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A B S T R A C T

Mutual interference and prey refuge are important drivers of predator–prey dynamics. The ‘‘exponent" or
degree of mutual interference has been under much debate in theoretical ecology. In the present work, we
investigate the interplay of the mutual interference exponent, and prey refuge, on the behavior of a predator–
prey model with a generalized Holling type functional response — considering in particular the ‘‘non-smooth"
case. This model can also be used to model an infectious disease where a susceptible population, moves to
an infected class, after being infected by the disease. We investigate dynamical properties of the system and
derive conditions for the occurrence of saddle–node, transcritical and Hopf-bifurcations. A sufficient condition
for finite time extinction of the prey species has also been derived. In addition, we investigate the effect of a
prey refuge on the population dynamics of the model and derive conditions such that the prey refuge would
yield persistence of the population. We provide additional verification of our analytical results via numerical
simulations. Our findings are in accordance with classical experimental results in ecology (Gause, 1934), that
show that extinction of predator and prey populations is possible in a finite time period — but that bringing
in refuge can effectively yield persistence.

1. Introduction

Predator–prey dynamics form the corner stone of ecosystems. Math-
ematical models for such interactions goes back to the work of Lotka,
Volterra, Holling and Gause [1–4]. Holling’s classical work proposes
that a predator’s feeding rate depends solely on the prey density, and
is modeled essentially by a saturating function called the functional
response, described via 𝑝(𝑥) = 𝑢(𝑥)

1+ℎ𝑢(𝑥) , where ℎ is the handling time
of one prey item and 𝑢(𝑥) is a function of prey density 𝑥. Typically 𝑢
is smooth, making the response 𝑝 smooth, and depending on the form
of 𝑢 we have Holling type II, III, IV responses [3,5]. The response,
𝑝(𝑥) = 𝑢(𝑥)

1+ℎ𝑢(𝑥) , can be considered a special form of 2 different response

types. 𝑝(𝑥) = (𝑢(𝑥))𝑝
1+ℎ(𝑢(𝑥))𝑝 , or 𝑝(𝑥) =

(

𝑢(𝑥)
1+ℎ𝑢(𝑥)

)𝑚1
. When 𝑝 = 1, or 𝑚1 = 1,

we recover the classical response posed earlier.
An interesting subclass of these general responses are the cases

when 0 < 𝑝 < 1 or 0 < 𝑚1 < 1. In these cases 𝑝(𝑥) is non-
smooth, causing various difficulties in the mathematical analysis of
these systems. For example, linearization about the trivial steady state
is no longer possible [6]. Such responses were considered by Sugie [6,7]
and more recently by Braza [8]. Note, in these cases one might ask what
real ecological scenarios do these models represent. The work by Sugie,
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proposed the (𝑢(𝑥))𝑝 term, as indicative of a predator which is highly
efficient and with a high attack rate. Such classes of models have also
been considered in the more applied sense, where the focus has been
on fitting similar functional responses, such as (𝑢(𝑥))𝑝, 0 < 𝑝 < 1, to
actual predator–prey data [9,10]. However all of these works miss a
key dynamic inherent in such models — that of finite time extinction
of the prey. In fact [6,7] claim uniqueness of globally attracting interior
equilibrium or limit cycle, under certain parametric restriction. This has
recently been disproved in [11].

One might question the motivation behind studying finite time
extinction in population dynamics. If we are modeling predator–prey
numbers, once these quantities fall below one, populations are es-
sentially extinct (and could also be deemed extinct due to inher-
ent stochastic/environmental pressures). However, if we are modeling
predator–prey densities, then a quantity less than one need not indicate
essential extinction — and controls aimed at pest eradication if stopped
at any finite time, would cause a rebound of the pest population [12].
Also, recent work on the Soybean aphid (Aphis glicines), the chief
invasive pest on Soybean crop, particularly in the Midwestern US [13],
shows that even the arrival of 20 soya bean aphid (where the density
count is per leaf, so on an area ≈ 60–70 cm2), is enough to overcome
plant resistance and colonize the plant, reaching levels of several
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thousand on one leaf, in a matter of 1–2 months. Herein the initial
density would be ≈ 20∕60 = 1

3 < 1, and yet large scale invasion is
possible [14].

Yet another powerful motivation to study finite time extinction
comes from the vast epidemic literature. This is much in vogue, due
to the ongoing global pandemic caused by the COVID19 virus [15].
In essence the models we analyze in the current manuscript, could
be endemic models for an infectious disease due to which persons in
a population transition from a susceptible state to an infected state,
after being infected by the disease. The incidence function would be
the density dependent rate at which this transition occurs. Recent
work [16–18] has considered a large class of incidence functions,
both upper density dependent incidence functions (these include den-
sity dependent incidence functions), Homogeneous incident functions
(that include frequency dependent incidence) and power type inci-
dent functions (which are the ones under consideration in the current
manuscript). Not only can power type incidence lead to host extinction
in finite time — but are seen to be particularly good fits to modeling
disease transmitted by rhanavirus among amphibian populations [19],
modeling disease transmission among fairly general groups of host-
parasitoid models [20], as well as in modeling virus transmission in
gypsy moths [21].

Mathematically, this is made possible, due to the ‘‘non-smooth" form
of the responses considered, where by the stable manifold of the origin,
separates the phase space into initial conditions that could result in
finite time extinction of prey, followed by an exponential decrease
of predators also to extinction — versus initial conditions that could
possibly go to an interior equilibrium or some other closed loop in
the phase space, such as a heteroclinic orbit or limit cycle. Such a
separation in the phase has been seen in the predator–prey literature,
but this has almost exclusively been in the Leslie–Gower type models,
where the predator nullcline is slanting and not vertical, see [22] and
the references within. It has also been seen via introduction of Allee
effects, see [23–26] and the references within. However, in the non-
smooth case, as first considered in [6,7,9], a careful analysis of this
splitting of phase, initial condition dependent extinction, and all of
the rich dynamics and bifurcations involved therein, have only been
considered in [11], to the best of our knowledge. However, studying
non-smooth form of the responses, as in the applications alluded to in
the present work, provides insight into various ecological and epidemic
processes, all of which occur in finite time.

Mutual interference is defined as the behavioral interactions among
feeding organisms, that reduce the time that each individual spends
obtaining food, or the amount of food each individual consumes [27–
32]. Some of the earliest work on mutual/predator interference, was
initiated by Erbe [33], in which the mutual interference is modeled as
𝑢(𝑥)

1+ℎ𝑢(𝑥) 𝑦
𝑚, where 𝑦 is the predator density and 0 < 𝑚 < 1. The exact

value of the exponent 𝑚 has been under much debate in ecology [34].
Various authors describe the response 𝑝(𝑥) =

(

𝑢(𝑥)
1+ℎ𝑢(𝑥)

)𝑚1
in terms of

mutual interference. This direction was first considered by Upadhyay
and Rao [35]. However, an ecological motivation, to the best of our
knowledge is not provided. We are motivated by certain theoretical
ecology directions [32,36–38], and interpret 𝑝(𝑥) =

(

𝑢(𝑥)
1+ℎ𝑢(𝑥)

)𝑚1
, 0 <

𝑚1 < 1, as a predator with a greater feeding rate, or a more aggressive
predator, than one which is modeled in the classical scenario — that
is when 𝑚1 = 1. This is clear from simple comparison, 𝑝(𝑥)|𝑚1=1 <
𝑝(𝑥)|0<𝑚1<1, ∀𝑥 > 0.

Prey refuge, and its role in predator–prey communities has also been
extremely well investigated, since the seminal work of Kar [39]. Refuge
is defined as any strategy taken by prey to avoid predation, such as
shelter, dispersal, mimicry and camouflage [40]. It can have strong
influence on predator–prey communities [41,42] — often stabilizing
systems, which are otherwise doomed for extinction. It is thus an im-
portant ingredient in ecosystem balance and diversity [43]. However,
the effect of refuge on non-smooth systems such as the aforementioned
ones, remains less investigated [43]. The well known experiments of

Gause find in contradiction to the predictions of classical predator–
prey models, that there is a distinct chance for the predator and prey
populations to die out — unless the prey is provided with refuge [2].
Non-smooth systems such as when 0 < 𝑚,𝑚1 < 1, in the aforementioned
models, enable the dynamic of finite time predator–prey extinction
(such as seen in the experiments of Gause [2,42]) — however, to the
best of our knowledge, the effect of prey refuge on these systems has
not been investigated.

For the purposes of this manuscript we consider the functional
response 𝑝(𝑥) =

(

𝑢(𝑥)
1+ℎ𝑢(𝑥)

)𝑚1
, and define the parameter regimes 𝑚1 > 1

as super-critical, that is the regime where 𝑝(𝑥) ∈ 𝐶𝑘,∀𝑘, and 𝑢(𝑥) is
a polynomial function. We define 𝑚1 = 1 as critical, recovering the
classical case from the literature. Lastly we define 0 < 𝑚1 < 1 as sub-
critical, that is the regime where 𝑝(𝑥) loses smoothness, and is not even
Lipschitz. Thus the goals of the current manuscript are:

(1) To consider a generalized model of interference, in the sub-
critical regime; therein to investigate the phenomenon of finite
time prey extinction, that can occur in this regime. This is seen
via Theorems 4.1 and 4.2.

(2) To investigate this model dynamically, including the various
bifurcations that might occur. These are visualized through
Figs. 2–8.

(3) To investigate the effect of prey refuge on the dynamics of this
generalized model. We find that there is a critical amount of
refuge that prevents finite time extinction of the prey. This is
seen via Theorem 5.1.

The rest of the paper is organized as follows. The mathematical for-
mulation of the problem and mathematical preliminaries such as non-
negativity, boundedness and dissipativeness are presented in Section 2.
Analytic guidelines and various local bifurcations are considered in
Section 3. In Section 4, we analyze the possibility of finite time ex-
tinction of the prey population. We investigate the effect of prey
refuge in Section 5. Additionally, analytic guidelines and various local
bifurcations are carried out. Numerical simulations are performed in
various sections to correlate with our key analytical findings. In the last
section, we present our discussions and conclusions. We have included
several technical Appendices A and B.

2. Model formulation

First, we consider a general predator–prey model with mutual in-
terference among predators of the form

⎧

⎪

⎨

⎪

⎩

𝑑𝑥1
𝑑𝑡

= 𝑥1𝑓 (𝑥1) −𝑤0𝑔(𝑥1)𝑥
𝑚 2
2 ,

𝑑𝑥2
𝑑𝑡

= −𝑎2𝑥2 +𝑤1𝑔(𝑥1)𝑥
𝑚 2
2 ,

(1)

where 𝑓 (𝑥1) and 𝑔(𝑥1) are the logistic growth and the functional
response of the predator towards the prey respectively. Assume that
0 < 𝑚2 ≤ 1, as per literature on mutual interference [27,28]. In this
paper, we consider the general logistic growth and the generalized
Holling type functional response, see [44,45]:

𝑓 (𝑥) = 𝑎1 − 𝑏1𝑥, 𝑔(𝑥) =
( 𝑥
𝑥 + 𝑑

)𝑚1
. (2)

Assume that 0 < 𝑚1 ≤ 1. The assumptions placed on the functions 𝑓
and 𝑔 in (2) are:

(I) 𝑔 is continuous for 𝑥1 ≥ 0 and 𝑔(0) = 0;
(II) 𝑔 is smooth for 𝑥1 > 0 and 𝑔′(𝑥1) > 0 for 𝑥1 > 0;

(III) 𝑓 is smooth for 𝑥1 ≥ 0;
(IV) There exists

𝑎1
𝑏1

> 0 such that
(

𝑥1 −
𝑎1
𝑏1

)

𝑓 (𝑥1) < 0 for 𝑥1 ≥ 0,

𝑥1 ≠
𝑎1
𝑏1

;

(V) For 0 < 𝑚1 < 1, 𝑔′(0+) ∶= lim𝑥1→0+
𝑔(𝑥1)
𝑥1

= +∞;
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Table 1
List of parameters used in the model (3). All parameters considered are positive
constants.

Variables/
Parameters

Description

𝑥1 Prey population
𝑥2 Predator population
𝑡 Time
𝑎1 Per capita rate of self-reproduction for the prey
𝑎2 Intrinsic death rate of the predator population
𝑤0 Maximum rate of per capita removal of prey
𝑤1 Measure efficiency of biomass conversion from prey to predator
𝑏1 Death rate of prey population due to intra-species competition
𝑑 Half saturation constant
1∕𝑚1 Predators feeding intensity
𝑚2 Mutual interference exponent

(VI) 𝑔 is not smooth for 𝑥1 = 0 when 0 < 𝑚1 < 1;

(VII) The integral lim𝜖→0 ∫

𝛽

𝜖

𝑑𝑥1
𝑔(𝑥1)

converges for fixed 𝛽 > 0.

Thus the predator–prey model with mutual interference and the
generalized Holling type functional response becomes

⎧

⎪

⎨

⎪

⎩

𝑑𝑥1
𝑑𝑡

= 𝑎1𝑥1 − 𝑏1𝑥21 −𝑤0

(

𝑥1
𝑥1+𝑑

)𝑚 1
𝑥𝑚 2
2 ,

𝑑𝑥2
𝑑𝑡

= −𝑎2𝑥2 +𝑤1

(

𝑥1
𝑥1+𝑑

)𝑚 1
𝑥𝑚 2
2 ,

(3)

The variables and parameters used in the model are defined in Table 1.

2.1. Mathematical preliminaries

There are essential properties that a mathematical model must ex-
hibit in order to obtain realistic solutions. In particular, it is important
to guarantee positivity of the populations. Likewise, boundedness of the
total population is another important feature of a realistic model. In
this section, we show positivity, boundedness, and dissipativeness of
the mathematical model (3).

2.1.1. Positivity and boundedness
The nonnegativity of populations generated by the mathematical

model (3) is clearly important to make biological sense. In addition,
positivity implies survival of the populations over the temporal domain.
The boundedness of populations ensures that no population supersedes
unrealistic values in time. In particular, boundedness guarantees that
the total population does not grow beyond an exponential rate for an
unbounded interval. Guaranteeing both of these features makes strides
to showing the feasibility of a mathematical model for describing
population behavior.

Lemma 2.1. Consider the following region R2
+ = {(𝑥1, 𝑥2) ∶ 𝑥1 ≥

0, 𝑥2 ≥ 0}, then all solutions (𝑥1(𝑡), 𝑥2(𝑡)) of model (3) with initial conditions
𝑥1(0) > 0, 𝑥2(0) > 0 are nonnegative for all 𝑡 ≥ 0.

Proof. The proof of Lemma 2.1 follows from the proof of Theorem 3.1
in [44]. □

Remark 1. In fact, 𝑥2 remains positive for all 𝑡 > 0. Due to the
property of finite time prey extinction (see Theorem 4.1, Theorem 4.2)
the predator population 𝑥2 could approach 0, but only asymptotically,
that is in infinite time.

Lemma 2.2. All solutions (𝑥1(𝑡), 𝑥2(𝑡)) of model (3) with initial conditions
𝑥1(0) > 0, 𝑥2(0) > 0 are bounded.

Proof. Let us define the function 𝑄
(

𝑥1(𝑡), 𝑥2(𝑡)
)

= 𝑥1(𝑡) + 𝑥2(𝑡). Then

𝑑𝑄
𝑑𝑡

=
𝑑𝑥1
𝑑𝑡

+
𝑑𝑥2
𝑑𝑡

= 𝑎1𝑥1 − 𝑏1𝑥21 −𝑤0

(

𝑥1
𝑥1 + 𝑑

)𝑚 1
𝑥𝑚 2
2 − 𝑎2𝑥2 +𝑤1

(

𝑥1
𝑥1 + 𝑑

)𝑚 1
𝑥𝑚 2
2 .

Let 𝛿 be a positive constant such that 𝛿 ≤ 𝑎2 and suppose 𝑤0 ≥ 𝑤1, then
we obtain,

𝑑𝑄
𝑑𝑡

+ 𝛿𝑄 = 𝑎1𝑥1 − 𝑏1𝑥21 −𝑤0

(

𝑥1
𝑥1 + 𝑑

)𝑚 1
𝑥𝑚 2
2

− 𝑎2𝑥2 +𝑤1

(

𝑥1
𝑥1 + 𝑑

)𝑚 1
𝑥𝑚 2
2 + 𝛿(𝑥1 + 𝑥2)

= 𝑎1𝑥1 − 𝑏1𝑥21 − (𝑤0 −𝑤1)
(

𝑥1
𝑥1 + 𝑑

)𝑚 1
𝑥𝑚 2
2 − (𝑎2 − 𝛿)𝑥2 + 𝛿𝑥1

≤ (𝑎1 + 𝛿)𝑥1 − 𝑏1𝑥21 ≤
(𝑎1 + 𝛿)2

4𝑏1
.

Taking 𝑊1 =
(𝑎1 + 𝛿)2

4𝑏1
and applying the theory on differential inequal-

ity, we obtain

0 ≤ 𝑄
(

𝑥1(𝑡), 𝑥2(𝑡)
)

≤
𝑊1(1 − 𝑒−𝛿𝑡)

𝛿
+𝑄

(

𝑥1(0), 𝑥2(0)
)

𝑒−𝛿𝑡,

which implies

lim sup
𝑡→∞

𝑄
(

𝑥1(𝑡), 𝑥2(𝑡)
)

≤
𝑊1
𝛿
. (4)

By (4) and Lemma 2.1, all solutions of (3) with initial conditions 𝑥1(0) >
0, 𝑥2(0) > 0 will be contained in the region

𝛩 = {(𝑥1, 𝑥2) ∈ R2
+ ∶ 𝑄

(

𝑥1(𝑡), 𝑥2(𝑡)
)

≤
𝑊1
𝛿

+ 𝜖, for any 𝜖 > 0}.

The proof is complete. □

2.1.2. Dissipativeness
In the previous section, it was shown that the total population

remains positive and bounded for all time. Here, we showed that the
individual populations are all bounded from above. In such a situation,
we say that the model is dissipative.

Lemma 2.3. The system (3) is dissipative.

Proof. From the first system of (3)

𝑑𝑥1
𝑑𝑡

= 𝑎1𝑥1 − 𝑏1𝑥21 −𝑤0

(

𝑥1
𝑥1 + 𝑑

)𝑚 1
𝑥𝑚 2
2 ,

≤ 𝑎1𝑥1 − 𝑏1𝑥21.

This implies that

lim sup
𝑡→∞

𝑥1(𝑡) ≤
𝑎1
𝑏1
. (5)

The inequality (5) gives that for arbitrary small 𝜖1 > 0, there exists a
real number 𝑇 > 0 such that

𝑥1(𝑡) ≤
𝑎1
𝑏1

+ 𝜖1, for all 𝑡 ≥ 𝑇1. (6)

Using (6), we obtain for all 𝑡 ≥ 𝑇1,

𝑑
𝑑𝑡

(

𝑥1 +
𝑤0𝑥2
𝑤1

)

=
𝑑𝑥1
𝑑𝑡

+
𝑤0
𝑤1

𝑑𝑥2
𝑑𝑡

= 𝑎1𝑥1 − 𝑏1𝑥21 −
𝑤0𝑎2
𝑤1

𝑥2

≤ 𝑎1𝑥1 −
𝑤0𝑎2
𝑤1

𝑥2

= (𝑎1 + 𝑎2)𝑥1 − 𝑎2

(

𝑥1 +
𝑤0𝑥2
𝑤1

)

≤ 𝐾1 − 𝑎2

(

𝑥1 +
𝑤0𝑥2
𝑤1

)

,

where 𝐾1 = (𝑎1 + 𝑎2)
(

𝑎1
𝑏1

+ 𝜖1

)

. Therefore, we obtain

lim sup
𝑡→∞

(

𝑥1 +
𝑤0𝑥2
𝑤1

)

≤
𝐾2
𝑎2
. (7)

3
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By (5) and (7), there exists a real number 𝐾2 such that

lim sup
𝑡→∞

𝑥2 ≤ 𝐾2.

Thus, for arbitrary small 𝜖2 > 0, there exists 𝑇2 > 𝑇1 > 0, such that for
all 𝑡 ≥ 𝑇2

𝑥2 ≤ 𝐾2 + 𝜖2.

Therefore the model (3) is dissipative. □

3. Analytic guidelines

In this section, we present analytic guidelines to investigate equi-
libria for our mathematical model. Consider the solutions to the steady
state equations:

𝑎1𝑥1 − 𝑏1𝑥21 −𝑤0

(

𝑥1
𝑥1 + 𝑑

)𝑚 1
𝑥𝑚 2
2 = 0 (8)

−𝑎2𝑥2 +𝑤1

(

𝑥1
𝑥1 + 𝑑

)𝑚 1
𝑥𝑚 2
2 = 0 (9)

The above equations, (8) and (9), have three types of non-negative
equilibria:

(i) The trivial equilibrium 𝐸0(0, 0);
(ii) The predator-free equilibrium 𝐸1(𝑎1∕𝑏1, 0);

(iii) The interior equilibrium 𝐸2(𝑥∗1 , 𝑥
∗
2) where 𝑥∗1 and 𝑥∗2 are related

by

𝑥∗2 =
𝑤1
𝑤0𝑎2

[

𝑎1𝑥
∗
1 − 𝑏1𝑥

∗2
1
]

.

We have that 𝑎1 − 𝑏1𝑥∗1 ≥ 0 since 𝑥∗1 ≥ 0 and 𝑥∗2 ≥ 0. The possible
existence of a unique or multiple interior equilibria is shown in
Fig. 1.

Remark 2. We focus on the case where 𝑚2 = 1 and assumptions
(V)–(VII) hold, then 𝐸0 is a saddle point, but standard linear stability
arguments cannot be applied, as our response function 𝑔 is not Lipschitz
at the origin. We will describe the global behavior of the system (3) by
considering the relative position of the stable and unstable separatrix of
the saddle points 𝐸0 and 𝐸1 respectively. We denote the stable manifold
of 𝐸0 by 𝑊 𝑠(𝐸0) and the unstable manifold of 𝐸1 by 𝑊 𝑢(𝐸1).

The predator nullcline is the vertical line 𝑥1 = 𝑥∗1 determined by the
equation −𝑎2 +𝑤1𝑔(𝑥1) = 0. We assume

𝑤1 > 𝑎2,
𝑎1
𝑏1

> 𝑥∗1 ∶=
𝑑 𝑎

1
𝑚1
2

𝑤
1
𝑚1
1 − 𝑎

1
𝑚1
2

. (10)

The prey nullcline is the graph of the function 𝑦 = 𝜓(𝑥1)

𝜓(𝑥1) =
𝑥1𝑓 (𝑥1)
𝑤0𝑔(𝑥1)

(11)

where 𝑓 (𝑥1) and 𝑔(𝑥1) are defined in (2). Clearly 𝜓( 𝑎1𝑏1 ) = 0 and 𝜓(𝑥1) >
0 for 0 < 𝑥1 < 𝑎1

𝑏1
. The unique interior equilibrium 𝐸2(𝑥∗1 , 𝑥

∗
2) is the

intersection of the predator and prey nullclines and it can be stable or
unstable depending on the sign of 𝜓 ′(𝑥∗1). For 𝜓 ′(𝑥∗1) > 0, 𝐸2 is a repeller
and for 𝜓 ′(𝑥∗1) < 0, 𝐸2 is locally asymptotically stable.

Remark 3. The predator-free equilibrium 𝐸1 turns into a stable
node with the loss of the unique interior equilibrium 𝐸2. Herein, the
vertical nullcline would have to move to the right of the predator-free
equilibrium 𝐸1.

Remark 4. The interior equilibrium 𝐸2 is always unique. However,
in our system we have non-uniqueness of solutions when 𝑚1 < 1.
Here we mean non-uniqueness backwards in time. Essentially the 𝑥2
axis, consists of all non-uniqueness points, see Theorem 2.1 in [11] for
details.

We now present the following results that pertain to the dynamics
of (3), when 0 < 𝑚1 < 1, 𝑚2 = 1.

Lemma 3.1. Assume that 𝑊 𝑠(𝐸0) is above 𝑊 𝑢(𝐸1). If 𝐸2 is a repeller,
then it is surrounded by at least one limit cycle. If the system can have at
most one cycle, then 𝐸2 is surrounded by at least a unique limit cycle which
is orbitally asymptotically stable. This limit cycle is not globally orbitally
asymptotically stable, even if it is unique. If 𝐸2 is locally asymptotically
stable and if the system has no cycles, then all orbits under 𝑊 𝑠(𝐸0) converge
towards 𝐸2. 𝐸2 is not globally asymptotically stable, even if it is not
surrounded by any unstable limit cycle.

Proposition 3.2. Assume 𝜓 ′(𝑥∗1) ≤ 0 and (10) hold, then 𝑊 𝑠(𝐸0) is
above 𝑊 𝑢(𝐸1) and the basin of attraction of 𝐸2 is the positive region of the
plane located under 𝑊 𝑠(𝐸0). Hence 𝐸2 is not globally asymptotically stable.

The proofs of the above follow the proofs of Proposition 3.1 and
Proposition 4.2 in [11], and omitted for brevity.

3.1. Saddle–node bifurcation

We investigate the possibility of saddle–node bifurcation of the
positive interior equilibrium 𝐸2 by using the intrinsic death rate of the
predator population as a bifurcation parameter.

Let 𝐉∗ denote the variational matrix of the model (3) around an
interior equilibrium 𝐸2(𝑥∗1 , 𝑥

∗
2). The following theorem states the restric-

tions for occurrence of a saddle–node bifurcation for model (3).

Theorem 3.3. The model (3) undergoes a saddle–node bifurcation around
𝐸2 at 𝑎∗2 when the system parameters satisfy the restriction det (𝐉∗) = 0 along
with the condition tr (𝐉∗) < 0.

3.2. Hopf-bifurcation

We investigate the possibility of Hopf-bifurcation of the positive
interior equilibrium 𝐸2 by using the per capita rate of self-reproduction
for the prey, 𝑎1 as a bifurcation parameter. Then, the characteristic
equation corresponding to model (3) at 𝐸2 is given by

𝜆2 + 𝐴(𝑎1)𝜆 + 𝐵(𝑎1) = 0, (12)

where 𝐴 = − tr (𝐉∗) = −(𝑎11 + 𝑎22) and 𝐵 = det (𝐉∗) = 𝑎11𝑎22 − 𝑎12𝑎21.
The instability of model (3) is demonstrated via the following

theorem by considering 𝑎1 as a bifurcation parameter.

Theorem 3.4 (Hopf-bifurcation Theorem [46]). If 𝐴(𝑎1) and 𝐵(𝑎1) are
the smooth functions of 𝑎1 in an open interval about 𝑎∗1 ∈ R such that
the characteristic equation (12) has a pair of imaginary eigenvalues 𝜆 =
𝜁 (𝑎1) ± 𝑖𝛾(𝑎1) with 𝜁 and 𝛾 ∈ R so that they become purely imaginary
at 𝑎1 = 𝑎∗1 and 𝑑𝜁

𝑑𝑎1
|𝑎1=𝑎∗1

≠ 0, then a Hopf-bifurcation occurs around
𝐸2(𝑥∗1 , 𝑥

∗
2) at 𝑎1 = 𝑎∗1 (i.e. a stability changes of 𝐸2(𝑥∗1 , 𝑥

∗
2) accompanied

by the creation of a limit cycle at 𝑎1 = 𝑎∗1).

Theorem 3.5. The model (3) undergoes a Hopf-bifurcation around
𝐸2(𝑥∗1 , 𝑥

∗
2) when 𝑎1 crosses some critical value of parameter 𝑎∗1, where

𝑎∗1 = 𝑎2 + 2𝑏1𝑥∗1 −𝑚2𝑤1𝑥
∗𝑚2−1
2

( 𝑥∗1
𝑥∗1 + 𝑑

)𝑚1
+ 𝑑𝑚1𝑤0𝑥

∗𝑚2
2

( 𝑥∗1
𝑚1−1

(𝑥∗1 + 𝑑)
𝑚1+1

)

provided:

(i) 𝐴(𝑎1) = 0,
(ii) 𝐵(𝑎1) > 0,
(iii) 𝑑

𝑑𝑎1
𝑅𝑒𝜆𝑖(𝑎1)||𝑎1=𝑎∗1

≠ 0 at 𝑎1 = 𝑎∗1 , 𝑖 = 1, 2.

4
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Fig. 1. Figure (a) and (b) represent graphical illustration of the predator and prey non-trivial nullclines when 𝑚1 = 𝑚2 = 0.5. Figure (c) represents graphical illustration of the
predator and prey non-trivial nullclines when 𝑚1 = 1, 𝑚2 = 0.5.

Table 2
Parameters used in the simulations of Figs. 2–4 and 6–8.
𝑎1 = 0.6 𝑎2 = 1 𝑏1 = 0.063 𝑤0 = 1 𝑑 = 2
𝑤1 = 2 𝑤2 = 1 𝑤3 = 2 𝑚1 = 0.8 𝑚2 = 1

3.3. Numerical simulations

Based on the analytical guidelines we have presented earlier we
now showcase some numerical simulations of model (3), to correlate
with the earlier guidelines. The numerical simulations and figures
have been developed using MATLAB®R2019b, MATCONT [47], and
XPPAUT [48]. For convenience, the parameters used in simulations are
given in Tables 2 and 3.

In Fig. 2(a), 𝑊 𝑠(𝐸0) is above 𝑊 𝑢(𝐸1) and 𝐸2(1.45094, 1.0299) is
surrounded by a unique limit cycle. This unique limit cycle attracts
all orbits under 𝑊 𝑠(𝐸0). It is seen that in Fig. 2(b), 𝑊 𝑠(𝐸0) is un-
der 𝑊 𝑢(𝐸1). The predator-free equilibrium point 𝐸1(9.52381, 0) is a
saddle and 𝐸2(1.45094, 4.91957) is unstable. Here all positive solutions
converge towards 𝐸0.

In Fig. 3(a), we observe that 𝐸2(3.55994, 4.36963) is locally asymp-
totically stable and 𝐸1(8.33333, 0) is a saddle. Also 𝑊 𝑠(𝐸0) is above
𝑊 𝑢(𝐸1) and the basin of attraction is the region under 𝑊 𝑠(𝐸0). How-
ever, in this figure, the numerical simulations illustrate that 𝐸2 is not
globally asymptotically stable for the given parameter set. In Fig. 3(b),
𝐸2(1.45094, 1.47966) is unstable and we obtain a heteroclinic bifurcation
when 𝑊 𝑢(𝐸1) = 𝑊 𝑠(𝐸0) for 0.062 < 𝑏1 < 0.063.

Furthermore, for the parameter sets in Table 2, we employ AUTO
as implemented in the continuation software XPPAUT to analyze the
bifurcation diagrams of the model (3) in Fig. 4. The model under-
goes Hopf-bifurcation around 𝐸2(1.45094, 0.49456) as the parameter 𝑎1
crosses its critical value 𝑎∗1 = 0.261835. The branch of periodic orbits
emitting from 𝑎∗1 is stable and the first Lyapunov coefficient [49],
𝜎 = −1.49929𝑒−2 < 0 (obtained with the aid of MATCONT), hence the
Hopf-bifurcation is supercritical.

Table 3
Parameters used in the simulations of Figs. 5, 9 and 10.
𝑎1 = 0.5 𝑎2 = 0.7 𝑏1 = 0.05 𝑤0 = 0.2 𝑑 = 0.2
𝑤1 = 4 𝑤2 = 0.2 𝑤3 = 4 𝑚1 = 0.5 𝑚2 = 0.5

We observed that the model (3) undergoes a saddle–node bifurca-
tion around 𝐸2(𝑥∗1 , 𝑥

∗
2) when the parameter 𝑎1 crosses their correspond-

ing critical values 𝑎∗1 = 0.46809. The saddle–node bifurcation diagram
is depicted in Fig. 5

4. Finite time extinction

An interesting property of (3) is that the prey population can go
extinct in finite time for certain initial conditions, and so although
solutions remain nonnegative, they may go to the extinction state and
not persist. We state and prove the following result.

Theorem 4.1. Consider the predator–prey system given by (3). The
solution 𝑥1(𝑡) to the prey equation 𝑥1(𝑡) with initial conditions 𝑥1(0) >
0, 𝑥2(0) > 0 will go extinct in finite time, for 𝑥1(0) chosen sufficiently small
and 𝑥2(0) chosen sufficiently large.

Proof. Consider the substitution 𝑥1 = 1∕𝑢 in the prey equation of (3).
This yields the following system:

⎧

⎪

⎨

⎪

⎩

𝑑𝑥1
𝑑𝑡

= −1
𝑢2

𝑑𝑢
𝑑𝑡

= 𝑎1
1
𝑢
− 𝑏1

( 1
𝑢

)2
−𝑤0

( 1
𝑢

1
𝑢 +𝑑

)𝑚 1

𝑥𝑚 2
2 ,

𝑑𝑥2
𝑑𝑡

= −𝑎2𝑥2 +𝑤1

( 1
𝑢

1
𝑢 +𝑑

)𝑚 1

𝑥𝑚 2
2 .

(13)

This system can be simplified into the system in 𝑢, 𝑥2:

⎧

⎪

⎨

⎪

⎩

𝑑𝑢
𝑑𝑡

= −𝑎1𝑢 + 𝑏1 +𝑤0
𝑢2

(1 + 𝑑𝑢)𝑚1
𝑥𝑚2
2 ,

𝑑𝑥2
𝑑𝑡

= −𝑎2𝑥2 +𝑤1
1

(1 + 𝑑𝑢)𝑚1
𝑥𝑚2
2 ,

(14)

5
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Fig. 2. The predator and prey nullclines for model (3) are represented by turquoise and red respectively. (a) 𝑊 𝑠(𝐸0) is above 𝑊 𝑢(𝐸1): 𝐸2 is unstable. Here 𝑎1 = 0.5 and 𝑏1 = 0.1
(b) 𝑊 𝑢(𝐸1) is above 𝑊 𝑠(𝐸0), here 𝑎1 = 2 and 𝑏1 = 0.21: 𝐸2 is unstable. Other parameter sets are given in Table 2.

Fig. 3. (a) 𝐸2 is a locally asymptotically stable and 𝑊 𝑠(𝐸0) is above 𝑊 𝑢(𝐸1). Here 𝑎1 = 1.5, 𝑏1 = 0.18 and 𝑎2 = 1.4. (b) 𝐸2 is unstable and 𝑊 𝑢(𝐸1) = 𝑊 𝑠(𝐸0). Here 0.062 < 𝑏1 < 0.063.
Other parameter sets are given in Table 2.

Note, via positivity
𝑑𝑥2
𝑑𝑡

≥ −𝑎2𝑥2. (15)

Thus,

𝑥2 ≥ 𝑥2(0)𝑒−𝑎2𝑡. (16)

Also, via positivity we have the inequality,

𝑑𝑢
𝑑𝑡

≥ −𝑎1𝑢+𝑤0
𝑢2

(1 + 𝑑𝑢)𝑚1
𝑥𝑚2
2 ≥ −𝑎1𝑢+𝑤0

𝑢2

(1 + 𝑑𝑢)𝑚1
(𝑥2(0)𝑒−𝑎2𝑡)𝑚2 . (17)

Note that the solution to the differential equation

𝑑𝑢̃
𝑑𝑡

≥ −𝑎1𝑢̃ +𝑤0
𝑢̃2

(1 + 𝑑𝑢̃)𝑚1
(18)

will blow up in a finite time, 𝑇 ∗(𝑢0) < ∞, as long as the initial data
𝑢̃(0) = 𝑢0 satisfies,

𝑎1𝑢0(1 + 𝑑𝑢0)𝑚1 ≤ 𝑤0𝑢
2
0. (19)

Now if we choose 𝑥2(0)≫ 1, such that

(𝑥2(0)𝑒−𝑎2𝑡)𝑚2 > 1, 𝑡 ∈ [0, 𝑇 ∗], (20)

then 𝑢 ≥ 𝑢̃ on [0, 𝑇 ∗], and must blow-up in finite time, at some 𝑇 ∗∗ < 𝑇 ∗,
by comparison, if 𝑢0 is chosen to satisfy (19) . Therefore,

lim
𝑡→𝑇 ∗∗<∞

𝑢 → ∞

which implies

lim
𝑡→𝑇 ∗∗<∞

𝑥1 = lim
𝑡→𝑇 ∗∗<∞

1
𝑢
= 1

lim𝑡→𝑇 ∗∗<∞ 𝑢
→ 0,

but that implies 𝑥1(𝑡) goes extinct in finite time for 𝑥2(0) chosen large
enough and

(𝑥1(0))1−𝑚1 (𝑥1(0) + 𝑑)𝑚1 ≤
𝑤0
𝑎0
. □

We now state and prove a stronger result than Theorem 4.1, follow-
ing methods in [17],

Theorem 4.2. Consider the predator–prey system given by (3). The
solution 𝑥1(𝑡) to the prey equation will go extinct in finite time, for initial
conditions chosen s.t. 1 ≤ 𝑥1(0) ≤ 𝑎1

𝑏1
, 𝑔1(𝑥1(0)) ≤ (𝑥2(0))𝑚2 , where 𝑔1 is

chosen via (28).

Proof. Consider the prey equation for initial condition 1 ≤ 𝑥1(0) ≤
𝑎1
𝑏1

.
Then
𝑑𝑥1
𝑑𝑡

≤ 𝑎1𝑥1 − 𝑏1𝑥21, (21)

thus 𝑥1(𝑡) ≤
𝑎1
𝑏1

, for all time 𝑡 > 0. This follows via comparison of the
prey equation above, to the logistic equation. Next,

𝑑𝑥1
𝑑𝑡

= 𝑎1𝑥1 − 𝑏1𝑥21 −𝑤0

(

𝑥1
𝑥1 + 𝑑

)𝑚1
𝑥𝑚2
2

≤ 𝑎1𝑥1 − 𝑏1𝑥21 −𝑤0

⎛

⎜

⎜

⎝

1
𝑎1
𝑏1

+ 𝑑

⎞

⎟

⎟

⎠

𝑚1

(𝑥2(0))𝑚2𝑒−𝑚2𝑎2𝑡(𝑥1)𝑚1

≤ 𝑎1𝑥1 −𝑤0

⎛

⎜

⎜

⎝

1
𝑎1
𝑏1

+ 𝑑

⎞

⎟

⎟

⎠

𝑚1

(𝑥2(0))𝑚2𝑒−𝑚2𝑎2𝑡(𝑥1)𝑚1 (22)

6
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Fig. 4. Bifurcation diagrams of the model (3), as 𝑎1 changes. The stable and unstable interior equilibria are given by the lines in red and black, respectively. The solid circles
(green) represent stable limit cycles and the open circles (blue) represent unstable limit cycles. (a) prey (𝑥1) (b) predator (𝑥2). Parameter sets are given in Table 2.

Fig. 5. Bifurcation diagrams illustrating SN at 𝑎1 = 𝑎∗1 = 0.46809. Other parameter sets
are given in Table 3. (SN: Saddle–node bifurcation.)

This follows via the comparison
𝑑𝑥2
𝑑𝑡

≥ −𝑎2𝑥2, and the form of
the functional response. Now we can divide the above by (𝑥1)𝑙, where
𝑙 ≤ 𝑚1, will be chosen a posteriori, to obtain,

𝑑𝑥1
𝑑𝑡

1
(𝑥1)𝑙

≤ 𝑎1𝑥
1−𝑙
1 −𝑤0

⎛

⎜

⎜

⎝

1
𝑎1
𝑏1

+ 𝑑

⎞

⎟

⎟

⎠

𝑚1

(𝑥2(0))𝑚2𝑒−𝑚2𝑎2𝑡(𝑥1)𝑚1−𝑙 (23)

this yields

𝑑
𝑑𝑡

((𝑥1)1−𝑙) ≤ (1 − 𝑙)𝑎1(𝑥1)1−𝑙 − (1 − 𝑙)𝑤0

⎛

⎜

⎜

⎝

1
𝑎1
𝑏1

+ 𝑑

⎞

⎟

⎟

⎠

𝑚1

(𝑥2(0))𝑚2𝑒−𝑚2𝑎2𝑡 (24)

This follows since if 𝑥1(0) > 1 then 𝑥1 ≥ 1 at least on some time
interval [0, 𝑇 ∗]. Now following [17], multiplying both sides by the
integrating factor 𝑒−(1−𝑙)𝑎1𝑡 yields,

𝑑
𝑑𝑡

(𝑒−(1−𝑙)𝑎1𝑡(𝑥1)1−𝑙) ≤ −(1 − 𝑙)𝑤0

⎛

⎜

⎜

⎝

1
𝑎1
𝑏1

+ 𝑑

⎞

⎟

⎟

⎠

𝑚1

(𝑥2(0))𝑚2𝑒−𝑚2𝑎2𝑡𝑒−(1−𝑙)𝑎1𝑡

(25)

We integrate the above in the time interval [0, 𝑡] with 𝑡 ≤ 𝑇 ∗ to
obtain

𝑒−(1−𝑙)𝑎1𝑡(𝑥1)1−𝑙

≤ (𝑥1(0))1−𝑙 −𝑤0

⎛

⎜

⎜

⎜

⎜

⎜

⎝

(1 − 𝑙)

(

1
𝑎1
𝑏1

+𝑑

)𝑚1

(𝑥2(0))𝑚2

𝑎2𝑚2 + (1 − 𝑙)𝑎1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(1 − 𝑒−(𝑎2𝑚2+(1−𝑙)𝑎1)𝑡) (26)

which then implies the finite time extinction of 𝑥1, if

(𝑥1(0))1−𝑙 < 𝑤0

⎛

⎜

⎜

⎜

⎜

⎜

⎝

(1 − 𝑙)

(

1
𝑎1
𝑏1

+𝑑

)𝑚1

(𝑥2(0))𝑚2

𝑎2𝑚2 + (1 − 𝑙)𝑎1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(27)

Thus we choose 𝑔1 according to

𝑔1(𝑥1(0)) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑎2𝑚2 + (1 − 𝑙)𝑎1

𝑤0(1 − 𝑙)

(

1
𝑎1
𝑏1

+𝑑

)𝑚1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(𝑥1(0))1−𝑙 (28)

and for initial data chosen s.t (𝑥2(0))𝑚2 ≥ 𝑔1(𝑥1(0)), 𝑥1 will go extinct in
finite time. □

Remark 5. From [17] we know that the initial data needs to be chosen
s.t.

(𝑥1(0))1−𝑚1 < 𝑤0

⎛

⎜

⎜

⎜

⎜

⎜

⎝

(1 − 𝑚1)

(

1
𝑎1
𝑏1

+𝑑

)𝑚1

(𝑥2(0))𝑚2

𝑎2𝑚2 + (1 − 𝑚1)𝑎1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(29)

to yield finite time extinction of 𝑥1. Our construction allows us to
choose 𝑙 s.t the curve 𝑔1, will be no higher than in (29), as derived
in [17] (but possibly lower). Note, from the analytic guidelines and
simulations of Section 3, we see that the equilibrium 𝐸0 = (0, 0), always
exists and is a saddle. Thus there exists a stable manifold/separatrix,
which we denote 𝑊 𝑠(𝐸0) that divides the phase space into two regions.
If we are above 𝑊 𝑠(𝐸0), initial data hits the 𝑦-axis in finite time, and
then approaches (0, 0) asymptotically. If we are below 𝑊 𝑠(𝐸0) then the
data may go to the interior equilibrium, or cycle, or go to predator
free equilibrium. Thus one needs to ensure 𝑔1 lies above 𝑊 𝑠(𝐸0). If 𝑔1
went below 𝑊 𝑠(𝐸0), trajectories may be attracted to 𝐸1 or a limit cycle
surrounding 𝐸1, and finite time extinction of 𝑥1 would not occur. See
Fig. 6(c).

We provide some simulations next to elucidate.
Next, we state a result, that has to do with a functional response

which may depend on both the prey and predator. These include

7
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Fig. 6. Herein we demonstrate our result from Theorem 4.2. In the simulations, 𝑔2 is the curve predicted via [17], s.t. if we are above 𝑔2, we see finite time extinction. However,
choosing 𝑙 < 𝑚1 = 0.8, we derive a curve given by 𝑔1. In (a) 𝑙 = 0.7, (b) 𝑙 = 0.4 and (c) 𝑙 = 0.01. Here 𝑎1 = 0.5, 𝑏1 = 0.1, and all other parameter sets are given in Table 2. Notice in
(b), 𝑔1 dips below 𝑊 𝑠(𝐸0) in region A, and from the results of Fig. 2(a), if we picked data (0.5, 5) it would go to the limit cycle surrounding 𝐸2, and not to extinction. However,
for 1 < 𝑥1(0) <

𝑎1
𝑏1

= 5, 𝑔1 lies completely above 𝑊 𝑠(𝐸0), and below 𝑔2. In (c) however, 𝑔1 dips below 𝑊 𝑠(𝐸0) even if 1 < 𝑥1(0) <
𝑎1
𝑏1

= 5. If one picked data (1.02, 7.4), it would not
go to extinction, but to the limit cycle surrounding 𝐸2. All in all, there is a large range of initial data that we could pick above 𝑔1 (but below 𝑔2), s.t. trajectories initiating from
that data, would go extinct in finite time.

responses such as Beddington–DeAngelis, ratio dependent, Crowley–
Martin, Hassell–Varley and so on.

Lemma 4.3. Consider the predator–prey system given by (3). However,
consider a predator functional response that depends on both the prey
and predator 𝑔(𝑥1, 𝑥2) = 𝑤0

(

𝑥1
𝑥1+𝑥2+𝑑

)𝑚 1
. The solution 𝑥1(𝑡) to the prey

equation will go extinct in finite time, for initial conditions chosen s.t 1 ≤

𝑥1(0) ≤
𝑎1
𝑏1

, 𝑓 (𝑥1(0)) ≤ (𝑥2(0))𝑚2 , where 𝑓 is chosen via (31).

Proof. Consider the prey equation for initial condition 1 ≤ 𝑥1(0) ≤
𝑎1
𝑏1

𝑑𝑥1
𝑑𝑡

= 𝑎1𝑥1 − 𝑏1𝑥21 −𝑤0

(

𝑥1
𝑥1 + 𝑥2 + 𝑑

)𝑚1
𝑥𝑚2
2

≤ 𝑎1𝑥1 − 𝑏1𝑥21 −𝑤0

⎛

⎜

⎜

⎝

𝑥𝑚2
2

𝑎1
𝑏1

+ 𝑑 + 𝑥2

⎞

⎟

⎟

⎠

𝑚1

(𝑥1)𝑚1

≤ 𝑎1𝑥1 −
(𝑥2(0))𝑚2𝑒−𝑚2𝑎2𝑡

𝑤0(
𝑎1
𝑏1

+ 𝑑 + (𝑥2(0))𝑒(𝑤1−𝑎2)𝑡)𝑚1
(𝑥1)𝑚1 (30)

We now divide both sides by (𝑥1)𝑚1 , and follow [17] to attain that
𝑥1 will go extinct in finite time as long as

(𝑥1(0))1−𝑚1 < ∫

∞

0

(𝑥2(0))𝑚2𝑒−(𝑚2𝑎2+𝑎1(1−𝑚1))𝑠

𝑤0(
𝑎1
𝑏1

+ 𝑑 + (𝑥2(0))𝑒(𝑤1−𝑎2)𝑠)𝑚1
𝑑𝑠 □ (31)

Remark 6. We leave the expression on the right hand side of (31) as
an integral, depending on time, as the integral solved numerically does
not yield a simple expression, but rather a complicated hyper-geometric
function.

Corollary 1. Consider the predator–prey system given by (3), with a ratio-
dependent, Crowley–Martin or Ivlev functional response. The solution 𝑥1(𝑡)
to the prey equation will go extinct in finite time, for appropriately chosen
initial conditions.

Proof. The results of Lemma 4.3 apply to the ratio-dependent func-
tional response trivially setting 𝑑 = 0, in the proof of the lemma. It
would also apply to the Crowley–Martin functional response, where

8



K. Antwi-Fordjour, R.D. Parshad and M.A. Beauregard Mathematical Biosciences 326 (2020) 108407

𝑔(𝑥1, 𝑥2) = 𝑤0

(

𝑥1
𝑥1+𝑥2+𝑥1𝑥2+𝑑

)𝑚 1
. Herein the key estimate would be,

−𝑤0

⎛

⎜

⎜

⎝

𝑥𝑚2
2

𝑎1
𝑏1

+ 𝑑 + 𝑥2 + 𝑥1𝑥2

⎞

⎟

⎟

⎠

𝑚1

≤ −𝑤0
(𝑥2(0))𝑚2𝑒−𝑚2𝑎2𝑡

( 𝑎1𝑏1
+ 𝑑 + (𝑥2(0))𝑒(𝑤1−𝑎2)𝑡 + 𝑎1

𝑏1
(𝑥2(0))𝑒(𝑤1−𝑎2)𝑡)𝑚1

(32)

thus yielding finite time extinction.
Also, note the Ivlev response, 𝑔(𝑥1) = 1 − 𝑒−𝑎𝑥1 . Dividing by 𝜖𝑥𝑙 as

in the proof of Theorem 4.2, works herein as well because, 𝑒𝑎𝑥1
𝜖(𝑥1)𝑙 (𝑒𝑎𝑥1−1)

> 1, for appropriately chosen 𝜖. In particular 𝜖 = 1
𝑎1
𝑏1
𝑒
𝑎1
𝑏1

, will suffice. □

5. The effect of prey refuge

In the previous section it was shown that the prey population may
go extinct in finite time. Therefore, we seek to investigate the effect
of protecting the prey from predation with their habitat. The aim is
to provided avenues for which the prey population will persist. Here,
using similar ideas from [41], we introduce a prey refuge. A discussion
of how a habitat controller may create a prey refuge is provided in
section 7 of [41].

Essentially, one must protect a constant proportion of prey by
replacing the predation term 𝑔(𝑥1) by 𝑔(𝑟𝑥1), where 0 ≤ 𝑟 ≤ 1. Here,
𝑟 is a refuge parameter, such that if 𝑟 = 0 then complete protection
of the prey is provided while 𝑟 = 1 implies no protection and the
original system (1) is recovered. Thus, we write the following system
that models prey refuge as

⎧

⎪

⎨

⎪

⎩

𝑑𝑥1
𝑑𝑡

= 𝑎1𝑥1 − 𝑏1𝑥21 −𝑤2

(

𝑟𝑥1
𝑟𝑥1 + 𝑑

)𝑚 1
𝑥𝑚 2
2 ,

𝑑𝑥2
𝑑𝑡

= −𝑎2𝑥2 +𝑤3

(

𝑟𝑥1
𝑟𝑥1 + 𝑑

)𝑚 1
𝑥𝑚 2
2 ,

(33)

where 𝑤2 is the maximum rate of per capita removal of prey and 𝑤3
measures the efficiency of biomass conversion from prey to predator.

We now state our first result concerning prey refuge.

Theorem 5.1. Consider the predator–prey system given by (33). There
exists a refuge 𝑟∗(𝑥2(0), 𝑎1, 𝑏1, 𝑑, 𝑤2, 𝑤3, 𝑚1, 𝑚2) > 0 and an interval [𝑦∗1 , 𝑦

∗
2]

s.t. for any 𝑟 < 𝑟∗, and 𝑥1(0) ∈ [𝑦∗1 ,∞) the solution 𝑥1(𝑡) to the prey equation
does not go extinct in finite time. In particular, 𝑥1(𝑡) persists for all time, that
is, lim inf 𝑡→∞ 𝑥1(𝑡) ≥ 𝑦∗2 > 0.

Proof. From the second equation in (33),
𝑑𝑥2
𝑑𝑡

≤ 𝑎2𝑥2 +𝑤3𝑥
𝑚2
2 , 𝑡 ≥ 0.

We divide by 𝑥𝑚2
2 ,

1
1 − 𝑚2

𝑑
𝑑𝑡

(

𝑥1−𝑚2
2

)

= 𝑥−𝑚2
2

𝑑𝑥2
𝑑𝑡

≤ −𝑎2𝑥
1−𝑚2
2 +𝑤3

We integrate the above inequality using an integrating factor to
obtain,

𝑥1−𝑚2
2 (𝑡) ≤ 𝑥1−𝑚2

2 (0)𝑒−𝑎(1−𝑚2)𝑡 +
𝑤3
𝑎2

(

1 − 𝑒−𝑎(1−𝑚2)𝑡
)

, 𝑡 ≥ 0.

This implies

𝑥1−𝑚2
2 (𝑡) ≤ max

{

𝑥1−𝑚2
2 (0),

𝑤3
𝑎2

}

and

𝑥2(𝑡) ≤ max

{

𝑥2(0),
(

𝑤3
𝑎2

)1∕(1−𝑚2)
}

.

We substitute this inequality into the first equation of (33).
𝑑𝑥1
𝑑𝑡

≥ 𝑎1𝑥1 − 𝑏1𝑥21 −𝑤2

(

𝑟𝑥1
𝑟𝑥1 + 𝑑

)𝑚 1
𝛼
(

𝑥2(0)
)

where

𝛼
(

𝑥2(0)
)

= max

{

𝑥𝑚2
2 (0),

(

𝑤3
𝑎2

)𝑚2∕(1−𝑚2)
}

.

We also have that
𝑑𝑥1
𝑑𝑡

≥ 𝑎1𝑥1 − 𝑏1𝑥21 −𝑤2𝑟
𝑚1𝑥𝑚1

1 𝑑−𝑚1𝛼
(

𝑥2(0)
)

.

By a comparison argument,

𝑥1(𝑡) ≥ 𝑦(𝑡), 𝑡 ≥ 0 (34)

where 𝑦(0) = 𝑥1(0) and

𝑦′ = 𝑎1𝑦 − 𝑏1𝑦2 −𝑤2𝑟
𝑚1𝑦𝑚1𝑑−𝑚1𝛼

(

𝑥2(0)
)

. (35)

We now analyze the scalar ODE (35). If the right hand side is strictly
negative for all 𝑦 > 0, no assertions can be made. So our goal is to show
𝑟 > 0 can be chosen (small enough if required) such that the right hand
side can be made positive, for certain ranges of initial data.

We next divide the right hand side by 𝑦,

𝜙(𝑦) = 𝑎1 − 𝑏1𝑦 − 𝑟𝑚1𝑦𝑚1−1𝛽
(

𝑥2(0)
)

.

where 𝛽
(

𝑥2(0)
)

= 𝑤2𝑑−𝑚1𝛼
(

𝑥2(0)
)

.
We differentiate,

𝜙′(𝑦) = −𝑏1 + 𝑟𝑚1 (1 − 𝑚1)𝑦𝑚1−2𝛽
(

𝑥2(0)
)

. (36)

𝜙 attains a global maximum at 𝑦∗ > 0 with 𝜙′ (𝑦∗) = 0,

𝑦∗ =
(

𝑟𝑚1 (1 − 𝑚1)𝛽(𝑥2(0))
𝑏1

)1∕(2−𝑚1)
.

Since 𝜙′ (𝑦∗) = 0, by (36), we obtain

𝑦∗ = 𝑟𝑚1∕(2−𝑚1)
(

(1 − 𝑚1)𝛽(𝑥2(0))
𝑏1

)1∕(2−𝑚1)
.

thus we have that

𝜙
(

𝑦∗
)

= 𝑎1 − (2 − 𝑚1)𝑟𝑚1 𝑟𝑚1(𝑚1−1)∕(2−𝑚1)

(

(1 − 𝑚1)𝛽(𝑥2(0))
𝑏1

)(𝑚1−1)∕(2−𝑚1)
𝛽
(

𝑥2(0)
)

> 0,

if,

𝑟 <

[

𝑎1

(

1 − 𝑚1
𝑏1

)(1−𝑚1)∕(2−𝑚1)
𝛽(𝑥2(0))1∕(𝑚1−2)(2 − 𝑚1)−1

](2−𝑚1)∕𝑚1

=∶ 𝑟∗(𝑥2(0), 𝑎1, 𝑏1, 𝑑, 𝑤2, 𝑤3, 𝑚1, 𝑚2).

Now if 𝜙(𝑦∗) > 0, by continuity of 𝜙, it has two strictly positive zeros
0 < 𝑦∗1 < 𝑦∗ < 𝑦∗2 < 𝑎1∕𝑏1, which are equilibria of (35). 𝑦∗1 is a source
and 𝑦∗2 is a sink.

The right hand side is strictly negative for 𝑦 ∈ (0, 𝑦∗1) and 𝑦 ∈ (𝑦∗2 ,∞)
and strictly positive for 𝑦 ∈ (𝑦∗1 , 𝑦

∗
2). So any solution 𝑦 of (35) with

𝑦(0) > 𝑦∗1 satisfies 𝑦(𝑡) > 𝑦∗1 for all 𝑡 ≥ 0 and 𝑦(𝑡) → 𝑦∗2 as 𝑡 → ∞. □

We now state two conjectures concerning the effect of prey refuge
on the overall dynamics of (33).

Conjecture 1. Assume that there exists no refuge, that is 𝑟 = 1, and
𝑊 𝑠(𝐸0) is below 𝑊 𝑢(𝐸1). One can introduce a refuge by decreasing 𝑟, to
raise 𝑊 𝑠(𝐸0) whilst lowering 𝑊 𝑢(𝐸1). There exists a critical refuge 𝑟∗ at
which 𝑊 𝑠(𝐸0) meets 𝑊 𝑢(𝐸1) and a heteroclinic orbit is formed. In this
case all trajectories go extinct. If trajectories start above the heteroclinic
this occurs in finite time, and if below they approach the heteroclinic orbit,
leading to eventual extinction in infinite time. For 𝑟 < 𝑟∗, 𝑊 𝑠(𝐸0) will now
lie above 𝑊 𝑢(𝐸1), and the interior equilibrium or limit cycle will be locally
stable.

9



K. Antwi-Fordjour, R.D. Parshad and M.A. Beauregard Mathematical Biosciences 326 (2020) 108407

Conjecture 2. Assume that there exists no refuge, that is 𝑟 = 1, and
𝑊 𝑠(𝐸0) is above 𝑊 𝑢(𝐸1), whilst 𝐸2 is unstable, surrounded by a unique
stable limit cycle. One can introduce a refuge by decreasing 𝑟, that results
in raising 𝑊 𝑠(𝐸0). There exists a critical refuge 𝑟∗ at which 𝐸2 becomes
stable. Furthermore, there is a window of refugia 𝑟 ∈ [𝑟∗∗, 𝑟∗], for which 𝐸2
remains positive and stable. In this case all trajectories above 𝑊 𝑠(𝐸0) go
extinct in finite time. If trajectories start below 𝑊 𝑠(𝐸0), they approach 𝐸2,
and there is no extinction in finite time.

5.1. Bifurcation analysis

In this subsection, we analyze the qualitative changes in the dy-
namical behavior of model (33) under the effect of varying a specific
parameter. The conditions and restrictions for the occurrence of saddle–
node, Hopf, and transcritical bifurcations are derived. The classification
is of codimension one bifurcations.

5.1.1. Saddle–node bifurcation
We investigate the possibility of saddle–node bifurcation of the

positive interior equilibrium 𝐸2 by using the intrinsic death rate of the
predator population as a bifurcation parameter.

The following theorem states the restrictions for occurrence of a
saddle–node bifurcation for model (33).

Theorem 5.2. The model (33) undergoes a saddle–node bifurcation
around 𝐸2 at 𝑎∗2 when the system parameters satisfy the restriction det (𝐉∗𝐫 ) =
0 along with the condition tr (𝐉∗𝐫 ) < 0.

5.1.2. Transcritical bifurcation
Here, we investigate the possibility of the existence of a transcritical

bifurcation for the model (33). Transcritical bifurcation occurs when
an equilibrium point interchanges its stability when it collides with
another equilibrium point as a parameter is varied. The prey refuge
parameter 𝑟 is used as a bifurcation parameter.

Theorem 5.3. The model (33) undergoes a transcritical bifurcation
around 𝐸1(𝑎1∕𝑏1, 0) when the refuge 𝑟 crosses the critical value of parameter

𝑟∗1, where 𝑤3 > 𝑎2 and 𝑟∗1 =
𝑏1𝑑
𝑎1

⎛

⎜

⎜

⎜

⎝

𝑎
1
𝑚1
1

𝑤
1
𝑚1
3 − 𝑎

1
𝑚1
2

⎞

⎟

⎟

⎟

⎠

.

5.1.3. Hopf-bifurcation
We investigate the possibility of Hopf-bifurcation of the positive

interior equilibrium 𝐸2 by using the per capita rate of self-reproduction
for the prey, 𝑎1 as a bifurcation parameter. Then, the characteristic
equation corresponding to model (33) at 𝐸2 is given by

𝜆2 + 𝐴1(𝑎1)𝜆 + 𝐵1(𝑎1) = 0, (37)

where 𝐴1 = − tr (𝐉∗𝐫 ) = −(𝑏11 + 𝑏22) and 𝐵1 = det (𝐉∗𝐫 ) = 𝑏11𝑏22 − 𝑏12𝑏21.
The instability of model (33) is demonstrated via the following

theorem by considering 𝑎1 as a bifurcation parameter.

Theorem 5.4. The model (33) undergoes a Hopf-bifurcation around
𝐸2(𝑥∗1 , 𝑥

∗
2) when 𝑎1 crosses some critical value of parameter 𝑎∗1, where

𝑎∗1 = 𝑎2 + 2𝑏1𝑥∗1 + 𝑚1𝑤2𝑥
∗
2
𝑚2

[

𝑟
𝑑 + 𝑟𝑥∗1

−
𝑟2𝑥∗1

(𝑟𝑥∗1 + 𝑑)
2

](

𝑟𝑥∗1
𝑟𝑥∗1 + 𝑑

)𝑚1−1

− 𝑚2𝑤3𝑥
∗
2
𝑚2−1

( 𝑟𝑥∗1
𝑟𝑥∗1 + 𝑑

)𝑚1
,

provided

(i) 𝐴1(𝑎1) = 0,
(ii) 𝐵1(𝑎1) > 0,
(iii) 𝑑

𝑑𝑎1
𝑅𝑒𝜆𝑖(𝑎1)||𝑎1=𝑎∗1

≠ 0 at 𝑎1 = 𝑎∗1 , 𝑖 = 1, 2.

Theorem 5.5. The model (33) undergoes a Hopf-bifurcation around
𝐸2(𝑥∗1 , 𝑥

∗
2) when the refuge 𝑟 crosses some critical value of parameter 𝑟∗∗1

provided

(i) 𝐴1(𝑟) = 0,
(ii) 𝐵1(𝑟) > 0,
(iii) 𝑑

𝑑𝑟
𝑅𝑒𝜆𝑖(𝑟)||𝑟=𝑟∗∗1

≠ 0 at 𝑟 = 𝑟∗∗1 , 𝑖 = 1, 2.

Proof. The proof of Theorem 5.5 is similar to proof in Theorem 5.4
and omitted for brevity. □

5.2. Numerical simulations

We perform numerical simulations of model (33) to verify some of
our analytical results. For 𝑟 = 0.3 and all other parameter values given
in Table 2, the predator-free equilibrium point 𝐸1(9.52381, 0) is a saddle
and 𝐸2(4.83648, 9.52147) is locally asymptotically stable, see Fig. 7. By
introducing a prey refuge of 𝑟 = 0.3, we observed in Fig. 7(a) that
𝑊 𝑠(𝐸0) is above 𝑊 𝑢(𝐸1) as compared to Fig. 2(b) where 𝑊 𝑠(𝐸0) is
below 𝑊 𝑢(𝐸1). Thus the stability of the interior equilibrium is altered
and not all positive solutions tend towards 𝐸0.

In Fig. 7(b), 𝐸2(1.872, 6.0161) is unstable and we obtain a het-
eroclinic bifurcation when 𝑊 𝑢(𝐸1) = 𝑊 𝑠(𝐸0) for 0.7750 < 𝑟 <
0.7751.

The model undergoes Hopf-bifurcation around 𝐸2(3.32486, 2.59694)
as the parameter 𝑟 crosses its critical value 𝑟∗∗1 = 0.43639, see Fig. 8.
The branch of periodic orbits bifurcation from 𝑟∗∗1 is stable and the
first Lyapunov coefficient is 𝜎 = −4.99384𝑒−3, hence supercritical. Also,
the model (33) undergoes transcritical bifurcation around 𝐸1(9.52381, 0)
when the parameter 𝑟 crosses its threshold 𝑟∗1 = 0.15239, see Fig. 8(a).

6. Discussions and conclusions

In this work, we consider a predator–prey model, that allows us to
model both the feeding intensity of the predator, as well as the effect of
mutual/predator interference. The model can also be seen as a model
for an infectious disease that invades a susceptible population, causing
persons infected by the disease to move from the susceptible class
to infected. Various analytical guidelines are laid down to investigate
the equilibria and possible bifurcations. These are challenging, as the
functional responses considered are non-Lipschitz, and so solutions are
non-unique. This however, provides the system with the interesting
dynamic of finite time extinction of prey — followed by the infinite
time extinction of the predator.

We consider this dynamic in detail. Theorem 4.1, shows that this is
possible, using the Leibnitz transform 𝑥1 = 1

𝑢 , (say when 𝑚1 = 0.5) for
𝑥0 ≤

√

𝑤0
𝑎0

, and sufficiently large predator density 𝑥2(0). Theorem 4.1
is unable to quantify how large the predator density needs to be in
terms of prey density, so as to achieve extinction. This quantification
is very important for biocontrol applications — where it is important
to know how many predators to release to drive a target pest/prey
extinct [12]. Following [17], we are able to provide a stronger result via
Theorem 4.2 — wherein an explicit curve, 𝑥2(0) = 𝑔1(𝑥1(0)) is provided,
s.t, if one is above the curve then finite time extinction occurs for the
prey 𝑥1. Note our result improves the results of [17], in lowering this
curve, see Fig. 6.

This result is biologically important from a point of view of in-
fectious disease modeling as well. It says that finite time extinction
of the host (susceptible) population, is possible with fewer infected
individuals than predicted by the threshold in [17]. Note our result,
be it in the context of bio-control or infectious disease modeling, is
not sharp. What is seen in numerical simulations is that the sharpest
result would be if the curve 𝑔1(𝑥1(0)) = 𝑊 𝑠(𝐸0), that is the stable
manifold/separatrix of the extinction state, as seen in Fig. 6. However,
an analytic expression of the stable manifold is often not explicitly
possible — and bringing down 𝑔1(𝑥1(0)) further, would be a worthwhile
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Fig. 7. (a) 𝐸2 is locally asymptotically stable, 𝑊 𝑠(𝐸0) is above 𝑊 𝑢(𝐸1), and 𝑟 = 0.3 (b) 𝐸2 is unstable and 𝑊 𝑢(𝐸1) = 𝑊 𝑠(𝐸0) when 0.7750 < 𝑟 < 0.7751. Here 𝑎1 = 2, 𝑏1 = 0.21, and
all other parameter sets are given in Table 2.

Fig. 8. Bifurcation diagrams of the model (33), as 𝑟 crosses its critical values 𝑟∗1 and 𝑟∗∗1 . The stable and unstable interior equilibria are given by the lines in red and black,
respectively. The solid circles (green) represent stable limit cycles. (a) prey (𝑥1) (b) predator (𝑥2). Parameter sets are given in Table 2.

future direction of research. 𝑊 𝑠(𝐸0) may be unbounded in general,
but numerics suggest otherwise — showing it to be bounded in the
vertical direction, see Fig. 6. Another interesting future direction would
be to consider an eco-epidemic model, such as in [50], where one can
compare and contrast non-smooth disease dynamics with non-smooth
dynamics in the predators functional response.

It is also important to note that our finite time extinction results,
pertain to a much broader class of functional responses than the specific
Holling type II form considered in (3). To this end please see Lemma 4.3
and Corollary 1. In particular our results are applicable to prey and
predator dependent responses, such as of Beddington–DeAngelis and
ratio dependent type. Through numerical simulations, it has been no-
ticed that in the model (3), when 𝑚1 < 1 and 𝑚2 = 1, 𝐸2 is not globally
asymptotically stable (see Fig. 3(a)). We observe that the per capita
rate of self-reproduction 𝑎1 plays an important role because the interior
equilibrium point 𝐸2 changes stability at the bifurcation point 𝑎∗1 (see
Fig. 4). The limit cycle through the bifurcation point is stable hence
a supercritical Hopf-bifurcation. This begets the question of stabilizing
the interior equilibrium 𝐸2 — to this end the effect of prey refuge is
also considered in model (33).

Indeed it is observed that stability in the system can be maintained
via provision of the prey with refuge. To the best of our knowledge
our work is the first in the literature that brings this feature out in
ecological systems, where finite time prey extinction is possible. This
is rigorously established via Theorem 5.1. The requisite condition for a
critical refuge, for persistence, derived via the theorem sheds light on
various realistic ecological scenarios. The ecological validity of the prey
extinction state (0, 𝑥∗2) is questionable. In the experiments of Gause [2],

once the prey has gone extinct the predator population also crashes, as
there is no alternative/additional food in the experimental system. In
a real scenario however, such a state might be indicative of a predator
having switched to another food source after its primary source has
depleted or surviving on additional food, such as in a bio-control situa-
tion [12]. Thus a possible future direction would be to consider models
where the predator can also go extinct in finite time. The refuge result
via Theorem 5.1 is important from an infectious disease modeling point
as well. Numerical simulations show that protecting some proportion
of the susceptible population (bringing in refuge) can always stabilize
the endemic equilibrium. This has immense applications to epidemic
control, such as the current COVID19 crisis [15], and is worthy of
much future investigation. To these ends we conjecture that in any
situation where 𝑊 𝑠(𝐸0) is below 𝑊 𝑢(𝐸1), one can introduce a refuge,
so as to create a heteroclinic orbit. See Fig. 7(b). Also, we conjecture,
based on numerical simulations, that if 𝑊 𝑠(𝐸0) is above 𝑊 𝑢(𝐸1), and
𝐸2 is unstable, one can always introduce a refuge so as to stabilize 𝐸2.
This strongly conforms with the experiments of Gause [2], where prey
refuge is seen to be a factor that stabilizes populations.

The model possesses a rich array of dynamical behavior. We have
established analytically the occurrence of various local bifurcations
including saddle–node, transcritical and Hopf bifurcations. The oc-
currence of these local bifurcations is well supplemented with one
parameter bifurcation diagrams (see Figs. 4, 5 and 8). Let us discuss the
relevance of these findings to various ecological and epidemic contexts.
If one observes Fig. 8, we see that for low refuge values ≈ 0.7 < 𝑟 < 1 (so
if ≈ a third or less of prey (host) population is protected) the interior
equilibrium is unstable. Thus not much can be done dynamically to
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stabilize populations, if government policy does not allow protection of
about a third or more of the prey (host). When the refuge is increased to
the regime ≈ 0.45 < 𝑟 < 0.7 we see stable population cycles. For 𝑟 ≈ 0.43,
there is a Hopf-bifurcation and the interior equilibrium is stabilized.
We see that the interior equilibrium remains stable (and predator free
unstable) for the regime ≈ 0.15 < 𝑟 < 0.43. In the high refuge regime
≈ 0 < 𝑟 < 0.15, we see that the predator (disease) free equilibrium
is stable. This tells us from an epidemic point of view that if one can
protect 85% of the host or more, even under the effect of non-linear
disease incidence, the disease free equilibrium can be stabilized. From
a species conservation viewpoint (where one is attempting to conserve
the prey) this tells us that if ≈ 0.15 < 𝑟 < 0.43 (or upwards of half the
prey) is protected, we can maintain stable coexistence of predator–prey
in the ecosystem. Once we increase this protection to 85% or more, one
can maintain only prey in the ecosystem. This result is interesting – as
the predator free equilibrium in most cases is a saddle.

Moreover, we observed that when 𝑊 𝑠(𝐸0) is above 𝑊 𝑢(𝐸1), all
solutions with initial conditions above 𝑊 𝑠(𝐸0) goes to prey extinction
in finite time (see Fig. 2(a)). Via numerical simulations, we obtained
a heteroclinic bifurcation when 𝑊 𝑢(𝐸1) = 𝑊 𝑠(𝐸0), where a limit
cycle collides with the two saddle points 𝐸0 and 𝐸1 leading to a
polycycle. This was conjectured in [51], but remained unproven or
shown via numerical simulations — and is accomplished in the current
manuscript. We observed that all solutions with initial conditions inside
the polycycle except 𝐸2 converge to the polycycle. Additionally, we
noticed that all solutions with initial conditions outside the polycycle
go to prey extinction in finite time (see Fig. 3(b)). These are in line
with the result in [11]. Thus, from a practical point of view increasing
𝑚1 or decreasing the feeding intensity of the predator, will maintain
ecosystem balance, as this decreases the predator nullcline, decreasing
predator numbers and increasing prey numbers.

All in all, the current work brings a new perspective in analyzing
predator–prey as well as epidemic models, that permit the dynamic
of finite time prey (host) population extinction. It quantifies the crit-
ical amount of refuge/protection for the prey (host) that can lead to
population stabilization. This has large scale applications to biological
control of pests and invasive species, epidemic control and conservation
of endangered species, and will advance our understanding of these
areas through continued current and future investigations, of the topics
initiated herein.
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Appendix A

Proof of Theorem 3.3. To validate the restriction for the occurrence
of saddle–node bifurcation, we apply Sotomayor’s theorem [49] at
𝑎2 = 𝑎∗2. At 𝑎2 = 𝑎∗2, it can be seen that det (𝐉∗) = 0 and tr (𝐉∗) < 0
which indicates that the Jacobian (𝐉∗) admits a zero eigenvalue. Let 𝑈
and 𝑉 be the eigenvectors corresponding to the zero eigenvalue of the

matrix (𝐉∗) and (𝐉∗)𝑇 respectively. We obtain that 𝑈 = (𝑢1, 𝑢2)𝑇 and
𝑉 = (𝑣1, 𝑣2)𝑇 , where 𝑢1 = −

𝑎∗12𝑢2
𝑎∗11

, 𝑣1 = −
𝑎∗21𝑣2
𝑎∗11

and 𝑢2, 𝑣2 ∈ R ⧵ {0}.
Furthermore, let 𝐹 = (𝐹1, 𝐹2)𝑇 and 𝑋 = (𝑥∗1 , 𝑥

∗
2)
𝑇 , where 𝐹1, 𝐹2 are

given by

𝐹1 = 𝑎1𝑥1 − 𝑏1𝑥21 −𝑤0

(

𝑥1
𝑥1 + 𝑑

)𝑚 1
𝑥𝑚 2
2

𝐹2 = −𝑎2𝑥2 +𝑤1

(

𝑥1
𝑥1 + 𝑑

)𝑚 1
𝑥𝑚 2
2 .

Now

𝑉 𝑇𝐹𝑎2 (𝑋, 𝑎
∗
2) = (𝑣1, 𝑣2)(0,−𝑥2)𝑇 = −𝑣2𝑥2 ≠ 0,

and

𝑉 𝑇 [

𝐷2𝐹 (𝑋, 𝑎∗2)(𝑈,𝑈 )
]

≠ 0.

Hence, from Sotomayor’s theorem the model undergoes a saddle–node
bifurcation around 𝐸2 at 𝑎2 = 𝑎∗2. □

Theorem A.1. The model (3) undergoes a saddle–node bifurcation around
𝐸2 at 𝑤∗

1 when the system parameters satisfy the restriction det (𝐉∗) = 0
along with the condition tr (𝐉∗) < 0.

Theorem A.2. The model (3) undergoes a saddle–node bifurcation around
𝐸2 at 𝑤∗

0 when the system parameters satisfy the restriction det (𝐉∗) = 0
along with the condition tr (𝐉∗) < 0.

Theorem A.3. The model (3) undergoes a saddle–node bifurcation around
𝐸2 at 𝑏∗1 when the system parameters satisfy the restriction det (𝐉∗) = 0 along
with the condition tr (𝐉∗) < 0.

Theorem A.4. The model (3) undergoes a saddle–node bifurcation around
𝐸2 at 𝑎∗1 when the system parameters satisfy the restriction det (𝐉∗) = 0 along
with the condition tr (𝐉∗) < 0.

Proof. The proof of Theorems A.1–A.4 are similar to the proof in
Theorem 3.3 and omitted for brevity. □

Proof of Theorem 3.5. Clearly 𝐴(𝑎1) and 𝐵(𝑎1) are the smooth
functions of 𝑎1. The roots of Eq. (12) are of the form 𝜆1 = 𝜁 (𝑎1) + 𝑖𝛾(𝑎1)
and 𝜆2 = 𝜁 (𝑎1) − 𝑖𝛾(𝑎1) where 𝜁 (𝑎1) and 𝛾(𝑎1) are real functions.

At 𝑎1 = 𝑎∗1, the characteristic equation (12) reduces to

𝜆2 + 𝐵(𝑎1) = 0 (38)

By solving for the roots of Eq. (38), we obtain 𝜆1 = 𝑖
√

𝐵 and 𝜆2 = −𝑖
√

𝐵.
Hence a pair of purely imaginary eigenvalues. Furthermore, we validate
the transversality condition:
𝑑
𝑑𝑎1

𝑅𝑒𝜆𝑖(𝑎1)|𝑎1=𝑎∗1 ≠ 0, 𝑖 = 1, 2.

Substituting 𝜆(𝑎1) = 𝜁 (𝑎1) + 𝑖𝛾(𝑎1) into Eq. (12), we obtain

(𝜁 (𝑎1) + 𝑖𝛾(𝑎1))2 + 𝐴(𝑎1)(𝜁 (𝑎1) + 𝑖𝛾(𝑎1)) + 𝐵(𝑎1) = 0. (39)

Now, taking the derivative with respect to 𝑎1, we get

2(𝜁 (𝑎1) + 𝑖𝛾(𝑎1))(𝜁̇ (𝑎1) + 𝑖𝛾̇(𝑎1)) + 𝐴(𝑎1)(𝜁̇ (𝑎1) + 𝑖𝛾̇(𝑎1))

+ 𝐴̇(𝑎1)(𝜁 (𝑎1) + 𝑖𝛾(𝑎1)) + 𝐵̇(𝑎1) = 0.

Separating the real and imaginary parts, we have

𝜁̇ (𝑎1)(2𝜁 (𝑎1) + 𝐴(𝑎1)) + 𝛾̇(𝑎1)(−2𝛾(𝑎1)) + 𝐴̇(𝑎1)𝜁 (𝑎1) + 𝐵̇(𝑎1) = 0,

which implies

𝜁̇ (𝑎1)𝑍1(𝑎1) − 𝛾̇(𝑎1)𝑍2(𝑎1) +𝑍3(𝑎1) = 0, (40)

and

𝜁̇ (𝑎1)(2𝛾(𝑎1)) + 𝛾̇(𝑎1)(2𝜁 (𝑎1) + 𝐴(𝑎1)) + 𝐴̇(𝑎1)𝛾(𝑎1) = 0,

12



K. Antwi-Fordjour, R.D. Parshad and M.A. Beauregard Mathematical Biosciences 326 (2020) 108407

Fig. 9. Bifurcation diagrams illustrating (a) SN at 𝑎2 = 𝑎∗2 = 0.61515 (b) SN at 𝑏1 = 𝑏∗1 = 0.05722. Other parameter sets are given in Table 3. (SN: Saddle–node bifurcation.)

which implies

𝜁̇ (𝑎1)𝑍2(𝑎1) + 𝛾̇(𝑎1)𝑍1(𝑎1) +𝑍4(𝑎1) = 0, (41)

where 𝑍1(𝑎1) = 2𝜁 (𝑎1) + 𝐴(𝑎1), 𝑍2(𝑎1) = 2𝛾(𝑎1), 𝑍3(𝑎1) = 𝐴̇(𝑎1)𝜁 (𝑎1) +
𝐵̇(𝑎1) and 𝑍4(𝑎1) = 𝐴̇(𝑎1)𝛾(𝑎1).

Multiplying equation (49) by 𝑍1(𝑎1) and Eq. (50) by 𝑍2(𝑎1) and then
adding them, we obtain

(𝑍2
1 (𝑎1) +𝑍

2
2 (𝑎1))𝜁̇ (𝑎1) +𝑍1(𝑎1)𝑍3(𝑎1) +𝑍2(𝑎1)𝑍4(𝑎1) = 0, (42)

thus solving for 𝜁̇ (𝑎1) from Eq. (51) and at 𝑎1 = 𝑎∗1,

𝑑
𝑑𝑎1

𝑅𝑒𝜆𝑖(𝑎1)|𝑎1=𝑎∗1 = 𝜁̇ (𝑎∗1) =
−
[

𝑍1(𝑎∗1)𝑍3(𝑎∗1) +𝑍2(𝑎∗1)𝑍4(𝑎∗1)
]

𝑍2
1 (𝑎

∗
1) +𝑍

2
2 (𝑎

∗
1)

.

It is easy to verify that 𝑍1(𝑎∗1)𝑍3(𝑎∗1) + 𝑍2(𝑎∗1)𝑍4(𝑎∗1) ≠ 0 and 𝑍2
1 (𝑎

∗
1) +

𝑍2
2 (𝑎

∗
1) ≠ 0 which implies 𝑑

𝑑𝑎1
𝑅𝑒𝜆𝑖(𝑎1)|𝑎1=𝑎∗1 ≠ 0. Hence, a Hopf-

bifurcation occurs around 𝐸2(𝑥∗1 , 𝑥
∗
2) at 𝑎1 = 𝑎∗1. □

Appendix B

B.1. Existence of equilibria and analytic guidelines

Similar to Section 3, we investigate and analyze the equilibrium
solutions of our mathematical model with prey refuge. Consider the
steady state equations of (33):

𝑎1𝑥1 − 𝑏1𝑥21 −𝑤2

(

𝑟𝑥1
𝑟𝑥1 + 𝑑

)𝑚 1
𝑥𝑚 2
2 = 0 (43)

−𝑎2𝑥2 +𝑤3

(

𝑟𝑥1
𝑟𝑥1 + 𝑑

)𝑚 1
𝑥𝑚 2
2 = 0 (44)

The above equations (43) and (44) have three types of non-negative
equilibria:

(i) The trivial equilibrium 𝐸0(0, 0).
(ii) The predator-free equilibrium 𝐸1(𝑎1∕𝑏1, 0).

(iii) The interior equilibrium 𝐸2(𝑥∗1 , 𝑥
∗
2) where 𝑥∗1 and 𝑥∗2 are related

by

𝑥∗2 =
𝑤3
𝑤2𝑎2

[

𝑎1𝑥
∗
1 − 𝑏1𝑥

∗2
1
]

.

The variational matrix 𝐉∗𝐫 of the model (33) around any of the possible
interior equilibria 𝐸2(𝑥∗1 , 𝑥

∗
2) is

𝐉∗𝐫 =
[

𝑏11 𝑏12
𝑏21 𝑏22

]

.

where

𝑏11 = 𝑎1 − 2𝑏1𝑥∗1 − 𝑚1𝑤2𝑥
∗
2
𝑚2

[

𝑟
𝑑 + 𝑟𝑥∗1

−
𝑟2𝑥∗1

(𝑟𝑥∗1 + 𝑑)
2

](

𝑟𝑥∗1
𝑟𝑥∗1 + 𝑑

)𝑚1−1

,

𝑏12 = −
𝑚2𝑤2𝑥∗2

𝑚2−1(𝑟𝑥∗1)
𝑚1

(𝑟𝑥∗1 + 𝑑)
𝑚1

,

𝑏21 = 𝑚1𝑑𝑤3𝑟
𝑚1𝑥∗2

𝑚2

( 𝑥∗1
𝑚1−1

(𝑟𝑥∗1 + 𝑑)
𝑚1+1

)

,

𝑏22 = −𝑎2 + 𝑚2𝑤3𝑥
∗
2
𝑚2−1

( 𝑟𝑥∗1
𝑟𝑥∗1 + 𝑑

)𝑚1
.

The characteristic equation corresponding to 𝐉∗𝐫 is given by

𝜆2 − tr (𝐉∗𝐫 )𝜆 + det (𝐉∗𝐫 ) = 0,

where

tr (𝐉∗𝐫 ) = 𝑏11 + 𝑏22
= 𝑎1 − 𝑎2 − 2𝑏1𝑥∗1 − 𝑚1𝑤2𝑥

∗
2
𝑚2

×

[

𝑟
𝑑 + 𝑟𝑥∗1

−
𝑟2𝑥∗1

(𝑟𝑥∗1 + 𝑑)
2

](

𝑟𝑥∗1
𝑟𝑥∗1 + 𝑑

)𝑚1−1

+ 𝑚2𝑤3𝑥
∗
2
𝑚2−1

( 𝑟𝑥∗1
𝑟𝑥∗1 + 𝑑

)𝑚1
,

and

det (𝐉∗𝐫 ) = 𝑏11𝑏22 − 𝑏12𝑏21

=
⎛

⎜

⎜

⎝

𝑎1 − 2𝑏1𝑥∗1 − 𝑚1𝑤2𝑥
∗
2
𝑚2

[

𝑟
𝑑 + 𝑟𝑥∗1

−
𝑟2𝑥∗1

(𝑟𝑥∗1 + 𝑑)
2

](

𝑟𝑥∗1
𝑟𝑥∗1 + 𝑑

)𝑚1−1
⎞

⎟

⎟

⎠

×

(

−𝑎2 + 𝑚2𝑤3𝑥
∗
2
𝑚2−1

( 𝑟𝑥∗1
𝑟𝑥∗1 + 𝑑

)𝑚1
)

−

(

−
𝑚2𝑤2𝑥∗2

𝑚2−1(𝑟𝑥∗1)
𝑚1

(𝑟𝑥∗1 + 𝑑)
𝑚1

)(

𝑚1𝑑𝑤3𝑟
𝑚1𝑥∗2

𝑚2

( 𝑥∗1
𝑚1−1

(𝑟𝑥∗1 + 𝑑)
𝑚1+1

)

)

.

Here, tr (𝐉∗𝐫 ) and det (𝐉∗𝐫 ) represent the trace and determinant of the
variational matrix. Hence the stability of 𝐸2(𝑥∗1 , 𝑥

∗
2) is determined by

the sign of det (𝐉∗𝐫 ) and tr (𝐉∗𝐫 ).
The above results are summarized in the following theorem.

Theorem B.1. The interior equilibrium 𝐸2(𝑥∗1 , 𝑥
∗
2) of system (33) is locally

asymptotically stable if tr (𝐉∗𝐫 ) < 0 and det (𝐉∗𝐫 ) > 0 by Routh–Hurwitz
stability criteria.

Proof. The proof follows directly from the above discussion and hence
omitted for brevity. □
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Fig. 10. Bifurcation diagrams of the model (33) illustrating (a) SN at 𝑎1 = 𝑎∗1 = 0.44476, (b) SN at 𝑏1 = 𝑏∗1 = 0.064498. Here 𝑟 = 0.3 and other parameter sets are given in Table 3.
(SN: Saddle–node bifurcation.)

Remark 7. When 𝑟 = 1, we recover the det (𝐉∗) and tr (𝐉∗) for Section 3
where 𝑤2 = 𝑤0 and 𝑤3 = 𝑤1.

Proof of Theorem 5.2. To validate the restriction for the occurrence
of saddle–node bifurcation, we apply Sotomayor’s theorem [49] at
𝑎2 = 𝑎∗2. At 𝑎2 = 𝑎∗2, it can be seen that det (𝐉∗𝐫 ) = 0 and tr (𝐉∗𝐫 ) < 0
which indicates that the Jacobian (𝐉∗𝐫 ) admits a zero eigenvalue. Let 𝑈
and 𝑉 be the eigenvectors corresponding to the zero eigenvalue of the
matrix (𝐉∗𝐫 ) and (𝐉∗𝐫 )

𝑇 respectively. We obtain that 𝑈 = (𝑢1, 𝑢2)𝑇 and
𝑉 = (𝑣1, 𝑣2)𝑇 , where 𝑢1 = −

𝑏∗12𝑢2
𝑏∗11

, 𝑣1 = −
𝑏∗21𝑣2
𝑏∗11

and 𝑢2, 𝑣2 ∈ R ⧵ {0}.
Let 𝐺 = (𝐺1, 𝐺2)𝑇 and 𝑋 = (𝑥∗1 , 𝑥

∗
2)
𝑇 , where 𝐺1, 𝐺2 are given by

𝐺1 = 𝑎1𝑥1 − 𝑏1𝑥21 −𝑤2

(

𝑟𝑥1
𝑟𝑥1 + 𝑑

)𝑚 1
𝑥𝑚 2
2 , (45)

𝐺2 = −𝑎2𝑥2 +𝑤3

(

𝑟𝑥1
𝑟𝑥1 + 𝑑

)𝑚 1
𝑥𝑚 2
2 . (46)

Now

𝑉 𝑇𝐺𝑎2 (𝑋, 𝑎
∗
2) = (𝑣1, 𝑣2)(0,−𝑥2)𝑇 = −𝑣2𝑥2 ≠ 0,

and

𝑉 𝑇 [

𝐷2𝐺(𝑋, 𝑎∗2)(𝑈,𝑈 )
]

≠ 0.

Hence from Sotomayor’s theorem the model (33) undergoes a saddle–
node bifurcation around 𝐸2 at 𝑎2 = 𝑎∗2. □

Theorem B.2. The model (33) undergoes a saddle–node bifurcation
around 𝐸2 at 𝑤∗

3 when the system parameters satisfy the restriction det (𝐉∗𝐫 )
= 0 along with the condition tr (𝐉∗𝐫 ) < 0.

Theorem B.3. The model (33) undergoes a saddle–node bifurcation
around 𝐸2 at 𝑤∗

2 when the system parameters satisfy the restriction det (𝐉∗𝐫 )
= 0 along with the condition tr (𝐉∗𝐫 ) < 0.

Theorem B.4. The model (33) undergoes a saddle–node bifurcation
around 𝐸2 at 𝑏∗1 when the system parameters satisfy the restriction det (𝐉∗𝐫 )
= 0 along with the condition tr (𝐉∗𝐫 ) < 0.

Theorem B.5. The model (33) undergoes a saddle–node bifurcation
around 𝐸2 at 𝑎∗1 when the system parameters satisfy the restriction det (𝐉∗𝐫 )
= 0 along with the condition tr (𝐉∗𝐫 ) < 0.

Proof. The proof of Theorems B.2–B.5 are similar to the proof in
Theorem 5.2 and omitted for brevity. □

Proof of Theorem 5.3. The variational matrix 𝐉𝐫∗𝟏 of the model (33)
for 0 < 𝑚1 < 1 and 𝑚2 = 1 evaluated at 𝑟 = 𝑟∗1 around the predator-free
equilibrium 𝐸1(𝑎1∕𝑏1, 0) is given by

𝐉∗𝐫𝟏 =

⎡

⎢

⎢

⎢

⎣

−𝑎1 −𝑤2

(

𝑟∗1𝑎1
𝑟∗1𝑎1 + 𝑏1𝑑

)𝑚1

0 0

⎤

⎥

⎥

⎥

⎦

.

At 𝑟 = 𝑟∗1, the matrix 𝐉𝐫∗𝟏 has a negative eigenvalue and a zero
eigenvalue. Let 𝑈 and 𝑉 be the eigenvectors corresponding to the zero
eigenvalue of the matrix (𝐉

𝟏𝐫∗
) and (𝐉𝐫∗𝟏 )

𝑇 respectively. Then

𝑈 =

(

1,−
𝑎1
𝑤2

(

1 +
𝑏1𝑑
𝑟∗1𝑎1

)𝑚1)𝑇

, 𝑉 = (0, 1)𝑇 .

Let 𝐺 = (𝐺1, 𝐺2)𝑇 and 𝑋 = (𝑎1∕𝑏1, 0)𝑇 , where 𝐺1, 𝐺2 are defined in (45)
and (46). Now we have

𝑉 𝑇𝐺𝑟(𝑋, 𝑟∗1) = (0, 1)(0, 0)𝑇 = 0,

additionally

𝑉 𝑇 [

𝐷𝐺𝑟(𝑋, 𝑟∗1)𝑈
]

≠ 0

and

𝑉 𝑇 [

𝐷2𝐺(𝑋, 𝑟∗1)(𝑈,𝑈 )
]

≠ 0.

Hence using Sotomayor’s theorem the model (33) undergoes a transcrit-
ical bifurcation around 𝐸1 when the refuge 𝑟 crosses the critical value
of the parameter 𝑟∗1. □

Proof of Theorem 5.4. Clearly 𝐴1(𝑎1) and 𝐵1(𝑎1) are the smooth
functions of 𝑎1. The roots of Eq. (37) are of the form 𝜆1 = 𝜗(𝑎1)+ 𝑖𝜛(𝑎1)
and 𝜆2 = 𝜗(𝑎1) − 𝑖𝜛(𝑎1) where 𝜗(𝑎1) and 𝜛(𝑎1) are real functions.

At 𝑎1 = 𝑎∗1, the characteristic equation (37) reduces to

𝜆2 + 𝐵1(𝑎1) = 0 (47)

By solving for the roots of Eq. (47), we obtain 𝜆1 = 𝑖
√

𝐵1 and 𝜆2 =
−𝑖
√

𝐵1. Therefore, we have purely imaginary eigenvalues. Hence, we
are left with validating the transversality condition. Namely,
𝑑
𝑑𝑎1

𝑅𝑒𝜆𝑖(𝑎1)|𝑎1=𝑎∗1 ≠ 0, 𝑖 = 1, 2.

Substituting 𝜆(𝑎1) = 𝜗(𝑎1) + 𝑖𝜛(𝑎1) into Eq. (37), we obtain

(𝜗(𝑎1) + 𝑖𝜛(𝑎1))2 + 𝐴1(𝑎1)(𝜗(𝑎1) + 𝑖𝜛(𝑎1)) + 𝐵1(𝑎1) = 0. (48)

Upon taking the derivative with respect to 𝑎1 we obtain:

2(𝜗(𝑎1) + 𝑖𝜛(𝑎1))(𝜗̇(𝑎1) + 𝑖𝜛̇(𝑎1)) + 𝐴1(𝑎1)(𝜗̇(𝑎1) + 𝑖𝜛̇(𝑎1))
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+ 𝐴̇1(𝑎1)(𝜗(𝑎1) + 𝑖𝜛(𝑎1)) + 𝐵̇1(𝑎1) = 0.

Separating the real and imaginary parts, we have

𝜗̇(𝑎1)(2𝜗(𝑎1) + 𝐴1(𝑎1)) + 𝜛̇(𝑎1)(−2𝜛(𝑎1)) + 𝐴̇1(𝑎1)𝜗(𝑎1) + 𝐵̇1(𝑎1) = 0,

which implies

𝜗̇(𝑎1)𝑍1(𝑎1) − 𝜛̇(𝑎1)𝑍2(𝑎1) +𝑍3(𝑎1) = 0, (49)

and

𝜗̇(𝑎1)(2𝜛(𝑎1)) + 𝜛̇(𝑎1)(2𝜗(𝑎1) + 𝐴1(𝑎1)) + 𝐴̇1(𝑎1)𝜛(𝑎1) = 0,

which implies

𝜗̇(𝑎1)𝑍2(𝑎1) + 𝜛̇(𝑎1)𝑍1(𝑎1) +𝑍4(𝑎1) = 0, (50)

where 𝑍1(𝑎1) = 2𝜗(𝑎1)+𝐴1(𝑎1), 𝑍2(𝑎1) = 2𝜛(𝑎1), 𝑍3(𝑎1) = 𝐴̇1(𝑎1)𝜗(𝑎1)+
𝐵̇1(𝑎1) and 𝑍4(𝑎1) = 𝐴̇1(𝑎1)𝜛(𝑎1). Multiplying equation (49) by 𝑍1(𝑎1)
and Eq. (50) by 𝑍2(𝑎1) and then adding them, we obtain

(𝑍2
1 (𝑎1) +𝑍

2
2 (𝑎1))𝜗̇(𝑎1) +𝑍1(𝑎1)𝑍3(𝑎1) +𝑍2(𝑎1)𝑍4(𝑎1) = 0, (51)

thus solving for 𝜗̇(𝑎1) from Eq. (51) and at 𝑎1 = 𝑎∗1,

𝑑
𝑑𝑎1

𝑅𝑒𝜆𝑖(𝑎1)|𝑎1=𝑎∗1 = 𝜗̇(𝑎∗1) =
−
[

𝑍1(𝑎∗1)𝑍3(𝑎∗1) +𝑍2(𝑎∗1)𝑍4(𝑎∗1)
]

𝑍2
1 (𝑎

∗
1) +𝑍

2
2 (𝑎

∗
1)

.

It is easy to verify that 𝑍1(𝑎∗1)𝑍3(𝑎∗1) + 𝑍2(𝑎∗1)𝑍4(𝑎∗1) ≠ 0 and
𝑍2

1 (𝑎
∗
1) + 𝑍2

2 (𝑎
∗
1) ≠ 0 which implies 𝑑

𝑑𝑎1
𝑅𝑒𝜆𝑖(𝑎1)|𝑎1=𝑎∗1 ≠ 0. Hence, a

Hopf-bifurcation occurs around 𝐸2(𝑥∗1 , 𝑥
∗
2) at 𝑎1 = 𝑎∗1. □
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