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We study the effects of an elliptical Fermi surface deformation on the energy of a two-dimensional
electron gas. We consider a standard model for fully spin-polarized (spinless) electrons embedded
in a uniformly charged neutralizing jellium background and treat the system in the thermodynamic
(bulk) limit. We calculate exactly the energy changes of the system as a function of a parameter that
gauges the elliptic deformation of the Fermi surface. The results obtained give insight on various
scenarios and competing tendencies that may arise in such a system in presence of some form of
internal anisotropy originating from factors such as electron’s anisotropic effective mass, anisotropic
interaction potential or both.

PACS numbers: 73.43.Cd, 73.20.Dx, 73.21.La.

I. INTRODUCTION

One of the most important concepts in condensed mat-
ter physics which is very useful to describe free or weakly-
interacting fermions is that of the Fermi surface. The
Fermi surface separates the occupied quantum states in
reciprocal space from the unoccupied ones at zero tem-
perature1. It is generally assumed that the Fermi sur-
face of a three-dimensional (3D) system is a sphere for
fermions with isotropic mass if the fermions are free (non-
interacting) or when the interaction between them is
isotropic in uniform space. The possibility of a deformed
Fermi surface is real if any of the conditions above is vi-
olated. For instance, an ellipsoidal deformation of the
Fermi surface was recently experimentally observed in
dipolar Fermi gases of erbium (Er) atoms2. The origin of
the Fermi surface ellipsoidal deformation in this system is
the combined effect of the anisotropic dipole-dipole inter-
action potential and the Pauli exclusion principle as pre-
dicted by several theoretical studies focused on dipolar
Fermi gases3–8. Based on these findings, one would rea-
sonably argue that the counterpart of this phenomenon
in a two-dimensional (2D) fermion system (for instance,
a 2D electron system) would be directly connected to an
elliptical deformation of the Fermi surface in 2D recipro-
cal space.

When it comes to an uniform electron gas system9,
the standard approach is to assume that the electrons
have an isotropic mass. Depending on the dimensional-
ity of space, the electrons would fill a spherical Fermi
surface in 3D or a circular Fermi disk in 2D. In the
case of a two-dimensional electron gas (2DEG) the non-
interacting electrons would occupy all the quantum plane

wave states, |~k| ≤ kF inside a circular Fermi disk in re-
ciprocal space where kF is the Fermi wave number. It is
also common to assume that all the interactions between
various point charges involve the usual isotropic Coulomb
interaction potential. However, in reality, there are var-
ious experimental situations where the conditions above
may be violated and, as a result, the occupied Fermi sur-

face in reciprocal space may not be exactly circular. For
instance, it is very common for systems of electrons in
semiconductors to posses an effective anisotropic mass10.
This occurance would immediately tend to induce an el-
liptical Fermi surface deformation. Also, the interactions
between the electrons may not be purely of Coulomb
type. Therefore, we deem of current interest to study
in detail how the energy of a 2DEG system is affected
under the assumption of a deformed Fermi surface. The
simplest deformation of an originally circular Fermi sur-
face would be an elliptical deformation.
One of the key objectives of this work is to get a clear

insight of the magnitude of the energies involved with a
Fermi surface deformation in a bulk 2DEG system at a
constant electron number density. Since a large number
of results are available for the case of a 2DEG with circu-
lar Fermi surface11–16, we aim to obtain exact analytical
expressions of various forms of energy that are associated
with such an elliptical deformation of the Fermi surface.
The results obtained tell us how the Fermi surface defor-
mation affects the system in general, its kinetic energy, its
potential energy and other quantities of interest. For sim-
plicity, we consider only a fully spin-polarized (spinless)
system of electrons described by an anti-symmetrized
Slater determinant wave function of plane waves17. We
adopt the usual jellium approximation in order to enforce
the overall charge neutrality of the system.

II. THEORY

To start with, we consider a 2DEG system of N elec-
trons with isotropic mass, m moving in a uniformly
charged background. The positive charge fills a 2D re-
gion, R in the shape of a square:

R :

{

−L

2
≤ x, y ≤ +

L

2

}

. (1)

We assume a spinless system of electrons. The electron
number density is written as ρ0 = N/A where the area
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of the square region is A = L2. In the thermodynamic
limit, N → ∞, A → ∞ (L → ∞) but ρ0 remains con-
stant and finite. The formalism and notation is similar
to that for a finite spinless 2DEG ensemble18,19 but with
the difference that: (i) The current model is for an infi-
nite 2DEG system and (ii) The current model assumes
that the Fermi surface of the infinite 2DEG is elliptically
deformed. The Hamiltonian of the system is given by

Ĥ = T̂ + Û , (2)

where

T̂ =

N
∑

i=1

|~̂pi|2
2m

, (3)

is the kinetic energy operator and

Û = Ûee + Ûeb + Ûbb , (4)

is the potential energy operator that incorporates the
electron-electron (ee), electron-background (eb) and
background-background (bb) interactions. One can ver-
ify that:

Ûee =
1

2

N
∑

i=1

N
∑

j 6=i

v̂ee(|~ri − ~rj |) , (5)

Ûeb = −ρ0

N
∑

i=1

∫

R

d2r ′ v̂(|~ri − ~r ′|) , (6)

and

Ûbb =
ρ20
2

∫

R

d2r

∫

R

d2r′ v̂(|~r − ~r ′|) , (7)

where v̂(|~ri − ~rj |) = ke e
2/|~ri − ~rj | would represent the

interaction energy between two electrons with charge, −e
(e > 0) at a distance rij = |~ri − ~rj | and ke is Coulomb’s
electric constant. We describe the ground state of the
2DEG by a normalized Slater determinant wave function

of plane waves φ~k(~r) = ei
~k ~r/

√
A (periodic boundary con-

ditions are imposed):

Ψ =
1√
N !

Det
{

φ~k1

(~r1), . . . , φ~kN
(~rN )

}

, (8)

where states with ~k = (kx, ky) fill a reciprocal space
region with elliptical Fermi surface. Such an elliptical
Fermi surface is represented by the domain/region D~k in
reciprocal space:

D~k :

{

k2x
k2a

+
k2y
k2b

≤ 1

}

. (9)

The total energy of the system, T+U which is the expec-
tation value of the Hamiltonian with respect to the Slater

determinant wave function for a system with an elliptical
Fermi surface can be calculated through well-established
procedures20. The total kinetic energic is written as:

T =
∑

{D~k
}

~
2 |~k|2
2m

, (10)

where the sum is over all ~k-states in the elliptical region
given by Eq.(9). The total potential energy of the system
can be written as:

U = −1

2

∫

R

d2r1

∫

R

d2r2 |ρ(~r1, ~r2)|2 v(r21) , (11)

where R represents the square region of integration in
real space in the thermodynamic limit of L → ∞ and

ρ(~r1, ~r2) =

N
∑

j=1

φ~kj
(~r1)

∗ φ~kj
(~r2) =

1

A

∑

{D~k
}

ei
~k (~r2−~r1) ,

(12)
represents the one-particle density matrix for this case.
The quantity in Eq.(11) is known as the exchange poten-
tial energy and originates from Pauli’s exclusion princi-
ple. The energies in Eq.(10) and Eq.(11) should be calcu-

lated in the thermodynamic limit for ~k-states contained
inside an elliptically deformed Fermi surface.

III. RESULTS

A. Kinetic energy

The kinetic energy per particle, t = T/N for a spin-
less 2DEG with elliptical Fermi surface is calculated in
Appendix. A and the result reads:

t =
~
2

2m

(

k2a + k2b
)

4
. (13)

One way to describe the elliptical deformation of the
Fermi surface is to introduce a real positive parameter,
α and write:

ka = αkF ; kb =
kF
α

, (14)

where ka kb = k2F = 4π ρ0 and kF represents the value
of the Fermi wave number for a circular Fermi surface.
The choice made in Eq.(14) guarantees the constraint of

a constant number of states (constant area in ~k-space).
For this choice of notation, the kinetic energy per particle
denoted as t(α) to point out its α-dependence, reads:

t(α) =
εF
4

(

α2 +
1

α2

)

(15)

where

εF =
~
2 k2F
2m

, (16)

is the Fermi energy for a circular Fermi surface.
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B. Potential energy

In order to calculate the potential energy, one starts
from the expression for the one-particle density matrix
in Appendix B. As shown in Appendix C, one may write
the potential energy per particle, u = U/N as:

u = −2 ρ0

∫

R

d2r21

[

J1

(

√

k2ax
2
21 + k2by

2
21

)

(

√

k2ax
2
21 + k2by

2
21

)

]2

v(r21) ,

(17)
where the integral is carried out over an infinite 2D region
of space and v(r21) = ke e

2/
√

x2
21 + y221 is a Coulomb

interaction potential. Based on the choice made in
Eq.(14), one writes k2a x

2
21 = k2F α2 x2

21 and, similarly,
k2b y

2
21 = k2F y221/α

2 This approach suggests a strategy
to calculate the expression in Eq.(17) in terms of new
variables defined as:

x′ = αx21 ; y′ =
y21
α

, (18)

which, in a 2D polar system of coordinates, are written
as:

x′ = r′ cos(ϕ′) ; y′ = r′ sin(ϕ′) . (19)

This choice of variables leads to the following expression
for the potential energy per particle:

u = −2 ρ0

∫ ∞

0

dr′ r′

[

J1 (kF r′)

(kF r′)

]2
∫ 2π

0

dϕ′v(r′, ϕ′) .

(20)
The original Coulomb interaction potential takes the fol-
lowing form in the new system of coordinates:

v(r′, ϕ′) =
ke e

2

r′
1

√

cos2(ϕ′)
α2 + α2 sin2(ϕ′)

. (21)

By substituting from Eq.(21) to Eq.(20) one obtains:

u = −2 ρ0 ke e
2

∫ ∞

0

dr′

[

J1 (kF r′)

(kF r′)

]2
∫ 2π

0

dϕ′ 1
√

cos2(ϕ′)
α2 + α2 sin2(ϕ′)

. (22)

The integration over the radial variable can be done with
the following integral formula:

∫ ∞

0

dx
[J1(x)

x

]2

=
4

3π
. (23)

It is shown in Appendix. D that the integral over the an-
gular variable leads to an expression that involves com-
plete elliptic integrals of the first kind. Using the fact
that ρ0 = k2F /(4π) one can finally calculate the potential
energy per electron, denoted as u(α) which reads:

u(α) = − 8

3π2
kF ke e

2 F (α) , (24)

where F (α) is an auxiliary function of the form:

F (α) =
1

α
K

(

m = 1− 1

α4

)

. (25)

Note that F (α = 1) = π/2 and K(m) is a complete
elliptic integral of the first kind with parameter m.

IV. DISCUSSION AND CONCLUSIONS

For the way it is defined, a value of α = 1 represents a
circular Fermi surface. One can verify that the results in
Eq.(15) and Eq.(24) do, indeed, reproduce the values of

the kinetic energy and potential energy per particle for
the case of a spinless 2DEG with circular Fermi surface:

t(α = 1) =
εF
2

; u(α = 1) = − 4

3π
kF ke e

2 . (26)

One can write the Fermi energy for a circular Fermi sur-
face as:

εF =
~
2 k2F
2m

= (kF aB)
2 ke e

2

2 aB
, (27)

where aB = ~
2/(ke me2) is the Bohr radius for Hydrogen

atom. Using similar transformations, one writes:

kF kee
2 = 2 (kF aB)

ke e
2

2 aB
, (28)

where ke e
2/(2 aB) = 1Ry is a standard unit of energy.

With help from Eq.(27) and Eq.(28) one writes:

t(α) =
(kF aB)

2

4

(

α2 +
1

α2

)

ke e
2

2 aB
. (29)

and

u(α) = − 16

3π2
(kF aB)F (α)

kee
2

2 aB
. (30)

It is customary to write the electron number density for
a 2DEG as:

ρ0 =
1

π (rs aB)
2 , (31)
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FIG. 1: Kinetic energy per particle, t(α, rs) in units of
kee

2/(2 aB) as a function of parameter, α for values rs = 1
and rs = 2.

where rs is the Wigner-Seitz radius. In this case we have:

(kF rs aB)
2
= 4 , (32)

which means that (kF aB)
2 = 4/r2s and (kF aB) = 2/rs.

As a result, we can express the kinetic energy and poten-
tial energy per particle solely as a function of parameter
α and rs:

t(α, rs) =
1

r2s

(

α2 +
1

α2

)

ke e
2

2 aB
, (33)

and

u(α, rs) = − 32

3π2

1

rs
F (α)

ke e
2

2 aB
. (34)

Note that, from now on, we denote the kinetic and po-
tential energy per particle, respectively as, t(α, rs) and
u(α, rs). In Fig. 1 we plot the kinetic energy per parti-
cle, t(α, rs) as a function of parameter, α for values of
rs = 1 and rs = 2. In Fig. 2 we plot the potential energy
per particle, u(α, rs) as a function of parameter, α for
selected values of rs. The total energy per particle of the
system is:

ε(α, rs) = t(α, rs) + u(α, rs) , (35)

where the parameter α measures the degree of elliptical
deformation of the Fermi surface and rs gauges the den-
sity of the 2DEG system. Based on the results previously
derived one has:

ε(α, rs) =

[

1

r2s

(

α2 +
1

α2

)

− 32

3π2

1

rs
F (α)

]

kee
2

2 aB
. (36)
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FIG. 2: Potential energy per particle, u(α, rs) in units of
kee

2/(2 aB) as a function of parameter, α for values rs = 1,
rs = 2 and rs = 3.

where F (α) is given from Eq.(25). The total energy per
particle is plotted in Fig. 3 as a function of α for selected
values of rs. In Fig. 4 we show the energy difference,
ε(α, rs)−ε(α = 1, rs) as a function of α for various values
of rs. As expected, a 2DEG with circular Fermi surface
has a lower energy than its elliptically deformed counter-
part for any value α 6= 1 when electrons have an isotropic
mass and they interact via an isotropic Coulomb inter-
action potential.
Expansion of kinetic energy per particle around α = 1

gives the leading terms:

t(α, rs)

t(α = 1, rs)
= 1+2 (α−1)2−2 (α−1)3+O[α−1]4 . (37)

Similarly, an expansion of potential energy per particle
around α = 1 reads:

u(α, rs)

|u(α = 1, rs)|
= −1+

1

4
(α−1)2− 1

4
(α−1)3+O[α−1]4 .

(38)
Note the use of the absolute value, |u(α = 1, rs)| in the
denominator of the quantity in Eq.(38).
Both kinetic and potential energy per particle increase

the same way for small elliptical deformations of the
Fermi surface with the leading term being proportional
to (α−1)2 for α ≈ 1. Note that t(α, rs) grows faster than
|u(α, rs)| (compare the proportionality constant of 2 ver-
sus 1/4) for α ≈ 1 if one assumes that the density of the
2DEG system is such that t(α = 1, rs) ≈ |u(α = 1, rs)|.
At such density, kinetic energy dominates over potential
energy. At other situations, the dominant term is deter-
mined by the specific density of the system, namely the
value of parameter kF aB (or equivalently rs).
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FIG. 3: Total energy per particle in units of kee
2/(2 aB) as a

function of parameter, α for several values of rs.

Obviously, all the prior conclusions are based on the
assumption of a Coulomb interaction potential between
electrons. One would expect a reduced influence of the
potential energy term if screening of the exchange inter-
action is considered, as is normally the case in metal-
lic systems. For instance, let us consider a screened
Coulomb potential of Yukawa form:

v(λ, r21) =
ke e

2

r21
exp (−λ r21) . (39)

The low density regime is the one where, typically, the
potential energy dominates the kinetic energy for the case
of a bare Coulomb potential. We expect this behavior to
change when screening is present since the exponential
damping factor in Eq.(39) will reduce the potential en-
ergy to a negligible value at distances greater than order
1/λ. Quantitatively speaking, the counterpart to the ex-
pression for potential energy in Eq.(22) becomes a very
complicated function of screening parameter λ for the
case of a Yukawa potential since the separation of inte-
grals over a radial part and an angular part does not
seem feasible:

u(λ) = −2 ρ0 ke e
2

∫ ∞

0

dr′

[

J1 (kF r′)

(kF r′)

]2
∫ 2π

0

dϕ′

exp

[

−λ r′
√

cos2(ϕ′)
α2 + α2 sin2(ϕ′)

]

√

cos2(ϕ′)
α2 + α2 sin2(ϕ′)

. (40)

Returning to the results for a bare Coulomb potential,
the insights gained suggest some interesting scenarios
that might emerge. They also allow us to make qualita-
tive predictions of what might happen in situations where
the 2DEG system has some internal anisotropy present.
The simplest scenario of a 2DEG possesing some internal
anisotropy would be that of a spinless 2DEG consisting
of electrons with mass anisotropy, mx 6= my (mx,y > 0)
interacting via a standard isotropic Coulomb interaction
potential. Within this framework, one can always define
some effective mass, m0 =

√
mx my. For simplicity, one

may introduce a mass anisotropy parameter, β > 0 so
that:

mx = β m0 ; my =
m0

β
; mx my = m2

0 . (41)

One can calculate that the kinetic energy per particle
for a spinless 2DEG with a given elliptical Fermi surface
deformation and anisotropic mass of this type reads:

1

4

~
2 k2F
2m0

(α2

β
+

β

α2

)

. (42)

On the other hand, the potential energy per particle
will not depend on the mass anisotropy parameter, β

since the anisotropic mass does not enter the expression
in Eq.(24). This means that, in this case, the kinetic en-
ergy term favors an elliptical deformation of the Fermi
surface with a value of parameter α =

√
β representing

the minimum of kinetic energy. On the other hand, the
potential energy term for an isotropic Coulomb potential
tends to favor a circular Fermi surface since any ellipti-
cal deformation of the Fermi surface (coming from the
anisotropic mass of the electrons) increases the potential
energy. The issue of which one of the two opposing en-
ergy terms dominates is not that straightforward because
the outcome will depend very sensitively on the density
of the system.
The considerations above suggest a variety of interest-

ing possible scenarios that we can envision for a 2DEG
with anisotropic mass and Coulomb interaction poten-
tial. Generally speaking, one expects the potential en-
ergy term to dominate at relatively low density. Thus,
for the case of anisotropic mass at relatively low den-
sity, it is reasonable to predict that even a 2DEG with
nearly circular Fermi surface might be energetically more
favorable than the one with elliptical Fermi surface (an
elliptical Fermi surface minimizes the kinetic energy in
the case of an anisotropic mass but a circular Fermi sur-
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FIG. 4: The difference of the total energy per particle,
ε(α, rs) − ε(α = 1, rs) in units of kee

2/(2 aB) as a function
of α for various rs.

face is favored by the isotropic Coulomb interaction, the
dominant term at low density). At all other higher densi-
ties, one expects a 2DEG with elliptical Fermi surface to
be favored at an optimum deformation α. This optimal
value of the elliptical deformation may not necessarily be
identical or close to α =

√
β, which represents the value

that minimizes the kinetic energy for the case of a spinless
2DEG system of electrons with mass anisotropy. Obvi-
ously, much more complex scenarios are possible when
we have : (i) isotropic mass and anisotropic interaction
or (ii) anisotropic mass and anisotropic interaction.
For example, let’s elaborate further on the above-

mentioned first scenario that applies to a 2DEG of parti-
cles with an effective isotropic mass but interacting with
an anisotropic interaction potential. Such would the case
of an anisotropic Coulomb interaction potential that has
been considered recently in the context of studies of a
2DEG system in the quantum Hall regime22,23 which
reads:

vγ(xij , yij) =
ke e

2

√

x2

ij

γ2 + γ2 y2ij

, (43)

where γ ≥ 1 is the interaction anisotropy parameter and
~rij = (xij , yij) is the separation distance vector between
particles i and j. Note that vγ=1(xij , yij) is the stan-
dard isotropic Coulomb interaction potential. For the
same magnitude of the separation distance between two
electrons, repulsion along x direction (when yij = 0) is
stronger than repulsion along y direction (when xij = 0)
when γ > 1. Using the same mathematical approach as
before, one can calculate that the potential energy per
particle for a 2DEG with circular Fermi surface in the
case of the anisotropic Coulomb interaction potential of

Eq.(43) will be given by the quantity u(γ) where the
function u(α) is defined in Eq.(24). This means that an
elliptically deformed Fermi surface with a deformation
parameter α = 1/γ represents the optimally deformed
elliptical Fermi surface that minimizes the potential en-
ergy. However, as discussed earlier, the optimum value
of the parameter α which minimizes the potential energy
does not coincide with the optimum value of such pa-
rameter that minimizes the kinetic energy (such value is
trivially α = 1 for a 2DEG with isotropic mass). Ad-
ditionally, the density of the system determines whether
it is the potential or the kinetic energy that dominates
the total energy of the system. This means that it will
be the interplay of several factors that will decide the
optimum elliptical deformation of the Fermi surface. In
conclusion, the results obtained in this work provide use-
ful insights on several rich scenarios that emerge when
various anisotropic factors play a role on the stability of
a spinless 2DEG system.
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APPENDIX A: KINETIC ENERGY

We consider a 2DEG with elliptical Fermi surface in
the thermodynamic limit where ρ0 = N/A is finite while
N → ∞ and A → ∞. The total number of spinless
electrons for such a case can be written as:

N =
A

(2π)2
π ka kb . (A1)

This result leads to an expression for the uniform particle
density as:

ρ0 =
N

A
=

ka kb
4π

. (A2)

The total kinetic energy of the system in the thermody-
namic limit is written as:

T =
A

(2π)2
~
2

2m

∫∫

D~k
:

{

k2
x

k2
a
+

k2
y

k2

b

≤1

}

dkx dky
(

k2x + k2y
)

, (A3)

where D~k is the region bounded by the ellipse in ~k-space.
The following integration formula applies:

∫∫

D~r:
{

x2

a2
+ y2

b2
≤1

}

dx dy
(

x2 + y2
)

=
π a b

4

(

a2 + b2
)

. (A4)
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Use of Eq.(A4) for the expression in Eq.(A3) in conjunc-
tion with Eq.(A1) leads to the following result for the
total kinetic energy:

T =
N

2

~
2

2m

(

k2a + k2b
)

2
. (A5)

As a result, the kinetic energy per particle reads:

t =
T

N
=

~
2

2m

(

k2a + k2b
)

4
. (A6)

APPENDIX B: ONE-PARTICLE DENSITY

MATRIX

In the thermodynamic limit, one can write the original
quantity in Eq.(12) in integral form as:

ρ(~r1, ~r2) =
1

(2π)2

∫∫

D~k
:

{

k2
x

k2
a
+

k2
y

k2

b

≤1

}

dkx dky e
i~k (~r2−~r1) ,

(B1)

where D~k is the region bounded by the ellipse in ~k-space.
One can prove the following integration formula:

∫∫

D~k
:

{

k2
x

k2
a
+

k2
y

k2

b

≤1

}

dkxdky e
±i~k ~r = 2π ka kb

J1

(

√

k2a x
2 + k2b y

2
)

√

k2a x
2 + k2b y

2
,

(B2)
where J1(x) is a Bessel function of the first kind. By
using the result in Eq.(B2) one can write the quantity in
Eq.(B1) as:

ρ(~r1, ~r2) =
ka kb
2π

J1

(

√

k2a x
2
21 + k2b y

2
21

)

√

k2a x
2
21 + k2b y

2
21

, (B3)

where ~r21 = ~r2−~r1 = (x21, y21). One can write the above
expression in a more compact form as:

ρ(~r1, ~r2) = 2 ρ0
J1

(

√

k2a x
2
21 + k2b y

2
21

)

√

k2a x
2
21 + k2b y

2
21

, (B4)

where ρ0 = kakb/(4π) is the uniform density.

APPENDIX C: POTENTIAL ENERGY

We substitute the expression for ρ(~r1, ~r2) given from
Eq.(B4) into the expression for the exchange potential
energy in Eq.(11) to obtain:

U = −2 ρ20

∫

R

d2r1

∫

R

d2r2

[

J1

(

√

k2a x
2
21 + k2b y

2
21

)

√

k2a x
2
21 + k2b y

2
21

]2

v(r21)

(C1)
The area of region R tends to infinity in the thermody-
namic limit and as a result one has:

U = −2 ρ0 N

∫

R

d2r21

[

J1

(

√

k2a x
2
21 + k2b y

2
21

)

√

k2a x
2
21 + k2b y

2
21

]2

v(r21) .

(C2)
More explicitly one writes the potential energy per par-
ticle in the thermodynamic limit as:

u =
U

N
= −2 ρ0

∫

R

d2r21

[

J1

(

√

k2ax
2
21 + k2by

2
21

)

(

√

k2ax
2
21 + k2by

2
21

)

]2

v(r21) ,

(C3)
where

v(r21) =
ke e

2

√

x2
21 + y221

(C4)

is a standard Coulomb interaction potential.

APPENDIX D: COMPLETE ELLIPTIC

INTEGRALS

It is a straightforward problem in mathematics to
prove that

∫ 2π

0

dϕ
√

a2 cos2(ϕ) + b2 sin2(ϕ)
=

∫ 2π

0

dϕ
√

a2 sin2(ϕ) + b2 cos2(ϕ)
. (D1)

With some care, one can prove that the integrals in
Eq.(D1) can be written as:

∫ 2π

0

dϕ
√

a2 cos2(ϕ) + b2 sin2(ϕ)
=

4

b
K

(

m = 1− a2

b2

)

,

(D2)

where K(m) is a complete elliptic integral of the first
kind with parameter, m. The complete elliptic integrals
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of the first and second kind are, respectively, defined as

K(m) =

∫ π/2

0

d θ
√

1−m sin2(θ)
, (D3)

and

E(m) =

∫ π/2

0

d θ

√

1−m sin2(θ) . (D4)

We remark that other notations are available in the lit-
erature and the reader should be cautious21. At this
juncture, one uses Eq.(D2) to calculate

∫ 2π

0

dϕ′ 1
√

cos2(ϕ′)
α2 + α2 sin2(ϕ′)

=
4

α
K

(

m = 1− 1

α4

)

,

(D5)
where we remind the reader that the α > 0 and real.
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