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The matrix joint block-diagonalization problem (JBDP) of a
given matrix set A = {A;}", is about finding a nonsingular
matrix W such that all WTA;W are block-diagonal. It
includes the matrix joint diagonalization problem (JDP) as
a special case for which all WTA; W are required diagonal.
Generically, such a matrix W may not exist, but there are
practical applications such as multidimensional independent
component analysis (MICA) for which it does exist under the
ideal situation, i.e., no noise is presented. However, in practice
noises do get in and, as a consequence, the matrix set is only
approximately block-diagonalizable, i.e., one can only make
all WTAiW nearly block-diagonal at best, where W is an
approximation to W, obtained usually by computation. The
main goal of this paper is to develop a perturbation theory for
JBDP to address, among others, the question: how accurate this
W is. Previously such a theory for JDP has been discussed, but
no effort had been attempted for JBDP because, in large part,
there is no quantitative way to describe solution uniqueness
of JBDP until 2017 when Cai and Liu (2017) [9] successfully
obtained a necessary and sufficient uniqueness condition.
Based on the condition, in this article, we will establish a
perturbation theory for JBDP. Our main contributions incluﬂg}
an error bound for the approximate block-diagonalizer W
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and a backward error analysis for JBDP. Numerical tests are
presented to validate the theoretical results.
© 2019 Elsevier Inc. All rights reserved.

1. Introduction

The matrix joint block-diagonalization problem (JBDP) is about jointly block-
diagonalizing a set of matrices. In recent years, it has found many applications in
independent subspace analysis, also known as multidimensional independent compo-
nent analysis (MICA) (see, e.g., [1-4]) and semidefinite programming (see, e.g., [5-8]).
Tremendous efforts have been devoted to solving JBDP and, as a result, several numer-
ical methods have been proposed. The purpose of this paper, however, is to develop a
perturbation theory for JBDP. For this reason, we will not delve into numerical methods,
but refer the interested reader to [9-12] and references therein. The MATLAB toolbox for
tensor computation — TENSORLAB [13] can also be used for the purpose.

In the rest of this section, we will formally introduce JBDP and formulate its associated
perturbation problem, along with some notations and definitions. Through a case study
on the basic MICA model, we rationalize our formulations and provide our motivations
for current study. Previously, there are only a handful papers in the literature that
studied the perturbation analysis of the matrix joint diagonalization problem (JDP).
Briefly, we will review these existing works and their limitations. Finally, we explain our
contribution and the organization of this paper.

1.1. Joint block diagonalization (JBD)

A partition of positive integer n:

Tn = (N1,...,n4) (1.1)

means that nq,ns,...,n; are all positive integers and their sum is n, i.e., 25:1 n; =n.
The integer ¢ is called the cardinality of the partition 7,,, denoted by ¢ = card(r,).

Given a partition 7,, as in (1.1) and a matrix X € R™*™ (the set of nxn real matrices),
we partition X as

nl 712 e 7lt
n | X1 Xig o0 Xy
ng | Xo1 Xog -+- Xog
X = . .

ng th Xt2 Xtt

and define its 7, -block-diagonal part and 7, -off-block-diagonal part as
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Bdiag, (X) = diag(Xi1,...,Xy), OffBdiag, (X)= X — Bdiag, (X).

The matrix X is referred to as a 7,-block-diagonal matriz if OffBdiag, (X) = 0. The set
of all 7,-block-diagonal matrices is denoted by D .

The Joint Block Diagonalization Problem (JBDP). Let A = {A;}, be the set of m ma-
trices, where each A; € R™*"™. The JBDP for A with respect to 7, is to find a nonsingular
matrix W € R™ " such that all WTA;W are 7,-block-diagonal, i.e.,

WTAW = diag(AM ... A" for i=1,2,....m, (1.3)
where Agjj) € R™*™ . When (1.3) holds, we say that A is 7,-block-diagonalizable and
W is a 7,-block-diagonalizer of A. If W is also required to be orthogonal, this JBDP is
referred to as an orthogonal JBDP (O-JBDP).

By convention, if 7,, = (1,1,...,1), the word “7,,-block” is dropped from all relevant
terms. For example, “7,-block-diagonal” is reduced to just “diagonal”. Correspondingly,
the letter “B” is dropped from all abbreviations. For example, “JBDP” becomes “JDP”.
This convention is adopted throughout this article.

Generically, JBDP often has no solution for m > 3 and n; not so unevenly dis-
tributed, simply by counting the number of equations implied by (1.3) and the num-
ber of unknowns. For example, when m = 3 and n; = ny = n3z = n/3, there are
m(n? — Y!_ n?) = 2n? equations but only n? unknowns in W. However, in certain
practical applications such as MICA without noises, solvable JBDP do arise.

Definition 1.1. A permutation matrix IT € R™*™ is called 7,,-block-diagonal preserving if
' DIl € D, for any D € D, . The set of all 7,,-block-diagonal preserving permutation
matrices is denoted by P, .

Evidentally, any permutation matrix II € D, is in P, . This is because such a II
can be expressed as II = diag(Ily,...,II;), where II; is an n; x n; permutation matrix.
But not all IT € P, also belong to D, . For example, for n = 4 and 74 = (2,2),

0
is in P, when 7, = (1,1,...,1). It can be proved that for given IT € P, , there is a

I = {102 IQ] € P, but IT ¢ D,,. In particular, any permutation matrix II € R™*"

permutation 7 of {1,2,...,¢} such that
"Dl € D, = diag(Il] D(1)I11, 113 Do)y, . .., II Doy I,

for any D = diag(D1, Ds, ..., D;) € D,, . Specifically, the subblocks of II, if partitioned
as in (1.2), are all 0 blocks, except those at the block positions (7(j), j), which are n; xn;
permutation matrices II;. As a consequence, n; = n ;) for all 1 < j <t.

It is not hard to verify that if W is a 7,-block-diagonalizer of A, then so is W DII
for any given D € D, and Il € P, . In view of this, 7,-block-diagonalizers, if exist,
are not unique because any diagonalizer brings out a class of equivalent diagonalizers in
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the form of W DII. For this reason, we introduce the following definition for uniquely
block-diagonalizable JBDP.

Definition 1.2. Two 7,-block-diagonalizers W and W of A are equivalent if there exist
a nonsingular matrix D € D, and II € P, such that W = WDIL The JBDP for A is
said uniquely 7, -block-diagonalizable if it has a 7,-block-diagonalizer and if any two of
its 7,-block-diagonalizers are equivalent.

To further reduce freedoms for the sake of comparing two diagonalizers, we restrict
our considerations of block-diagonalizers to the matrix set:

Wy, == {W € R™™ : W is nonsingular and Bdiag, (W'W) = I,}. (1.4)

This doesn’t loss any generality because W [Bdiag, (WTW)]=%/2 € W, for any nonsin-
gular W € R"*".

1.2. Perturbation problem for JBDP

Let A= {4} = {Ai + AA}™,, where AA; is a perturbation to A;. Assume

= {A4;}i%, is mn-block-diagonalizable and W € W, is a 7,-block- diagonalizer and
(l 3) holds. Let W e W,,, be an approximate 7,,-block-diagonalizer of A in the sense
that all WTA W are approximately 7,-block-diagonal. How much does W differ from
the block-diagonalizer W of A?

There are two important aspects that need clarification regarding this perturbation
problem. First, A may or may not be 7,-block-diagonalizable. Although allowing this
counters the common sense that one can only gauge the difference between diagonal-
izers that exist, it is for a good reason and important practically to allow this. As we
argued above, a generic JBDP is usually not block-diagonalizable, and thus even if the
JBDP for A has a diagonalizer, its arbitrarily perturbed problem is potentially not block-
diagonalizable no matter how tiny the perturbation may be. This leads to an impossible
task: to compare the block-diagonalizer W of the unperturbed A, that does exist, to
a diagonalizer W of the perturbed matrix set A that may not exist. We get around
this dilemma by talking about an approximate diagonalizer for A, that always exist. It
turns out this workaround is exactly what some practical applications call for because
most practical JBDP come from block-diagonalizable JBDP but contaminated with noises
to become approximately block-diagonalizable and an approximate diagonalizer for the
noisy JBDP gets computed numerically. In such a scenario, it is important to get a sense
as how far the computed diagonalizer is from the exact diagonalizer of the clean albeit
unknown JBDP, had the noises not presented.

The second aspect is about what metric to use in order to measure the difference
between two block-diagonalizers, given that they are not unique. In view of Definition 1.2
and the discussion in the paragraph immediately proceeding it, we propose to use
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dist(W,W):=  min ||[W — WDII| (1.5)
DeD..,, ., D" D=1
IieP,,
for the purpose, where ||-|| is some matrix norm. Usually which norm to use is determined
by the convenience of any particular analysis, but for all practical purpose, any norm
is just as good as another. In our theoretical analysis below, we use both || - |2, the
matrix spectral norm, and | - ||r, the matrix Frobenius norm [14], but use only || - ||r

in our numerical tests because then (1.5) is computable. Additionally, in using (1.5),
we usually restrict W and W to W, . In fact, we can show that dist(-,-) is a metric
over W, for any unitary invariant norm || - ||y as follows: first, the non-negativity
dist(W, W) > 0 is obvious; second, dist(W, W) = 0 if and only if W and W are equivalent;
third, dist(W, W) = dist(W, W) holds since || - ||y is unitary invariant and D, II are
unitary; fourth, for any Wi, Wy, W3 € W, | let

(D127 ng) = argmin diSt(VVl7 Wg), (Dgg, Hgg) = argmin diSt(WQ, Wg)
DI D11

It can be seen that D = D23H23D12H53 € D, and is also orthogonal, and = II531115 €
P, , and finally

dist(Wy, W) < ||[Wy — W3 DII||y;
< ||Wy = WaD1oIlig|lui + ||WaDi2Ilig — W35ﬁHui
= diSt(Wl, Wg) + diSt(Wg, Wg)

1.8. A case study: MICA

MICA [1,15,4] aims at separating linearly mixed unknown sources into statistically
independent groups of signals. A basic MICA model can be stated as

x=Ms+w, (1.6)

where 2 € R™ is the observed mixture, M € R™*" is a nonsingular matrix (often called
the mizing matriz), s € R™ is the source signal, and v € R™ is the noise vector.

We would like to recover the source s from the observed mixture z. Let s =
[sT,..., stT]T with s; € R™ for j = 1,2,...,t,and v = [v,...,v,]". Assume that all s;
are independent of each other, and each s; has mean 0 and contains no lower-dimensional
independent component, and among all s;, there exists at most one Gaussian compo-
nent. Assume further that the noises vy, . .., v, are real stationary white random signals,
mutually uncorrelated with the same variance o2, and independent of the sources. To
recover the source signal s, it suffices to find M or its inverse from the observed mixture
x. Notice that if M is a solution, then so is M DII, where D is a block-diagonal scaling
matrix and II is a block-wise permutation matrix. In this sense, there are certain degree
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of freedoms in the determination of M. Such indeterminacy of the solution is natural,
and does not matter in applications. We have the following statements.

(a) The covariance matrix R,, of = satisfies
Ryr = E(zz™) = ME(ss")M™T + E(vo") = MR, M™ + 01, (1.7)

where E(-) stands for the mathematical expectation, and R,s is the covariance
matrix of s. By the above assumptions, we know that Rss € D, . Often o can be
very well estimated: o ~ 6. Then we have

Rye — 6% ~ MR, ,M". (1.8)

In particular, in the absence of noises, i.e., o = 0, (1.8) becomes an equality.
(b) The kurtosis® C2 of z is a tensor of dimension n x n x n x n. Fixing two indices, say
the first two, and varying the last two, we have

Ci(iy,ig,: ) = MC2(iy,ig, ) M7, (1.9)
where C? is the kurtosis of s and it can be shown that C2 (i1, ia,:,:) € D, .

Together, they result in a JBDP for

A={Ryy — 61} U{Cylir, i, 5, ) }} iy—1>
for which W := M~ T is an exact 7,-block-diagonalizer when no noise is presented.
When we attempt to numerically block-diagonalize ,Z, what we do is to calculate an
approximation W of M~ TDII for some D € D, and II € P, _, which corresponds to the
indeterminacy of MICA (even in the case when there is no noise).

The point we try to make from this case study is that, in practical applications, due
to measurement errors, we only get to work with A= {A } that are, in general, only
approximately block-diagonalizable and, in the end, an approximate block-diagonalizer
W of A gets computed. In other words, we usually don’t have A which is known
block-diagonalizable in theory but what we do have is A which may or may not be
block-diagonalizable and for which we have an approximate block-diagonalizer W. Then
how far this W is from the exact diagonalizer W of A becomes a central question, in
order to gauge the quality of . This is what we set out to do in this paper. Our re-
sult is an upper bound on the measure in (1.5). Such an upper bound will also help us
understand what are the inherent factors that affect the sensitivity of JBDP.

3 Other cumulants can also be considered.
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1.4. Related works

Though tremendous efforts have gone to solve JDP/JBDP, their perturbation problems
had received little or no attention in the past. In fact, today there are only a handful
articles written on the perturbations of JDP only. For 0-JDP, Cardoso [1] presented a first
order perturbation bound for a set of commuting matrices, and the result was later gener-
alized by Russo [16]. For general JDP, using gradient flows, Afsari [17] studied sensitivity
via cost functions and obtained first order perturbation bounds for the diagonalizer. Shi
and Cai [18] investigated a normalized JDP through a constrained optimization problem,
and obtained an upper bound on certain distance between an approximate diagonal-
izer of a perturbed optimization problem and an exact diagonalizer of the unperturbed
optimization problem.

JBDP can also be regarded as a particular case of the block term decomposition (BTD)
of third order tensors [19-22]. The uniqueness conditions of tensor decompositions, which
is strongly connected to the sensitivity of tensor decompositions, received much atten-
tion recently (see, e.g., [20,23-30]). However, as to the perturbation theory for tensor
decompositions, despite its importance, few results exist. Recently in [31] and [32], the
condition numbers for the so-called canonical polyadic decomposition (CPD) and join
decomposition problem (including the Waring decomposition, and some specific types of
BTD, etc.) are investigated. Nonetheless, more studies are in need in the perturbation
theory for various types of tensor decompositions.

1.5. Our contribution and the organization of this paper

A biggest reason as to why no available perturbation analysis for JBDP is, perhaps,
due to lacking perfect ways to uniquely describe block-diagonalizers, not to mention no
available uniqueness condition to nail them down, unlike many other matrix perturba-
tion problems surveyed in [33]. Quite recently, in the sense of Definition 1.2, Cai and
Liu [9] established necessary and sufficient conditions for a JBDP to be uniquely block-
diagonalizable. These conditions are the cornerstone for our current investigation in this
paper. Unlike the results in existing literatures, the result in this paper does not involve
any cost function, which makes it widely applicable to any approximate diagonalizer
computed from min/maximizing a cost function. The result also reveals the inherent
factors that affect the sensitivity of JBDP.

The rest of this paper is organized as follows. In section 2, we discuss properties of a
uniquely block-diagonalizable JBDP and introduce the concepts of the moduli of unique-
ness and non-divisibility that play key roles in our later development. Our main result is
presented in section 3, along with detailed discussions on its numerous implications. The
proof of the main result is rather long and technical and thus is deferred to section 4. We
validate our theoretical contributions by numerical tests reported in section 5. Finally,
concluding remarks are given in section 6.
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Notation. R™*" is the set of all m x n real matrices and R™ = R™*!, [ isthe n x n
identity matrix, and 0,, x, is the m-by-n zero matrix. When their sizes are clear from the
context, we may simply write I and 0. The symbol ® denotes the Kronecker product.
The operation vec(X) turns a matrix X into a column vector formed by the first column
of X followed by its second column and then its third column and so on. Inversely,
reshape(xz, m,n) turns the mn-by-1 vector = into an m-by-n matrix in such a way that
reshape(vec(X), m,n) = X for any X € R™*™. The spectral norm and Frobenius norm
of a matrix are denoted by || - |2 and || - ||, respectively. For a square matrix A, eig(A)
is the set of all eigenvalues of A, counting algebraic multiplicities. For convenience, we

will agree that any matrix A € R™*™ has n singular values and opin(A) is the smallest
A2

e (D) denotes the matrix spectral condition number.

one among them. ky(A) =
2. Uniquely block-diagonalizable jbdp

We begin by fixing two universal notations, throughout the rest of this paper, for
the sets of matrices of interest. Let A = {4;}7, be the set of m matrices, where each
A; € R™*™. When A is 7,-block diagonalizable, i.e., (1.3) holds, we define matrix sets

A = {A(”)}2 1 forj=1,2,... t=card(m). (2.1)

In [9], a classification of JBDP is proposed. Among all and besides the one in subsec-
tion 1.1, there is the so-called general JBDP (GJBDP) for A for which a partition 7, is
not given but instead it asks for finding a partition 7,, with the largest cardinality such
that A is 7,-block-diagonalizable and at the same time a 7,-block-diagonalizer. Via an
algebraic approach, necessary and sufficient conditions [9, Theorem 2.5] are obtained for
the uniqueness of (equivalent) block-diagonalizers of the GJBDP for A. As a corollary, we
have the following result.

Theorem 2.1 ([9]). Given partition T, of n, suppose that the JBDP of A is 7,-block diag-
onalizable and W is its 7, -block-diagonalizer satisfying (1.3), and assume that every A,
cannot be further block diagonalized,* i.e., for any partition Tn,; of nj with card(r,;) > 2,
Aj is not 7, -block-diagonalizable. Then the JBDP of A is uniquely T, -block-diagonalizable
if and only if the matriz

M L @[(AUDYTAUD L AUD (AGYT] AR g 40D 4 (AR T g AG9)T ’s
§ : A(kk)®A(j_])+(A(kk)) ®(A(jj))T [(A<kk))TA(kk)+A(kk)(A(_kk‘))T}®I ( . )
j— K3 K3 K k2 k2
is nonsingular for all 1 < j < k <t.

4 For the MICA model, this assumption is equivalent to say that each component s; has no lower dimen-
sional independent component.
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The following subspace of R™*"
N(A):={ZeR™™ : A,Z—Z"A;=0for 1 <i<m} (2.3)

has played an important role in the proof of [9, Theorem 2.5], and it will also contribute
to our perturbation analysis later in a big way.
Next, let us examine some fundamental properties of Z € 4" (A) with

A; = diag(AM A for1<i<m (2.4)

already. Any Z € 4 (A) satisfies
diag(AMY . ANz — 2T diag(AMY . Ay =0 for 1<i<m. (2.5)

Partition Z conformally as Z = [Z;], where Zj;, € R"*™ . Blockwise, (2.5) can be
rewritten as

A7 — ZE A =0 for 1 <i<m, 1<jk<t. (2.6)

%

These equations can be decoupled into two sets of matrix equations. The first set is, for
1<j<t,

Az~ Z2EAP) =0 for 1 <i<m, (2.7a)

and the second set is, for 1 < j < k <'t,

(2

APz — ZEAM =0, Az~ 25 AP =0 for1<i<m. (2.7b)

Consider first (2.7b) for 1 < j < k < t. With the help of the Kronecker product (see,
e.g., [34]), they are equivalent to

vee(Zjk)|
Gk |:V6C(Zgj):| =0, (2.8a)

where

r Ink ® Agjj) (Agkk))T ® Inj-
L, ® (AT AW e,
Gjr = : : . (2.8b)

I, @ A% (AT w1,
| L, ® (AST A0V @1,
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Notice that Mj;, defined in (2.2) simply equals to G]Tijk. Thus, according to Theo-
rem 2.1, A is uniquely 7,-block-diagonalizable if and only if the smallest singular value
Omin(Gjx) > 0, provided all A; cannot be further block diagonalized.

Next, we note that (2.7a) is equivalent to

ij VeC(ij) = 0, (29&)
where

In]- ® Agjj) _ [(Agﬁ))T ® Inj]Hj
Gjj = : ; (2.9b)

L, ® AR) — [(AF)T @ I, ]I

and II; € R™ is the perfect shuffle permutation matrix [35, Subsection 1.2.11] that
enables IT; vec(Z};) = vec(Zj;).

Theorem 2.2. Suppose A is already in the JBD form with respect to 7, = (ny,...,n¢),
i.e., A; are given by (2.4). The following statements hold.

(a) Gjjvec(ln;) =0, i.e., Gj; is rank-deficient;

(b) Aj cannot be further block-diagonalized if and only if for any Z;; € N (A;), its
etgenvalues are either a single real number or a single pair of two complex conjugate
numbers.

(c) If dim A (A;) = 1 which means either nj =1 or the second smallest singular value
of Gj; is positive, then A; cannot be further block-diagonalized.

Proof. Item (a) holds because Z = I, clearly satisfies (2.7a).

For item (b), we will prove both sufficiency and necessity by contradiction.

(=) Suppose there exists a Z;; € A4 (A;) such that its eigenvalues are neither a
single real number nor a single pair of two complex conjugate numbers. Then Z;; can
be decomposed into Z;; = W; diag(ng),Déj))Wj_l, where W;, ng), Déj) are all real
matrices and eig(DEj )) N eig(Déj )) = (). Then substituting the decomposition into (2.7a),
we can conclude that W]-TAEM )Wj for ¢ = 1,2,...,m are all block-diagonal matrices,
contradicting that A; cannot be further block diagonalized.

(<) Assume, to the contrary, that A4, can be further block-diagonalized, i.e., there
exists a nonsingular W; such that WjTAZ(-jj)Wj = diag(Bi(jl),Bgﬂ)), where B/' Bi(ﬂ)

are of order nj; and nj s, respectively. Then
ij = WJ diag(’yll’ﬂju’yQ‘[nJ‘z)Wjﬁl € L/1/("4])7

where 71, 72 are arbitrary real numbers. That is that some Z;; € A4(A;) can have
distinct real eigenvalues, a contradiction.
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Lastly for item (c), assume, to the contrary, that A; can be further block-diagonalized.
Without loss of generality, we may assume that there exists a nonsingular matrix W; €
R™*™i guch that W]TAEM)WJ- = diag(AEjjl),Agm)) for i = 1,2,...,m, where Agjjl)
and Agjj ?) are respectively of order nj; and njo. Then (2.7a) has at least two linearly
independent solutions W diag([njl,O)W;l, W; diag(O,Ian)Wj*l. Therefore, (2.9a) has
two linearly independent solutions, which implies that the second smallest singular value
of the coefficient matrix G;; must be 0, a contradiction. O

In view of Theorems 2.1 and 2.2, we introduce the moduli of uniqueness and non-
divisibility for 7,,-block-diagonalizable A.

Definition 2.3. Suppose that A is 7,,-block-diagonalizable and let W € W_ be a 7,-block-
diagonalizer of A such that (1.3) holds.

(a) The modulus of uniqueness of the JBDP for A with respective to the 7,-block-
diagonalizer W is defined by

Wug = wuq(A; W) = 1§rgn<nl€1§t Umin(ij)ﬂ (210)
where G is given by (2.8b).
(b) Suppose that none of A; can be further block-diagonalized. The modulus of non-
divisibility wna = wnd(A; W) of the JBDP for A with respective to the 7,-block-
diagonalizer W is defined by wyg = 00 if 7, = (1,1,...,1) and

Wnd = ml>n1 {the smallest nonzero singular value of G;;} (2.11)
n;j

otherwise, where G; is given by (2.9b).

Note the notion of the modulus of non-divisibility is defined under the condition that
none of A; can be further block-diagonalized. It is needed because in order for (2.11) to
be well-defined, we need to make sure that Gj; has at least one nonzero singular value
in the case when n; > 1. Indeed, G; # 0 whenever n; > 1, if none of A; can be further
block-diagonalized. To see this, we note G;; = 0 implies that any matrix Z;; of order
n; is a solution to (2.7a) and thus A§jj ) for 1 < ¢ < m are diagonal, which means that
Aj; can be further (block) diagonalized. This contradicts the assumption that none of A;
can be further block-diagonalized.

The proposition below partially justifies Definition 2.3.

Proposition 2.4. Suppose that A is 7, -block-diagonalizable and let W € W, be a T,,-block-
diagonalizer of A such that (1.3) holds. Suppose dim A" (A;) =1 for all1 < j <t, and
let U(_jQ) be the second smallest singular value of G;; whenever n; > 1. Then the following
statement holds.
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(a) A is uniquely T, -block-diagonalizable if wyq(A; W) > 0.
(b) None of A; can be further block-diagonalized and
¥ > 0.

Wnd = wpd(A; W) = min o
n; >1
Remark 2.5. A few comments are in order.

(a) The definition of wyq is a natural generation of the modulus of uniqueness in [18] for
JDP (i.e., when 7, = (1,1,...,1)).

(b) By Theorem 2.2(a), we know the smallest singular value of Gj;; is always 0. Thus
it seems natural that in defining wyq in (2.11), one would expect using the second
smallest singular value of Gj;. It turns out that there are examples for which A; can-
not be further block-diagonalized and yet dim A"(A;) = 2, i.e., the second smallest
singular value of G; is still 0. As an example, we consider A; = [gz _fd € R2X2 for
i=1,2,...,m, where §; # 0 for all i and «;/f;’s are not a constant. Then A cannot
be simultaneously diagonalized but A4 (A) = span{Is, [_? (1)] }, ie., dim A (A) = 2.

The moduli wyq and wyg, as defined in Definition 2.3, depend on the choice of the
diagonalizer W. But, as the following theorem shows, in the case when A is uniquely
Tn-block-diagonalizable, their dependency on diagonalizer W € W, can be removed.

Theorem 2.6. If A is uniquely 1,-block-diagonalizable, then wyq and wnq are both inde-
pendent of the choice of diagonalizers W € W, .

Proof. Let W € W, be a 7,-block-diagonalizer of A. Then all possible 7,-block-
diagonalizers of A from W, take the form W = WDII for some D € D,, and Il € P;,,.
We will show that wyq(A; W) = Wuq (A; W) and wyq(A,; /VV) = wpa(A; W).

We can write D = diag(Ds, ..., D), where D; € R™*" . All D; are orthogonal since
W, W € W, . We have

WTAW =17 diag(DFAM Dy, ..., DF A DT

= diag(T1] DF A Dy 10y, I} DE A% Dy, 1),

(3
where {¢1,0s,...,¢;} is a permutation of {1,2,...,t}, and II; is a permutation matrix of
order n;. Denote by gl(-”) = HJTDETJ_ Agejz'j)ng II;, and define éjk, accordingly as G, in

(2.8b), but in terms of ;{Z(.jj) and ﬁgkk), G, accordingly as G, in (2.9b), but in terms
of AEJ 7). Then by calculations, we have

G = [Iom ® (I Dy,)" @ (I;Dy,) ") Gji [Io @ (I, Dy, )  (11;Dy,))] s
Gjj = [Im ® (I;Dy,)" @ (1;Dy,)")] Gj5[(T1;Dy,) @ (I;Dy,)]
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which imply that the singular values of éjk and éjj are the same as those of G, and
Gjj, respectively. The conclusion follows. O

3. Main perturbation results

In this section, we present our main theorem, along with some illustrating examples
and discussions on its implications. We defer its lengthy proof to section 4.

3.1. Set up the stage

In what follows, we will set up the groundwork for our perturbation analysis and
explain some of our assumptions.

Recall A = {4;}, which is the unperturbed matrix set, where all A; € R™*" and
Tn = (N1,...,m¢) is a partition of n with ¢ = card(r,) > 2. We assume that

A is 7,-block-diagonalizable, W € W, is its 7,,-block-diagonalizer

such that (1.3) holds, and dim .4"(A;) =1 for all j. (3.1)

The assumption that dim.#(A4;) = 1 implies that 4; cannot be further block-
diagonalized by Theorem 2.2(c).
Suppose that A is perturbed to A = {A4;}72, = {A4; + AA;}72,, and let

m 1/2 m 1/2
| Allp = (Z ||Az-||%> = (ZIAAiII%> : (3.2)
=1

i=1

Previously, we commented on that, more often than not, a generic JBDP may not
be 7,-block-diagonalizable for m > 3. This means that A may not be 7,-block-
diagonalizable regardless how tiny d 4 may be. For this reason, we will not assume that
Ais Tp-block-diagonalizable, but, instead, it has an approximate 7,-block-diagonalizer
We W, in the sense that

all WTA;W are nearly 7,,-block-diagonal. (3.3)

Doing so has two advantages. Firstly, it serves all practical purposes well, because in
any likely practical situations we usually end up with A which is close to some 7,,-block-
diagonalizable A, which is not actually available due to unavoidable noises such as in
MICA, and, at the same time, an approximate 7,,-block-diagonalizer can be made avail-
able by computation. Secondly, it is general enough to cover the case when the JBDP for
Ais actually 7,-block-diagonalizable.

We have to quantify the statement (3.3) in order to proceed. To this end, we pick a
diagonal matrix I' = diag(y1ln,,-.-,VtIn,), where 71,...,% are distinct real numbers
with max; |y;| = 1, and define the 7,-block-diagonalzablility residuals
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Ry =W AWL —TWTA,W fori=1,2,...,m. (3.4)

Notice Bdiag, (R;) = 0 always no matter what T' is. The rationale behind defining these
residuals is in the following proposition.

Proposition 3.1. WTAW s Tp-block-diagonal, i.e., OﬁBdiang(’WngiW) = 0 if and
only if R, = 0.

As far as this proposition is concerned, any diagonal I' with distinct diagonal entries
suffices. But later, we will see that our upper bound depends on I', which makes us wonder
what the best I' is for the best possible bound. Unfortunately, this is not a trivial task
and would be an interesting subject for future studies. Later in our numerical tests, we
use a few random I' along with the following one

2 4

I'= diag(—Iny, (=14 ;=7 Mna, (14 57—

Mgy s In,)- (3.5)

Nonetheless, we still keep I' as a parameter to choose in our main result in hope that it
may come to help in certain circumstance. We restrict ; to real numbers for consistency
consideration since A and A are assumed real. All developments below work equally well
even if they are complex. Set

m 1/2
g = min v =l 7= (ZI&II%) : (3.6)
=1

The quantity 7 will be used to measure how good W is in approximately diagonalizing
A. In fact, it can be verified that

. (z l OfdeiagTﬁTm)n%) .

i=1

<2 (Z | Ofdeiagm(WTZiW)lzp> ; (37)

i=1

1
which implies that 7 is comparable to (ZZ1 | OffBdiag, (WTAzW)H%) * provided g is
not too tiny. For the choice (3.5), g =2/(t — 1).
The next proposition is due to an anonymous referee and it improves our earlier
version.

Proposition 3.2. W s an exact Tn-block-diagonalizer of the matriz set {Ez + E; Y, with
relative backward error
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€l _ 17113
1Al 1Al

i=1

m 2
- (Z H OfdeiagTJWTAiW)n%) = el L), (39)
where € = {E;}7, which will be referred to as the backward perturbation to A with
respect to the approximate diagonalizer W.
Proof. Let E; = OffBdiag, (/VIV/TI&W) and E; = W TEiW_l for 1 <47 < m. Then
OffBdiag, (WT[A; + E;]JW) = OffBdiag, (WTA,W — E;)
= OffBdiag, (WTA;W) - E; = 0.

Thus W is an exact Tp-block-diagonalizer of the matrix set {gl + E;}™ . It can be
verified that & = {E;}7, satisfies (3.8). DO

3.2. Main result

With the setup, we are ready to state our main result.

Theorem 3.3. Assume (3.1) and that A is perturbed to .Z, for which W is an approximate
Ty -block-diagonalizer. Let Q@ = W=IW, and let wyq and wynaq be defined in Definition 2.3,
and’

V2-1 2T

L NP 3.9

= (39
—142 ~ _ — TKo(Q)d

5= Q737 + 2@ oW el o da, e = 2D (3.10)
g Wuq

where g and 7 are given by (3.6). If

. [agwag (1 —2a)gwndg
0 < mln{ HZ(Q;, 7 } , (3.11)

then for p € {2,F}

pin VWD, Lt vie 1 (3.12)
DeD,, . DT D=1 W1, V1—2t—1e, — (t —1)e
HE]PTn
t+vt—1 §
_ I . (\/_+ )52(62) + 0(52) = Eyup. (313)
« gwuq

5 Recall that t > 2. The quantity 7 decreases as ¢ increases and thus 7 < /2 — 1. Since « increases as T
does, a decreases as t increases and thus o < 2(v2 — 1)/(2v2 — 1)% < 1/4.
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As we commented before, there is a hidden matrix parameter I' to choose in ap-
plying this theorem. It is there to make the theorem more versatile for a better
bound sometimes. A weaker version of this theorem is to specialize I' to the one in
(3.5). Specifically, Theorem 3.3 rem?ins valid upon replacing g by 2/(t — 1) and 7 by
2 (7L, || OffBdiag,, (WA W)|3)".

ext we look at two illustrating examples and discuss the implications of Theorem 3.3.

Example 3.1. Let A; = I, A; = diag(1, 1+¢), where ¢ > 0 is a parameter. It is clear that
W = I, is a diagonalizer of A = {A;, A2} with respect to 72 = (1,1). By calculations
according to (2.10), we get

S
wag = S22+ A (c+ V2 +a= 75 TOEY), wna =0

Perturb A to A = {Zl,gg}, where A; = Ay +¢FE and Ay = Ao —eE, with E = {_1 1},

and € > 0 is a parameter for controlling the level of perturbation. Consider

c=cosf, s=sind, W:{ ¢ S},

—S C

where 6 € [-7, 7] is a parameter that controls the quality of approximate diagonalizer

W of A. Simple calculations give

1+e €

e~ — ey~ o~ 2 _ e —
WTA1W:[_6 1+€}7 WTA2W:[1+CS € € §cs]7

€ —¢cCS 14c¢c? —¢

from which we see that if § and e are sufficiently small, Wis a good block-diagonalizer.
Now choose I" = diag(—1,1). We have

g=2, ka(Q)=1, 7=+/16€2+8¢2c2s2, 04 =2V2, 0§=7+204.

Thus, if # = € and € < 1, then (3.11) is satisfied. Thus, by (3.12), for p € {2,F}

\W — WDII||, o ? (1+5v2)(V16 + 82 + 41/2)e

min —— =2sin- €, gyp &

DI Wl 2

4Wuq

Therefore, as long as ¢ is not too small, w,q is not small, and then e,, = O(e), i.e.,
the relative error in W and the upper bound ey}, have the same order of magnitude.
However, if € < 1 and ¢ is small, say ¢ = ¢? with 0 < ¢ < 1, then W is always a good
block-diagonalizer, independent of 8, in the sense that 7 is always small. But now we
havAe/ eub = O(e'7?), which does not provide a good upper bound for the relative error
in W.
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Example 3.2. Let A; = diag(Is, [i ! _{1 ), As = diag( i ! —{—g} ,I2), where ¢ > 0 is

a parameter. Then W = I is a 74-block-diagonalizer of A = {A4;, A2}, where 74 = (2,2).
According to (2.10), we calculate w,q to get

Wyq ~ 0.5858 + O(5), wnda =5.

Perturb A to A = {gl,ﬁg}, where A; = Ay + ek, Ay = Ay — eE, where F is a 4-by-4
matrix of all ones and € > 0. Consider

. 1 11 1 11 = . c s
U = diag (ﬁ {1 1} ,ﬁ {1 1} ), W = U diag (1, {—5 c} ,1),
where ¢ = cosf, s =sinf, and 0 € [~F, §]. Then
2 — ~ o~
Z | OffBdiag,., (WTA,W)Hi =452c2(2 + ) + 4¢%s* +16(1 + s%)c?e>.
i=1

Therefore, if § and € are sufficiently small, then Wisa good block-diagonalizer. Now let
I' = diag(—1I5, I2). By simple calculations, we get

9=2, m(Q)=1, da=4V2e, 0§=7+204,
F=2y/452c2(2 + ¢)2 + 46252 + 16(1 + 52)c2e2.

If = € < 1 and ¢ is not too small, then (3.11) is satisfied. Thus, by (3.12), for p € {2, F}

— WDII 0 1 2)6
minwzgsm,zg 5ub%ﬂ:

= O(e),
DI Wl 2

dwyg

i.e., the relative error in W and the upper bound e}, have the same order of magnitude.
However, if § = § — ¢ with ¢ < 1 and ¢ is small, say ¢ = €® with ¢ > 0, then the
condition (3.11) of Theorem 3.3 is likely violated, and consequently, Theorem 3.3 is no

longer applicable.

From these two examples, we can see that the bound e, in (3.12) is good in the sense
that it can be in the same order of magnitude as the relative error. But when w,q and/or
wnq is small, Theorem 3.3 may not provide a good bound or even fails to give a bound.
This observation is more or less expected. In fact, when w,q and/or wypq is small, the
JBDP for A can be thought of as an ill-conditioned problem in the sense that any small
perturbation can result in huge change in the solution.

When solving an 0-JBDP, diagonalizers W, W are orthogonal, and thus § = 7 + 20 4.
Theorem 3.3 yields
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Corollary 3.4. In Theorem 3.3, if W and W are assumed orthogonal, then

WEHVEETDS

T
« g Wuq

|W — WDI|,
DeD,, ,DTD=I ||W||p

Tn

(62). (3.14)

<
™n

Some of the quantities in the right-hand side of (3.12) are not computable, unless W
is known. But it can still be useful in assessing roughly how good the approximate bock
diagonalizer W may be. Suppose that 7 is sufficiently tiny. Then it is plausible to assume
Q]2 = O(1). The moduli wyuq and wyq which are intrinsic to the JBDP for A may
well be estimated by those of A = {Bdiang(WTﬁW)}:il. Finally, |[W|2 > 1 for any
W € W, _, because ||W||2 is equal to the square root of the largest eigenvalue of WTW
and the latter is no smaller than the largest diagonal entry of WTW, which is 1. On the
other hand, write W = [Wy, Wa, ..., W;] with W; € R™*™ and WJ-TWj = I,,. For any

T . .
T = [x?,xg, . ,x?] with z; € R™, we have

[Wx|2 = [[Wiz1 + - + Wiag|l2 < [Wizila + - + [[Wiae 2

= llzalla + - 4 [[oefl2 < ﬁ\/llxlllg +o o [lall3 = VE s
which implies |||z < v/t. Therefore, we get
1< |[W]2 <Vt (3.15)
The same holds for W, too.

Remark 3.5. Several comments are in order.

(a) The quantity d in (3.10) consists of two parts: the first part indicates how good W is
in approximately block-diagonalizing A, and the second part indicates how large the
perturbation is. Therefore, the condition (3.11) means that the block-diagonalizer
W has to be sufficiently good and the perturbation has to be sufficiently small so
that 0 does not exceed the right-hand side of (3.11), which is proportional to the
moduli wyq and wnq. Although the modulus of non-divisibility wy,q does not appear
explicitly in the upper bound, it limits the size of 4.

(b) In (3.12), eyp is a monotonically increasing function in ¢ and k2(Q). If W (or W) is
ill-conditioned, then both ¢ and x2(Q) may be large, as a result, e, can be large.

(c) If 6 < 1, by (3.12), we have

W =D,

— <
b W lp

. (\/E‘f' \/t - 1)'“52(@) . é +O(52) (316)
g

-
o Wug

(d) As far as sensitivity is concerned, the factor 7/« in (3.13) is insignificant because it
can be bounded as
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1<§:%C@+%;%> ;mﬁ—n

for t > 2. Thus e, is proportional to /¢, other things being equal.

(e) Recalling how R; and g are defined, we find that I'" can affect the quality of the
upper bound provided by Theorem 3.3 significantly. We need all v; well-separated
from each other, lest g will be tiny. Ideally, we would like to minimize the upper
bound over I', which does not seem to be an easy thing to do. In both Examples 3.1
and 3.2, we picked the particular T" in (3.5).

(f) A natural assumption when performing a perturbation analysis for JBDP is to as-
sume that both the original matrix set 4 and its perturbed one A admit exact
block-diagonalizers, i.e., both JBDP are solvable. Theorem 3.3 covers such a scenario
as a special case with 7 = 0.

Theorem 3.3, as a perturbation theorem for JBDP, can be used to yield an error
bound for an approximate block-diagonalizer of block-diagonalizable A by simply letting
all A, = A;, i.e., 64 = 0. In fact, when 64 = 0, § = Q1|13 7. If also 7 < 1, then § < 1
and thus by (3.16)

LW —womj,
D,

(VI VIS Dra(QQ B

7‘2
< -+ O(7). 3.17
ng p (7) (3.17)

Qlﬁ

This error bound is O(Z>-), which is in agreement with the error bound when applied
to JDP in [18, Corollary 3.2].

4. Proof of Theorem 3.3

Recall the assumptions: A is 7,-block-diagonalizable and W € W, is a 7,-block-
diagonalizer such that (1.3) holds. The modulus of uniqueness wyq and the modulus of
non-divisibility wyq for the block- dlagonahzatlon of A by W are defined by Definition 2.3.
The perturbed matrix set is A4 = {A }m, and W is an approximate 7,-block-diagonalizer
of A. T = diag(v1lny,- - 7veln,), where 1,...,v are distinct real numbers with all
|| <1, and R; are defined by (3.4).

4.1. Three lemmas

The three lemmas in this subsection may have interest of their own, although their
roles here are to assist the proof of Theorem 3.3.

Lemma 4.1. For given Z € R™ ™, denote by

= diag(A" ... A"z — ZT diag(A™MY ... AU (4.1)

(2



182 Y. Cai, R.-C. Li / Linear Algebra and its Applications 581 (2019) 163—-197

for 1 <i < m. Partition Z = [Zj] with Zj, € R and let eig(Z;;) = {ujn}i,-
The following statements hold.

(a) If wug > 0, then

>_iv || OffBdiag, (R;)l[%

| OffBdiag,, (7)]2 < ! (12)
w,
(b) If dim A" (A;) =1, then there exists a real number fi; such that
o N >_ie || Bdiag, (R:)|F
D ik = fy]* < : 2 £ (4.3)
k=1 nd

Proof. Partition R; = [R(j k)} conformally with respect to 7,,. First, we show (4.2). For

()

any pair (j, k) with j < k, it follows from (4.1) that

vec(jok'))
—vec((R{)T)

vec(R%k?)
| — vec((RW)T) |

where G, is defined by (2.8b). Put them all together to get
Muqzuq = Tuq;
where

Myq = diag (G1z,...,G1t,Gas, ..., Gat, ..., Gi_14),

Zuq = [vec(Z1a) ", —vec(Zy) ", ... vee(Zu)", —vee(Z)7,
vec(Zaz) b, —vec(Zay) T, . .. vec(Zay) T, — vec(Z5)T, .. .,
T
VeC(Zt—l,t)TaVeC(ZEt—l)T] )
T
Tuq = [r1T2, N N ,TtTth] .

We have omin(Myg) = minj«x omin(Gjk) = wuq > 0, and thus

>ie || OffBdiag,. (R;)|I%

2
wuq

| Il
| OffBdiag,, (Z)IIf = llzuqll} < —572 =
Wuq

)

as expected. Next, we show (4.3). For j = k, using (4.1), we have
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vec(joj))
Gjjvec(Zjj) = : =:Tjj,
vec(RED)

where Gj; is defined by (2.9b). Since dim.#"(A;) = 1 by assumption, we know by
Theorem 2.2(a) that the null space of G;; is spanned by vec([,,), and thus there exists

j
a real number fi; such that

vee(Z;) = Gljrj; + fi vee(Iy,),
where G;{ ; 1s the Moore-Penrose inverse (36, p.102] of G;;. It follows immediately that
Zjj = Zjj + fijln;
where ij = reshape(G;jrjj,nj,nj). In particular, eig(zjj) = {ujr — fi; }x>, and hence

" R 12 m (37) |2 ™ 1 Bdi B2
Z |/ij _ ﬂj|2 S HZJJH%‘ S ||T];H2 S Zz:l H2Rz ||F S Zz:l || I;a‘ng( 1)||F )
k=1 nd Whd Whd

This completes the proof. 0O

Previously in Theorem 3.3, @ is set to W‘lw, but the one in the next lemma can be
any given nonsingular matrix.

Lemma 4.2. For any given nonsingular Q € R™ ", let Z = QIT'Q~' and write Z = B— E
with B = Bdiag, (Z) and E = — OffBdiag, (Z). Let 7 and a be as in (3.9) and g as in
(3.6). If

9> 1@ EQllr/a, (4.4)

then there exists a T,-block-diagonal matriz B = diag(éu, .. .,Ett) and a nonsingular
matriz P = [ij] with Py, € R™>™ and Pj; = I,; such that

B(QP) = (QP)B, (4.5)
and for j =1,2,...,t
~ -1p
1Byl < 2 1 e, (1.64)
> gk — vl < 1+7%) - QT EQIF, (4.6b)
k=1

where [ij1,. .., [Ljn; are the eigenvalues of Bjj;, and
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]T (4.6¢)

Pp=[PL, ..., Prii Opn,, PRy ..., P5
Proof. It suffices to show that there exist P, € R"*™ and By; € R™*™ such that
I I L7 ~
—1 n1 — —1 1 _ 'ny

(4.6) for j =1 holds, and P is nonsingular.

Partition Q 1EQ = {g; g;ﬂ with By € RM>X™ | By, € R(vma)x(m=n1) A direct
calculation gives

sepp(1ln,, diag(Valng, - - - eln,)) = 2@}% Ivj =Ml > g,

where sepp (- - - ) is the separation of two matrices [36, p.247]. Let § = g—|| E11||lr— || E22]|F-
By [36, Theorem 2.8 on p.238], we conclude that if

~ | Eo1||r || Erzllr

1
>0, < -, 4.8
9 g2 4 ( )
then there is a unique ﬁ1 e R(=71)%m1 gyuch that
~ 2|| Ea1||r
1Pl < | Zo (4.9)

§+ V3% — 4| Bx ¢ Er2llr

and (4.7) holds. We have to show that the assumption (4.4) ensures (4.8) and that (4.9)
implies (4.6a) for j = 1. In fact, under (4.4),

329 /201 En 2 + | Exl2)

> g—V2(|Q T EQ||r

> (1-V2a)g (4.10)

>0,

[ Ear|le | Eralle | Ba1 |3 + || Erallf
FZEN 272

| E1||E + | Erallf
2(1 - v2a)?g?

Q" EQ|}
T 2(1-V2a)?g?
062
< m (4.11)

| =
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They give (4.8). It follows from (4.9), (4.10), and (4.11) that

1Pafle < 2 Q™ EQlr
T (1-v2a) +4/(1 - VZa)? - 202 g
- 7”@_15@”17 (4.12)
<T.

The inequality (4.6a) for j =1 is a result of (4.12).
Next we show (4.6b) for j = 1. Pre-multiply (4.7) by [I,,, 0] to get, after rearrange-
ment,

~ _ I,
Bll - 711711 = [InwO]Q 1EQ |:P11:| .

Since eig(Bu1) = {fix }jL,, we have

2

L,
Z |1k — ’71|2 H[Inl 0]Q IEQ []31 }

<|[21
=z,
< (L+IPTPil2) Q7 EQ|
<1+ QT EQIE,

F

Q™ EQ|E

as was to be shown.

Finally, we show that P is nonsingular by contradiction. If P were singular, let x =
[T ... 2f]T be a nonzero vector with z; € R™ such that Px = 0. We then have

;= — Zk:1 Pj,xy, and thus
[y

t
i3 = (| ZPJMH ) < (Z 1Pyl llzall2)” < (2= 1) )3 1Bl
k#] ;]

k#ﬂ

Therefore

t
(13 = Z 513 < (= 1) ZZ 1P 13l 13

2
t

(=1 I1Pkl3llzxll3
k=1 j=1
J#k

<.
—
I

<o

-
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t
< (=1 IPelF i3
k=1

< (t=D77|2ll3 < ll=II3,
a contradiction. This completes the proof. O
Remark 4.3. Lemma 4.2 implies that when the off-block-diagonal part of Z is sufficiently
small, QP is the eigenvector matrix of B = Bdiag, (Z) with P ~ I, and for each j there

are n; eigenvalues of B that cluster around +;.

Lemma 4.4. Let P = [ij] with Py, € R Py = 1I,., and ||13J||F < €, where ]3j 18
defined as in (4.6¢), 0 < e <1, and 7 is defined by (3.9). Then

|P —I|lp < Ve (4.13)

Furthermore, let W, W e W, , D= diag(ﬁn, e ,ZNDtt) eD,, ,and Il € P, . If WD =
W PII, then D is nonsingular and

\/1—2\/15——16—(t—1)62§0§\/1—|—2\/t——le+(t—1)62 (4.14)
for each singular value o of D.
Proof. Since P — I = [131, cee }34, we have
1/2

t
~ |12
1P =1l = [ 1:HPJ~HF < Ve,
p

which is (4.13).
Next we show that D is nonsingular and (4.14) holds. Write

P=[Pi, ..., P with P; e R"™".
Using WD = WPI’L we get
D™WTWD =T PTWTW PII. (4.15)
Since W € W,_, the jth diagonal blocks at both sides of (4.15) read

DYDj; = PYWTW Py, (4.16)
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where 1 < j/ < t as a result of the permutation II. Partition W as W = [Wl, ey Wt]
with W; € R™*". We infer from W € W, that WIW; = I, and ||[WIW,||, < 1. To
see the last inequality, we note

T W W] < [Wjaj 2| Wewell2 = l|zjll2]lzell2 = 1 (4.17)

for any unit vectors z; € R™ and z, € R™. Now using Py = I, , and ||[Py|[r <€, we
have

|PEW WPy — I,

o = |WEW Py + PEW™W, + PFWTW

= 2H Z Wj'WEPéj" e T H Z Z ij’Wk WPy

£’ k! L]
<2 Z (| Per

L5 k#j' L#£5

2

=23 1Pyl + ( ;)

L#£5 k#j’

1/2
<2[(t-1) )+
- k5’

<2Vt —Tle+ (t—1)é
Combining it with (4.16), we get
IDEDj; — Iy lp < 2vVE—Le+ (t— 1) <2Vt — 1r + (t — 1)1 = 1,
which implies that bjj is nonsingular, and for any singular value o of Ejj, it holds that
< -2Vt—le—(t—1 <o? 1</t —le+(t—1) < 1.
The conclusion follows immediately since D € D,,. O
4.2. Proof of Theorem 3.5

Recall Q = W=IW and let Z = QTQ~!. Partition Z = [ij] with Zj, € R™*",
and let eig(Z;;) = {ijr},2,. The proof will be completed in the following four steps:

Step 1. We will show that Z is approximately 7,-block-diagonal. Specifically, we show

m . 1/2
| OffBdiag. (7)) < izt | OBdiag,, (o)) 5

— —_ )

Wuq wuq

(4.18)

where R; is given by (4.1).
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Step 2. We will show that the eigenvalues of Z;; cluster around a unique +y;, by showing
that there exists a permutation 7 of {1,2,...,¢} such that

9 g , .
=] < 5o = ul > 5, foranyiga().  (419)

In other words, each of the ¢ disjoint intervals (v; — ¢g/2,7; + g/2) contains one and
only one eig(Z;;).
Step 3. We will show that there exist a permutation II € P, and a nonsingular P =

[ij] € R™*" with Py, € R">*"™ and Pj; = I, satisfying (4.6a), such that D=

QP €D,,.
Step 4. We will prove (3.12).

Proof of Step 1. Recall R; = WTA;WT — TWTA;W of (3.4). We have
Ry = WTA,WL —TWTAW + WEAA,WL — TWTAAW
= Q"TWTAWQL —TQ"WTAWQ + WTAAWT —TWTAAW,
from which it follows that
Ri=WYAWZ — ZTWT AW
=Q "RQ ' - WTAAWLQ ' + Q- TTWTAAW.

Putting all of them for 1 < ¢ < m together, we get

R R, AA,
= Un2Q Y| | QT - UneWT) | 1 | WTTQT!
R, R, AA,,
A4
t [l @ TTWH] | W
AA,,
Consequently,

m 1/2
(Z |Ri||12:‘> < NQTMET +21Q 2/ W [l2[W 264 = 6.

i=1

Combine it with (4.2) in Lemma 4.1 to conclude (4.18). O

Proof of Step 2. Using Lemma 4.1, we know that there exists fi; such that

n; m . 2 2

|| Bd R; 6
§ :|,Ufjk 7ﬂj|2 S Zz_l ” lag‘rn( )”F S () ) (420)
k=1
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Then for any fi; k,, 1t k., we have

g by — 1 kol < (ke — fig| + |1g e — fi51)° (4.21)
< 2(lpj ky — 517 + |1y ke — 051%)

’ij (5 2
SQZ|ﬂjkﬂj|2§2(w d) .

k=1
I'=Q 'ZQ = Q ' Bdiag, (2)Q + Q' OffBdiag, (£)Q.

Let argmin, |pj5 — ve| = £jx. Noticing that

By a result of Kahan [37] (see also [38, Remark 3.3]), we have

t n;
DO s =, P < 2Q ! OffBdiag,, (2)Q (4.22)
Jj=1k=1
Now we declare £j; = --- = £j,, = j' for all j = 1,2,...,t. Because otherwise, say
éjl 7é ejg, we have
2 2 2 &°
da”g” > 4&2(62)“—2 (by (3.11))
uq
> 4)|Q" OffBdiag, (Z)Q|% (by (4.18)) (4.23a)
t ny
>23 3 ik — el (by (4.22))
j=1k=1

> 2(|pj1 — v, I* + |1z — 7e,. %)
> (ljr — v | + g2 — 7e,01)?
> (e, = Vool — |11 — pjel)?

> (s-v2 ) (by (4.21))
> [1— (1 —2a)]¢" (by (3.11))
=40’ ¢?, (4.23b)

a contradiction. Now using (4.22), (4.18) and (3.11), we get

n 1/2
max |, — vj| < (Z |1k — ’Yj'|2> < V2|Q™" OffBdiag,, (Z)Q||r
k=1
1
< Vara(Q)]| OffBding,, (2) [ < Y22 5og < L

uq
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Thus, we know that each j € {1,2,...,t} corresponds to a unique j’ satisfying that
ik — 7] < g/2 and |pjr — vi| > g/2 for any ¢ # j’. This is (4.19). O

Proof of Step 3. Notice that (4.23a) implies that ||Q~! OffBdiag, (2)Q[lr < ay, ie.,

(4.4) holds. By Lemma 4.2, there exists a 7,-block-diagonal matrix B = diag(Bi1,.. .,
Bit) and a nonsingular matrix P = [ij} with Pj, € R™*™ and Pj; = In,, satisfying
(4.6), such that

Bdiag, (2)(QP) = (QP)B. (4.24)

Denote by eig(gjj) = {fijr},2,. By (4.6b), (4.18) and (3.11), we know

max |k — 5] < /zk: |k — v;5]?

< (1+7%)r2(Q)|| OfiBdiag, (Z)||r

<1 —|—72)f<52(Q)i < (1 +72)ag < g

Wuq

What this means is that each of the ¢ disjoint intervals (v; — g/2,7; + ¢/2) contains

one and only one eig(B,;). Previously in Step 2, we proved that each of the t disjoint
intervals (v; — ¢/2,7v: + g/2) contains one and only one eig(Z;;) as well. On the other
hand, we also have eig(Bdiag, (7)) = eig(B) by (4.24). Therefore, there is permutation
mof {1,2,...,t} such that

eig(Br(jyn(j)) = eig(Z;;) for 1 <j <t (4.25)

Let II be the permutation matrix such that

HTEH = diag(éw(l)ﬂ.(l), ey Bﬂ.(t).,r(t)). (4.26)

=

It can be seen that IT € P, , i.e., it is 7,-block structure preserving. Finally by (4.25)
and (4.26),

diag(Z11, . .., Zu)(QPI) = QPBII (4.27)
= (QPIIITBII
= (QPTI) diag(Br(1yx(1)s - - - » Br(t)ym(r))-

Let D = QPII = [15Jk] with Ejk € R™*™ The equation (4.27) becomes
diag(le, ey Ztt)ﬁ = 15 diag(é,r(l),r(l), ey Eﬂ'(t)ﬂ(t))

which yields ijﬁjk = ﬁjkgw(k)ﬁ(k). Recalling (4.25) and eig(Z;;) N eig(Zy,) = 0 for
J # k by (4.19), we conclude that Dj, = 0 for j # k, i.e., D is 7,-block-diagonal. O
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Proof of Step 4. Noticing that @ = W-IW and D = QPII in Step 3, we have WD =
W PII. Then using Lemma 4.4, we know that D is nonsingular and for any singular value
o of D, and (4.14) holds with

Q! OffBdiag, (2)Qllr

€ =
By (4.18), we have

T
« g Wuq

e < = €. (4.28)

Now let D;; = U;Z;V]' be the SVD of Dj;. Denote by U = diag(Us,...,U),
V = diag(V1,...,V;) and D = IVUTTIT. It can be verified that D is orthogonal and
Tp-block-diagonal. It follows from WD = W PII that

W = WPID ™' = WD) + W OffBdiag, (P)IID~}
= WDII+ W(IID~'I" — D) + W OffBdiag, (P)IID~"
= WDIL+ WIIV(£~! — I)U + W OffBdiag, (P)IID™'.

Using Lemma 4.4, we have for p € {2,F}

|W = WDl =|[WIV(S™ - 1)U + W OffBdiag,, (P)ILD™"||

. 1+ +Vte.
<[wl, <\/1 —oi—le, — (t—De 1)
= ||, [(VE+Vi=De+0(e)].

Combine it with (4.28) to conclude the proof of (3.12). O

5. Numerical examples

In this section, we present some random numerical tests to validate our theoretical re-
sults. All numerical examples were carried out using MATLAB, with machine unit roundoff
2753 ~ 1.1 x 10716,

Let us start by explain how the testing examples are constructed. Given a partition
Tn = (n1,...,mn¢) of n and the number m of matrices, we generate the matrix sets A and
A={A;}7 | as follows.

1. Randomly generate W = [W1,...,W;] € W, . This is done by first generating an n x
n random matrix from the standard normal distribution and then orthonormalizing
its first mq columns, the next no columns, ..., and the last n; columns, respectively.
Set V=w-T;
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2. Generate m T7,-block-diagonal matrices D; randomly from the standard normal
distribution and set A; = VDJ»VT for 1 < 5 < m. This makes sure that A is
Tn-block-diagonalizable.

3. Generate m noise matrices N; also randomly from the standard normal distribu-
tion and set Z = A; + ¢N;, where ¢ is a parameter for controlling noise level. A
is likely not T~ -block- dlagonahzable but it is approximately. An approximate block-
diagonalizer W = [Wy,..., W] € W, of A is computed by JBD-NCG [22] followed
by orthonormalization as in item (1) above.

For comparison purpose, we estimate the relative error between W and W as measured
by (1.5) for p = F as follows. We have to minimize

|W — WDII||2 = |[W]||2 — 2trace(WT W DII) + | W]

over orthogonal D € -, and II € Pr,, which is equivalent to maximizing

t
Ztrace(WjTWﬁ(j)Dw(j)Hj)

j=1
over orthogonal D ;), permutations 7 of {1,2,...,t}, subject to n; = n(;), which again
is equivalent to
t —_—~
max Z(the sum of the singular values of WJ-TWW(J-)) (5.1)

j=1

subject to n; = nr(;). Abusing notation a little bit, we let 7 be the one that achieve the
optimal in (5.1), perform the singular value decomposition W;f( j)Wj =U;3; VjT, and set

D = diag(Ur 1)V,

(1) Uﬁ(t)VﬂT(t)). Finally, the error (1.5) for p = F is computed as

|W — WDII||p

— 5.2
Wl >

with D as above and II € P, as determined by the optimal 7. There doesn’t seem to
be a simple way to compute (1.5) for p = 2.

To generate error bounds by Theorem 3.3, we have to decide what I' to use. Ideally,
we should use the one that minimize the right-hand side of (3.12), but we don’t have a
simple way of doing that. For the tests below, we use 50 different I' and pick the best
bound. Specifically, we use a particular one in (3.5)

2 4

I =diag(—1In,,(-1+ —)1p,, (-1 4+ —)1pn,,..., Ip,) (3.5)
t—1 t—1

as well as 49 random ones with their diagonal entries 71, ...,y randomly drawn from the

interval [—1, 1] with the uniform distribution. Our experience suggests that the particular
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Table 5.1

Bound vs. m, the number of matrices in A for 79 = (3, 3, 3).
m Wug Wnd 4 Ratio Ebker Eub Error
4 2.4e+00 2.3e+00 6.3e—10 1.3e—09 1.0e—09 1.2e—09 2.3e—11
8 4.0e+00 4.1e+00 8.6e—10 1.1e—09 8.1e—10 9.9e—10 2.4e—11
16 6.7e+4-00 6.2e4-00 1.3e—09 9.6e—10 6.8e—10 8.9e—10 2.3e—11
32 1.1e+01 1.1e4+01 2.0e—09 8.9e—10 6.3e—10 8.2e—10 2.5e—11
64 1.7e401 1.7e+01 1.4e—09 1.8e—09 9.1e—10 1.7e—09 4.0e—11

128 2.5e+4-01 2.5e+4-01 3.0e—09 1.3e—09 7.9e—10 1.2e—09 3.4e—11
256 3.6e+01 3.6e+01 3.5e—09 4.9e—10 2.9e—10 4.5e—10 1.4e—11

Table 5.2

Bound vs. m, the number of matrices in A for 7 = (1, 2, 3).
m Wugq Wnd ) Ratio Ebker Eub Error
4 2.1e+00 3.4e+00 6.0e—11 4.2e—10 2.2e—11 3.9e—10 3.5e—12
8 3.0e+00 5.2e+00 8.9e—11 2.9e—10 1.9e—11 2.7e—10 3.6e—12
16 6.2e4-00 7.7e+00 1.5e—10 1.7e—10 2.5e—11 1.6e—10 3.8e—12
32 8.9e+00 1.1e+01 1.9e—10 2.2e—10 2.5e—11 2.1le—10 3.8e—12
64 1.3e+01 1.5e+401 2.4e—10 1.4e—10 1.3e—11 1.3e—10 1.7e—12

128 1.7e+01 2.2e+4-01 4.2e—10 1.2e—10 1.3e—11 1.1e—10 1.7e—12
256 2.4e+01 3.3e+01 4.7e—10 1.3e—10 9.2e—12 1.2e—10 1.1le—12

I in (3.5) usually leads to bounds having the same order as the best one produced by
the 49 random I'. However, it can happen that the best one is much better than and
up to one tenth of that by the particular ', although such extremes do not happen very
often.

We will report our numerical tests according to five different testing scenarios: varying
numbers of matrices (test 1), varying matrix sizes (test 2), varying numbers of diagonal
blocks (test 3), and varying noise levels (test 4). We will examine these quantities: the
modulus of uniqueness wyq, the modulus of non-divisibility wyq, the quantity ¢ as defined
in (3.10), the ratio as the quotient of & over the right hand side of (3.11) (to make sure
that (3.11) is satisfied), the upper bound epger = sbker(j; W) on the relative backward
error as in (3.8), the perturbation bound ey, as in (3.12), and finally the estimated true
error in W as in (5.2).

Test 1: number of matrices. In this test, we fix £ = 107!? and vary the number m of
matrices in the matrix set A. The numerical results are displayed in Tables 5.1 and 5.2 for
the two different partitions 79 = (3,3,3) and 76 = (1,2, 3), respectively. We summarize
our observations from Tables 5.1 and 5.2 as follows.

1. For all m, the ratios are far less than 1. In other words, (3.11) is satisfied for all, and
hence the bound by (3.12) can be used.

2. For all m, e, provides a very good upper bound on the error.

3. As m increases, i.e., as we expand the matrix set A, the modulus of uniqueness and
modulus of non-divisibility increase as well.
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Table 5.3
Bound vs. matrix size n = 9p for 7,, = p X (3, 3,3).
n Wug Wnd 4 Ratio Ebker Eub Error
9 7.1e4-00 7.3e4-00 3.9e—10 4.0e—10 9.5e—11 3.7e—10 8.3e—12

18 1.1e+01 1.0e+01 1.4e—09 6.6e—10 2.6e—10 6.1e—10 1.4e—11
27 1.2e+01 1.2e+01 3.9e—09 1.6e—09 7.7e—10 1.4e—09 2.5e—11
36 1.5e+01 1.5e+01 1.2e—-07 5.2e—08 7.9e—08 4.8e—08 9.6e—10
45 1.6e+01 1.6e+01 8.9e—09 3.4e—09 3.8e—09 3.2e—09 4.8e—11
54 1.8e+01 1.8e+01 3.8e—07 1.1e—07 2.0e—07 9.8e—08 1.6e—09
63 1.9e+01 1.9e+01 9.9e—09 4.2e—09 3.0e—09 3.9e—09 4.4e—11

Table 5.4
Bound vs. matrix size n = 6p for 7, = p x (1, 2,3).
n Wugq Wnd 4 Ratio Ebker Eub Error
6 4.4e+00 7.2e+00 1.1e—10 6.6e—10 2.5e—11 6.1e—10 3.4e—12

12 5.8e+00 6.2e+00 1.3e—09 1.6e—09 5.3e—10 1.5e—09 2.4e—11
18 8.5e+00 8.0e+00 1.3e—09 1.9e—09 7.7e—10 1.8e—09 2.5e—11
24 9.7e+4-00 9.1e+00 6.8e—09 5.6e—09 4.5e—09 5.2e—09 6.3e—11
30 9.8e+-00 9.1e+00 2.5e—09 2.1e—09 1.3e—09 1.9e—09 2.0e—11
36 1.1e+01 9.4e+00 4.3e—09 2.5e—09 1.3e—09 2.3e—09 2.9e—11
42 1.2e+01 1.1e+01 3.7e—09 1.5e—09 9.3e—10 1.4e—09 1.6e—11

Table 5.5
Bound vs. number of diagonal blocks.

Wugq Wnd ) Ratio Ebker Eub Error

5.0e+4-00 9.9¢4-00 1.8e—10 3.0e—10 3.4e—11 2.7e—10 l.le—12
5.6e+4-00 5.2e+4-00 4.4e—10 6.7e—10 4.8e—11 6.0e—10 4.8e—12
4.0e+00 8.5e+00 6.0e—10 8.2e—09 1.6e—10 7.2e—09 l.4e—11
3.2e+00 9.5e+00 2.1e—09 1.2e—08 8.7e—10 1.0e—08 3.2e—11
3.3e+4-00 8.3e+4-00 2.5e—09 1.7e—08 1.4e—09 1.4e—08 1.1e—10
6.5e+00 5.8e+-00 8.6e—09 3.7e—08 8.1e—09 3.2e—08 3.2e—10
5.9e+00 6.1e+00 3.5e—09 2.0e—08 2.0e—09 1.7e—08 5.0e—11

© 00Uk W+

Test 2: matrix sizes. In this test, we fix £ = 107!2, m = 16, and use two partitions
Tn =p X (3,3,3) or 7, = p x (1,2,3), where p = 1,2,...,7. Then the matrix size n = 9p
or 6p will increase as p increases. We display the numerical results in Tables 5.3 and 5.4.
We can see from Tables 5.3 and 5.4 that e}, provides a very good upper bound on the
error for different sizes of matrices.

Test 3: number of diagonal blocks. In this test, we fix £ = 107'2, m = 16, and generate
the partition 7,, randomly using MATLAB command randi(5,t,1). In other words, the
block-diagonal matrices D; have ¢ diagonal blocks and the order of the ith block is 7,,(¢),
randomly drawn from {1,2,...,5} with the uniform distribution. For ¢t = 3,4,...,9, we
display the numerical results in Table 5.5. We can see from Table 5.5 that ey, provides
a very good upper bound on the error as the numbers of diagonal blocks varies.

Test 4: noise level. In this test, we fix the number of matrices m = 16. For different
partitions 7, = (3,3,3) and 7, = (1,2,3), in Fig. 5.1, we plot epker (backward error),
error and ey1, (bound) versus different noise levels. We can see from Fig. 5.1 that as &
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Fig. 5.1. Backward error epyer, error, and bound e, vs. noise level.

increases, €pker, €rror and £}, all increase almost linearly. For all noise levels, €.}, indeed
provides a good upper bound on the error.

6. Concluding remarks

In this paper, we developed a perturbation theory for JBDP. An upper bound is ob-
tained for the relative distance (1.5) between a block-diagonalizer W for the original
JBDP of A that is block-diagonalizable and an approximate diagonalizer W for its per-
turbed JBDP of A. The backward error is also derived for JBDP. Numerical tests that
validate the theoretical results are presented.

The JBDP of interest in this paper is for block-diagonalization via congruence trans-
formations which are known to preserve symmetry. Yet our development so far does
not assume that all A; are symmetric. What will happen to all the results if they are
symmetric? It turns out that not much simplification in results and arguments can be
gained but all the results remain valid after minor changes to the definitions of G, in
(2.8b): remove the second, fourth, ..., block rows as now all Az(j 7 are symmetric.

We have been limiting all matrices to real ones, but this is not a limitation. In fact,
if all matrices are complex, the change that needs to be made is simply to replace all
transposes T by complex conjugate transposes H.

Conceivably, we might use similarity transformation for block-diagonalization, i.e.,
instead of (1.3), we may seek a nonsingular matrix W € R™*" such that all W1 A;W
are 7,-block-diagonal. A similar development that are very much parallel to those in [9]
and in this paper can be worked out. A major change will be to redefine the subspace

N (A) in (2.3) as
N(A):={Z e R™" : A;jZ—ZA;=0for1<i<m}.

We omit the detail.
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