1 = Ua�

−1
a U(:,1), pb1 = Ub�

−1
b V(:,1);

3: for i = 2 to k do
4: Xa = Xa − pa (i−1)(pTa (i−1)Xa), Xb = Xb − pb (i−1)(pTb (i−1)Xb);
5: compute the SVDs in (5);
6: compute the SVD (8), and let pai = Ua�

−1
a U(:,1), pbi = Ub�

−1
b V(:,1);

7: end for
8: return Pa = [pa1, . . . , pak] and Pb = [pb1, . . . , pbk].

4. Range constrained partial OCCA

In the OCCA models of the previous section, both transformation matrices Pa and Pb
have orthonormal columns. In some applications [25,26], datasets Xa and Xb stand for
source input and target, respectively. For example, in multi-label classification [26] (see
Section 5.3), Xa is the input data, while Xb is the target class labels where each entry is
generally represented by a binary variable: ‘1’ for the existence of one label and ‘0’ for non-
existence of the label. Since one sample is allowed to have multiple labels, the orthogonal
basis in Pb for Xb might not be able to fully characterize the correlations among labels.
Hence, there are needs and justifications to make only one of them, say Pa, have orthonor-
mal columns, while PTb BPb = Ik for Pb because of the needs in keeping the correlations of
the target labels. Collectively, we will call such variants partial OCCA (pOCCA).
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Range constrained pOCCA model:
(1) Define the first pair, denoted by (pa1, pb1), as the pair of maximizers of

max
‖pa‖2=‖pb‖B=1

pTaCpb√
(pTaApa)(pTb Bpb)

subject to pa ∈ R(Xa), pb ∈ R(Xb)

i.e. (29) with k = 1.
(2) Suppose that (pai, pbi) for 1 ≤ i ≤ � − 1 have already been computed. The next pair

(pa�, pb�) is defined as the pair of maximizers of

max
‖pa‖2=‖pb‖B=1

pTa Ĉpb√
(pTaApa)(pTb B̃pb)

(15a)

subject to pTa Pa (�−1) = 0, (15b)

pa ∈ R(Xa), pb ∈ R(X̃b), (15c)

where Pa (�−1) = [pa1, pa2, . . . , pa (�−1)], Pb (�−1) = [pb1, pb2, . . . , pb (�−1)], and

X̃b = [I − Pb (�−1)PTb (�−1)B]Xb, B̃ = X̃bX̃T
b , Ĉ = XaX̃b.

(3) The process is repeated as necessary.

The range constrained pOCCAmodelwill define the columns of bothPa andPb sequen-
tially. It is clear that at the end PTa Pa = Ik, but it is not so clear if PTb BPb = Ik also. In
fact, it is, as a corollary of the following lemma which says pb ∈ R(X̃b) in (15) implies
pTb BPb (�−1) = 0 and pb ∈ R(Xb).

Lemma 4.1: Let Wb ∈ R
n×t , and suppose that WT

b BWb = It andR(Wb) ⊆ R(Xb). Then
pTb BWb = 0 and pb ∈ R(Xb) if and only if pb ∈ R(X̃b), where

X̃b = (I − WbWT
b B)Xb. (16)

Proof: Since R(Wb) ⊆ R(Xb), we find R(X̃b) ⊆ R(Xb). It can also be verified that
(BWb)

TX̃b = 0 upon usingWT
b BWb = It . Thus if pb ∈ R(X̃b), then pTb BWb = 0 and pb ∈

R(Xb). On other hand, if pTb BWb = 0 and pb ∈ R(Xb), then

pb = pb − WbWT
b Bpb = (I − WbWT

b B)pb = (I − WbWT
b B)Xbzb

for some vector zb. Hence pb ∈ R(X̃b). �

To numerically realize the range constrained pOCCA model, for Step 1, we can again
use the SVD approach that we outlined above from (5) to (9) to compute (pa1, pb1). To
solve (15), we establish the following theorem similar to Theorem 3.1.

Theorem 4.1: Let Wa ∈ R
n×t , Wb ∈ R

m×t . Suppose that WT
a Wa = WT

b BWb = It ,
R(Wa) ⊆ R(Xa) andR(Wb) ⊆ R(Xb). Then the following maximization problem

max
‖pa‖2=‖pb‖B=1

pTa Ĉpb√
(pTaApa)(pTb B̃pb)

(17a)

subject to pTaWa = 0, (17b)
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pa ∈ R(Xa), pb ∈ R(X̃b), (17c)

is equivalent to

max
‖pa‖2=‖pb‖B=1

pTa C̃pb√
(pTa Ãpa)(pTb B̃pb)

(18a)

subject to pa ∈ R(X̃a), pb ∈ R(X̃b), (18b)

in the sense that both have the same pair of maximizers, where X̃a and X̃b are as defined in
(12) and (16), respectively, and Ã = X̃aX̃T

a , B̃ = X̃bX̃T
b , Ĉ = XaX̃T

b , and C̃ = X̃aX̃T
b .

Proof: By Lemmas 3.1 and 4.1, we see that the constraints of the problem (17) and those
of (18) are the same. Next for (pa, pb) that satisfies the constraints, we have X̃T

a pa = XT
a pa.

Therefore pTa Ãpa = pTaApa and pTa Ĉpb = pTa C̃pb. �

The optimization problem (18) can be solved in the same way as we did for Step 1.
In actual implementation, we may overwrite Xa and Xb for X̃a and X̃b and update them
one vector at time as soon as a new pair is computed. We summarize this method in
Algorithm 2.

Algorithm 2 rc-pOCCA: range constrained pOCCA
Require: Xa ∈ R

n×q and Xb ∈ R
m×q (both centred and, optionally, columns normal-

ized), integer 1 ≤ k ≤ min{m, n, q};
Ensure: Pa = [pa1, . . . , pak] ∈ R

n×k and Pb = [pb1, . . . , pbk] ∈ R
m×k that solve the range

constrained pOCCA model and satisfy PTa Pa = PTb BPb = Ik.
1: B = XbXT

b ;
2: compute the SVDs in (5);
3: compute the SVD (8), and let pa1 = Ua�

−1
a U(:,1), p̂b1 = Ub�

−1
b V(:,1), pb1 =

p̂b1/‖p̂b1‖B;
4: for i = 2 to k do
5: Xa = Xa − pa (i−1)(pTa (i−1)Xa), Xb = Xb − pb (i−1)((pTb (i−1)B)Xb);
6: compute the SVDs in (5);
7: compute the SVD (8), and let pai = Ua�

−1
a U(:,1), p̂bi = Ub�

−1
b V(:,1), pbi =

p̂bi/‖p̂bi‖B;
8: end for
9: return Pa = [pa1, . . . , pak] and Pb = [pb1, . . . , pbk].

Remark 4.1: We would like to draw the attention of the reader to the objective function
in (15) of the range constrained pOCCAmodel. It is perhaps not in the form as one might
expect. The objective function (15) is designed in such a way so that the resulting max-
imization problem is readily solvable by the SVD approach while at the end PTb BPb = Ik
is guaranteed. In view of the range constrained OCCA model in Section 2.2, it is perhaps
more natural in Step 2 of the range constrained pOCCA model to use, instead of (15),

max
‖pa‖2=‖pb‖B=1

pTaCpb√
(pTaApa)(pTb Bpb)

(19a)
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subject to pTa Pa (�−1) = 0, pTb BPb (�−1) = 0, (19b)

pa ∈ R(Xa), pb ∈ R(Xb). (19c)

Indeed, our first try was precisely this, and then we found that there is no good way to solve
it by the SVD. We now explain. To simplify notation, we consider

max
‖pa‖2=‖pb‖B=1

pTaCpb√
(pTaApa)(pTb Bpb)

(20a)

subject to pTaWa = 0, pTb BWb = 0, (20b)

pa ∈ R(Xa), pb ∈ R(Xb), (20c)

whereWa ∈ R
n×t ,Wb ∈ R

m×t , satisfyingWT
a Wa = WT

b BWb = It ,R(Wa) ⊆ R(Xa) and
R(Wb) ⊆ R(Xb). By Lemmas 3.1 and 4.1, we see (20c) is equivalent to pa ∈ R(X̃a) and
pb ∈ R(X̃b), where X̃a and X̃b are as defined in (12) and (16), respectively. As in the proof
of Theorem 3.1, for pa ∈ R(X̃a) we have X̃T

a pa = XT
a pa, but for pb ∈ R(X̃b), we do not

have X̃T
b pb = XT

b pb. In fact, since pb ∈ R(X̃b) implies (I − WbWT
b B)pb = pb, we have

XT
b pb = XT

b (I − WbWT
b B)pb =: X̂T

b pb,

where X̂b = (I − WbWT
b B)TXb = (I − BWbWT

b )Xb. Consequently, the maximization
problem (20) is equivalent to

max
‖pa‖2=‖pb‖B=1

pTa X̃aX̂T
b pb√

(pTa Ãpa)(pTb B̂pb)
(21a)

subject to pa ∈ R(Xa), pb ∈ R(X̃b), (21b)

where B̂ = X̂bX̂T
b . In general, X̂b = (I − BWbWT

b )Xb �= X̃b = (I − WbWT
b B)Xb, and thus

X̂T
b pb �= X̃T

b pb. But more seriously, R(X̂b) �= R(X̃b), making the SVD approach that we
outlined above from (5) to (9) not readily suitable to solve (21).

5. Numerical experiments

We have conducted extensive numerical experiments to evaluate the proposed range con-
strained OCCA and pOCCA models as feature extraction approaches on three popular
applications of CCA, namely unsupervised feature fusion, multi-target regression and
multi-label classification.

5.1. Unsupervised feature fusion

Feature fusion is an important part of information fusion. Multiple features can be
extracted from the same pattern, and they usually reflect different characteristics of the
pattern. The aim of the feature fusion is to combine different sets of features for better
classification. CCA was used for feature fusion by effectively leveraging the inherent cor-
relations between two feature sets [27]. Specifically, the CCA-based fusion method first
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extracts canonical correlation features from two groups of feature vectors of the same
pattern; and then a fusion method is used to combine two sets of canonical correlation
features; and finally, the fused features are used for pattern recognition.

We evaluate our proposed range constrained OCCA models on the real-world datasets
with the inputs of two featurematricesXa andXb extracted from the same patterns by com-
paring with the traditional CCA. It is worth noting that the supervised information such
as class labels are not used for inferring the fused features. To evaluate the performance, we
split the dataset into training set and testing set, denoted by (Xa,Xb) and (X′

a,X′
b), respec-

tively. The training stage and testing stage of CCA-based unsupervised feature fusion are
shown as follows.

Training Stage
(1) Input datasets Xa ∈ R

n×q and Xb ∈ R
m×q

(2) Centralize the datasets Xa ← Xa − μa111Tq and Xb ← Xb − μb111Tq , where centres μa =
(1/q)Xa111q and μb = (1/q)Xb111q.

(3) Apply the range constrained CCA or OCCA model to the dataset pair (Xa,Xb) and
obtain transformation matrix pair (Pa,Pb), for a selected positive integer k (1 ≤ k ≤
min{m, n, p}).

(4) Use two fusion strategies, namely serial feature fusion (denoted as PR1) and parallel
feature fusion (denoted as PR2), to obtain a fused feature matrix Z:

(PR1) Z =
[
PTa 0
0 PTb

] [
Xa
Xb

]
=

[
PTa Xa
PTb Xb

]
, (22)

(PR2) Z =
[
Pa
Pb

]T [
Xa
Xb

]
= PTa Xa + PTb Xb. (23)

Testing and Evaluation Stage
(1) Input datasets X′

a ∈ R
n×q′

and X′
b ∈ R

m×q′
, transformation matrices Pa and Pb, cen-

tralized vectors μa and μb, and class labels y ∈ {1, 2, . . . , c}q of the training dataset and
y′ ∈ {1, 2, . . . , c}q′

of the testing dataset, where c is the number of classes.
(2) Centralize testing datasets using centres from the training set: X′

a ← X′
a − μa111Tq′ and

X′
b ← X′

b − μb111Tq′ .
(3) Apply the fusion strategies (22) or (23) to obtain a fused feature matrix Z′.
(4) Compute the prediction using the nearest neighbour classifier, for i = 1, . . . , q′,

i∗ = arg min
j=1,...,q

‖z′i − zj‖2, y∗
i = yi∗ , (24)

where zj is the jth column of Z and z′i is the ith column of Z′.
(5) Given true classes y′, the classification accuracy is computed as

accuracy(y′, y∗) = 1
q′

q′∑
i=1

δ(y′
i, y

∗
i ), (25)

where δ(y′
i, y

∗
i ) = 1 if y′

i = y∗
i and 0 otherwise.

We evaluate the classification performance of each method via the nearest neighbour
classifier over the testing data in terms of the accuracy (25). The bigger the accuracy is, the
better the method performs.

A publicly available multiple feature dataset2 is used for the classification evaluation of
the compared methods. It consists of features of handwritten numerals (‘0’–‘9’) extracted
from a collection of Dutch utility maps. Hence, there are c = 10 classes, each of which has
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200 patterns, so there are q + q′ = 2000 in total. Each pattern was digitized as a binary
image and is represented by 6 different feature sets:

(1) fou: 76 Fourier coefficients of the character shapes;
(2) fac: 216 profile correlations;
(3) kar: 64 Karhunen-Love coefficients;
(4) pix: 240 pixel averages in 2 × 3 windows;
(5) zer: 47 Zernike moments;
(6) mor: 6 morphological features.

Each method takes two sets of features as the inputs, and so there are 15 combinations.
For each combination, we randomly choose q = 300 samples for training, and the rest
q′ = 1700 samples are used for testing. As the minimum number of features in the six
views is 6, we set parameter k of OCCA the same as the maximal dimension obtained by
CCA. Each random experiment is repeated 10 times and the average results in terms of
classification accuracy are reported.

In Table 1, we show the average classification accuracies of the traditional CCA
model (3) via MATLAB’s canoncorr and the range constrained OCCA model
(Algorithm 1) by using both fusion methods PR1 and PR2. From Table 1, we have the
following observations:

(1) The range constrained OCCA model (Algorithm 1) has achieved significantly
improved recognition rates for all 15 testing combinations in terms of both the
serial feature strategy (PR1) and the parallel feature strategy (PR2), over all 15
combinations. A major reason is that the basis constructed by the traditional CCA
is only conjugate orthogonal, which is heavily influenced by both the number and the
dimensionality of samples, while a directly constructed orthogonal basis seems less
sensitive to them.

Table 1. Average classification accuracies of unsupervised feature fusion by the range constrained
traditional CCA (4) and OCCA (11).

CCA OCCA

No. Feature combination PR1 PR2 PR1 PR2

1 Fou-Fac 0.5739 0.5568 0.9581 0.9413
2 Fou-Kar 0.7838 0.7223 0.9596 0.9390
3 Fou-Pix 0.4482 0.4461 0.9599 0.9434
4 Fou-Zer 0.7183 0.6931 0.8482 0.8189
5 Fou-Mor 0.7052 0.6918 0.8254 0.7326
6 Fac-Kar 0.8131 0.8039 0.9488 0.9295
7 Fac-Pix 0.5675 0.5331 0.9481 0.9399
8 Fac-Zer 0.7128 0.7113 0.9310 0.9215
9 Fac-Mor 0.6531 0.6499 0.9178 0.7984
10 Kar-Pix 0.7827 0.7800 0.9298 0.9280
11 Kar-Zer 0.8362 0.8042 0.9472 0.8542
12 Kar-Mor 0.7519 0.7280 0.9441 0.8648
13 Pix-Zer 0.5884 0.5914 0.9522 0.8760
14 Pix-Mor 0.5367 0.5231 0.9449 0.8895
15 Zer-Mor 0.7109 0.6952 0.7788 0.7182
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(2) The rc-OCCA model using the serial feature strategy (PR1) generally shows better
results than using the parallel feature strategy (PR2).

Based on the above observations, we may reasonably draw conclusions that the OCCA
outperforms the traditional CCA, and is more robust, accurate, and effective.

We note that since Shen-Sun-YuanOCCAmodel and algorithm [24] encounter numer-
ical difficulty due to the involvement of complex eigenvalues and eigenvectors of nonsym-
metric matrix eigenvalue problems, we cannot replicate their numerical experiments and,
consequently, we do not include their numerical results.

5.2. Multi-Target regression

Multi-target regression (MTR) is the task of predictingmultiple continuous variables using
a common set of input variables [25]. Such problems arise in various fields such as eco-
logical modeling, economics and energy. An informal definition of the MTR task can be
explained as follows. Let Xa ∈ R

n×q be the input data and Xb ∈ R
m×q be the correspond-

ing output, where n is the number of features, m is the number of output targets, and q is
the number of data points. For each input data point xa, its corresponding output target is
xb. We assume that a sample (xa, xb) is identically and independently sampled from a joint
unknown distribution. Given a set of q sample pairs consisting of corresponding columns
of Xa and Xb, the goal of MTR is to learn a function h that is able to predict, for given
input xa, an output x̂b = h(xa) that best approximates the true output xb with good gener-
alization to unseen data or testing data. Following the conventional method [25], MTR is
transformed into a series of single-target regression problems. Componentwise, we write
h = [h1, . . . , hm]T. In what follows, we summarize the training stage and testing stage for
CCA-based MTR.

Training stage
(1) Input datasets Xa ∈ R

n×q and Xb ∈ R
m×q.

(2) Centralize the datasetsXa ← Xa − μa111Tq andXb ← Xb − μb111Tq , where the centresμa =
(1/q)Xa111q and μb = (1/q)Xb111q.

(3) Apply the range constrained CCA, OCCA or pOCCAmodels to the dataset pair (Xa,Xb)
and obtain transformation matrix pair (Pa, Pb) for a chosen positive integer k (1 ≤ k ≤
min{m, n, q}). Note that for the pOCCA model, orthogonal constraint is only imposed
on Pa.

(4) Define the transformed data Z = PTa Xa, which is considered as the most correlated to
target.

(5) Use the L2-regularized L2-loss support vector regression model [9] to learn the linear
function h(z) = wTz + b from any input z to its output target h(z). Specifically, for the
transformed data Z = [z1, . . . , zq] and its true target matrix Xb with the jth target of the
ith data point denoted by (Xb)j,i, solve the following optimization problem with respect
toW = [w1, . . . ,wm] ∈ R

n×m and b = [b1, . . . , bm] ∈ R
m:

min
W, b

m∑
j=1

[
1
2
wT
j wj + α

q∑
i=1

(
max{0, |(Xb)j,i − wT

j zi − bj| − ε}
)2]

, (26)

where α is the regularization parameter and ε is another parameter used to tolerate the
deviation of predicted target to the true target within [−ε, ε]. The liblinear toolbox3 is
used to solve (26).
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Testing and evaluation stage
(1) Input test datasets X′

a ∈ R
n×q′

and X′
b ∈ R

m×q′
, transformation matrix Pa and centres

μa and μb.
(2) Centralize testing data X′

a ← X′
a − μa111Tq′ and X′

b ← X′
b − μb111Tq′ .

(3) Apply the learned function h to predict the target value of testing dataset X′
a, i.e. for

i = 1, . . . , q′ and j = 1, . . . ,m,

(X∗)j,i = wT
j z

′
i + bj,

where Z′ = PTa X′
a ≡ [z′1, z

′
2, . . . , z

′
q′ ].

(4) Compute the mean square error (MSE)

MSE(X∗,Xb) = 1
q′

q′∑
i=1

m∑
j=1

[
(X∗)j,i − (X′

b)j,i
]2 .

We use MSE to measure the learning performance of MTR. Smaller error indicates
better performance. Similarly to unsupervised feature fusion, we set parameter k to
be the maximal number that can be obtained by CCA. We set ε = 0.1 as the default
value and tune the regularization parameter in the support vector regression in the grid
{0.01, 0.1, 1, 10, 100} for the best performance of all compared methods.

The datasets used for MTR are shown in Table 2. These datasets were collected from
a variety of application domains and are publicly available4. Detailed information about
these datasets are available at the corresponding references cited in Table 2. For each
dataset, 70% of the data is randomly chosen as the training set and the rest 30% is used
as the testing set. Each random experiment is repeated 10 times and the average results
in terms of MSE for the testing data are reported to evaluate the learning generalization
performance.

The last three columns in Table 2 are MSEs for 3 models on 11 datasets, where the best
results are highlighted in bold. We observe that OCCA achieves smallest MSEs in 6 out
of 11 datasets, while the other two methods manage to perform the best on 5 datasets
albeit marginally. For the 6 examples that OCCA achieves best MSEs, OCCA gains sig-
nificantly over the traditional CCA, and pOCCA also achieves very good performance
on these examples over the traditional CCA. From these observations, it is clear that the
orthogonal constraints that are imposed in OCCA and pOCCA are good things to do and
indeed often result in superior performances.

Table 2. Datasets for testing MTR with MSEs by range constrained traditional CCA (4), OCCA (11) and
pOCCA (15).

No. Data Samples Features Targets CCA OCCA pOCCA

1 oes97 [25] 334 263 16 144.0861 3.6446 5.2188
2 oes10 [25] 403 298 16 155.6010 3.1584 5.2769
3 scm1d [25] 9803 280 16 2.5760 3.6233 2.5352
4 scm20d [25] 8966 61 16 6.6199 7.8394 7.2190
5 wq [7] 1060 16 14 12.9751 12.8588 12.8691
6 atp1d [25] 337 411 6 939.5027 1.3920 5.0789
7 atp7d [25] 296 411 6 311.7144 2.4815 3.9091
8 andro [15] 49 30 6 123.7381 4.0023 4.6754
9 slump [31] 103 7 3 1.5772 2.5342 1.5809
10 edm [19] 154 16 2 1.1502 1.2728 1.1292
11 enb [29] 768 8 2 0.2038 0.4331 0.2068



OPTIMIZATION METHODS & SOFTWARE 801

5.3. Multi-Label classification

Multi-label classification (MLC) is similar to MTR since both deal with the prediction of
multiple variables using a common set of input variables. However, the targets in MLC
are binary variables {−1,+1} instead of continuous variables in MTR. We call the sam-
ple with label +1 the positive sample, and the one with label −1 the negative sample. The
conventional approach of MLC is to learn a separate binary classification model for each
task. Here we aim to evaluate different CCA models for multi-label classification. In [26],
CCA methods were used to project the data into a lower-dimensional space in which the
L2-regularized L1-loss support vector classificationmodel [9] is applied for classifying each
label separately.

Training stage
(1) Input training datasets Xa ∈ R

n×q and Xb ∈ R
m×q.

(2) Centralize Xa ← Xa − μa111Tq and Xb ← Xb − μb111Tq , where the centres μa = (1/q)Xa111q
and μb = (1/q)Xb111q.

(3) Apply the range constrained CCA, OCCA or pOCCAmodels to the dataset pair (Xa,Xb)
and obtain transformation matrix pair (Pa,Pb) for a chosen positive integer k, 1 ≤ k ≤
min{m, n, q}. Note that for the pOCCA, orthogonal constraint is only imposed on Xa.

(4) Define the transformed data Z = PTa Xa, which is most correlated to the target.
(5) Use the L2-regularized L1-loss support vector classification model [9] to learn a binary

classification function h(z) = sign(wTz + b) from any input z to its output target
h(z) ∈ {−1, 1}. Specifically, given the transformed data Z = [z1, . . . , zq] and its true
target matrix Xb with the jth target of the ith data point denoted by (Xb)j,i, solve
the following optimization problem with respect to W = [w1, . . . ,wm] ∈ R

n×m and
b = [b1, . . . , bm] ∈ R

m:

min
W, b

m∑
j=1

[
1
2
wT
j wj + γ

q∑
i=1

max
{
0, 1 − (Xb)j,i (wT

j zi + bj)
}]

, (27)

where γ is the regularization parameter. The liblinear toolbox5 is used to solve (27).
Testing and evaluation stage
(1) Input testing datasets X′

a ∈ R
n×q′

and X′
b ∈ R

m×q′
, transformation matrix Pa, and cen-

tres μa and μb.
(2) Centralize testing data X′

a ← X′
a − μa111Tq′

(3) Apply the learned function h to predict the target value of the testing dataset X′
a, i.e. for

i = 1, . . . , q′ and j = 1, . . . ,m,

fj(z′i) = wT
j z

′
i + bj,

(X∗)j,i = sign(fj(z′i))

where Z′ = PTa X′
a ≡ [z′1, z

′
2, . . . , z

′
q′ ].

(4) Given the true target matrix Xb, accuracy (ACC) and area under the curve (AUC) [4] are
used for evaluating the learning performance:

Accuracy(X∗,Xb) = 1
q′m

q′∑
i=1

m∑
j=1

δ((X∗)j,i, (Xb)j,i),

AUC(h(Z′),X′
b) = 1

m

m∑
j=1

∑
i∈Sj+

∑
j∈Sj− 1fj(z′i)>fj(z′j)

|S j
+| × |S j

−|
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where δ((X∗)j,i, (Xb)j,i) = 1 if (X∗)j,i = (Xb)j,i and 0 otherwise, the set of positive samples
S j

+ = {i : (Xb)j,i = +1, 1 ≤ i ≤ q′} of the jth label, the set of negative samples S j
− = {i :

(Xb)j,i = −1, 1 ≤ i ≤ q′} of the jth label, and 1a>b = 1 if the predicate a> b is true, and
0 otherwise.

The datasets used in this numerical experiments are from Mulan: A Java Library for
Multi-Label Learning6 except rcv1subset_topics7 and Bibtex.8 The training and testing
are provided for evaluating the classification performance. Both ACC and AUC scores are
computed for each label and the averaged performance over all labels is reported. That
ACC and AUC are closer to 1 means better performance.

Table 3 shows the statistics of the 10 datasets used in our experiments including data
splitting for training and testing, the number of features, and the number of labels, as well as
the classification scores ACC and AUC of the three methods on the 10 datasets by varying
parameters k and γ (details will be shown later). The best results are shown in bold. In terms
of ACC and AUC, OCCA model achieves best results on 7 out of the 10 datasets. pOCCA
also shows quite good results, very close to these by OCCA and outperforms CCA in most
cases. It implies that the orthogonal constraints that are imposed in OCCA work well for
MLC, too.

We further conduct the sensitivity analysis of our proposed methods against CCA in
terms of k and the parameter C of SVM varied in {0.01, 0.1, 1, 10, 100}. As discussed above,
k is constrained to be no larger than min{m, n, q}. Hence, we evaluate different k values
according to the statistics of MLC datasets based on the following rules: for datasets with
the number of labelsm<20, each k from 1 tom is evaluated; for 20 ≤ m < 200, we choose

k ∈ {1, 2, . . . , 10} ∪ {20, 40, 60, . . . ,m} ∪ {m};
otherwise, k ∈ {1, 2, . . . , 10} ∪ {30, 60, 90, . . . ,m} ∪ {m}. Figure 1 shows the best ACC and
AUC over all evaluated γ s with respect to the varied number ks on four datasets. Figure 2
shows the best ACC and AUC over all evaluated k with respect to varying γ on the same
four datasets. According to Figures 1 and 2, we have the following observations. (1) For all
three methods, both ACC and AUC increase when k increases at the beginning and then
reach to be either stable or degraded. So, the maximum reachable k is not always the best.
(2) The varied regularization parameter γ in SVM can properly reflect the generalization
performances of SVM classifier, where the peak is located differently for the four datasets
and a properly chosen γ is necessary to achieve the best performance. (3) our methods

Table 3. ACC and AUC of MLC by range constrained traditional CCA (4), OCCA (11) and pOCCA (15).

Data Training Testing Features Labels CCA OCCA pOCCA

ACC AUC ACC AUC ACC AUC

Mediamill 30993 12914 120 101 0.6077 0.7032 0.6259 0.7011 0.5901 0.6995
Scene 1211 1196 294 6 0.6787 0.7636 0.6968 0.7854 0.6839 0.7724
Birds 322 323 260 19 0.6071 0.6279 0.7792 0.7236 0.7103 0.7618
Corel5k 4500 500 499 374 0.6387 0.4638 0.8001 0.4842 0.6305 0.4817
Emotions 391 202 72 6 0.7368 0.7613 0.7021 0.7272 0.7310 0.7652
Yeast 1500 917 103 14 0.5920 0.6284 0.5908 0.6242 0.5894 0.6308
rcv1_topics 3000 3000 47236 101 0.5191 0.5415 0.6891 0.8092 0.6035 0.7714
Bibtex_0 2515 4880 1836 159 0.5670 0.6873 0.6591 0.7892 0.5744 0.7431
Bibtex_1 2515 4880 1836 159 0.5799 0.6895 0.6623 0.7860 0.5892 0.7472
Delicious 12920 3185 500 983 0.9384 0.6842 0.8662 0.6993 0.8662 0.6956
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Figure 1. ACC and AUC of MLC by varying k on four datasets.

Figure 2. ACC and AUC of MLC by varying C of SVM on four datasets.

in general show significantly better results than CCA over various k and γ . Even for the
dataset such as yeast, our methods still demonstrate very competitive results over all set of
parameters.

6. Concluding remarks

We have proposed a range constrained OCCA model and a range constrained partial
OCCA (pOCCA) model. It draws inspiration from the standard SVD, where singular vec-
tors can be defined one-by-one. Upon imposing appropriate orthogonality conditions, the
singular vectors so defined are provably the same as the ones otherwise defined all together.

We have tested both models and our implementations on various datasets from three
data science applications. Our experimental results show that the proposed range con-
strained OCCA and pOCCA models outperforms the traditional CCA model in most of
cases, and often the improvements are dramatic. Our pOCCA in multi-task regression
and multi-label classification also show improved results, and especially on the datasets
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where the correlation among labels can be very important as discussed in [6,14]. These
empirical observations are consistent with our initial assumption that (partial) orthogonal
constraints can be potentially used to boost the performance of the traditional CCA.

In this paper, our main intention is to show the effectiveness of the proposed models.
Currently, they are implemented through full explicit SVD and that can be very expensive
and memory intensive for high-dimensional problems. Our next stage is to exploit partial
SVD via Lanczos type methods such as the Golub-Kahan bi-diagonalization [12] for large
sized problems.

Ideally, a more direct orthogonal CCA model is to replace the constraints (3b) or (4b)
by PTa Pa = PTb Pb = Ik to yield the optimization problem

max
Pa∈Rn×k, Pb∈Rm×k

tr(PTa CPb)√
tr(PTa APa)tr(PTb BPb)

, (28a)

subject to PTa Pa = Ik, PTb Pb = Ik. (28b)

Additional range constraintsR(Pa) ⊂ R(Xa) andR(Pb) ⊂ R(Xb) can be included when
desired. Unfortunately, there is no existing numerical linear algebra technique for us to
readily build upon in order to solve (28) efficiently and robustly. Several generic opti-
mization methods (for example, the line-search methods and the trust-region method)
have been extended from the traditional Euclidean space case (e.g. [22,28]) to the Rie-
mannian mannifold [1,2,8] and may be used to solve (28), as suggested in [5]. Also, the
problem (28) is about maximization over the product of two Stiefel manifolds, and thus
possibly some generic Stiefel manifold-based optimization methods [2, Section 9.4], [8],
as well as some recent improvements [10,11,17,18,30] can be extended to deal with it. Nev-
ertheless, a direct calling of a generic optimization approach to (28) may at best find local
maximizers. In [32,33], it was numerically demonstrated that general optimization solvers
on a Stiefel manifold for maximizing certain trace ratio-related function may converge
slowly and yield less accurate solutions at convergence. Our development of rc-OCCA is a
surrogate of (28) and both share a same solution only if k = 1. Ourmantra in this paper has
been to seek effective algorithms that can be robustly implemented by harvesting proven
numerical linear algebra techniques, in this case SVD.

In the same spirit, a more straightforward pOCCA model than the one we proposed in
Section 4 is

max
Pa∈Rn×k, Pb∈Rm×k

tr(PTa CPb)√
tr(PTa APa)tr(PTb BPb)

, (29a)

subject to PTa Pa = Ik, PTb BPb = Ik. (29b)

where Pa is forced to have orthonormal columns while Pb to have B-orthonormal columns.
Again range constraints R(Pa) ⊂ R(Xa) and R(Pb) ⊂ R(Xb) can be included when
desired. As for OCCA (28), it is not clear how to solve (29) for k>1 with existing numeri-
cal linear algebra techniques, either. That leads us to design the range constrained pOCCA
model the way in Section 4.
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Notes

1. Private communications, 2019.
2. https://archive.ics.uci.edu/ml/datasets/Multiple+Features.
3. https://www.csie.ntu.edu.tw/∼ cjlin/liblinear/.
4. http://mulan.sourceforge.net/datasets-mtr.html.
5. https://www.csie.ntu.edu.tw/∼ cjlin/liblinear/.
6. http://mulan.sourceforge.net/datasets-mlc.html.
7. https://www.csie.ntu.edu.tw/∼ cjlin/libsvmtools/datasets/multilabel.html.
8. http://manikvarma.org/downloads/XC/XMLRepository.html.
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