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The equilibrium surface charge density of a charged disk is strikingly different from that of a
uniformly charged disk. This dissimilarity is reflected on the corresponding Coulomb electrostatic
potentials that they create. However, it is shown in this work that the Coulomb self-energy of
these two differently charged disks is not much influenced by the pronounced difference that exists
between their corresponding surface charge density distributions.
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Finding the equilibrium surface charge density of a
two-dimensional (2D) body (which results in the body’s
surface becoming an equipotential surface) is a very dif-
ficult problem that cannot be solved analytically except
for very few cases of regular bodies [1]. One such special
case is that of an isolated, infinitely thin, flat, cicular
conducting disk of radius, R containing a total charge,
Q, for simplicity, assumed to be positive. The equilib-
rium surface charge density in such a case is:

σ(ρ) =
Q

2π R

1
√

R2 − ρ2
; 0 ≤ ρ ≤ R , (1)

where ρ =
√

x2 + y2 ≥ 0 represents the 2D radial dis-
tance from the center of the disk, (x, y) are 2D position
coordinates and R is the radius of the disk. Note the
special values:

σ(ρ = 0) =
1

2

Q

πR2
, (2)

and

σ(ρ → R−) = +∞ . (3)

On the other hand, if one assumes that the disk is uni-
formly charged, the surface charge density reads:

σ0(ρ) =
Q

πR2
; 0 ≤ ρ ≤ R . (4)

As shown in Fig. 1, there is a striking difference between
these two charge distributions. On this regard, it suf-
fices to note that the equilibrium surface charge density
in Eq.(1) diverges for points on the edge of the disk as
pointed out in Eq.(3). Expressions for the electrostatic
potential created by a charged disk with either equilib-
rium surface charge density or uniform charge density
are readily available in the literature. For simplicity, we
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FIG. 1. Surface charge density of a charged disk for the
cases of equilibrium surface charge distribution (the disk is
an equipotential surface) and uniform surface charge distri-
bution. The radial distance from the center of the disk, ρ is
given in units of R. The surface charge density is given in
units of Q/(π R2) where Q is the total charge contained in
the disk and R is the radius of the disk.

write them in integral form for points on the plane of the
disk. The electrostatic potential V (ρ) corresponding to
the equilibrium surface charge density, σ(ρ) may be given
as:

V (ρ) = ke Q

∫

∞

0

dk J0(k ρ)
sin(k R)

(k R)
, (5)

while V0(ρ) corresponding to σ0(ρ) is:

V0(ρ) = 2 ke Q

∫

∞

0

dk J0(k ρ)
J1(k R)

(k R)
. (6)

In the expressions above, ke is Coulomb’s electric con-
stant, k is a dummy variable and Jn(x) are Bessel func-
tions of order n = 0 and 1. One can easily verify that
the expression in Eq.(5) leads to an equipotential on the
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FIG. 2. Electrostatic potential on the plane of the disk for
the cases of equilibrium surface charge density (solid line) and
uniform surface charge distribution (dotted line). The radial
distance from the center of the disk, ρ is given in units of
R. The electrostatic potential on the plane of the disk, V (ρ)
is given in units of ke Q/R where ke is Coulomb’s electric
constant, Q is the total charge contained in the disk and R is
the radius of the disk.

surface of the disk:

V (0 ≤ ρ ≤ R) =
π

2

ke Q

R
. (7)

The integral expressions for the electrostatic potential
provided in Eq.(5) and Eq.(6) are very convenient since
they allow one to obtain the Coulomb potential for a
point charge in the R → 0 limit by relying on standard
mathematical formulas such as: limx→0 sin(x)/x = 1,
limx→0 J1(x)/x = 1/2 and

∫

∞

0
dx J0(x) = 1. More ex-

plicit exact analytical expressions for the electrostatic
potential can be obtained after completing the integra-
tion [2, 3]. As seen from Fig. 2, the electrostatic potential
on the plane of the charged disk for the case of an equilib-
rium surface charge density profoundly differs from that
resulting from a uniform surface charge density.
Based on these observations, one is tempted to believe

that the Coulomb self-energy for a charged disk with an
equilibrium surface charge density distribution, U should

be quite different from that of a uniformly charged disk,
denoted as U0. These quantities can be readily calculated
from the following expression:

U =
1

2

∫

Disk

d2ρ σ(ρ)V (ρ) , (8)

where d2ρ represents an elementary disk area and the in-
tegration is carried out over the disk’s surface. Obviously,
U0 is calculated from Eq.(8) by using the corresponding
expressions for σ0(ρ) and V0(ρ). The details of the cal-
culations are left to the reader. The final results are:

U =
π

4

ke Q
2

R
≈ 0.78540

ke Q
2

R
, (9)

and

U0 =
8

3π

ke Q
2

R
≈ 0.84883

ke Q
2

R
. (10)

A comparison between values U and U0 indicates that,
somehow unexpectedly, the relative difference between
them, |(U−U0)/U | is small less than 10 % in percentage.
To conclude, in this work we show that the Coulomb

self-energy of a uniformly charged disk does not differ
much from its counterpart with an equilibrium surface
charge density distribution. This observation seems to
suggest that a similar conclusion may hold also for a
square/rectangular geometry where, as far as we know,
there are no known exact results for the equilibrium sur-
face charge density. As a result the assumption of a
uniform surface charge density (whether out of necessity
or because of its simplicity) for various 2D shapes [4–7]
can be seen as legitimate in all models where our main
concern is the Coulomb self-energy of the object. For
example, a uniformly charged disk or square plate is a
key ingredient to models that deal with 2D systems of
electrons since such a body represents the neutralizing
background in a jellium approximation setup [8, 9]. Sim-
ilarly, the assumption of a uniformly charged disk is used
by many researchers to represent the neutralizing back-
ground in studies of quantum Hall systems of electrons
in a disk geometry [10–17].
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