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The matrix joint block-diagonalization problem (jbdp) of a 
given matrix set A = {Ai}m

i=1 is about finding a nonsingular 
matrix W such that all W TAiW are block-diagonal. It 
includes the matrix joint diagonalization problem (jdp) as 
a special case for which all W TAiW are required diagonal. 
Generically, such a matrix W may not exist, but there are 
practical applications such as multidimensional independent 
component analysis (MICA) for which it does exist under the 
ideal situation, i.e., no noise is presented. However, in practice 
noises do get in and, as a consequence, the matrix set is only 
approximately block-diagonalizable, i.e., one can only make 
all W̃ TAiW̃ nearly block-diagonal at best, where W̃ is an 
approximation to W , obtained usually by computation. The 
main goal of this paper is to develop a perturbation theory for
jbdp to address, among others, the question: how accurate this 
W̃ is. Previously such a theory for jdp has been discussed, but 
no effort had been attempted for jbdp because, in large part, 
there is no quantitative way to describe solution uniqueness 
of jbdp until 2017 when Cai and Liu (2017) [9] successfully 
obtained a necessary and sufficient uniqueness condition. 
Based on the condition, in this article, we will establish a 
perturbation theory for jbdp. Our main contributions include 
an error bound for the approximate block-diagonalizer W̃
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and a backward error analysis for jbdp. Numerical tests are 
presented to validate the theoretical results.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

The matrix joint block-diagonalization problem (jbdp) is about jointly block-
diagonalizing a set of matrices. In recent years, it has found many applications in 
independent subspace analysis, also known as multidimensional independent compo-
nent analysis (MICA) (see, e.g., [1–4]) and semidefinite programming (see, e.g., [5–8]). 
Tremendous efforts have been devoted to solving jbdp and, as a result, several numer-
ical methods have been proposed. The purpose of this paper, however, is to develop a 
perturbation theory for jbdp. For this reason, we will not delve into numerical methods, 
but refer the interested reader to [9–12] and references therein. The matlab toolbox for 
tensor computation – tensorlab [13] can also be used for the purpose.

In the rest of this section, we will formally introduce jbdp and formulate its associated 
perturbation problem, along with some notations and definitions. Through a case study 
on the basic MICA model, we rationalize our formulations and provide our motivations 
for current study. Previously, there are only a handful papers in the literature that 
studied the perturbation analysis of the matrix joint diagonalization problem (jdp). 
Briefly, we will review these existing works and their limitations. Finally, we explain our 
contribution and the organization of this paper.

1.1. Joint block diagonalization ( jbd)

A partition of positive integer n:

τn = (n1, . . . , nt) (1.1)

means that n1, n2, . . . , nt are all positive integers and their sum is n, i.e., 
∑t

i=1 ni = n. 
The integer t is called the cardinality of the partition τn, denoted by t = card(τn).

Given a partition τn as in (1.1) and a matrix X ∈ Rn×n (the set of n ×n real matrices), 
we partition X as

X =

⎡⎢⎢⎢⎢⎣

n1 n2 ··· nt

n1 X11 X12 · · · X1t

n2 X21 X22 · · · X2t

...
...

...
...

nt Xt1 Xt2 · · · Xtt

⎤⎥⎥⎥⎥⎦ (1.2)

and define its τn-block-diagonal part and τn-off-block-diagonal part as
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Bdiagτn
(X) = diag(X11, . . . , Xtt), OffBdiagτn

(X) = X − Bdiagτn
(X).

The matrix X is referred to as a τn-block-diagonal matrix if OffBdiagτn
(X) = 0. The set 

of all τn-block-diagonal matrices is denoted by Dτn
.

The Joint Block Diagonalization Problem (jbdp). Let A = {Ai}m
i=1 be the set of m ma-

trices, where each Ai ∈ Rn×n. The jbdp for A with respect to τn is to find a nonsingular 
matrix W ∈ Rn×n such that all W TAiW are τn-block-diagonal, i.e.,

W TAiW = diag(A(11)
i , . . . , A

(tt)
i ) for i = 1, 2, . . . , m, (1.3)

where A(jj)
i ∈ Rnj×nj . When (1.3) holds, we say that A is τn-block-diagonalizable and 

W is a τn-block-diagonalizer of A. If W is also required to be orthogonal, this jbdp is 
referred to as an orthogonal jbdp (o-jbdp).

By convention, if τn = (1, 1, . . . , 1), the word “τn-block” is dropped from all relevant 
terms. For example, “τn-block-diagonal” is reduced to just “diagonal”. Correspondingly, 
the letter “B” is dropped from all abbreviations. For example, “jbdp” becomes “jdp”. 
This convention is adopted throughout this article.

Generically, jbdp often has no solution for m ≥ 3 and nj not so unevenly dis-
tributed, simply by counting the number of equations implied by (1.3) and the num-
ber of unknowns. For example, when m = 3 and n1 = n2 = n3 = n/3, there are 
m(n2 −

∑t
i=1 n2

i ) = 2n2 equations but only n2 unknowns in W . However, in certain 
practical applications such as MICA without noises, solvable jbdp do arise.

Definition 1.1. A permutation matrix Π ∈ Rn×n is called τn-block-diagonal preserving if 
ΠTDΠ ∈ Dτn

for any D ∈ Dτn
. The set of all τn-block-diagonal preserving permutation 

matrices is denoted by Pτn
.

Evidentally, any permutation matrix Π ∈ Dτn
is in Pτn

. This is because such a Π
can be expressed as Π = diag(Π1, . . . , Πt), where Πj is an nj × nj permutation matrix. 
But not all Π ∈ Pτn

also belong to Dτn
. For example, for n = 4 and τ4 = (2, 2), 

Π =
[

0 I2
I2 0

]
∈ Pτ4 but Π /∈ Dτ4 . In particular, any permutation matrix Π ∈ Rn×n

is in Pτn
when τn = (1, 1, . . . , 1). It can be proved that for given Π ∈ Pτn

, there is a 
permutation π of {1, 2, . . . , t} such that

ΠTDΠ ∈ Dτn
= diag(ΠT

1 Dπ(1)Π1, ΠT
2 Dπ(2)Π2, . . . , ΠT

t Dπ(t)Πt)

for any D = diag(D1, D2, . . . , Dt) ∈ Dτn
. Specifically, the subblocks of Π, if partitioned 

as in (1.2), are all 0 blocks, except those at the block positions (π(j), j), which are nj ×nj

permutation matrices Πj . As a consequence, nj = nπ(j) for all 1 ≤ j ≤ t.
It is not hard to verify that if W is a τn-block-diagonalizer of A, then so is WDΠ

for any given D ∈ Dτn
and Π ∈ Pτn

. In view of this, τn-block-diagonalizers, if exist, 
are not unique because any diagonalizer brings out a class of equivalent diagonalizers in 
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the form of WDΠ. For this reason, we introduce the following definition for uniquely 
block-diagonalizable jbdp.

Definition 1.2. Two τn-block-diagonalizers W and W̃ of A are equivalent if there exist 
a nonsingular matrix D ∈ Dτn

and Π ∈ Pτn
such that W̃ = WDΠ. The jbdp for A is 

said uniquely τn-block-diagonalizable if it has a τn-block-diagonalizer and if any two of 
its τn-block-diagonalizers are equivalent.

To further reduce freedoms for the sake of comparing two diagonalizers, we restrict 
our considerations of block-diagonalizers to the matrix set:

Wτn
:= {W ∈ Rn×n : W is nonsingular and Bdiagτn

(W TW ) = In}. (1.4)

This doesn’t loss any generality because W [Bdiagτn
(W TW )]−1/2 ∈ Wτn

for any nonsin-
gular W ∈ Rn×n.

1.2. Perturbation problem for jbdp

Let Ã =
{

Ãi

}m

i=1 = {Ai + ΔAi}m
i=1, where ΔAi is a perturbation to Ai. Assume 

A = {Ai}m
i=1 is τn-block-diagonalizable and W ∈ Wτn

is a τn-block-diagonalizer and 
(1.3) holds. Let W̃ ∈ Wτn

be an approximate τn-block-diagonalizer of Ã in the sense 
that all W̃ TÃiW̃ are approximately τn-block-diagonal. How much does W̃ differ from 
the block-diagonalizer W of A?

There are two important aspects that need clarification regarding this perturbation 
problem. First, Ã may or may not be τn-block-diagonalizable. Although allowing this 
counters the common sense that one can only gauge the difference between diagonal-
izers that exist, it is for a good reason and important practically to allow this. As we 
argued above, a generic jbdp is usually not block-diagonalizable, and thus even if the
jbdp for A has a diagonalizer, its arbitrarily perturbed problem is potentially not block-
diagonalizable no matter how tiny the perturbation may be. This leads to an impossible 
task: to compare the block-diagonalizer W of the unperturbed A, that does exist, to 
a diagonalizer W̃ of the perturbed matrix set Ã, that may not exist. We get around 
this dilemma by talking about an approximate diagonalizer for Ã, that always exist. It 
turns out this workaround is exactly what some practical applications call for because 
most practical jbdp come from block-diagonalizable jbdp but contaminated with noises 
to become approximately block-diagonalizable and an approximate diagonalizer for the 
noisy jbdp gets computed numerically. In such a scenario, it is important to get a sense 
as how far the computed diagonalizer is from the exact diagonalizer of the clean albeit 
unknown jbdp, had the noises not presented.

The second aspect is about what metric to use in order to measure the difference 
between two block-diagonalizers, given that they are not unique. In view of Definition 1.2
and the discussion in the paragraph immediately proceeding it, we propose to use
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dist(W, W̃ ) := min
D∈Dτn ,DTD=I

Π∈Pτn

‖W − W̃DΠ‖ (1.5)

for the purpose, where ‖ ·‖ is some matrix norm. Usually which norm to use is determined 
by the convenience of any particular analysis, but for all practical purpose, any norm 
is just as good as another. In our theoretical analysis below, we use both ‖ · ‖2, the 
matrix spectral norm, and ‖ · ‖F, the matrix Frobenius norm [14], but use only ‖ · ‖F
in our numerical tests because then (1.5) is computable. Additionally, in using (1.5), 
we usually restrict W and W̃ to Wτn

. In fact, we can show that dist(·, ·) is a metric 
over Wτn

for any unitary invariant norm ‖ · ‖ui as follows: first, the non-negativity 
dist(W, ̃W ) ≥ 0 is obvious; second, dist(W, ̃W ) = 0 if and only if W and W̃ are equivalent; 
third, dist(W, ̃W ) = dist(W̃ , W ) holds since ‖ · ‖ui is unitary invariant and D, Π are 
unitary; fourth, for any W1, W2, W3 ∈ Wτn

, let

(D12, Π12) = argmin
D,Π

dist(W1, W2), (D23, Π23) = argmin
D,Π

dist(W2, W3).

It can be seen that D̃ = D23Π23D12ΠT
23 ∈ Dτn

and is also orthogonal, and Π̃ = Π23Π12 ∈
Pτn

, and finally

dist(W1, W3) ≤ ‖W1 − W3D̃Π̃‖ui

≤ ‖W1 − W2D12Π12‖ui + ‖W2D12Π12 − W3D̃Π̃‖ui

= dist(W1, W2) + dist(W2, W3).

1.3. A case study: MICA

MICA [1,15,4] aims at separating linearly mixed unknown sources into statistically 
independent groups of signals. A basic MICA model can be stated as

x = Ms + v, (1.6)

where x ∈ Rn is the observed mixture, M ∈ Rn×n is a nonsingular matrix (often called 
the mixing matrix), s ∈ Rn is the source signal, and v ∈ Rn is the noise vector.

We would like to recover the source s from the observed mixture x. Let s =[
sT

1 , . . . , sT
t

]T with sj ∈ Rnj for j = 1, 2, . . . , t, and v = [ν1, . . . , νn]T. Assume that all sj

are independent of each other, and each sj has mean 0 and contains no lower-dimensional 
independent component, and among all sj, there exists at most one Gaussian compo-
nent. Assume further that the noises ν1, . . . , νn are real stationary white random signals, 
mutually uncorrelated with the same variance σ2, and independent of the sources. To 
recover the source signal s, it suffices to find M or its inverse from the observed mixture 
x. Notice that if M is a solution, then so is MDΠ, where D is a block-diagonal scaling 
matrix and Π is a block-wise permutation matrix. In this sense, there are certain degree 
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of freedoms in the determination of M . Such indeterminacy of the solution is natural, 
and does not matter in applications. We have the following statements.

(a) The covariance matrix Rxx of x satisfies

Rxx = E(xxT) = ME(ssT)MT + E(vvT) = MRssMT + σ2I, (1.7)

where E( · ) stands for the mathematical expectation, and Rss is the covariance 
matrix of s. By the above assumptions, we know that Rss ∈ Dτn

. Often σ can be 
very well estimated: σ ≈ σ̂. Then we have

Rxx − σ̂2I ≈ MRssMT. (1.8)

In particular, in the absence of noises, i.e., σ = 0, (1.8) becomes an equality.
(b) The kurtosis3 C4

x of x is a tensor of dimension n × n × n × n. Fixing two indices, say 
the first two, and varying the last two, we have

C4
x(i1, i2, :, :) = MC4

s (i1, i2, :, :)MT, (1.9)

where C4
s is the kurtosis of s and it can be shown that C4

s (i1, i2, :, :) ∈ Dτn
.

Together, they result in a jbdp for

Ã = {Rxx − σ̂I} ∪ {C4
x(i1, i2, :, :)}n

i1,i2=1,

for which W := M− T is an exact τn-block-diagonalizer when no noise is presented. 
When we attempt to numerically block-diagonalize Ã, what we do is to calculate an 
approximation W̃ of M− TDΠ for some D ∈ Dτn

and Π ∈ Pτn
, which corresponds to the 

indeterminacy of MICA (even in the case when there is no noise).
The point we try to make from this case study is that, in practical applications, due 

to measurement errors, we only get to work with Ã = {Ãi} that are, in general, only 
approximately block-diagonalizable and, in the end, an approximate block-diagonalizer 
W̃ of Ã gets computed. In other words, we usually don’t have A which is known 
block-diagonalizable in theory but what we do have is Ã which may or may not be 
block-diagonalizable and for which we have an approximate block-diagonalizer W̃ . Then 
how far this W̃ is from the exact diagonalizer W of A becomes a central question, in 
order to gauge the quality of W̃ . This is what we set out to do in this paper. Our re-
sult is an upper bound on the measure in (1.5). Such an upper bound will also help us 
understand what are the inherent factors that affect the sensitivity of jbdp.

3 Other cumulants can also be considered.
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1.4. Related works

Though tremendous efforts have gone to solve jdp/jbdp, their perturbation problems 
had received little or no attention in the past. In fact, today there are only a handful 
articles written on the perturbations of jdp only. For o-jdp, Cardoso [1] presented a first 
order perturbation bound for a set of commuting matrices, and the result was later gener-
alized by Russo [16]. For general jdp, using gradient flows, Afsari [17] studied sensitivity 
via cost functions and obtained first order perturbation bounds for the diagonalizer. Shi 
and Cai [18] investigated a normalized jdp through a constrained optimization problem, 
and obtained an upper bound on certain distance between an approximate diagonal-
izer of a perturbed optimization problem and an exact diagonalizer of the unperturbed 
optimization problem.

jbdp can also be regarded as a particular case of the block term decomposition (BTD) 
of third order tensors [19–22]. The uniqueness conditions of tensor decompositions, which 
is strongly connected to the sensitivity of tensor decompositions, received much atten-
tion recently (see, e.g., [20,23–30]). However, as to the perturbation theory for tensor 
decompositions, despite its importance, few results exist. Recently in [31] and [32], the 
condition numbers for the so-called canonical polyadic decomposition (CPD) and join 
decomposition problem (including the Waring decomposition, and some specific types of 
BTD, etc.) are investigated. Nonetheless, more studies are in need in the perturbation 
theory for various types of tensor decompositions.

1.5. Our contribution and the organization of this paper

A biggest reason as to why no available perturbation analysis for jbdp is, perhaps, 
due to lacking perfect ways to uniquely describe block-diagonalizers, not to mention no 
available uniqueness condition to nail them down, unlike many other matrix perturba-
tion problems surveyed in [33]. Quite recently, in the sense of Definition 1.2, Cai and 
Liu [9] established necessary and sufficient conditions for a jbdp to be uniquely block-
diagonalizable. These conditions are the cornerstone for our current investigation in this 
paper. Unlike the results in existing literatures, the result in this paper does not involve 
any cost function, which makes it widely applicable to any approximate diagonalizer 
computed from min/maximizing a cost function. The result also reveals the inherent 
factors that affect the sensitivity of jbdp.

The rest of this paper is organized as follows. In section 2, we discuss properties of a 
uniquely block-diagonalizable jbdp and introduce the concepts of the moduli of unique-
ness and non-divisibility that play key roles in our later development. Our main result is 
presented in section 3, along with detailed discussions on its numerous implications. The 
proof of the main result is rather long and technical and thus is deferred to section 4. We 
validate our theoretical contributions by numerical tests reported in section 5. Finally, 
concluding remarks are given in section 6.
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Notation. Rm×n is the set of all m × n real matrices and Rm = Rm×1. In is the n × n

identity matrix, and 0m×n is the m-by-n zero matrix. When their sizes are clear from the 
context, we may simply write I and 0. The symbol ⊗ denotes the Kronecker product. 
The operation vec(X) turns a matrix X into a column vector formed by the first column 
of X followed by its second column and then its third column and so on. Inversely, 
reshape(x, m, n) turns the mn-by-1 vector x into an m-by-n matrix in such a way that 
reshape(vec(X), m, n) = X for any X ∈ Rm×n. The spectral norm and Frobenius norm 
of a matrix are denoted by ‖ · ‖2 and ‖ · ‖F, respectively. For a square matrix A, eig(A)
is the set of all eigenvalues of A, counting algebraic multiplicities. For convenience, we 
will agree that any matrix A ∈ Rm×n has n singular values and σmin(A) is the smallest 
one among them. κ2(A) = ‖A‖2

σmin(A) denotes the matrix spectral condition number.

2. Uniquely block-diagonalizable jbdp

We begin by fixing two universal notations, throughout the rest of this paper, for 
the sets of matrices of interest. Let A = {Ai}m

i=1 be the set of m matrices, where each 
Ai ∈ Rn×n. When A is τn-block diagonalizable, i.e., (1.3) holds, we define matrix sets

Aj = {A
(jj)
i }m

i=1 for j = 1, 2, . . . , t = card(τn). (2.1)

In [9], a classification of jbdp is proposed. Among all and besides the one in subsec-
tion 1.1, there is the so-called general jbdp (gjbdp) for A for which a partition τn is 
not given but instead it asks for finding a partition τn with the largest cardinality such 
that A is τn-block-diagonalizable and at the same time a τn-block-diagonalizer. Via an 
algebraic approach, necessary and sufficient conditions [9, Theorem 2.5] are obtained for 
the uniqueness of (equivalent) block-diagonalizers of the gjbdp for A. As a corollary, we 
have the following result.

Theorem 2.1 ([9]). Given partition τn of n, suppose that the jbdp of A is τn-block diag-
onalizable and W is its τn-block-diagonalizer satisfying (1.3), and assume that every Aj

cannot be further block diagonalized,4 i.e., for any partition τnj
of nj with card(τnj

) ≥ 2, 
Aj is not τnj

-block-diagonalizable. Then the jbdp of A is uniquely τn-block-diagonalizable 
if and only if the matrix

Mjk =
m∑

i=1

[
Ink

⊗
[
(A

(jj)
i )TA

(jj)
i +A

(jj)
i (A

(jj)
i )T]

A
(kk)
i ⊗A

(jj)
i +(A

(kk)
i )T⊗(A

(jj)
i )T

A
(kk)
i ⊗A

(jj)
i +(A

(kk)
i )T⊗(A

(jj)
i )T [

(A
(kk)
i )TA

(kk)
i +A

(kk)
i (A

(kk)
i )T]

⊗Inj

]
(2.2)

is nonsingular for all 1 ≤ j < k ≤ t.

4 For the MICA model, this assumption is equivalent to say that each component sj has no lower dimen-
sional independent component.
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The following subspace of Rn×n

N (A) :=
{

Z ∈ Rn×n : AiZ − ZTAi = 0 for 1 ≤ i ≤ m
}

(2.3)

has played an important role in the proof of [9, Theorem 2.5], and it will also contribute 
to our perturbation analysis later in a big way.

Next, let us examine some fundamental properties of Z ∈ N (A) with

Ai = diag(A(11)
i , . . . , A

(tt)
i ) for 1 ≤ i ≤ m (2.4)

already. Any Z ∈ N (A) satisfies

diag(A(11)
i , . . . , A

(tt)
i )Z − ZT diag(A(11)

i , . . . , A
(tt)
i ) = 0 for 1 ≤ i ≤ m. (2.5)

Partition Z conformally as Z = [Zjk], where Zjk ∈ Rnj×nk . Blockwise, (2.5) can be 
rewritten as

A
(jj)
i Zjk − ZT

kjA
(kk)
i = 0 for 1 ≤ i ≤ m, 1 ≤ j, k ≤ t. (2.6)

These equations can be decoupled into two sets of matrix equations. The first set is, for 
1 ≤ j ≤ t,

A
(jj)
i Zjj − ZT

jjA
(jj)
i = 0 for 1 ≤ i ≤ m, (2.7a)

and the second set is, for 1 ≤ j < k ≤ t,

A
(jj)
i Zjk − ZT

kjA
(kk)
i = 0, A

(kk)
i Zkj − ZT

jkA
(jj)
i = 0 for 1 ≤ i ≤ m. (2.7b)

Consider first (2.7b) for 1 ≤ j < k ≤ t. With the help of the Kronecker product (see, 
e.g., [34]), they are equivalent to

Gjk

[
vec(Zjk)

− vec(ZT
kj)

]
= 0, (2.8a)

where

Gjk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ink
⊗ A

(jj)
1 (A(kk)

1 )T ⊗ Inj

Ink
⊗ (A(jj)

1 )T A
(kk)
1 ⊗ Inj

...
...

Ink
⊗ A

(jj)
m (A(kk)

m )T ⊗ Inj

(jj) T (kk)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.8b)
Ink
⊗ (Am ) Am ⊗ Inj
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Notice that Mjk defined in (2.2) simply equals to GT
jkGjk. Thus, according to Theo-

rem 2.1, A is uniquely τn-block-diagonalizable if and only if the smallest singular value 
σmin(Gjk) > 0, provided all Aj cannot be further block diagonalized.

Next, we note that (2.7a) is equivalent to

Gjj vec(Zjj) = 0, (2.9a)

where

Gjj =

⎡⎢⎣Inj
⊗ A

(jj)
1 −

[
(A(jj)

1 )T ⊗ Inj

]
Πj

...
Inj

⊗ A
(jj)
m −

[
(A(jj)

m )T ⊗ Inj

]
Πj

⎤⎥⎦ , (2.9b)

and Πj ∈ Rn2
j is the perfect shuffle permutation matrix [35, Subsection 1.2.11] that 

enables Πj vec(ZT
jj) = vec(Zjj).

Theorem 2.2. Suppose A is already in the jbd form with respect to τn = (n1, . . . , nt), 
i.e., Ai are given by (2.4). The following statements hold.

(a) Gjj vec(Inj
) = 0, i.e., Gjj is rank-deficient;

(b) Aj cannot be further block-diagonalized if and only if for any Zjj ∈ N (Aj), its 
eigenvalues are either a single real number or a single pair of two complex conjugate 
numbers.

(c) If dim N (Aj) = 1 which means either nj = 1 or the second smallest singular value 
of Gjj is positive, then Aj cannot be further block-diagonalized.

Proof. Item (a) holds because Z = Inj
clearly satisfies (2.7a).

For item (b), we will prove both sufficiency and necessity by contradiction.
(⇒) Suppose there exists a Zjj ∈ N (Aj) such that its eigenvalues are neither a 

single real number nor a single pair of two complex conjugate numbers. Then Zjj can 
be decomposed into Zjj = Wj diag(D(j)

1 , D(j)
2 )W −1

j , where Wj , D(j)
1 , D(j)

2 are all real 
matrices and eig(D(j)

1 ) ∩ eig(D(j)
2 ) = ∅. Then substituting the decomposition into (2.7a), 

we can conclude that W T
j A

(jj)
i Wj for i = 1, 2, . . . , m are all block-diagonal matrices, 

contradicting that Aj cannot be further block diagonalized.
(⇐) Assume, to the contrary, that Aj can be further block-diagonalized, i.e., there 

exists a nonsingular Wj such that W T
j A

(jj)
i Wj = diag(B(j1)

i , B(j2)
i ), where Bj1

i , B(j2)
i

are of order nj1 and nj2, respectively. Then

Zjj = Wj diag(γ1Inj1 , γ2Inj2)W −1
j ∈ N (Aj),

where γ1, γ2 are arbitrary real numbers. That is that some Zjj ∈ N (Aj) can have 
distinct real eigenvalues, a contradiction.
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Lastly for item (c), assume, to the contrary, that Aj can be further block-diagonalized. 
Without loss of generality, we may assume that there exists a nonsingular matrix Wj ∈
Rnj×nj such that W T

j A
(jj)
i Wj = diag(A(jj1)

i , A(jj2)
i ) for i = 1, 2, . . . , m, where A

(jj1)
i

and A(jj2)
i are respectively of order nj1 and nj2. Then (2.7a) has at least two linearly 

independent solutions Wj diag(Inj1 , 0)W −1
j , Wj diag(0, Inj2)W −1

j . Therefore, (2.9a) has 
two linearly independent solutions, which implies that the second smallest singular value 
of the coefficient matrix Gjj must be 0, a contradiction. �

In view of Theorems 2.1 and 2.2, we introduce the moduli of uniqueness and non-
divisibility for τn-block-diagonalizable A.

Definition 2.3. Suppose that A is τn-block-diagonalizable and let W ∈ Wτn
be a τn-block-

diagonalizer of A such that (1.3) holds.

(a) The modulus of uniqueness of the jbdp for A with respective to the τn-block-
diagonalizer W is defined by

ωuq ≡ ωuq(A; W ) = min
1≤j<k≤t

σmin(Gjk), (2.10)

where Gjk is given by (2.8b).
(b) Suppose that none of Aj can be further block-diagonalized. The modulus of non-

divisibility ωnd ≡ ωnd(A; W ) of the jbdp for A with respective to the τn-block-
diagonalizer W is defined by ωnd = ∞ if τn = (1, 1, . . . , 1) and

ωnd = min
nj>1

{the smallest nonzero singular value of Gjj} (2.11)

otherwise, where Gjj is given by (2.9b).

Note the notion of the modulus of non-divisibility is defined under the condition that 
none of Aj can be further block-diagonalized. It is needed because in order for (2.11) to 
be well-defined, we need to make sure that Gjj has at least one nonzero singular value 
in the case when nj > 1. Indeed, Gjj �= 0 whenever nj > 1, if none of Aj can be further 
block-diagonalized. To see this, we note Gjj = 0 implies that any matrix Zjj of order 
nj is a solution to (2.7a) and thus A(jj)

i for 1 ≤ i ≤ m are diagonal, which means that 
Aj can be further (block) diagonalized. This contradicts the assumption that none of Aj

can be further block-diagonalized.
The proposition below partially justifies Definition 2.3.

Proposition 2.4. Suppose that A is τn-block-diagonalizable and let W ∈ Wτn
be a τn-block-

diagonalizer of A such that (1.3) holds. Suppose dim N (Aj) = 1 for all 1 ≤ j ≤ t, and 
let σ(j)

−2 be the second smallest singular value of Gjj whenever nj > 1. Then the following 
statement holds.
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(a) A is uniquely τn-block-diagonalizable if ωuq(A; W ) > 0.
(b) None of Aj can be further block-diagonalized and

ωnd ≡ ωnd(A; W ) = min
nj>1

σ
(j)
−2 > 0.

Remark 2.5. A few comments are in order.

(a) The definition of ωuq is a natural generation of the modulus of uniqueness in [18] for
jdp (i.e., when τn = (1, 1, . . . , 1)).

(b) By Theorem 2.2(a), we know the smallest singular value of Gjj is always 0. Thus 
it seems natural that in defining ωnd in (2.11), one would expect using the second
smallest singular value of Gjj . It turns out that there are examples for which Aj can-
not be further block-diagonalized and yet dim N (Aj) = 2, i.e., the second smallest 
singular value of Gjj is still 0. As an example, we consider Ai =

[
αi βi

βi −αi

]
∈ R2×2 for 

i = 1, 2, . . . , m, where βi �= 0 for all i and αi/βi’s are not a constant. Then A cannot 
be simultaneously diagonalized but N (A) = span{I2, 

[
0 1

−1 0

]
}, i.e., dim N (A) = 2.

The moduli ωuq and ωnd, as defined in Definition 2.3, depend on the choice of the 
diagonalizer W . But, as the following theorem shows, in the case when A is uniquely 
τn-block-diagonalizable, their dependency on diagonalizer W ∈ Wτn

can be removed.

Theorem 2.6. If A is uniquely τn-block-diagonalizable, then ωuq and ωnd are both inde-
pendent of the choice of diagonalizers W ∈ Wτn

.

Proof. Let W ∈ Wτn
be a τn-block-diagonalizer of A. Then all possible τn-block-

diagonalizers of A from Wτn
take the form W̃ = WDΠ for some D ∈ Dτn

and Π ∈ Pτn
. 

We will show that ωuq(A; ̃W ) = ωuq(A; W ) and ωnd(A; ̃W ) = ωnd(A; W ).
We can write D = diag(D1, . . . , Dt), where Dj ∈ Rnj×nj . All Dj are orthogonal since 

W, W̃ ∈ Wτn
. We have

W̃ TAiW̃ = ΠT diag(DT
1 A

(11)
i D1, . . . , DT

t A
(tt)
i Dt)Π

= diag(ΠT
1 DT

�1
A

(�1�1)
i D�1Π1, . . . , ΠT

t DT
�t

A
(�t�t)
i D�t

Πt),

where {�1, �2, . . . , �t} is a permutation of {1, 2, . . . , t}, and Πj is a permutation matrix of 
order nj . Denote by Ã(jj)

i = ΠT
j DT

�j
A

(�j�j)
i D�j

Πj , and define G̃jk, accordingly as Gjk in 

(2.8b), but in terms of Ã(jj)
i and Ã(kk)

i , G̃jj , accordingly as Gjj in (2.9b), but in terms 
of Ã(jj)

i . Then by calculations, we have

G̃jk =
[
I2m ⊗ (ΠkD�k

)T ⊗ (ΠjD�j
)T)

]
Gjk

[
I2 ⊗ (ΠkD�k

) ⊗ (ΠjD�j
))
]
,

G̃jj =
[
Im ⊗ (ΠjD�j

)T ⊗ (ΠjD�j
)T)

]
Gjj

[
(ΠjD�j

) ⊗ (ΠjD�j
)
]
,
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which imply that the singular values of G̃jk and G̃jj are the same as those of Gjk and 
Gjj , respectively. The conclusion follows. �
3. Main perturbation results

In this section, we present our main theorem, along with some illustrating examples 
and discussions on its implications. We defer its lengthy proof to section 4.

3.1. Set up the stage

In what follows, we will set up the groundwork for our perturbation analysis and 
explain some of our assumptions.

Recall A = {Ai}m
i=1 which is the unperturbed matrix set, where all Ai ∈ Rn×n, and 

τn = (n1, . . . , nt) is a partition of n with t = card(τn) ≥ 2. We assume that

A is τn-block-diagonalizable, W ∈ Wτn
is its τn-block-diagonalizer 

such that (1.3) holds, and dim N (Aj) = 1 for all j. (3.1)

The assumption that dim N (Aj) = 1 implies that Aj cannot be further block-
diagonalized by Theorem 2.2(c).

Suppose that A is perturbed to Ã = {Ãi}m
i=1 ≡ {Ai + ΔAi}m

i=1, and let

‖A‖F :=
(

m∑
i=1

‖Ai‖2
F

)1/2

, δA :=
(

m∑
i=1

‖ΔAi‖2
F

)1/2

. (3.2)

Previously, we commented on that, more often than not, a generic jbdp may not 
be τn-block-diagonalizable for m ≥ 3. This means that Ã may not be τn-block-
diagonalizable regardless how tiny δA may be. For this reason, we will not assume that 
Ã is τn-block-diagonalizable, but, instead, it has an approximate τn-block-diagonalizer 
W̃ ∈ Wτn

in the sense that

all W̃ TÃiW̃ are nearly τn-block-diagonal. (3.3)

Doing so has two advantages. Firstly, it serves all practical purposes well, because in 
any likely practical situations we usually end up with Ã which is close to some τn-block-
diagonalizable A, which is not actually available due to unavoidable noises such as in 
MICA, and, at the same time, an approximate τn-block-diagonalizer can be made avail-
able by computation. Secondly, it is general enough to cover the case when the jbdp for 
Ã is actually τn-block-diagonalizable.

We have to quantify the statement (3.3) in order to proceed. To this end, we pick a 
diagonal matrix Γ = diag(γ1In1 , . . . , γtInt

), where γ1, . . . , γt are distinct real numbers 
with maxj |γj | = 1, and define the τn-block-diagonalzablility residuals
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R̃i = W̃ TÃiW̃ Γ − ΓW̃ TÃiW̃ for i = 1, 2, . . . , m. (3.4)

Notice Bdiagτn
(R̃i) = 0 always no matter what Γ is. The rationale behind defining these 

residuals is in the following proposition.

Proposition 3.1. W̃ TÃiW̃ is τn-block-diagonal, i.e., OffBdiagτn
(W̃ TÃiW̃ ) = 0 if and 

only if R̃i = 0.

As far as this proposition is concerned, any diagonal Γ with distinct diagonal entries 
suffices. But later, we will see that our upper bound depends on Γ, which makes us wonder 
what the best Γ is for the best possible bound. Unfortunately, this is not a trivial task 
and would be an interesting subject for future studies. Later in our numerical tests, we 
use a few random Γ along with the following one

Γ = diag(−In1 , (−1 + 2
t − 1)In2 , (−1 + 4

t − 1)In3 , . . . , Int
). (3.5)

Nonetheless, we still keep Γ as a parameter to choose in our main result in hope that it 
may come to help in certain circumstance. We restrict γi to real numbers for consistency 
consideration since A and Ã are assumed real. All developments below work equally well 
even if they are complex. Set

g = min
j �=k

|γj − γk|, r̃ =
(

m∑
i=1

‖R̃i‖2
F

)1/2

. (3.6)

The quantity r̃ will be used to measure how good W̃ is in approximately diagonalizing 
Ã. In fact, it can be verified that

g

(
m∑

i=1
‖ OffBdiagτn

(W̃ TÃiW̃ )‖2
F

) 1
2

≤ r̃

≤ 2
(

m∑
i=1

‖ OffBdiagτn
(W̃ TÃiW̃ )‖2

F

) 1
2

, (3.7)

which implies that r̃ is comparable to 
(∑m

i=1 ‖ OffBdiagτn
(W̃ TÃiW̃ )‖2

F

) 1
2 , provided g is 

not too tiny. For the choice (3.5), g = 2/(t − 1).
The next proposition is due to an anonymous referee and it improves our earlier 

version.

Proposition 3.2. W̃ is an exact τn-block-diagonalizer of the matrix set {Ãi + Ei}m
i=1 with 

relative backward error
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‖E‖F

‖Ã‖F
≤ ‖W̃ −1‖2

2

‖Ã‖F
·
(

m∑
i=1

‖ OffBdiagτn
(W̃ TÃiW̃ )‖2

F

) 1
2

=: εbker(Ã; W̃ ), (3.8)

where E = {Ei}m
i=1 which will be referred to as the backward perturbation to Ã with 

respect to the approximate diagonalizer W̃ .

Proof. Let Ẽi = OffBdiagτn
(W̃ TÃiW̃ ) and Ei = −W̃ − TẼiW̃

−1 for 1 ≤ i ≤ m. Then

OffBdiagτn
(W̃ T[Ãi + Ei]W̃ ) = OffBdiagτn

(W̃ TÃiW̃ − Ẽi)

= OffBdiagτn
(W̃ TÃiW̃ ) − Ẽi = 0.

Thus W̃ is an exact τn-block-diagonalizer of the matrix set {Ãi + Ei}m
i=1. It can be 

verified that E = {Ei}m
i=1 satisfies (3.8). �

3.2. Main result

With the setup, we are ready to state our main result.

Theorem 3.3. Assume (3.1) and that A is perturbed to Ã, for which W̃ is an approximate 
τn-block-diagonalizer. Let Q = W −1W̃ , and let ωuq and ωnd be defined in Definition 2.3, 
and5

τ =
√

2 − 1√
t − 1

, α = 2τ

(
√

2 + τ)2
, (3.9)

δ = ‖Q−1‖2
2 r̃ + 2‖Q−1‖2‖W‖2‖W̃‖2 δA, ε∗ = τκ2(Q)δ

αg ωuq
, (3.10)

where g and r̃ are given by (3.6). If

δ < min
{

αg ωuq

κ2(Q) ,
(1 − 2α)g ωnd√

2

}
, (3.11)

then for p ∈ {2, F}

min
D∈Dτn ,DTD=I

Π∈Pτn

‖W − W̃DΠ‖p

‖W̃‖p
≤ 1 +

√
t ε∗√

1 − 2
√

t − 1ε∗ − (t − 1)ε2
∗

− 1 (3.12)

= τ

α
· (

√
t +

√
t − 1)κ2(Q)δ
g ωuq

+ O(δ2) := εub. (3.13)

5 Recall that t ≥ 2. The quantity τ decreases as t increases and thus τ ≤
√

2 − 1. Since α increases as τ
does, α decreases as t increases and thus α ≤ 2(

√
2 − 1)/(2

√
2 − 1)2 < 1/4.
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As we commented before, there is a hidden matrix parameter Γ to choose in ap-
plying this theorem. It is there to make the theorem more versatile for a better 
bound sometimes. A weaker version of this theorem is to specialize Γ to the one in 
(3.5). Specifically, Theorem 3.3 remains valid upon replacing g by 2/(t − 1) and r̃ by 

2 
(∑m

i=1 ‖ OffBdiagτn
(W̃ TÃiW̃ )‖2

F

) 1
2 .

Next we look at two illustrating examples and discuss the implications of Theorem 3.3.

Example 3.1. Let A1 = I2, A2 = diag(1, 1 +ς), where ς > 0 is a parameter. It is clear that 
W = I2 is a diagonalizer of A = {A1, A2} with respect to τ2 = (1, 1). By calculations 
according to (2.10), we get

ωuq =
√

ς2 + 2ς + 4 − (ς + 2)
√

ς2 + 4 = ς√
2

+ O(ς3/2), ωnd = ∞.

Perturb A to Ã = {Ã1, Ã2}, where Ã1 = A1 +εE and Ã2 = A2 −εE, with E =
[

1 1
−1 1

]
, 

and ε ≥ 0 is a parameter for controlling the level of perturbation. Consider

c = cos θ, s = sin θ, W̃ =
[

c s
−s c

]
,

where θ ∈ [−π
2 , π2 ] is a parameter that controls the quality of approximate diagonalizer 

W̃ of Ã. Simple calculations give

W̃ TÃ1W̃ =
[

1 + ε ε
−ε 1 + ε

]
, W̃ TÃ2W̃ =

[
1 + ςs2 − ε −ε − ςcs

ε − ςcs 1 + ςc2 − ε

]
,

from which we see that if θ and ε are sufficiently small, W̃ is a good block-diagonalizer. 
Now choose Γ = diag(−1, 1). We have

g = 2, κ2(Q) = 1, r̃ =
√

16ε2 + 8ς2c2s2, δA = 2
√

2ε, δ = r̃ + 2δA.

Thus, if θ = ε and ε � 1, then (3.11) is satisfied. Thus, by (3.12), for p ∈ {2, F}

min
D,Π

‖W − W̃DΠ‖p

‖W̃‖p
= 2 sin θ

2 ≈ ε, εub ≈ (1 + 5
√

2)(
√

16 + 8ς2 + 4
√

2)ε
4ωuq

.

Therefore, as long as ς is not too small, ωuq is not small, and then εub = O(ε), i.e., 
the relative error in W̃ and the upper bound εub have the same order of magnitude. 
However, if ε � 1 and ς is small, say ς = εφ with 0 < φ < 1, then W̃ is always a good 
block-diagonalizer, independent of θ, in the sense that r̃ is always small. But now we 
have εub = O(ε1−φ), which does not provide a good upper bound for the relative error 
in W̃ .
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Example 3.2. Let A1 = diag(I2, 
[

1 1 + ς
1 1

]
), A2 = diag(

[
1 1 + ς
1 1

]
, I2), where ς > 0 is 

a parameter. Then W = I4 is a τ4-block-diagonalizer of A = {A1, A2}, where τ4 = (2, 2). 
According to (2.10), we calculate ωuq to get

ωuq ≈ 0.5858 + O(ς), ωnd = ς.

Perturb A to Ã = {Ã1, Ã2}, where Ã1 = A1 + εE, Ã2 = A2 − εE, where E is a 4-by-4 
matrix of all ones and ε ≥ 0. Consider

U = diag
( 1√

2

[
1 1

−1 1

]
,

1√
2

[
1 1

−1 1

])
, W̃ = U diag

(
1,

[
c s

−s c

]
, 1

)
,

where c = cos θ, s = sin θ, and θ ∈ [−π
2 , π2 ]. Then

2∑
i=1

∥∥OffBdiagτn
(W̃ TÃiW̃ )

∥∥2
F = 4s2c2(2 + ς)2 + 4ς2s2 + 16(1 + s2)c2ε2.

Therefore, if θ and ε are sufficiently small, then W̃ is a good block-diagonalizer. Now let 
Γ = diag(−I2, I2). By simple calculations, we get

g = 2, κ2(Q) = 1, δA = 4
√

2ε, δ = r̃ + 2δA,

r̃ = 2
√

4s2c2(2 + ς)2 + 4ς2s2 + 16(1 + s2)c2ε2.

If θ = ε � 1 and ς is not too small, then (3.11) is satisfied. Thus, by (3.12), for p ∈ {2, F}

min
D,Π

‖W − W̃DΠ‖p

‖W̃‖p
= 2 sin θ

2 ≈ ε, εub ≈ (1 + 5
√

2)δ
4ωuq

= O(ε),

i.e., the relative error in W̃ and the upper bound εub have the same order of magnitude. 
However, if θ = π

2 − ε with ε � 1 and ς is small, say ς = εφ with φ > 0, then the 
condition (3.11) of Theorem 3.3 is likely violated, and consequently, Theorem 3.3 is no 
longer applicable.

From these two examples, we can see that the bound εub in (3.12) is good in the sense 
that it can be in the same order of magnitude as the relative error. But when ωuq and/or 
ωnd is small, Theorem 3.3 may not provide a good bound or even fails to give a bound. 
This observation is more or less expected. In fact, when ωuq and/or ωnd is small, the
jbdp for A can be thought of as an ill-conditioned problem in the sense that any small 
perturbation can result in huge change in the solution.

When solving an o-jbdp, diagonalizers W , W̃ are orthogonal, and thus δ = r̃ + 2δA. 
Theorem 3.3 yields
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Corollary 3.4. In Theorem 3.3, if W and W̃ are assumed orthogonal, then

min
D∈Dτn ,DTD=I

Π∈Pτn

‖W − W̃DΠ‖p

‖W̃‖p
≤ τ

α
· (

√
t +

√
t − 1)δ

g ωuq
+ O(δ2). (3.14)

Some of the quantities in the right-hand side of (3.12) are not computable, unless W
is known. But it can still be useful in assessing roughly how good the approximate bock 
diagonalizer W̃ may be. Suppose that r̃ is sufficiently tiny. Then it is plausible to assume 
‖Q−1‖2 = O(1). The moduli ωuq and ωnd which are intrinsic to the jbdp for A may 
well be estimated by those of Â =

{
Bdiagτn

(W̃ TÃW̃ )
}m

i=1. Finally, ‖W‖2 ≥ 1 for any 
W ∈ Wτn

, because ‖W‖2 is equal to the square root of the largest eigenvalue of W TW

and the latter is no smaller than the largest diagonal entry of W TW , which is 1. On the 
other hand, write W = [W1, W2, . . . , Wt] with Wj ∈ Rn×nj and W T

j Wj = Inj
. For any 

x =
[
xT

1 , xT
2 , . . . , xT

t

]T with xj ∈ Rnj , we have

‖Wx‖2 = ‖W1x1 + · · · + Wtxt‖2 ≤ ‖W1x1‖2 + · · · + ‖Wtxt‖2

= ‖x1‖2 + · · · + ‖xt‖2 ≤
√

t
√

‖x1‖2
2 + · · · + ‖xt‖2

2 =
√

t ‖x‖2,

which implies ‖W‖2 ≤
√

t. Therefore, we get

1 ≤ ‖W‖2 ≤
√

t. (3.15)

The same holds for W̃ , too.

Remark 3.5. Several comments are in order.

(a) The quantity δ in (3.10) consists of two parts: the first part indicates how good W̃ is 
in approximately block-diagonalizing Ã, and the second part indicates how large the 
perturbation is. Therefore, the condition (3.11) means that the block-diagonalizer 
W̃ has to be sufficiently good and the perturbation has to be sufficiently small so 
that δ does not exceed the right-hand side of (3.11), which is proportional to the 
moduli ωuq and ωnd. Although the modulus of non-divisibility ωnd does not appear 
explicitly in the upper bound, it limits the size of δ.

(b) In (3.12), εub is a monotonically increasing function in δ and κ2(Q). If W (or W̃ ) is 
ill-conditioned, then both δ and κ2(Q) may be large, as a result, εub can be large.

(c) If δ � 1, by (3.12), we have

min
D,Π

‖W − W̃DΠ‖p

‖W̃‖p
≤ τ

α
· (

√
t +

√
t − 1)κ2(Q)
ωuq

· δ

g
+ O(δ2). (3.16)

(d) As far as sensitivity is concerned, the factor τ/α in (3.13) is insignificant because it 
can be bounded as
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1 <
τ

α
= 1

2

(√
2 +

√
2 − 1√
t − 1

)2

≤ 1
2(2

√
2 − 1)2

for t ≥ 2. Thus εub is proportional to 
√

t, other things being equal.
(e) Recalling how R̃i and g are defined, we find that Γ can affect the quality of the 

upper bound provided by Theorem 3.3 significantly. We need all γj well-separated 
from each other, lest g will be tiny. Ideally, we would like to minimize the upper 
bound over Γ, which does not seem to be an easy thing to do. In both Examples 3.1
and 3.2, we picked the particular Γ in (3.5).

(f) A natural assumption when performing a perturbation analysis for jbdp is to as-
sume that both the original matrix set A and its perturbed one Ã admit exact 
block-diagonalizers, i.e., both jbdp are solvable. Theorem 3.3 covers such a scenario 
as a special case with r̃ = 0.

Theorem 3.3, as a perturbation theorem for jbdp, can be used to yield an error 
bound for an approximate block-diagonalizer of block-diagonalizable A by simply letting 
all Ãi = Ai, i.e., δA = 0. In fact, when δA = 0, δ = ‖Q−1‖2

2 r̃. If also r̃ � 1, then δ � 1
and thus by (3.16)

min
D,Π

‖W − W̃DΠ‖p

‖W̃‖p
≤ τ

α
· (

√
t +

√
t − 1)κ2(Q)‖Q−1‖2

2
ωuq

· r̃

g
+ O(r̃2). (3.17)

This error bound is O( r̃
ωuq

), which is in agreement with the error bound when applied 
to jdp in [18, Corollary 3.2].

4. Proof of Theorem 3.3

Recall the assumptions: A is τn-block-diagonalizable and W ∈ Wτn
is a τn-block-

diagonalizer such that (1.3) holds. The modulus of uniqueness ωuq and the modulus of 
non-divisibility ωnd for the block-diagonalization of A by W are defined by Definition 2.3. 
The perturbed matrix set is Ã = {Ãi}m

i=1 and W̃ is an approximate τn-block-diagonalizer 
of Ã. Γ = diag(γ1In1 , . . . , γtInt

), where γ1, . . . , γt are distinct real numbers with all 
|γj | ≤ 1, and R̃i are defined by (3.4).

4.1. Three lemmas

The three lemmas in this subsection may have interest of their own, although their 
roles here are to assist the proof of Theorem 3.3.

Lemma 4.1. For given Z ∈ Rn×n, denote by

Ri = diag(A(11)
i , . . . , A

(tt)
i )Z − ZT diag(A(11)

i , . . . , A
(tt)
i ) (4.1)
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for 1 ≤ i ≤ m. Partition Z =
[
Zjk

]
with Zjk ∈ Rnj×nk and let eig(Zjj) = {μjk}nj

k=1. 
The following statements hold.

(a) If ωuq > 0, then

‖ OffBdiagτn
(Z)‖2

F ≤
∑m

i=1 ‖ OffBdiagτn
(Ri)‖2

F
ω2

uq
. (4.2)

(b) If dim N (Aj) = 1, then there exists a real number μ̂j such that

nj∑
k=1

|μjk − μ̂j |2 ≤
∑m

i=1 ‖ Bdiagτn
(Ri)‖2

F
ω2

nd
. (4.3)

Proof. Partition Ri =
[
R

(jk)
i

]
conformally with respect to τn. First, we show (4.2). For 

any pair (j, k) with j < k, it follows from (4.1) that

Gjk

[
vec(Zjk)

− vec(ZT
kj)

]
=

⎡⎢⎢⎢⎢⎢⎢⎣
vec(R(jk)

1 )
− vec((R(kj)

1 )T)
...

vec(R(jk)
m )

− vec((R(kj)
m )T)

⎤⎥⎥⎥⎥⎥⎥⎦ =: rjk,

where Gjk is defined by (2.8b). Put them all together to get

Muqzuq = ruq,

where

Muq = diag
(
G12, . . . , G1t, G23, . . . , G2t, . . . , Gt−1,t

)
,

zuq =
[

vec(Z12)T, − vec(ZT
21)T, . . . , vec(Z1t)T, − vec(ZT

t1)T,

vec(Z23)T, − vec(ZT
32)T, . . . , vec(Z2t)T, − vec(ZT

t2)T, . . . ,

vec(Zt−1,t)T, vec(ZT
t,t−1)T]T

,

ruq =
[
rT

12, . . . , rT
1t, rT

23, . . . , rT
2t, . . . , rT

t−1,t

]T
.

We have σmin(Muq) = minj<k σmin(Gjk) = ωuq > 0, and thus

‖ OffBdiagτn
(Z)‖2

F = ‖zuq‖2
2 ≤ ‖ruq‖2

2
ω2

uq
=

∑m
i=1 ‖ OffBdiagτn

(Ri)‖2
F

ω2
uq

,

as expected. Next, we show (4.3). For j = k, using (4.1), we have
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Gjj vec(Zjj) =

⎡⎢⎣vec(R(jj)
1 )

...
vec(R(jj)

m )

⎤⎥⎦ =: rjj ,

where Gjj is defined by (2.9b). Since dim N (Aj) = 1 by assumption, we know by 
Theorem 2.2(a) that the null space of Gjj is spanned by vec(Inj

), and thus there exists 
a real number μ̂j such that

vec(Zjj) = G†
jjrjj + μ̂j vec(Inj

),

where G†
jj is the Moore-Penrose inverse [36, p.102] of Gjj . It follows immediately that

Zjj = Ẑjj + μ̂jInj
,

where Ẑjj = reshape(G†
jjrjj , nj , nj). In particular, eig(Ẑjj) = {μjk − μ̂j}nj

k=1 and hence

nj∑
k=1

|μjk − μ̂j |2 ≤ ‖Ẑjj‖2
F ≤ ‖rjj‖2

2
ω2

nd
≤

∑m
i=1 ‖R

(jj)
i ‖2

F
ω2

nd
≤

∑m
i=1 ‖ Bdiagτn

(Ri)‖2
F

ω2
nd

.

This completes the proof. �
Previously in Theorem 3.3, Q is set to W −1W̃ , but the one in the next lemma can be 

any given nonsingular matrix.

Lemma 4.2. For any given nonsingular Q ∈ Rn×n, let Z = QΓQ−1 and write Z = B −E

with B = Bdiagτn
(Z) and E = − OffBdiagτn

(Z). Let τ and α be as in (3.9) and g as in 
(3.6). If

g > ‖Q−1EQ‖F/α, (4.4)

then there exists a τn-block-diagonal matrix B̃ = diag(B̃11, . . . , B̃tt) and a nonsingular 
matrix P =

[
Pjk

]
with Pjk ∈ Rnj×nk and Pjj = Inj

such that

B(QP ) = (QP )B̃, (4.5)

and for j = 1, 2, . . . , t

‖P̂j‖F ≤ τ

α
· ‖Q−1EQ‖F

g
, (4.6a)

nj∑
k=1

|μ̃jk − γj |2 < (1 + τ2) · ‖Q−1EQ‖2
F, (4.6b)

where μ̃j1, . . . , μ̃jnj
are the eigenvalues of B̃jj, and
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P̂j =
[
P T

1j , . . . , P T
j−1,j , 0nj×nj

, P T
j+1,j , . . . , P T

tj

]T
. (4.6c)

Proof. It suffices to show that there exist P̂1 ∈ Rn×n1 and B̃11 ∈ Rn1×n1 such that

Q−1BQ

[
In1

P̂1

]
≡ (Γ + Q−1EQ)

[
In1

P̂1

]
=

[
In1

P̂1

]
B̃11, (4.7)

(4.6) for j = 1 holds, and P is nonsingular.

Partition Q−1EQ =
[

E11 E12
E21 E22

]
with E11 ∈ Rn1×n1 , E22 ∈ R(n−n1)×(n−n1). A direct 

calculation gives

sepF(γ1In1 , diag(γ2In2 , . . . , γtInt
)) = min

2≤j≤t
|γj − γ1| ≥ g,

where sepF(· · · ) is the separation of two matrices [36, p.247]. Let g̃ = g−‖E11‖F−‖E22‖F. 
By [36, Theorem 2.8 on p.238], we conclude that if

g̃ > 0,
‖E21‖F‖E12‖F

g̃2 <
1
4 , (4.8)

then there is a unique P̂1 ∈ R(n−n1)×n1 such that

‖P̂1‖F ≤ 2‖E21‖F

g̃ +
√

g̃2 − 4‖E21‖F‖E12‖F
(4.9)

and (4.7) holds. We have to show that the assumption (4.4) ensures (4.8) and that (4.9)
implies (4.6a) for j = 1. In fact, under (4.4),

g̃ ≥ g −
√

2(‖E11‖2
F + ‖E22‖2

F)

≥ g −
√

2‖Q−1EQ‖F

> (1 −
√

2 α)g (4.10)

> 0,

‖E21‖F‖E12‖F

g̃2 ≤ ‖E21‖2
F + ‖E12‖2

F
2g̃2

<
‖E21‖2

F + ‖E12‖2
F

2(1 −
√

2 α)2g2

≤ ‖Q−1EQ‖2
F

2(1 −
√

2 α)2g2

≤ α2

2(1 −
√

2 α)2
(4.11)

<
1
4 .
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They give (4.8). It follows from (4.9), (4.10), and (4.11) that

‖P̂1‖F ≤ 2

(1 −
√

2 α) +
√

(1 −
√

2 α)2 − 2α2
· ‖Q−1EQ‖F

g

= τ

α
· ‖Q−1EQ‖F

g
(4.12)

< τ.

The inequality (4.6a) for j = 1 is a result of (4.12).
Next we show (4.6b) for j = 1. Pre-multiply (4.7) by [In1 , 0] to get, after rearrange-

ment,

B̃11 − γ1In1 = [In1 , 0]Q−1EQ

[
In1
P1

]
.

Since eig(B̃11) = {μ̃1k}n1
k=1, we have

n1∑
k=1

|μ̃1k − γ1|2 ≤
∥∥∥∥[In1 0]Q−1EQ

[
In1

P̂1

]∥∥∥∥2

F

≤
∥∥∥∥[In1

P̂1

]∥∥∥∥2

2
‖Q−1EQ‖2

F

≤ (1 + ‖P̂ T
1 P̂1‖2)‖Q−1EQ‖2

F

≤ (1 + τ2) · ‖Q−1EQ‖2
F,

as was to be shown.
Finally, we show that P is nonsingular by contradiction. If P were singular, let x =

[xT
1 . . . xT

t ]T be a nonzero vector with xj ∈ Rnj such that Px = 0. We then have 
xj = − 

∑t
k=1
k �=j

Pjkxk and thus

‖xj‖2
2 =

(∥∥∥ t∑
k=1
k �=j

Pjkxk

∥∥∥
2

)2
≤

( t∑
k=1
k �=j

‖Pjk‖2‖xk‖2

)2
≤ (t − 1)

t∑
k=1
k �=j

‖Pjk‖2
2‖xk‖2

2.

Therefore

‖x‖2
2 =

t∑
j=1

‖xj‖2
2 ≤ (t − 1)

t∑
j=1

t∑
k=1
k �=j

‖Pjk‖2
2‖xk‖2

2

= (t − 1)
t∑

k=1

t∑
j=1

‖Pjk‖2
2‖xk‖2

2

j �=k
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≤ (t − 1)
t∑

k=1

‖P̂k‖2
F‖xk‖2

2

< (t − 1)τ2‖x‖2
2 < ‖x‖2

2,

a contradiction. This completes the proof. �
Remark 4.3. Lemma 4.2 implies that when the off-block-diagonal part of Z is sufficiently 
small, QP is the eigenvector matrix of B = Bdiagτn

(Z) with P ≈ I, and for each j there 
are nj eigenvalues of B that cluster around γj .

Lemma 4.4. Let P =
[
Pjk

]
with Pjk ∈ Rnj×nk , Pjj = Inj

, and ‖P̂j‖F ≤ ε, where P̂j is 
defined as in (4.6c), 0 ≤ ε < τ , and τ is defined by (3.9). Then

‖P − I‖F ≤
√

t ε. (4.13)

Furthermore, let W , W̃ ∈ Wτn
, D̃ = diag(D̃11, . . . , D̃tt) ∈ Dτn

, and Π ∈ Pτn
. If WD̃ =

W̃PΠ, then D̃ is nonsingular and

√
1 − 2

√
t − 1 ε − (t − 1)ε2 ≤ σ ≤

√
1 + 2

√
t − 1 ε + (t − 1)ε2 (4.14)

for each singular value σ of D̃.

Proof. Since P − I =
[
P̂1, . . . , P̂t

]
, we have

‖P − I‖F =

⎛⎝ t∑
j=1

∥∥∥P̂j

∥∥∥2

F

⎞⎠1/2

≤
√

tε,

which is (4.13).
Next we show that D̃ is nonsingular and (4.14) holds. Write

P = [P1, . . . , Pt ] with Pj ∈ Rn×nj .

Using WD̃ = W̃PΠ, we get

D̃TW TWD̃ = ΠTP TW̃ TW̃PΠ. (4.15)

Since W ∈ Wτn
, the jth diagonal blocks at both sides of (4.15) read

D̃T
jjD̃jj = P T

j′ W̃ TW̃Pj′ , (4.16)
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where 1 ≤ j′ ≤ t as a result of the permutation Π. Partition W̃ as W̃ =
[
W̃1, . . . , ̃Wt

]
with W̃j ∈ Rn×nj . We infer from W̃ ∈ Wτn

that W̃ T
j W̃j = Inj

and 
∥∥W̃ T

j W̃�

∥∥
2 ≤ 1. To 

see the last inequality, we note

|xT
j W̃ T

j W̃�x�| ≤ ‖W̃jxj‖2‖W̃�x�‖2 = ‖xj‖2‖x�‖2 = 1 (4.17)

for any unit vectors xj ∈ Rnj and x� ∈ Rn� . Now using Pj′j′ = Inj′ and ‖P̂j′‖F ≤ ε, we 
have ∥∥P T

j′ W̃ TW̃Pj′ − Inj′

∥∥
F =

∥∥W̃ T
j′ W̃ P̂j′ + P̂ T

j′ W̃ TW̃j′ + P̂ T
j′ W̃ TW̃ P̂j′

∥∥
F

≤ 2
∥∥∥ ∑

��=j′

W̃ T
j′ W̃�P�j′

∥∥∥
F

+
∥∥∥ ∑

k �=j′

∑
��=j′

P T
kj′W̃ T

k W̃�P�j′

∥∥∥
F

≤ 2
∑
��=j′

‖P�j′‖F +
∑
k �=j′

∑
��=j′

∥∥Pkj′
∥∥

F

∥∥P�j′
∥∥

F

= 2
∑
��=j′

‖P�j′‖F +
( ∑

k �=j′

∥∥Pkj′
∥∥

F

)2

≤ 2
[
(t − 1)

∑
k �=j′

∥∥Pkj′
∥∥2

F

]1/2
+ (t − 1)

∑
k �=j′

∥∥Pkj′
∥∥2

F

≤ 2
√

t − 1 ε + (t − 1)ε2.

Combining it with (4.16), we get

‖D̃T
jjD̃jj − Inj

‖F ≤ 2
√

t − 1 ε + (t − 1)ε2 < 2
√

t − 1τ + (t − 1)τ2 = 1,

which implies that D̃jj is nonsingular, and for any singular value σ of D̃jj , it holds that

−1 < −2
√

t − 1 ε − (t − 1)ε2 ≤ σ2 − 1 ≤ 2
√

t − 1 ε + (t − 1)ε2 < 1.

The conclusion follows immediately since D̃ ∈ Dτn
. �

4.2. Proof of Theorem 3.3

Recall Q = W −1W̃ and let Z = QΓQ−1. Partition Z =
[
Zjk

]
with Zjk ∈ Rnj×nk , 

and let eig(Zjj) = {μjk}nj

k=1. The proof will be completed in the following four steps:

Step 1. We will show that Z is approximately τn-block-diagonal. Specifically, we show

‖ OffBdiagτn
(Z)‖F ≤

(∑m
i=1 ‖ OffBdiagτn

(Ri)‖2
F
)1/2

ωuq
≤ δ

ωuq
, (4.18)

where Ri is given by (4.1).
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Step 2. We will show that the eigenvalues of Zjj cluster around a unique γj′ by showing 
that there exists a permutation π of {1, 2, . . . , t} such that

|μjk − γπ(j)| <
g

2 , |μjk − γi| >
g

2 , for any i �= π(j). (4.19)

In other words, each of the t disjoint intervals (γi − g/2, γi + g/2) contains one and 
only one eig(Zjj).

Step 3. We will show that there exist a permutation Π ∈ Pτn
and a nonsingular P ≡[

Pjk

]
∈ Rn×n with Pjk ∈ Rnj×nk and Pjj = Inj

, satisfying (4.6a), such that D̃ =
QPΠ ∈ Dτn

.
Step 4. We will prove (3.12).

Proof of Step 1. Recall R̃i = W̃ TÃiW̃Γ − ΓW̃ TÃiW̃ of (3.4). We have

R̃i = W̃ TAiW̃ Γ − ΓW̃ TAiW̃ + W̃ TΔAiW̃ Γ − ΓW̃ TΔAiW̃

= QTW TAiWQΓ − ΓQTW TAiWQ + W̃ TΔAiW̃ Γ − ΓW̃ TΔAiW̃ ,

from which it follows that

Ri = W TAiWZ − ZTW TAiW

= Q− TR̃iQ
−1 − W TΔAiW̃ ΓQ−1 + Q− TΓW̃ TΔAiW.

Putting all of them for 1 ≤ i ≤ m together, we get

⎡⎣ R1
...

Rm

⎤⎦ = (Im ⊗ Q− T)

⎡⎢⎣ R̃1
...

R̃m

⎤⎥⎦Q−1 − (Im ⊗ W T)

⎡⎣ ΔA1
...

ΔAm

⎤⎦ W̃ TΓQ−1

+
[
Im ⊗ (Q− TΓW̃ T)

] ⎡⎣ ΔA1
...

ΔAm

⎤⎦W.

Consequently, (
m∑

i=1
‖Ri‖2

F

)1/2

≤ ‖Q−1‖2
2 r̃ + 2‖Q−1‖2‖W‖2‖W̃‖2δA = δ.

Combine it with (4.2) in Lemma 4.1 to conclude (4.18). �
Proof of Step 2. Using Lemma 4.1, we know that there exists μ̂j such that

nj∑
k=1

|μjk − μ̂j |2 ≤
∑m

i=1 ‖ Bdiagτn
(Ri)‖2

F
ω2

nd
≤

(
δ

ωnd

)2

. (4.20)
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Then for any μj k1 , μj k2 , we have

|μj k1 − μj k2 |2 ≤ (|μj k1 − μ̂j | + |μj k2 − μ̂j |)2 (4.21)

≤ 2(|μj k1 − μ̂j |2 + |μj k2 − μ̂j |2)

≤ 2
nj∑

k=1

|μjk − μ̂j |2 ≤ 2
(

δ

ωnd

)2

.

Let argmin� |μjk − γ�| = �jk. Noticing that

Γ = Q−1ZQ = Q−1 Bdiagτn
(Z)Q + Q−1 OffBdiagτn

(Z)Q.

By a result of Kahan [37] (see also [38, Remark 3.3]), we have

t∑
j=1

nj∑
k=1

|μjk − γ�jk
|2 ≤ 2‖Q−1 OffBdiagτn

(Z)Q‖2
F. (4.22)

Now we declare �j1 = · · · = �jnj
= j′ for all j = 1, 2, . . . , t. Because otherwise, say 

�j1 �= �j2, we have

4α2g2 > 4κ2
2(Q) δ2

ω2
uq

(by (3.11))

≥ 4‖Q−1 OffBdiagτn
(Z)Q‖2

F (by (4.18)) (4.23a)

≥ 2
t∑

j=1

nj∑
k=1

|μjk − γ�jk
|2 (by (4.22))

≥ 2(|μj1 − γ�j1 |2 + |μj2 − γ�j2 |2)

≥ (|μj1 − γ�j1 | + |μj2 − γ�j2 |)2

≥ (|γ�j1 − γ�j2 | − |μj1 − μj2|)2

≥
(

g −
√

2 δ

ωnd

)2

(by (4.21))

> [1 − (1 − 2α)]2g2 (by (3.11))

= 4α2g2, (4.23b)

a contradiction. Now using (4.22), (4.18) and (3.11), we get

max
k

|μjk − γj′ | ≤
(

nj∑
k=1

|μjk − γj′ |2
)1/2

≤
√

2‖Q−1 OffBdiagτn
(Z)Q‖F

≤
√

2κ2(Q)‖ OffBdiagτn
(Z)‖F ≤

√
2κ2(Q)δ

ωuq
<

√
2αg <

1
2g.
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Thus, we know that each j ∈ {1, 2, . . . , t} corresponds to a unique j′ satisfying that 
|μjk − γj′ | < g/2 and |μjk − γi| > g/2 for any i �= j′. This is (4.19). �
Proof of Step 3. Notice that (4.23a) implies that ‖Q−1 OffBdiagτn

(Z)Q‖F ≤ αg, i.e., 
(4.4) holds. By Lemma 4.2, there exists a τn-block-diagonal matrix B̃ = diag(B̃11, . . . ,

B̃tt) and a nonsingular matrix P ≡
[
Pjk

]
with Pjk ∈ Rnj×nk and Pjj = Inj

, satisfying 
(4.6), such that

Bdiagτn
(Z)(QP ) = (QP )B̃. (4.24)

Denote by eig(B̃jj) = {μ̃jk}nj

k=1. By (4.6b), (4.18) and (3.11), we know

max
k

|μ̃jk − γj | ≤
√∑

k

|μ̃jk − γj |2

≤ (1 + τ2)κ2(Q)‖ OffBdiagτn
(Z)‖F

< (1 + τ2)κ2(Q) δ

ωuq
< (1 + τ2)αg <

g

2 .

What this means is that each of the t disjoint intervals (γi − g/2, γi + g/2) contains 
one and only one eig(B̃jj). Previously in Step 2, we proved that each of the t disjoint 
intervals (γi − g/2, γi + g/2) contains one and only one eig(Zjj) as well. On the other 
hand, we also have eig(Bdiagτn

(Z)) = eig(B̃) by (4.24). Therefore, there is permutation 
π of {1, 2, . . . , t} such that

eig(B̃π(j)π(j)) = eig(Zjj) for 1 ≤ j ≤ t. (4.25)

Let Π be the permutation matrix such that

ΠTB̃Π = diag(B̃π(1)π(1), . . . , B̃π(t)π(t)). (4.26)

It can be seen that Π ∈ Pτn
, i.e., it is τn-block structure preserving. Finally by (4.25)

and (4.26),

diag(Z11, . . . , Ztt)(QPΠ) = QPB̃Π (4.27)

= (QPΠ)ΠTB̃Π

= (QPΠ) diag(B̃π(1)π(1), . . . , B̃π(t)π(t)).

Let D̃ = QPΠ ≡
[
D̃jk

]
with D̃jk ∈ Rnj×nk . The equation (4.27) becomes

diag(Z11, . . . , Ztt)D̃ = D̃ diag(B̃π(1)π(1), . . . , B̃π(t)π(t))

which yields ZjjD̃jk = D̃jkB̃π(k)π(k). Recalling (4.25) and eig(Zjj) ∩ eig(Zkk) = ∅ for 
j �= k by (4.19), we conclude that D̃jk = 0 for j �= k, i.e., D̃ is τn-block-diagonal. �
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Proof of Step 4. Noticing that Q = W −1W̃ and D̃ = QPΠ in Step 3, we have WD̃ =
W̃PΠ. Then using Lemma 4.4, we know that D̃ is nonsingular and for any singular value 
σ of D̃, and (4.14) holds with

ε = τ

α
·

‖Q−1 OffBdiagτn
(Z)Q‖F

g
.

By (4.18), we have

ε ≤ τ

α
· κ2(Q)δ

g ωuq
= ε∗. (4.28)

Now let D̃jj = UjΣjV T
j be the SVD of D̃jj . Denote by U = diag(U1, . . . , Ut), 

V = diag(V1, . . . , Vt) and D = ΠV UTΠT. It can be verified that D is orthogonal and 
τn-block-diagonal. It follows from WD̃ = W̃PΠ that

W = W̃PΠD̃−1 = W̃ (ΠD̃−1ΠT)Π + W̃ OffBdiagτn
(P )ΠD̃−1

= W̃DΠ + W̃ (ΠD̃−1ΠT − D)Π + W̃ OffBdiagτn
(P )ΠD̃−1

= W̃DΠ + W̃ ΠV (Σ−1 − I)U + W̃ OffBdiagτn
(P )ΠD̃−1.

Using Lemma 4.4, we have for p ∈ {2, F}∥∥W − W̃DΠ
∥∥

p =
∥∥W̃ ΠV (Σ−1 − I)U + W̃ OffBdiagτn

(P )ΠD̃−1∥∥
p

≤
∥∥W̃

∥∥
p

(
1 +

√
t ε∗√

1 − 2
√

t − 1ε∗ − (t − 1)ε2
∗

− 1
)

=
∥∥W̃

∥∥
p

[
(
√

t +
√

t − 1)ε + O(ε2)
]
.

Combine it with (4.28) to conclude the proof of (3.12). �
5. Numerical examples

In this section, we present some random numerical tests to validate our theoretical re-
sults. All numerical examples were carried out using matlab, with machine unit roundoff 
2−53 ≈ 1.1 × 10−16.

Let us start by explain how the testing examples are constructed. Given a partition 
τn = (n1, . . . , nt) of n and the number m of matrices, we generate the matrix sets A and 
Ã = {Ãi}m

i=1 as follows.

1. Randomly generate W ≡ [W1, . . . , Wt] ∈ Wτn
. This is done by first generating an n ×

n random matrix from the standard normal distribution and then orthonormalizing 
its first n1 columns, the next n2 columns, . . ., and the last nt columns, respectively. 
Set V = W − T;
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2. Generate m τn-block-diagonal matrices Dj randomly from the standard normal 
distribution and set Aj = V DjV T for 1 ≤ j ≤ m. This makes sure that A is 
τn-block-diagonalizable.

3. Generate m noise matrices Nj also randomly from the standard normal distribu-
tion and set Ãj = Aj + ξNj , where ξ is a parameter for controlling noise level. Ã
is likely not τn-block-diagonalizable but it is approximately. An approximate block-
diagonalizer W̃ ≡ [W̃1, . . . , ̃Wt] ∈ Wτn

of Ã is computed by JBD-NCG [22] followed 
by orthonormalization as in item (1) above.

For comparison purpose, we estimate the relative error between W̃ and W as measured 
by (1.5) for p = F as follows. We have to minimize

‖W − W̃DΠ‖2
F = ‖W‖2

F − 2 trace(W TW̃DΠ) + ‖W̃‖2
F

over orthogonal D ∈ Dτn
and Π ∈ Pτn

, which is equivalent to maximizing

t∑
j=1

trace(W T
j W̃π(j)Dπ(j)Πj)

over orthogonal Dπ(j), permutations π of {1, 2, . . . , t}, subject to nj = nπ(j), which again 
is equivalent to

max
π

t∑
j=1

(the sum of the singular values of W T
j W̃π(j)) (5.1)

subject to nj = nπ(j). Abusing notation a little bit, we let π be the one that achieve the 

optimal in (5.1), perform the singular value decomposition W̃ T
π(j)Wj = UjΣjV T

j , and set 
D = diag(Uπ(1)V

T
π(1), . . . , Uπ(t)V

T
π(t)). Finally, the error (1.5) for p = F is computed as

‖W − W̃DΠ‖F

‖W̃‖F
(5.2)

with D as above and Π ∈ Pτn
as determined by the optimal π. There doesn’t seem to 

be a simple way to compute (1.5) for p = 2.
To generate error bounds by Theorem 3.3, we have to decide what Γ to use. Ideally, 

we should use the one that minimize the right-hand side of (3.12), but we don’t have a 
simple way of doing that. For the tests below, we use 50 different Γ and pick the best 
bound. Specifically, we use a particular one in (3.5)

Γ = diag(−In1 , (−1 + 2
t − 1)In2 , (−1 + 4

t − 1)In3 , . . . , Int
) (3.5)

as well as 49 random ones with their diagonal entries γ1, . . . , γt randomly drawn from the 
interval [−1, 1] with the uniform distribution. Our experience suggests that the particular 
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Table 5.1
Bound vs. m, the number of matrices in A for τ9 = (3, 3, 3).

m ωuq ωnd δ Ratio εbker εub Error
4 2.4e+00 2.3e+00 6.3e−10 1.3e−09 1.0e−09 1.2e−09 2.3e−11
8 4.0e+00 4.1e+00 8.6e−10 1.1e−09 8.1e−10 9.9e−10 2.4e−11
16 6.7e+00 6.2e+00 1.3e−09 9.6e−10 6.8e−10 8.9e−10 2.3e−11
32 1.1e+01 1.1e+01 2.0e−09 8.9e−10 6.3e−10 8.2e−10 2.5e−11
64 1.7e+01 1.7e+01 1.4e−09 1.8e−09 9.1e−10 1.7e−09 4.0e−11
128 2.5e+01 2.5e+01 3.0e−09 1.3e−09 7.9e−10 1.2e−09 3.4e−11
256 3.6e+01 3.6e+01 3.5e−09 4.9e−10 2.9e−10 4.5e−10 1.4e−11

Table 5.2
Bound vs. m, the number of matrices in A for τ6 = (1, 2, 3).

m ωuq ωnd δ Ratio εbker εub Error
4 2.1e+00 3.4e+00 6.0e−11 4.2e−10 2.2e−11 3.9e−10 3.5e−12
8 3.0e+00 5.2e+00 8.9e−11 2.9e−10 1.9e−11 2.7e−10 3.6e−12
16 6.2e+00 7.7e+00 1.5e−10 1.7e−10 2.5e−11 1.6e−10 3.8e−12
32 8.9e+00 1.1e+01 1.9e−10 2.2e−10 2.5e−11 2.1e−10 3.8e−12
64 1.3e+01 1.5e+01 2.4e−10 1.4e−10 1.3e−11 1.3e−10 1.7e−12
128 1.7e+01 2.2e+01 4.2e−10 1.2e−10 1.3e−11 1.1e−10 1.7e−12
256 2.4e+01 3.3e+01 4.7e−10 1.3e−10 9.2e−12 1.2e−10 1.1e−12

Γ in (3.5) usually leads to bounds having the same order as the best one produced by 
the 49 random Γ. However, it can happen that the best one is much better than and 
up to one tenth of that by the particular Γ, although such extremes do not happen very 
often.

We will report our numerical tests according to five different testing scenarios: varying 
numbers of matrices (test 1), varying matrix sizes (test 2), varying numbers of diagonal 
blocks (test 3), and varying noise levels (test 4). We will examine these quantities: the 
modulus of uniqueness ωuq, the modulus of non-divisibility ωnd, the quantity δ as defined 
in (3.10), the ratio as the quotient of δ over the right hand side of (3.11) (to make sure 
that (3.11) is satisfied), the upper bound εbker ≡ εbker(Ã; ̃W ) on the relative backward 
error as in (3.8), the perturbation bound εub as in (3.12), and finally the estimated true 
error in W̃ as in (5.2).

Test 1: number of matrices. In this test, we fix ξ = 10−12 and vary the number m of 
matrices in the matrix set A. The numerical results are displayed in Tables 5.1 and 5.2 for 
the two different partitions τ9 = (3, 3, 3) and τ6 = (1, 2, 3), respectively. We summarize 
our observations from Tables 5.1 and 5.2 as follows.

1. For all m, the ratios are far less than 1. In other words, (3.11) is satisfied for all, and 
hence the bound by (3.12) can be used.

2. For all m, εub provides a very good upper bound on the error.
3. As m increases, i.e., as we expand the matrix set A, the modulus of uniqueness and 

modulus of non-divisibility increase as well.
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Table 5.3
Bound vs. matrix size n = 9p for τn = p × (3, 3, 3).

n ωuq ωnd δ Ratio εbker εub Error
9 7.1e+00 7.3e+00 3.9e−10 4.0e−10 9.5e−11 3.7e−10 8.3e−12
18 1.1e+01 1.0e+01 1.4e−09 6.6e−10 2.6e−10 6.1e−10 1.4e−11
27 1.2e+01 1.2e+01 3.9e−09 1.6e−09 7.7e−10 1.4e−09 2.5e−11
36 1.5e+01 1.5e+01 1.2e−07 5.2e−08 7.9e−08 4.8e−08 9.6e−10
45 1.6e+01 1.6e+01 8.9e−09 3.4e−09 3.8e−09 3.2e−09 4.8e−11
54 1.8e+01 1.8e+01 3.8e−07 1.1e−07 2.0e−07 9.8e−08 1.6e−09
63 1.9e+01 1.9e+01 9.9e−09 4.2e−09 3.0e−09 3.9e−09 4.4e−11

Table 5.4
Bound vs. matrix size n = 6p for τn = p × (1, 2, 3).

n ωuq ωnd δ Ratio εbker εub Error
6 4.4e+00 7.2e+00 1.1e−10 6.6e−10 2.5e−11 6.1e−10 3.4e−12
12 5.8e+00 6.2e+00 1.3e−09 1.6e−09 5.3e−10 1.5e−09 2.4e−11
18 8.5e+00 8.0e+00 1.3e−09 1.9e−09 7.7e−10 1.8e−09 2.5e−11
24 9.7e+00 9.1e+00 6.8e−09 5.6e−09 4.5e−09 5.2e−09 6.3e−11
30 9.8e+00 9.1e+00 2.5e−09 2.1e−09 1.3e−09 1.9e−09 2.0e−11
36 1.1e+01 9.4e+00 4.3e−09 2.5e−09 1.3e−09 2.3e−09 2.9e−11
42 1.2e+01 1.1e+01 3.7e−09 1.5e−09 9.3e−10 1.4e−09 1.6e−11

Table 5.5
Bound vs. number of diagonal blocks.

t ωuq ωnd δ Ratio εbker εub Error
3 5.0e+00 9.9e+00 1.8e−10 3.0e−10 3.4e−11 2.7e−10 1.1e−12
4 5.6e+00 5.2e+00 4.4e−10 6.7e−10 4.8e−11 6.0e−10 4.8e−12
5 4.0e+00 8.5e+00 6.0e−10 8.2e−09 1.6e−10 7.2e−09 1.4e−11
6 3.2e+00 9.5e+00 2.1e−09 1.2e−08 8.7e−10 1.0e−08 3.2e−11
7 3.3e+00 8.3e+00 2.5e−09 1.7e−08 1.4e−09 1.4e−08 1.1e−10
8 6.5e+00 5.8e+00 8.6e−09 3.7e−08 8.1e−09 3.2e−08 3.2e−10
9 5.9e+00 6.1e+00 3.5e−09 2.0e−08 2.0e−09 1.7e−08 5.0e−11

Test 2: matrix sizes. In this test, we fix ξ = 10−12, m = 16, and use two partitions 
τn = p × (3, 3, 3) or τn = p × (1, 2, 3), where p = 1, 2, . . . , 7. Then the matrix size n = 9p

or 6p will increase as p increases. We display the numerical results in Tables 5.3 and 5.4. 
We can see from Tables 5.3 and 5.4 that εub provides a very good upper bound on the 
error for different sizes of matrices.

Test 3: number of diagonal blocks. In this test, we fix ξ = 10−12, m = 16, and generate 
the partition τn randomly using matlab command randi(5,t,1). In other words, the 
block-diagonal matrices Dj have t diagonal blocks and the order of the ith block is τn(i), 
randomly drawn from {1, 2, . . . , 5} with the uniform distribution. For t = 3, 4, . . . , 9, we 
display the numerical results in Table 5.5. We can see from Table 5.5 that εub provides 
a very good upper bound on the error as the numbers of diagonal blocks varies.

Test 4: noise level. In this test, we fix the number of matrices m = 16. For different 
partitions τn = (3, 3, 3) and τn = (1, 2, 3), in Fig. 5.1, we plot εbker (backward error), 
error and εub (bound) versus different noise levels. We can see from Fig. 5.1 that as ξ
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Fig. 5.1. Backward error εbker, error, and bound εub vs. noise level.

increases, εbker, error and εub all increase almost linearly. For all noise levels, εub indeed 
provides a good upper bound on the error.

6. Concluding remarks

In this paper, we developed a perturbation theory for jbdp. An upper bound is ob-
tained for the relative distance (1.5) between a block-diagonalizer W for the original
jbdp of A that is block-diagonalizable and an approximate diagonalizer W̃ for its per-
turbed jbdp of Ã. The backward error is also derived for jbdp. Numerical tests that 
validate the theoretical results are presented.

The jbdp of interest in this paper is for block-diagonalization via congruence trans-
formations which are known to preserve symmetry. Yet our development so far does 
not assume that all Ai are symmetric. What will happen to all the results if they are 
symmetric? It turns out that not much simplification in results and arguments can be 
gained but all the results remain valid after minor changes to the definitions of Gjk in 
(2.8b): remove the second, fourth, . . ., block rows as now all A(jj)

i are symmetric.
We have been limiting all matrices to real ones, but this is not a limitation. In fact, 

if all matrices are complex, the change that needs to be made is simply to replace all 
transposes T by complex conjugate transposes H.

Conceivably, we might use similarity transformation for block-diagonalization, i.e., 
instead of (1.3), we may seek a nonsingular matrix W ∈ Rn×n such that all W −1AiW

are τn-block-diagonal. A similar development that are very much parallel to those in [9]
and in this paper can be worked out. A major change will be to redefine the subspace 
N (A) in (2.3) as

N (A) :=
{

Z ∈ Rn×n : AiZ − ZAi = 0 for 1 ≤ i ≤ m
}

.

We omit the detail.
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