Energy of a finite three-dimensional electron gas of spinless electrons
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We study a finite three-dimensional electron gas system consisting of an arbitrary number of elec-
trons embedded in a finite cubic domain. The electrons are treated as spinless particles implying
that the system under consideration represents a fully spin-polarized Fermi quantum phase of elec-
trons. The cubic region is uniformly filled with a positive background that ensures overall charge
neutrality. We apply a Hartree-Fock approach that starts with a Slater determinant wave function
of normalized plane wave orbitals. The treatment enables us to obtain the energy per particle of
the finite system at any given number of electrons. The potential (exchange) energy is conveniently
obtained by simplifying the calculation of the ensuing two-particle integrals over the finite cubic do-
main in terms of expressions that involve compact analytic auxiliary functions. Results are provided
for both the kinetic and potential energy per particle for various numbers of electrons. It is shown
that the kinetic and the potential energy per particle converge towards their bulk thermodynamic
limit values in a non-monotonic way as a function of the number of particles. The results derived
may apply to finite systems of delocalized electrons in alkali metal nanoclusters in which the positive
ionic core is approximated as a cubic jellium region.

PACS numbers: 73.43.Cd, 73.20.Dx, 73.21.La.
Keywords: Finite three-dimensional electron gas; Finite two-dimensional electron gas; Cubic jellium back-

ground.
I. INTRODUCTION

An infinite (bulk) three-dimensional electron gas
(3DEG) model represents a system of N electrons con-
tained in a space region with volume, V' under the under-
standing that electron number density, po = N/V is finite
in the thermodynamic limit of N — oo and V' — oco. One
commonly assumes that the electrons are immersed in a
background of uniformly distributed neutralizing posi-
tive charge (the jellium approximation). This way the
whole system is guaranteed to be charge neutral. Work
over many years has shed light on various properties of
infinite 3DEG systems in the thermodynamic limit for
a wide range of densities [1-8]. While studies of bulk
properties of a 3DEG system are still of great relevance,
recent progress in nanoscience and nanotechnology [9-11]
has stimulated interest at the exactly opposite direction
of small finite systems with few electrons in semiconduc-
tor quantum dots [12-18] or in metal nanoclusters [19].

In particular, studies of metal nanoclusters composed
of less than a few hundred atoms have attracted a con-
siderable interest over the last four decades [19]. The
key subject of metal clusters research is to observe and
quantify the influence of various finite-size effects on the
physical properties of the system. However, past studies
of metal clusters have shown that ab-initio calculations
of such systems are very difficult [20-22]. Fortunately, it
was found that various approximate methods work well
for such systems and, thus, one can considerably simplify
the calculations. A successful example of such methods
is the jellium model in which a metal cluster is seen as
made up of two constituent parts. One part is the ionic
background (the core) whose positive charge is uniformly

distributed over a given volume and the second part con-
sists of delocalized valence electrons the feel the effect of
the background. This model was used to explain many
properties of alkali metal clusters [23, 24]. For such a
case, it was assumed that the positive charge of the ionic
core is uniformly spread over a given region of space.
For instance, the observation of so-called electronic magic
numbers [25] in certain metal nanoclusters was easily ex-
plained with a spherical jellium model of this nature.
This means that the jellium model and its numerous re-
finements can be succesfully applied in the field of metal
cluster physics [26]. Together with the simple spherical
shape, it is also of great interest to study the electron’s
properties in jellium systems where the neutralizing back-
ground has many other different shapes [27]. In particu-
lar, background polyhedral shapes like octahedron, dec-
ahedron, etc. have been frequently used in numerical
electronic structure calculations. For these choices, it is
obvious that only the cubic shape is simple enough to
allow for an analytic treatment of the problem (and even
in this case up to a certain point). The layout speci-
fied above represents the motivation of this work where
the focus of our attention is on the behavior and the
properties of a finite 3DEG system consisting of an ar-
bitrary number of N electrons in a finite cubic jellium
background.

For this study, we adopt the Hartree-Fock (HF) ap-
proximation method which has proven its versatility in
the context of an electron gas system in a uniform jellium
background. In such a case, the underlying idea of the ap-
proach is to, basically, describe the system of electrons by
a Slater determinant wave function of normalized plane
wave orbitals [28]. Within this framework, the energy of
a 3DEG system consists of two competing terms, kinetic



energy and potential (exchange) energy. Other energy
terms arise from more elaborate calculations that go be-
yond the HF method. These additional energy terms
represent the correlation energy and are more difficult to
obtain [29-33]. Studies of alkali metal clusters of elec-
trons in a positive ionic core have proven the validity
of the HF approximation or similar variants [34] as a
good first approximation even for the case of small finite
systems of electrons in a jellium background. For exam-
ple, even ultra-small electron-gas jellium clusters with 2
to 22 electrons has been successfully treated in the HF
approximation by using a plane-wave basis as shown in
the work of Ref.[26] where a deformable jellium back-
ground was employed. The HF method has its limita-
tions since the mean field approximation is implied and
the method neglects the Coulomb interaction between
the electrons. However, the quantum electron exchange
effect is accounted for exactly in the HF method.

The neglect of the Coulomb interaction between elec-
trons is a well-known weakness of the method but any at-
tempt to add interaction effects to a many-electron wave
function generally leads to a problem that can be handled
only via numerical treatments using sophisticated sim-
ulation methods, for example, variational Monte Carlo
(MC) simulations with an added Jastrow factor in the
wave function, density functional theory (DFT) calcula-
tions, etc. From this standpoint, the results presented
in this work can, in no way, be expected to be as accu-
rate as the results obtained via robust ab-initio methods
(DFT, etc.) which are the preferred choices in the wider
materials research community. The importance of this
work stands on the fact that there are so few many-body
problems that are exactly solvable that any model that
allows an analytical treatment (up to a certain point) is
worth investigating [35-38]. Analytic results, if available,
represent useful benchmarks to test the validity of other
more powerful tools and methods.

In a nutshell, despite its shortcomings, the HF method
works reasonably well for various systems, it represents
a good starting basis due to its simplicity and allows an
analytical treatment of the problem up to certain de-
gree. For all these reasons we employ it to calculate the
energy of a finite 3DEG model in a cubic jellium back-
ground. We employ convenient mathematical transfor-
mations that enable us to obtain compact mathematical
expressions for the kinetic and the potential (exchange)
energy of such a finite 3DEG system. The total energy
for systems with any given number of electrons is ob-
tained by combining the result of the potential energy
with that of the kinetic energy (that is easier to obtain).
Throughout this work, for the sake of simplicity, we as-
sume that the system of electrons is fully spin-polarized
(spinless).

The article is organized as follows. In Section II we
explain the model and the formalism adopted. In Sec-
tion III we report the key results of the work and discuss
the findings. In Section IV we briefly summarize the work
and provide some concluding remarks.

II. MODEL AND ENERGY OF A FINITE 3DEG
OF SPINLESS ELECTRONS

We consider a finite 3SDEG model consisting of IV spin-
less electrons confined in a positive uniformly charged
three-dimensional cubic background represented by the
region:
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Q:{—2<x,y,z<+2} . (1)

For this choice of the geometry, the uniform density of
the system is:

N
pPo = 3 (2)
The Hamiltonian reads:
H=T+U, (3)

where T and U are, respectively, the kinetic and potential
energy operators. The kinetic energy operator is written
as

2

A~ N .
T=> 5, (4)
i=1

where ;5} is the quantum linear momentum operator of
the i-th electron, m is the electron’s mass and N is the
finite number of electrons in the system. The potential
energy operator is written as a sum of three terms

=0

0 = ifee + Ueb + 0bb ) (5)

where U,. represents the electron-electron (ee) inter-
action energy operator, Ueb represents the elecAtron—
background (eb) interaction energy operator and Uy, is
the background-background (bb) Coulomb self-energy of
the cubic jellium region that is a constant. In a more

explicit form:
1N
O =5 23 0= ). ()
i=1 j#i

A standard Coulomb interaction potential between point
charges is assumed:

e S ke e?
(|7 = 7)) = —— (7)
Tij
where —e (e > 0) is electron’s charge, r;; = |r; — 75| is

the separation distance between a pair of electrons and
ke is Coulomb’s electric constant. It is easy to verify
that the other two potential energy operator terms may
be written, respectively, as:

N
Oa=-mY [ dr'ali-r,  ®
i=179



and
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Within the framework of a HF approach, one can write
a suitable normalized N-particle Fermi wave function as
a Slater determinant of the form:

W) = (10)

Det{wal(ﬁ),n-ﬂ/faN(FN)} )

1
VNI
constructed out of ortho-normalized single-particle
space-spin orbitals where {a;} represent the collective set
of quantum numbers that define the i-th state of a par-
ticle. Periodic boundary conditions (PBC) are imposed
in all directions. As a result, one has:
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where k = (27/L)# and @i = (ng, ny,n.) has allowed
values that correspond to ng, . = 0,£1,%£2,.... The
formalism adopted and the calculation of kinetic and
potential energy for a spinless finite 3DEG system fol-
lows the same approach as that applied to its finite two-
dimensional electron gas (2DEG) counterpart [39]. The
expectation value of operator U.. with respect to the
given Slater determinant wave function, namely, Ue. =
(U|Uee | ) /{T|T), can be written as:

N N
ZZ{ ijlolig) — @]|’U|]Z>} . (12)
i=1 7

In compact notation:

Pp(rF) = (11)

N\H

Galolid) = [ dorn [ i) ) o) )
(13)
where asterisk means complex conjugation. The first

term in Eq.(12) is known as the (direct) Coulomb en-
ergy while the second one is the exchange counterpart.
One has (ii|0]ii) — (ii|D]ié) = 0 when j =4 in Eq.(12).
Thus, by dropping the j # ¢ restriction from Eq.(12), one
obtains:

1N N
Uee = 5 23 |(@dlolig) = (ilelii)] -

=1 j=1

(14)

With some care, one can verify the correctness of the
following result:

/d3r1/d3r2p 71) 9(r12) p(72)
—§/d3r1/ Prs |p(F1, ) 6(r1s) , (15)
Q Q

where p(7;) (i = 1, 2) is known as the one-particle density
function and p(7,7%) is the so-called one-particle density

matrix. For the case of an ortho-normalized Slater deter-
minant wave function of plane waves as in Eq.(10), one
explicitly has:

N
plr) = 3 vz, (1) (16)
and
P, 7) = Y g (7)" p (%) (17)

Note that p(7, = 7,72 = 7) = p(¥). The result in Eq.(15)
is valid only for the present calculation of the expectation
value of the ee interaction energy operator (a two-body
operator) with respect to a ortho-normalized Slater de-
terminant wave function of plane waves.

However, quantities such as the one-particle density
function, etc, can be quite generally defined for any given
arbitrary wave function (not necessarily a Slater determi-
nant wave function). For example, the general definition
for the one-particle density function is:

fd3T2'~'fd3’I“N|\I/|2
(W]w) ’

p() =N (18)
where |U) = U(F,...,7y) can be any given arbitrary
wave function that describes a system of N particles.
The corresponding expression for the one-particle density
matrix is written as:

- ’ N fd3T2~~~fd3T'N \11(771,...,77]\])* \I/(Fll,...

arN)

p(rl?Fl): <\I/|\I’>

(19)
Such a formalism is explained in detail in Ref.[40] for
the case of a one-dimensional electron gas (IDEG) and
many definitions found there can readily be generalized

r2()w1th proper modification of notation) to both 2DEG and

DEG systems. .

Similarly, the expectation value of Uy, with respect to
the given Slater determinant wave function, namely Uy,
can be written as:

Uepb = —po / d*rq p(ﬂ)/ d*ro d(r12) .
Q Q

By combining all the three potential energy terms to-
gether, one can write the total potential energy (or, more
precisely, the quantum expectation value of its corre-
sponding operator with respect to the given Slater deter-
minant wave function) for a fully spin-polarized (spinless)
finite 3DEG system as:

= %/Qd?’ﬁ/ﬂd:s?“z [P(Fl) - 90} 0(r12) [p(ﬁ) B po}
7%/Qd3’"1 /Q d®ry |p(Fy, ) (r12) -

Note that the values of the one-particle density function
at any location 7 or 7 are always pg, namely:

(20)

(21)

p(r1) = p(72) = po - (22)



As a result, the expression in Eq.(21) reduces to:

1 L a2 A
U= —5/ d*ry / dPro|p(, )P o(r12) - (23)
Q Q

One can explicitly write the total potential energy of
the system with help from Eq.(17) as:

2 L6 ZZ/dsrl/ d3’1"2€

i=1 j=1
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(24)
where € is the cubic domain of integration. The calcu-
lation of the quantity in Eq.(24) involves a two-electron
multi-dimensional integral of the form:

. ot (71 —72)
I(k) = / d>r / dPry ———— | (25)
Q 9} |r1 — 72|

where, in this case, k denotes an arbitrary vector. It can
be shown that the quantity in Eq.(25) can be written as
a simple one-dimensional integral. To do so, one first

uses the following transformation [41] to write ﬁ =
% fooo e=u’ (=72)* By substituting the expression
above for 1/|7; — 73| into Eq.(25) one obtains:

E / du/d3r1/d3r2 e’k(rl 7o) —u? (71 —72)? )
f

(26)
The next step is to write the quantity in Eq.(26) in such
a way as to decouple the integrals over variables x; from
those over y; and z;. For simplicity, one introduces di-
mensionless variables: X; = z;/L,Y; =vy;/L, Z; = z;/L,
t =ul and ¢ = EL where i = 1 and 2. After some
algebra, the final result becomes:

2L% [
I(q) = 7

where F'(t,a) reprebentb the following auxiliary function:
+1/2 +1 /2
F(t,a) / dx /
1/2 1/2
This is the same function encountered in an earlier study
of a finite 2DEG system where an exact analytic expres-

sion for it was also provided [39]. When a = 0 the func-
tion in Eq.(28) becomes:

dt F(t,q.) F(t,q,) F(t,q.), (27)

eio @y =" (@=u)*  (9g)

2
erf(t) et —1
F(t,0) = Vr—r=+ —5—,
where erf(t) is an error function.
The total kinetic energy for the system of IV electrons
is written as:

(29)

T— hi (2”) Z|m|2 (30)

where the set of quantum numbers 7l = (Mg, Ny, N) TEpP-
resents a given quantum state. Table. I displays the
structure of the one-electron kinetic energies and the
corresponding quantum states for a fully spin-polarized
(spinless) 3DEG system with up to N = 365 electrons.

IIT. RESULTS

We now focus our attention on the calculation of the
energy of a given finite 3DEG system where the number
of spinless electrons has values of N as the ones listed
in Table. I. These values of N yield completely filled
energy shells. By using the result in Eq.(27), we write
the expression for the total potential energy, namely, the
quantitity in Eq.(24) as:

k | N XN
U= c = Rix_’z7i_’7iz_'za
- ﬁ;; (q Qi Qiy — Uiy 4 qg)
(31)
where
R(a,b,c):/ dt F(t,a) F(t,b) F(t,c) , (32)
0

and ¢ = k; L = 27 it;, (§; = k; L = 2mii;). As a result,
G — ¢; = 27 (f; — fi;) where one should recall that:

= (Ng, Ny, Nz) 3 MNgy.=0£1,+2 ... (33)
For a fixed density, the total potential energy of the sys-
tem scales with the number N of electrons. This means
that the appropriate quantity to calculate is the potential
energy per particle, U/N. For a fixed density, any change
of the number of electrons in the system is reciprocated
by a variation of the length of the cubic box which should

scale with N as:
1/3
L= (i\[) . (34)
0

One uses the fact that 1/L = (,oo/N)l/3 to write the
potential energy per particle as:

U - k 6 p()
N~ N4/3

u(N) =
i=1 j=1
(35)
The quantity u(N) in Eq.(35) can be compared to the
corresponding value of the potential energy per particle
for an infinite system which is expressed solely in terms
of the density:

fim &= —kee? 3 (672 po)Y3 . (36)

N =
u(N = o0) = lim = i

One must recall that the Fermi wave vector, kr for a
fully spin-polarized (spinless) 3DEG system is:

k3 =6m%pg . (37)

After some straightforward transformations one obtains:

ZZR(sz Qjzy Qiy—Gjy, Qiz— (I]z)'



TABLE I: Roman-numbered shells in increasing order of the kinetic energy, En, n,n. =

2
3 (2%)2 (n2 +n2 +n?2), degeneracy

of each energy shell (N;), total number of electrons (N) for a spinless 3DEG system and corresponding quantum states,

= (N, Ny, Nz).

Shell niJrniJrnz Ns| N = (N, Ny, Nz)

I 0 1)1 (0,0,0)

11 1 6| 7 (£1,0,0), (0, £1,0), (0,0, £1)

111 2 12] 19 (£1,+1,0), (£1,0,£1), (0, £1, £1)

v 3 8 |27 (+1,+1,+1)

% 4 6|33 (£2,0,0), (0, £2,0), (0,0, £2)

VI 5 24| 57 (£2,£1,0), (£2,0, £1), (0, £2, £1), (£1, £2,0), (£1,0, £2), (0, £1, £2)
VII 6 24| 81 (£2,£1, £1), (£1, £2, £1), (£1, £1, £2)

VIII 8 12] 93 (£2,£2,0), (£2,0,£2), (0, £2, £2)

X 9 30123 (£2,£2, £1), (£2, £1, £2), (£1, £2, £2), (£3,0,0), (0, £3,0), (0,0, £3)
X 10 24147 (£3,£1,0), (£3,0,£1), (0, £3, £1), (£1, £3,0), (£1,0, £3), (0, £1, £3)
XI 11 24 (171 (£3,£1, £1), (£1, £3, £1), (£1, £1, £3)

XII 12 8 179 (£2, £2, £2)

XIII 13 24]203 (£3,£2,0), (£3,0,£2), (0, £3, £2), (£2, £3,0), (£2,0, £3), (0, £2, £3)
XIV 14 48251 [ (£3, £2, £1), (£3, £1, £2), (£1, £3, £2), (£2, £3, £1), (£2, £1, £3), (£1, £2, £3)
XV 16 6 257 (£4,0,0), (0, £4,0), (0,0, £4)

XVI 17 48305 (£4,£1,0), (£4,0,£1), (0, £4, £1), (£1, £4,0), (£1,0, £4), (0, £1, +4),

(£3,£2, £2), (£2, £3, £2), (£2, £2, £3)
XVII 18 36(341] (4, £1,£1), (£1,£4, £1), (£1, £1, £4), (£3,£3,0), (£3, 0, £3), (0, £3, £3)
XVIII 19 24365 (£3,+3,£1), (£3, £1, £3), (£1, £3, £3)
u(N aym 1 1
u(N(—>)oo) - ((67#)1/3 N3 ;;R@” ~ o iy~ G s~ =) (38)

One can write the expression in Eq.(38) in a more con-

J

w(N)  aym 1 1
u(N —o00) 3 (672)1/3 N4/3

where
oo
R(070,0):/ dt F[t, 0] . (40)
0

The quantity, R(0,0,0) in Eq.(40) can be calculated ex-
actly if one choses to do so. The function F'(¢,0) is given
in Eq.(29). The integral in the right-hand-side of Eq.(40)
is calculated exactly in Ref.[42] and is closely related to
the expression for the Coulomb self-energy of a uniformly
charged three-dimensional cube. The ratio of the finite

(

venient form as:

N—-1 N

N R(0,0,00+2 > 3" R(qm—qjx,qiy—qjy,qiz—qu)] . (9

i=1 j=i+1

potential energy per particle relative to its bulk counter-
part, u(N)/u(N — oo) is shown in Fig. 1. The results
indicate that the value of the potential energy per parti-
cle, u(N) tends quite slowly toward its bulk value in the
thermodynamic limit, u(N — oo) as N increases. An
interesting observation is that the thermodynamic limit
value of the potential energy is not reached in a mono-
tonic way. The results obtained clearly suggest that u(N)
is a non-monotonic function of N. Furthermore, the cal-
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FIG. 1: Dependence of the potential energy per particle rela-
tive to its bulk thermodynamic value, u(N)/u(N — o0) as a
function of the number of electrons for a finite spinless 3DEG
system with N = 7,19,...,365 electrons.

culations show that:
u(N)

m<1, (41)

for all values of N considered in this work.

We also verified that the kinetic energy per particle
of a finite 3DEG manifests a similar non-monotonic de-
pendence as a function of N. In fact, we explicitly
calculated the value of the kinetic energy per particle,
t(N) = T/N and expressed it relative to its thermody-
namic limit counterpart to find out that such a ratio is a
non-monotonic (sort of oscillatory) function of the num-
ber of electrons. One can expressly write this quantity
as:

tN)
HN = o00) C(N), (42)
where
C(N) = %0 (672)"* Niw S (43)
{7}

The value of C(N) changes with N, sometimes it is larger
than 1 and sometimes it is smaller than 1. It is easy to
verify by starting from Eq.(43) and converting the sum to
an integral in the N — oo limit that limy_,o, C(N) = 1.
Note that the kinetic energy per particle for an infinite
3DEG system with N spinless electrons is written as:

T h?
t(N — o0) = lim 5

Jim = o (67000 (44)

The quantity in Eq.(44) is the familiar expression for the
kinetic energy per particle in the case of a free 3DEG,
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FIG. 2: Plot of the kinetic energy per particle relative to
its bulk thermodynamic value, ¢(IN)/t(N — oo) for a finite
spinless 3DEG system with N = 7,19, ...,365 electrons.

(3/5)h%k% /(2m) where k3 = 672 py. Fig. 2 shows the
dependence of t(N)/t(N — o0) as a function of the num-
ber of electrons. It is observed that, differently from the
case of the potential energy where u(N)/u(N — o0) < 1,
the kinetic energy values at a finite N do not follow this
trend. With other words, it is found that the kinetic en-
ergy per particle, ¢(NN) is a kind of oscillating function
of N around the bulk value of ¢{(N — oc0). The value of
t(N) can be larger or smaller than t(N — o0) depending
on which value of N is considered. The observation of a
non-monotonic variation of both potential and kinetic en-
ergy per particle of a spinless 3DEG as a function of N is
similar to that of its finite 2DEG counterpart [43]. How-
ever, while such non-monotonic patterns seem common
to both 2DEG and 3DEG systems, non-monotonic en-
ergy patterns of this nature are not general. For instance,
the energy of a finite system of electrons under quantum
Hall effect conditions (in a strong magnetic field) does
not show any such energy patterns [44-48].

The energy per particle of the system in the thermo-
dynamic limit can be written as ¢(N — oo) = (N —
00) + u(N — o0) and is given by:

3 h? k2, 3

2 2
—5 m 4ﬂ_kpke€ . (45)

The expression in Eq.(45) is equivalent to:

e(N — 00)

3 3 k. €?
(N — o0) = 5 (krag)® — ﬁ(kF ap) Sap (46)

where ap = h?/(m ke €?) is the Bohr radius and the unit
of energy used is the Rydberg (Ry):

K2 ke e?

2

1Ry = — .
Y 2may 2ap

(47)



In conventional studies of a uniform electron gas, the pa-
rameter (kr ap) is replaced by the dimensionless Wigner-
Seitz radius parameter, rs which, in the case of a 3DEG,
is defined from the following expression:

1
po= T - (45)

= (rs ap)’

The uniform number density can also be written as

J

2/3
1
e(N—)oo):§ 9 ?_i ar
5\ 2 re 2w\ 2

TABLE II: Energy per particle for a fully spin-polarized (spin-
less) 3DEG with N = 81 electrons as a function of the density
parameter, rs. The MC energy per particle computed with
the pseudopotential derived from the random-phase approx-
imation [49] (column two) is compared to the corresponding
approximate HF energies (column 3). All energies are given
in units of kee®/(2ap) (in Rydbergs).

re |e(N =81) [MC]|e(N = 81) [HF]
10.0  -0.10292 -0.07287
30.0/  -0.04503 -0.03191
50.0/  -0.02885 -0.02006

The energy per particle for a finite system, e(N) = ¢t(N)+
u(N) depends on which specific value of N is considered
since each of the terms ¢(N) and u(N) differs from its
respective thermodynamic counterpart, t(N — oo) and
u(N — 00).

Obviously, the approximation where the positive
charges of the system are treated as a uniformly charged
positive jellium background and the Coulomb interaction
between electrons is neglected is only a start-off approxi-
mation that enables one to derive analytical results. The
Coulomb interaction between electrons certainly plays an
important role and its effect is worth estimating. At this
juncture, we remind the reader that any form of energy
that goes beyond the kinetic energy and the exchange
potential energy of the system is called correlation en-
ergy. Its evaluation can be done only numerically via
powerful tools such as DFT or MC simulation methods.
Both DFT and MC methods are very accurate since they
can reliably include the correlation energy in the overall
result of the energy.

We choose a finite system with N = 81 electrons as
a case study in order to estimate the magnitude of the
correlation energy that is missing in the current approxi-
mate HF results. We wrote the HF energy per particle for

>1/3 1] kee® [3.5080 - 1.1545} ke €2

po = k3/(67?), an outcome that allows us to derive the
following useful result:

(kprsap)® = — . (49)

The expression above enables us to write the quantity in
Eq.(46) as:

rs| 2ap 2 T 2ap

(

a fully spin-polarized (spinless) 3DEG system of N = 81
electrons as:

3097\ a 3 [(9a\'® b ke
e(N=8l)= |- | — - = - 7
5 2 T 27 2 rs| 2ap

(51)
where, earlier, we had found that:
o= V=80 oorgrr . p= MV =80 _ ) gomgg.
t(N — o) u(N — 00)
(52)

The energy per particle, e(N = 81) in Eq.(51) is com-
pared to its more accurate MC counterpart that incor-
porates the missing correlation energy (the MC energy
is computed with a highly correlated Jastrow-Slater trial
wave function that incorporates very effectively the im-
pact of particle correlations). We selected for considera-
tion the same values of r as the ones reported in Ref.[49].
Results for such values of r, are shown in Table. II. The
first and second column of Table. II shows, respectively,
the values of r; and the corresponding MC energies found
in Ref.[49]. The corresponding HF energies are listed
in the third column of Table. II and are derived from
Eq.(51). Comparison of the corresponding energy values
is helpful to provide an estimate of the impact that the
missing correlation energy has in the system.

IV. CONCLUSIONS

We adopted a HF approach (using a Slater determinant
wave function of plane waves) and studied a finite spin-
less 3DEG system where a given number of electrons is
confined in a cubic domain uniformly filled with positive
jellium neutralizing background. We obtained compact
mathematical expressions for the kinetic and the poten-
tial energy per particle corresponding to systems with an
arbitrary number of electrons. The results derived can
be used to understand the properties of finite SDEG sys-
tems of electrons. As expected, it was noticed that the
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FIG. 3: Plot of the kinetic energy per particle relative to
its bulk thermodynamic value, t(N)/t(N — oo) for a finite
spinless 3DEG system with up to N = 1021 electrons.

potential and kinetic energy per particle converge slowly
towards their limiting bulk values as the size of the sys-
tem increases. It is important to note that such a con-
vergence process was non-monotonic in both cases. It is
shown that the potential energy per particle approaches
its bulk value slower than the kinetic energy per particle.
For example, the value of the potential energy per parti-
cle is about 92 % of the bulk value for N = 147 electrons
and grows to above 94 % of the bulk value as the size of
the system increases to N = 365 electrons. On the other
hand, the kinetic energy per particle for the same system
sizes is much closer to its corresponding bulk value.
Applying PBC to electron’s plane wave function in a
finite potential well is presumed to work fine when the
well’s length is much larger than the wavelength of the
electrons. The 3DEG model considered in this work con-
jectures that the length, L of the cubic box is directly
proportional to N'/3 for a fixed uniform density. This
leads to a situation where one might argue that the source
of the non-monotonic dependence of the kinetic and po-
tential energies per particle as a function of N might
be the small value of N oc 10? electrons considered in

the calculations shown in Fig. 1 and Fig. 2. We checked
the likelihood of this possibility by increasing the size
of the system under consideration to values of N oc 103
electrons. The non-monotonic variation of both kinetic
and potential energy per particle as a function of the
number N of electrons seems not to be limited to only
small values of N. Thus, we believe that this is not a
finite small size effect. For instance, we verified in the
case of the kinetic energy that the oscillating patterns
of t(N)/t(N — oo) persist up to the largest value of N
considered in this work (N = 1021 electrons) as shown
in Fig. 3.

The dependence of potential and kinetic energy per
particle, respectively, u(N)/u(N — oo) and ¢(N)/t(N —
o0) as a function of N for a finite 3DEG system shows
similarities to its finite 2DEG counterpart in the sense
that each of the two energy terms above converge non-
monotonically towards their corresponding bulk values.
However, there are also noticeable differences between
the two cases. For instance, the potential and kinetic en-
ergy per particle of a finite 2DEG reaches the bulk value
considerably faster than a finite 3DEG for approximately
the same number of particles. We have calculated that
u(N = 149) /u(N — o0) & 0.98 for a 2DEG while u(N =
147) Ju(N — o0) ~ 0.92 for the 3DEG case. Note that
since we have considered closed energy shells in our calcu-
lations the selected values of N for a closed energy shell of
a 2DEG are not the same as those of a 3DEG. Similarly,
we have seen that t(N = 149)/t(N — oo) = 1.00074 for
a 2DEG while ¢(N = 147)/t(N — oo) = 1.00274 in the
case of a 3SDEG. While both kinetic energies have practi-
cally reached the bulk values, note that the value for the
2DEG is approximately one order of magnitude closer to
the bulk estimate when compared to its 3DEG counter-
part. We believe that the reason for this behavior is the
reduced dimensionality that allows for a larger spatial
extension of the 2DEG system for a given finite number
of electrons.
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