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Abstract

We consider a uniformly charged circular disk containing elementary charges that interact with an anisotropic
Coulomb interaction potential. Such an anisotropic Coulomb interaction potential has been recently considered within
the framework of a two-dimensional system of electrons in the quantum Hall regime. The anisotropy of the potential is
introduced by a phenomenological parameter that can be tuned continuously as to incorporate the standard isotropic
Coulomb interaction potential as a special case. The energy of the uniformly charged circular disk is calculated exactly
for the given anisotropic interaction potential as a function of the anisotropy parameter. The results obtained are re-
lated to electrostatic problems that involve uniformly charged flat elliptical plates and may be useful to understand finite
two-dimensional systems of electrons in the quantum Hall regime in which all point charges interact with the anisotropic

Coulomb interaction potential presently considered.
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1. Introduction

Generally speaking, the electron gas model is one of
the most important theoretical models in condensed mat-
ter physics and has been studied under a variety of differ-
ent conditions [1, 2, 3, 4]. In particular, a two-dimensional
electron gas (2DEG) in a perpendicular magnetic field is
fundamental to the understanding of very important novel
phenomena discovered during the last few decades such
as integer quantum Hall effect [5, 6] and fractional quan-
tum Hall effect [7, 8, 9, 10, 11]. Although various two-
dimensional (2D) geometries are possible, a very popular
choice in the field of quantum Hall studies is that of a disk
geometry. For such a selection, one assumes that the pos-
itive neutralizing charge is uniformly spread on a circular
disk region. A common assumption for many quantum
Hall studies is to consider point charges that interact with
a standard Coulomb interaction potential. Obviously, a
Coulomb interaction potential is isotropic in the sense that
the interaction energy of any pair of point charges depends
only on their relative separation distance.

However, recent quantum Hall studies have emphasized
the role played by various sources of anisotropy including
anisotropic behavior introduced in the system via a spe-
cific anisotropic Coulomb interaction potential [12, 13, 14].
Such an anisotropic interaction potential may be viewed
as some sort of distortion of the common Coulomb poten-
tial along the respective x and y coordinates. The degree
of anisotropy of this distorted anisotropic Coulomb poten-
tial is tuned via a phenomenological parameter that can
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be varied in a way as to include the isotropic Coulomb
interaction potential as a special case. While one may
limit the use of such an anisotropic Coulomb interaction
potential only to electron-electron interactions, the com-
pleteness of a given electron gas model requires that all
the point charges of the system (including the neutral-
izing background) should interact similarly via the same
interaction potential.

Based on these considerations, one of the most basic
questions posed for any theoretical work on systems con-
taining charge is that of the calculation of the energy of
a given charged jellium background [15, 16]. Differently
from earlier cases involving a uniformly charged jellium
background, the new twist in the current work is the as-
sumption that the elementary charges of the system in-
teract with an anisotropic Coulomb interaction potential.
In a nutshell, the problem posed is how to calculate the
total energy of a uniformly charged circular disk in which
the constituent elementary charges do not interact with a
conventional isotropic Coulomb interaction potential.

As expected, presence of an anisotropic interaction makes
the calculation of the energy a rather difficult task. How-
ever, it is shown in this work that an exact analytical result
is possible if one implements a specific solution strategy
that relies on a convenient mathematical transformation
of coordinates. The current work is a necessary prelim-
inary step to obtain the total energy of any given finite
system of electrons in the quantum Hall regime under the
assumption that all point charges of the system interact
with the same anisotropic Coulomb interaction potential.
From a more general point of view, an analytical result of
this nature may have its own interest from the perspective
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of electrostatics [17, 18, 19] or electronics [20, 21] since
it can be used in more systematic studies of charged sys-
tems that employ such a particular form of the anisotropic
interaction potential between point charges.

2. Model

We consider a uniformly charged circular disk with sur-
face area, m R? where R is the radius of the disk. A total
charge @ is uniformly distributed over such an area. The
result for the electrostatic self-energy of the body under
consideration does not depend on the sign of @, therefore,
it does not matter whether charge @ is positive or negative.
For simplicity, from now on, we consider () to be positive.
Typically, a positive uniformly charged background also
represents the neutralizing background in an electron gas
model, therefore, the choice @@ > 0 is reasonable from this
point of view, too. The uniform surface charge density
may be written as:
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We assume an anisotropic Coulomb interaction potential
between two point charges ¢; and g; that has the form:
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where k. is Coulomb’s electric constant, 7; = (x;,y;) is the
2D position vector for the charge ¢;, ; = (x;,y;) is the
2D position vector for the charge g; and v > 0 represents
a positive phenomenological anisotropy parameter whose
value v # 1 leads to an anisotropic interaction. When the
anisotropy parameter has the value v = 1, the interaction
potential in Eq.(2) becomes:
k. g0
v (= 1) = (3)
which represents the standard isotropic Coulomb interac-
tion potential for a pair of point charges.

We start the calculation of the electrostatic energy of
the body by considering two elementary charges, dq; =
od?’ry and dgs = od?ry at respective positions 7 and
7 interacting via the potential v, (77 — 7) and write the
electrostatic energy of the circular disk as:
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represents the electrostatic potential created by the whole
uniformly charged circular disk at some 2D position 7 on
the disk surface. At this juncture, it would be interesting
to carry out a simple analysis of the behavior of the elec-
trostatic potential at the surface of the uniformly charged
circular disk. For convenience, let’s try to understand the
dependence of the electrostatic potential as a function of
parameter v by chosing the center of the disk as a case
study. To this effect, let us calculate:
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By switching to 2D polar coordinates, ' = r' cos(6’) and
y’ =r’sin(f’) one obtains:

, (6)

d27"/
2

(7)

2m
1
V,(7=0)=k.oR de’ .
0 \/cos’jga ) +72 sin2(9’)
From here, it is easy to see the result:
2k,
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which represents the value of the electrostatic potential at
the center of a uniformly charged circular disk for the case
of a standard Coulomb interaction potential between point
charges [22]. Based on the results from Eq.(8) and Eq.(9),
one can write quite generally that:
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A careful analytical analysis of the quantity on the right-
hand-side of Eq.(10) allows us to conclude that:

Vo(7=0) < Vot (F=0) (1)

where the equality happens only for v = 1. This means
that the value of V,; (7 = 0) (for @ > 0) is smaller than
the value of its counterpart for v = 1. Recall that v =1
represents the case of a standard isotropic Coulomb in-
teraction potential. This analysis seems to suggest that
any anisotropic deformation of the Coulomb interaction
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where d?r; = dx; dy; (i=1,2) is an elementary surface area
and 7 R? is the domain of integration which is a circular
disk with area 7 R?.

The expression for U(7y) can also be written as:
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3. Results and Discussion

The calculation of the electrostatic energy in Eq.(4)
involves a non-trivial four-dimensional integral. Further-
more, the integrand function depends separately on the x



and y coordinates when v # 1. The calculation of the in-
tegral in Eq.(4) is simplified if we introduce the following
new coordinates:

x; .

=5 Y=y =12, (12)
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Note that this transformation leads to: dx; dy; = dzj dy;.
One can verify that the domain of integration for the new
primed coordinates becomes an ellipse:
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where the semimajor and the semiminor axis of the ellipse,
respectively, are:

a=—;

b=+R. (14)

Within the framework of the new primed coordinative sys-
tem, one has:
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tegration given by Eq.(13). The integral in the right-hand-
side of Eq.(15) is calculated with help from the following
result displayed in Eq.(A.12) of Appendix A:

} is the elliptical domain of in-
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where K(m) = Oﬂ/ 40 represents the complete
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elliptic integral of the first kind with parameter m. This
notation for the complete elliptic integral of the first kind is
the one adopted in Ref. [23, 24]. Other notations for such
a function are widely available in the literature, therefore
readers should be careful when using readily available for-
mulae. Some properties of the complete elliptic integral of
the first kind are given in Appendix B.

Using the result, mab = 7 R? which is easily obtained
from Eq.(14), using the formula in Eq.(16) and after car-
rying out some straighforward transformations, one writes
the energy in Eq.(15) as:
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where F(v) is an auxiliary function:
mw:1K<m:1_ﬂ>. (18)
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One can verify that the maximum value of this auxiliary
function is obtained for v =1 and is given by:
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From the general formula in Eq.(17), one sees that:
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The result in Eq.(20) represents the correct value for the
Coulomb self-energy of a uniformly charged circular disk
with total charge @ and radius R for the case of a standard
Coulomb interaction potential [25].

Having reached this point, a keen reader may imme-
diately notice that the quantity U(y) in Eq.(15) repre-
sents an explicit expression for the electrostatic energy of
a uniformly charged infinitely thin elliptical disk for point
charges that interact with a common Coulomb interaction
potential. This means that the presented results can be
directly utilized within the framework of electrostatic stud-
ies that deal with explicit energy calculations for charged
elliptical plates where various methods are used to study
thin flat elliptical plates with arbitrary charge distribu-
tions [26]. The results derived in this work are also related
to certain problems involving elliptical cracks [27]. Ana-
lytical results of the nature derived here can also serve as
powerful tools to assess the accuracy of numerical codes
that are used for integral calculations. In particular, the
availability of analytical results for the energy allows one to
gauge the accuracy of boundary element integration codes
in a non-trivial geometry like that of a charged elliptical
infinitely thin disk [28]. Furthermore, the present work is
also related to the understanding of the physics of charged-
particle beam systems with elliptic cross-sections. In par-
ticular, electron beams of elongated elliptic cross-sections
(or "sheet” beams) have long generated great interest in
vacuum electronics [29, 30].
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4. Conclusions

To conclude, we considered the problem of the electro-
static energy of a uniformly charged circular disk contain-
ing elementary charges that interact with an anisotropic
Coulomb interaction potential of a specific form recently
considered in the context of quantum Hall effect stud-
ies [12, 13]. The energy of the system was calculated
exactly in closed form in terms of an auxiliary function
that is related to a complete elliptic integral of the first
kind. This auxiliary function depends only on the inter-
action anisotropy parameter denoted as . The result for
v = 1 reproduces the expected value for the Coulomb self-
energy of a uniformly charged circular disk for the case of
a standard isotropic Coulomb interaction.

The expression in Eq.(15) deserves some special atten-
tion. It turns out that one can interpret such a result
as representing the Coulomb self-energy (when elementary
charges interact with a standard isotropic Coulomb inter-
action potential) of a uniformly charged elliptical plate
bound by the domain, z2/a? + y?/b? < 1. Knowing that
the auxiliary function F'(7) has a maximum at v = 1 leads
us to conclude that, for the case of a standard Coulomb in-
teraction potential, any deformation of a uniformly charged



circular disk into a uniformly charged elliptical plate with
same surface area leads to a decrease of the electrostatic
energy.

This observation is relevant to the ever-growing tech-
nology of devices that incorporate charged-particle beam
systems as constituents. Until recently, the majority of
manufactured systems have utilized charged-particle beams
of circular cross-section as components since systems with
circular symmetry are easier to fabricate. However, it is
clear even from the simple electrostatic considerations of
this work, that charged-particle beams (electron beams) of
elongated elliptic cross-sections would be better suited for
many applications since elliptic beam distributions have a
lower self-energy of assembly than circular beam distribu-
tions. This setup has already led to a better efficiency of
operation in various systems [31, 32, 33, 34].

The resut for the energy derived in this work can be
used to study systems of few-IN electrons in a disk ge-
ometry [35, 36, 37, 38] that interact with the presently
considered phenomenological anisotropic Coulomb inter-
action potential. Studies of this nature are currently be-
ing implemented in the context of 2D systems of elec-
trons in the quantum Hall regime and may reveal subtle
anisotropic effects. For example, it is known that under
realistic experimental conditions, quantum Hall systems
may be anisotropic. One natural source for this behavior
is the anisotropic dielectric tensor, which in turn leads to
an anisotropic Coulomb interaction potential of the same
form as the potential in Eq.(2) where the directions of
x and y are along the two principal axes of the dielec-
tric tensor [12]. It is expected that the properties of a
quantum Hall state with an anisotropic interaction may
be different from those of a conventional liquid Hall state
in which the particles interact with a standard isotropic
Coulomb potential. It is also worthwhile noting that the
same anisotropic Coulomb interaction potential studied in
this work arises as an effective interaction when calculat-
ing the energy of a 2DEG with an elliptical Fermi surface
deformation [39].
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Appendix A. Integral I(a,b)

We want to calculate the following integral:
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where 7; = (z;,y;) (i=1,2) are 2D position vectors and D
represents an elliptical domain of integration:
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We use a wellknown 2D Fourier transformation formula to
write:
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where k is a 2D vector, k = |k| > 0 is its magnitude
and ¢ = v/—1 is the imaginary unit. One substitutes the
expression from Eq.(A.3) to Eq.(A.1) to obtain:
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By changing to new variables, u = z;/a and v = y; /b, one
can calculate that:
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where J;(z) is a Bessel function of the first order. With
help from the result in Eq.(A.5), the quantity in Eq.(A.4)
reads:
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The integral in Eq.(A.6) can be better handled by switch-
ing to 2D polar coordinates:

(A.3)
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After some simple algebraic manipulations, one has:
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We initially calculate the integral over the variable k. Al-
though, at first sight, such an integration looks compli-
cated it can be done rather easily after noting that the
expression can be reduced to the following form:

[ {2 -
where a(f) =

function that does not depend on k. By using the result
in Eq.(A.9), one has:

J1 [ \/a2 cos2(0) + b2 sin?(6)

(9.8)

k:\/a2 cos2(0) + b2 sin’(0)

(A.9)

\/ a2 cos?(#) + b2 sin?(f) represents a f-dependent
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After some careful trigonometric transformations one can References
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write the final result as: [13]
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where K (m) is a complete elliptic integral of the first kind [g]
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At this point, we remark that the reader should exercise a (38]
lot of care when consulting the body of literature dealing [39]

with complete elliptic integrals since other notations are
widely available. For our specific case, after using straight-
forward trigonometric transformations, one sees that:
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Among a multitude of formulas for complete elliptic inte-
grals of the first kind we mention the following one:
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where a and b are real (a fact that is clear from the context
of our work). This means that one may rewrite the result
in Eq.(B.3) in a slightly diferent but equivalent way using
the formula in Eq.(B.4).
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