Electrostatic interaction energy between two coaxial parallel uniformly charged disks
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We calculate exactly the electrostatic interaction energy between two coaxial parallel uniformly
charged infinitely thin disks. For the sake of generality, it is assumed that the disks have different
radii and contain different amounts of total electric charge. The results derived when expressed in
one-dimensional integral form are very suitable for numerical calculations. An explicit analytical
formula is provided for the electrostatic interaction energy between two disks with same radius in
terms of a family of special functions known as complete elliptic integrals. The results obtained are
applicable to various electrostatic models including the case of a circular parallel plate capacitor.

PACS numbers: 73.43.Cd, 73.20.Dx, 73.21.La.

I. INTRODUCTION

Coulomb’s law in physics states that the electrostatic
force between two charged particles is proportional to
the product of the amount of charge of the particles di-
vided by the square of the separation distance between
them. The interaction energy between any two charged
particles is derived from Coulomb’s law using well known
procedures. The interaction energy between particles is
negative if the particles are oppositely charged. How-
ever, the interaction energy between them is positive, if
the particles are similarly charged. The magnitude of the
interaction energy between any two charged particles di-
verges when their separation distance tends to zero. The
model of interacting charged particles works well as long
as the real interacting charged bodies have a size that is
much smaller than the distance separating them and, as
a result, they can be treated approximately as particles
(point charges). However, for any other situation, the
interaction energy between any two charged bodies has
to be calculated by generalizing the fundamental laws of
electrostatics.

The calculation of the electrostatic interaction energy
between any two charged bodies is very important in
the field of electrostatics. This problem is also crucial
to understand many related biological and/or soft con-
densed matter systems that contain charged structures as
their main constituents. For example, electrostatic inter-
actions dictate the physical properties of charged cylin-
drical structures in electrolyte solutions'. Such systems
can be commonly described as charged cylindrical sur-
faces embedded in an electrolyte solution of positive and
negative ions?. Depending on their charge, some ions
in the electrolyte solution are attracted by the charged
surfaces and some are repelled. This process routinely
leads to the creation of a capacitor-like electric double
layer®?* around the charged surface. This effect is crucial
to understand the behavior of a wide range of systems
containing charged bodies in electrolyte solutions®.

Exact analytic results are generally not possible if the
shape of the bodies and the charge distribution density
in them is arbitrary. Analytic results might be possible

only in the case of regular bodies that possess some sym-
metry and when the charge distribution is either known
or assumed to be uniform®®. The cases where the equi-
librium charge distribution is known are very few. Find-
ing the equlibrium charge distribution even in a regular
body such as a one-dimensional (1D) straight wire with
finite length is not simple® 2. Therefore, one is rou-
tinely forced to adopt approximations. One of the most
common approximations made in electrostatics is that
of assuming a uniform charge distribution over a surface
in the case of two-dimensional (2D) structures or over a
volume for the case of three-dimensional (3D) charge dis-
tributions. It has been found for the case of an infinitely
thin 2D disk that the assumption of a uniform charge
distribution over the surface leads to a final result for
the Coulomb self-energy that is quite close to the exact
value obtained by using the known exact expression for
the equilibrium charge distribution!3.

While finding the equilibrium charge distribution for
a system of two charged disks remains an unsolved an-
alytical problem!* 7 we believe that the assumption of
uniform charge distribution is a good one and we adopt
it in this work. Therefore, the problem that we face is
the calculation of the electrostatic interaction energy be-
tween two coaxial parallel uniformly charged infinitely
thin disks at some arbitrary separation distance between
their centers. This problem is relevant to many science
and engineering disciplines given that disks, cylinders
and cylindrical shells are some of the most common ob-
jects found in various electronic devices. For example,
two oppositely charged disk plates would be the key in-
gredients of a circular parallel plate capacitor that rep-
resents the counterpart to the more common square par-
allel plate capacitor'®. Similarly, two oppositely charged
concentric cylindrical shells™® are part of cylindrical ca-
pacitors, and so on.

One way to calculate the electrostatic interaction en-
ergy between two charged bodies is to first calculate the
electrostatic potential created by one of them?? 23 at
some arbitrary point in space and then consider the effect
of this potential on the other body. The mathematical
treatment of this problem is also closely related to that
of the calculation of the Coulomb self-energy of a given
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FIG. 1: Schematic view of a system of two coaxial parallel
uniformly charged disks. The two disks have respective radii,
R and R’. The separation distance between the centers of
the disks is denoted as d = |z| > 0. The two disks contain
respective charges, Q and Q' that are uniformly spread.

body?43!. In this work, we show that an exact analytic
expression is possible for the electrostatic interaction en-
ergy of a system of two coaxial parallel uniformly charged
infinitely thin disks at an arbitrary separation distance
between their centers.

II. MODEL AND THEORY

The system that we study consists of two coaxial paral-
lel uniformly charged infinitely thin disks with respective
radii, R and R’. Each of the disks contains, respectively,
a total arbitrary charge, Q and @’ uniformly distributed
over the surface. The respective uniform surface charge
densities of the two disks are:
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The system of coordinates is suitably chosen so that the
two disks lie parallel to each other and perpendicular
to the z-direction. The first disk denoted as disk 1 has
charge @ and lies in the z = 0 plane. The other disk de-
noted as disk 2 contains a charge @@’ and lies at some ar-
bitrary z plane. The origin of the system of coordinates is
at the center of disk 1. The separation distance between
the two coaxial parallel disks is denoted as d = |z| > 0.

The system is shown in Fig. 1.
We adopt the followmg notatlon for the 3D position
vector, 7 = g+ k2 where p= iv+ ] y represents a 2D

vector. The vectors z,], k are unit vectors for the T,Y, 2

directions of a Cartesian system of coordinates. For the
given choice of the coordinative system, the elementary
charges in the two coaxial disks are confined to the cor-
responding domains:

Q:{0<|pfI<R; 2=0} ; Q:{0<|pI<R"; 2} .
(2)

It is assumed that any two arbitrary elementary charges,
dQ@ and dQ’ interact with each other via a standard
Coulomb interaction potential, k. dQ dQ'/|F — 7’| where
ke is Coulomb’s electric constant and |7 — 7’| is the sep-
aration distance between the pair of elementary charges.
The electrostatic potential created by a uniformly
charged disk with radius, R containing a total charge,
Q@ lying in the z = 0 plane (with its center coinciding
with the origin of the system of coordinates) has been
calculated in Ref.[ 32] and is given by the following ex-

pression:
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where J,,(x) are Bessel functions of the first kind of in-

tegral m-th order and k is a dummy variable (not to be

confused with the unit vector k of z-axis). The problem

has cylindrical symmetry, thus, the value of the electro-

static potential depends only on p and z (not the angle).

The corresponding expression for the electric field cre-

ated by the disk can be obtained from Eq.(3) via the
well-known formula:

E(p, z)

where V is the 3D gradient operator. Note that the elec-
tric field reflects the cylindrical symmetry of the poten-
tial. It is a straightforward exercise to calculate the vec-
tor components of the electric field in a cylindrical system
of coordinates by using the expression of the electrostatic
potential in Eq.(3). For instance, the z component of the
electric field, E,(p, z) at an arbitrary location above the
plane of the uniformly charged disk (z > 0) can be writ-
ten as:

= —VV(p,2), (4)

2k Q z2>0.

(5)
In Fig. 2 we plot E,(p, z) above the disk (z > 0) as a
function of z/R for two selected values of the dimension-
less parameter, p/R. The electric field is given in units
of k. Q/R?.

The total electrostatic potential created by the system
of the two uniformly charged disks can be calculated via
the superposition principle. In Fig. 3 we plot the result-
ing total electrostatic potential along the z direction for
two cases: (1) @' = @Q; R’ = R (filled circles) and (ii)
Q' = —Q; R’ = R (filled squares). It is assumed that
disk 1 (with charge @ and radius R) is located at z =0
while disk 2 is located at z = R. Distances along the z di-
rection are given as a function of z/R. The electrostatic
potential is given in units of k. Q/R.
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FIG. 2: Plot of the z component of the electric field created
by a uniformly charged disk with radius, R and total charge,
Q@ lying on the z = 0 plane with its center at the origin. The
quantity E.(p,z) is calculated at points above the plane of
the disk (z > 0) as a function of z/R for values of p/R = 0
(filled circles) and p/R = 1 (filled diamonds). The electric
field is expressed in units of ke Q/R?.

The integral expression in Eq.(3) is prefered since it
allows one to obtain easily the result for the electrostatic
potential of a point charge in the R — 0 limit starting
from the well known limit formula:
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With help from the expression in Eq.(3), the electrostatic
interaction energy between the two coaxial parallel uni-
formly charged disks can be written as:

URR’(Z) = dQ/V(p’Z) ’ (7)

Q
where dQ’ = ¢’ d?p and Q' is the domain of integration
over the surface of disk 2. The next step is to substi-
tute the expression of V(p,z) from Eq.(3) into Eq.(7).
The integration over variable p involves a standard table
integral, for example see pg. 278 of Ref.[ 33]:

/dm Jo(z) =z J1(z) . (8)

After some algebra and a rearrangement of terms we may
write the final result as:
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FIG. 3: Plot of the total electrostatic potential along the z
direction created by the system of the two uniformly charged
disks. Two cases are considered: (i) Q' = Q; R’ = R (filled
circles) and (ii) Q' = —Q; R’ = R (filled squares). Disk 1
with charge @) and radius R has its center located at z = 0
while disk 2 with charge Q' and radius R’ has its center
located at z = R. The potential is expressed in units of

ke Q/R.

Note that the expression in Eq.(9) is invariant if one ex-
changes R with R’ (and @ with Q’). The expression in
Eq.(9) allows one to recover the result for the interaction
energy of two point charges in a straightforward way by
using the formula for the limit in Eq.(6):

Ur—or'—o0(2) = kegQ . (10)

Let’s now consider the case when the two disks have the
same radius:

R'=R. (11)

This is the common situation that arises in the case of a
circular parallel plate capacitor. Substituting for R’ = R
in Eq.(9) leads to the following result:
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From now on, let’s assume that R # 0. An immediate
result obtained from Eq.(12) is the value of the electro-
static interaction energy at z = 0 which is:

16 k.QQ’

Urnr(z=0) =3 —%

(13)



The result in Eq.(13) can be easily verified by recalling

that:
~ [nw] 4
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The expression for the electrostatic interaction energy at
an arbitrary z can be suitably written as:

2
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where v = k R is a convenient dummy variable. Let’s
introduce a new dimensionless variable:

7 . R#0, (16)

that is real and non-negative. With a slight change of
notation, one writes the interaction energy as Ugrg(a)
and expresses it as:

Unnla) = 229 (o) a7)
where
fla) = /OOO du [%“)re—au 7 (18)

is an auxiliary function. The integral representing the
auxiliary function in Eq.(18) can be calculated analyti-
cally. The final expression for the auxiliary function f(a)
may be written as:

(4—a®)E (—;)+(4+a2)K (-é)] ,

(19)
where K (m) and E(m) are, respectively, complete elliptic
integrals of the first and second kind:
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K(m) = /Tr/2 BT (20)
0 /1 —m sin®(0) ’
and
E(m) = /077/2 df /1 —m sin?(0) . (21)

The notation adopted above follows that of Ref.[ 34] (see
pgs. 587-607). For real values of parameter, m (where
it is assumed that m < 1), the values of the complete
elliptic integrals K(m) and E(m) are real. One should
be careful when using formulas involving complete elliptic
integrals since different notations are widely used in the

literature?®.
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FIG. 4: Electrostatic interaction energy of a pair of coaxial
parallel uniformly charged disks as a function of |z|/R where
|z] is the separation distance between the centers of the disks
and R is the radius of the disks. The energy is expressed in
units of ke @ Q'/R (filled circles). The result is compared to
a Coulomb interaction potential for two point charges, @) and
Q' (solid line).

IIT. DISCUSSION AND CONCLUSIONS

We calculated exactly the electrostatic interaction en-
ergy between two coaxial parallel uniformly charged disks
with arbitrary radii containing an arbitrary amount of
charge. The final result for the physically interesting
case of two coaxial disks with same radius (but each con-
taining an arbitrary amount of charge) is given in gen-
eral terms as an analytic function of the arbitrary radius
and separation distance between the centers of the two
disks. The final expression is written in convenient form
in terms of complete elliptic integral functions of the first
and second kind. In Fig. 4 we plot the electrostatic inter-
action energy between a pair of coaxial parallel uniformly
charged disks, Ug gr(z) in energy units of k. Q Q’/R as a
function of |z|/R. The Coulomb interaction potential for

two point charges, Q and )’ at a separation distance, z is

also plotted in same energy units, Uc(z) = |Z|1/R ke %Q/

One notes that the magnitude of the Coulomb potential,
Uc(z) is always larger than the magnitude of Ug r(z) for
any given finite separation distance. Hence, it is clear
that the interaction potential between the coaxial paral-
lel uniformly charged disks is softer than the correspond-
ing Coulomb potential for a pair of point charges. This
means that, in this case, the quantity Uc(z) — Ur r(2)
does not show any sort of Lennard-Jones (LJ) potential




features in striking difference with the case of a pair of
identical coplanar uniformly charged disks3°.

The theoretical model considered in this work can be
generalized to study the interaction energy between any
arbitrary numbers of coaxial parallel uniformly charged
disks. For example, let’s consider an arbitrary system of
N > 2 identical uniformly charged disks (all with same
radius, R) which are coaxial and parallel to each other.
The disks are localized at positions, z1,...,zy and each
contains, respectively, charges, @1,...,Qy. The total
electrostatic energy of such a system can be calculated
as:

N
U(zi,...,28) = ZURR(Z]‘ - 2i), (22)

7>

where |z; — 2;| represents the separation distance between
the center of disk j at z; with respect to disk 7 at z;
and Ug r(z) is given from Eq.(15) or equivalently from
Eq.(17), Eq.(18) and Eq.(19). The expression in Eq.(22)
reduces to the result in Eq.(15) for the N = 2 case if one
assumes that z; =0, Q1 = Q, 220 = z and Q2 = Q.

The general expression obtained through the present
approach reproduces the known results for special cases.
For example, the expression in Eq.(13) is directly related
to the calculation of the Coulomb self-energy of a uni-
formly charged disk. More precisely, one can obtain the
Coulomb self-energy of a uniformly charged disk from
Eq.(13) by assuming that @ = @’ in the expression in
Eq.(13) and then dividing the resulting quantity by 2.
The known expression for the Coulomb self-energy of a
uniformly charged disk with radius R containing a total
charge @ is:

8 ke Q?
Udisk = — . 23
dioh = 5= (23)

Knowledge of the Coulomb self-energy of a uniformly

charged disk is crucial to analyze various models in con-
densed matter physics. For example, such a quantity
represents the background-background energy term for
studies of the quantum Hall effect in systems of electrons
in a disk geometry3” 42,

The disk configuration setup studied in this work is
often encountered in many scientific disciplines ranging
from nanoscience*3 to biological systems**. A possible
application of this model would be in studies of the elec-
trostatic interaction between coaxial parallel uniformly
charged disk structures embedded into an electrolyte so-
lution of mobile ions. For such a case, one may use
the same numerical approach as that for the counter-
part study of parallel charged cylinders in an electrolyte
solution®. It is expected that the interplay of many fac-
tors key to describe the interaction of charged bodies in
an electrolyte solution may lead to interesting scenarios
similar to the ones seen for two parallel charged cylin-
ders which were recently studied via a modified nonlinear
Poisson-Boltzmann equation?!.

It is also worthwhile mentioning that the final results
obtained in this work can be useful to mathematical stud-
ies. Exact expressions when available can be used as a
reference to gauge the accuracy of various computational
tools used to solve numerically electrostatic problems.
The current result for the electrostatic interaction en-
ergy of two coaxial parallel uniformly charged disks may
be directly applied to coaxial systems consisting of cir-
cular plates of this nature that arise in various fields, for
instiance to the case of a circular parallel plate capaci-
tor®?.
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