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Abstract 
 

Coulomb Matrix Eigenvalues (CME) are a global 3-dimensional representation of molecular structure, 

which have been previously used to predict atomization energies, prioritize geometry searches, and 

interpret rotational spectra.  The properties of the CME representation and its relationship to molecular 

structure are established using the Gershgorin circle theorem. Numerical bounds are studied using a 

dataset of 309,000 conformational samples of all constitutional isomers of acyclic alkanes, CnH2n+2, from 

methane (n = 1) to undecane (n = 11),  to establish the extent to which the CME preserves chemical 

intuitions about isomer and conformer similarity, and its ability to distinguish constitutional isomers are 

performed. Neither supervised nor unsupervised machine learning algorithms can perfectly distinguish 

constitutional isomers as the molecular size increases, but the misclassification rate can be kept below 

1%.  
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Introduction 
 

Machine learning is now applied to many chemical problems.1,2 Using an appropriate 

representation is a first step for applying machine learning to any problem.  Although it is possible to 

learn representations,3 it is more common to select a representation and then learn a function that uses 

it as an input. Many molecular representations are now widely available in general packages such as 

CheML,4 DScribe,5 and ChemReps;6 as recently reviewed by Langer et al.7 Molecular representations can 

be divided into those that capture 1D (composition), 2D (molecular graph), 3D (shape), and 4D 

(averaged over conformations or time) descriptions of the molecular structure.  Alternatively, they can 

be divided into local (in the vicinity around each atom) and global (taking into account the entire 

molecule) types of representations.8  Local representations lend themselves to additive expansions of 

properties in terms of atoms, bonds, or groups, whereas global representations capture the gestalt of 

the molecule as a whole, lending them to non-additive properties and long-range structure. 

 

One global 3D descriptor—introduced in the landmark paper by Rupp et al. on machine learning 

for molecular total energy—is the Coulomb matrix (CM) representation.9 The elements in the CM 

representation, Mij, are defined using the atomic number, 𝑍𝑍𝑖𝑖, of atom 𝑖𝑖, and the interatomic 

separations, 𝑅𝑅𝑖𝑖𝑖𝑖, between atoms 𝑖𝑖 and j, as, 

𝑀𝑀𝑖𝑖𝑖𝑖 =  �
0.5 𝑍𝑍𝑖𝑖

2.4   for i = j
𝑍𝑍𝑖𝑖𝑍𝑍𝑗𝑗/𝑅𝑅𝑖𝑖𝑖𝑖  for i ≠ j .     (1) 

The exponents in the diagonal entries correspond to a polynomial fit relating atomic number to the total 

energies of the free atoms; the off-diagonal entries describe Coulomb’s law like repulsions between the 

bare nuclei.  (To avoid confusion, we note that the CM representation is unrelated to the “Coulomb 

matrix” of electron-electron integrals used in quantum chemistry calculations.) Although the CM is 

invariant to molecular translations and rotations, it is not invariant to permutations of the atoms.  To 
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address this, a plethora of alternative representation schemes deriving from or extending the CM 

representation have been proposed such as Random and Sorted Coulomb Matrices,10 Bag of Bonds 

(BoB),11 encoded bond schemes for generating a representation independent of the molecule,12 and 

Many-Body Tensor Representations.13 (Local variants of the CM have been devised,14 but we are only 

interested in the global description.) 

 

 The CM can be made permutationally invariant by taking the sorted vector of Coulomb matrix 

eigenvalues (CME).  This has the additional advantage of reducing the size of the representation, as an N 

atom system has N CMEs, rather than the N2 entries in the full CM.  The CME representation was 

introduced by Rupp et al. and used as an input for atomization energy prediction models.9 The CME has 

also been used for determining molecular similarity, where it has been employed to perform nearest-

neighbor matching of molecules15 and to prioritize and enforce diversity in genetic algorithm searches 

for low-energy structures.16  In very recent work, CME has been used as an intermediate representation 

for decoding rotational spectra.17 In this approach, a neural network converts observed rotational 

spectra to an intermediate CME representation, and then other neural networks deduce chemical 

formulas, functional group information, and SMILES strings from the intermediate CME representation.  

 

 Moussa observed a possible disadvantage of the CME representation in a comment on Rupp et 

al.’s paper.18 Taking the eigenvalues creates a lossy representation, and the N-dimensional CME vector 

corresponds to a 2N-dimensional space of N-atom molecules; these homometric molecules are 

indistinguishable.  For example, the CME of stereoisomers are homometric.  For the purposes of total 

energy calculations, losing this distinction is not important, as the effect of parity violation on chemical 

energies is exceedingly small for organic molecules.19  Moussa also described an unphysical distortion of 

acetylene with homometric CMEs to demonstrate how this representation might fail.  However, it is 
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unknown whether this is actually a problem if one limits the consideration to physically reasonable 

molecular geometries. 

 

 The effectiveness of the CME as a molecular description depends on its ability to distinguish 

different molecules in a meaningful way.  The title of this paper alludes to the classic mathematics paper 

by Kac about whether one can “hear the shape of a drum”—i.e., determine its shape from the 

eigenvalue spectra.20 The answer is not obvious. Experience suggests that bongos are distinguishable 

from timpani, and certain geometrical features such as area and perimeter have unique mappings to 

eigenspectra, but this question stimulated mathematical research in spectral theory and physical 

applications of isospectrality,21 ultimately resulting in constructive methods for generating isospectral 

drums. Likewise, this paper investigates the representational properties of the CME, its interpretability, 

and its ability to distinguish constitutional isomers.  This provides an opportunity to explore how the 

CME encodes molecular structure, and the extent to which that encoding preserves chemical intuitions 

about isomer and conformer similarity.  

 

Computational Methods 
 

The 309 acyclic alkane constitutional isomers CnH2n+2, from methane (n=1) to undecane (n=11), are 

used as a specific test case. The goal is not to add to the extensive body of ab initio22 and machine 

learning23,24 work on alkanes, but rather to use alkanes as a simple, yet chemically meaningful example 

when studying fundamental questions about molecular structure.25,26 The constitutional isomers are 

recursively enumerated, and the results are in agreement with Henze & Blair.27 (See Supporting 

Information.) Alkanes starting with heptane (n=7) have the possibility for stereogenic centers. 

Stereoisomerism is not explicitly specified, as this is a known limitation of the CM representation. 
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Rather, conformers are initialized with random choices for the stereogenic centers, so that the collection 

of conformers is essentially a racemic mixture.  Severe steric packing problems reduce the stability of 

saturated alkanes starting at C17H36,
28 but computational estimates suggest even the most sterically 

crowded acyclic alkanes up to C15H32 should be stable at room temperature.26 Therefore, limiting our 

consideration to undecane (n = 11) and smaller keeps us below this threshold, and sufficient to 

demonstrate the key findings of the paper.   

 

For each of the 309 constitutional isomers, a sample of 1000 random conformations are 

generated using the ETKDG algorithm (version 1).29  Benchmarking studies of conformational sampling 

algorithms indicate that ETKDG is competitive with other conformational sampling programs.30 The 

generated conformations are used to create the CM and CME without energy minimization, so as to 

explore the possible accessible conformational diversity of each isomer.  Therefore, this dataset is 

distinct from previous studies using the CME representation, in which only a single local minimum was 

considered for each molecule or isomer, neglecting the conformational variety.9,17 Furthermore, past 

CME studies on organic molecules considered the GBD-9 dataset (only up to 9 heavy atoms); whereas 

the current work considers up to undecane (11 carbons).  In addition, the sampled conformations avoid 

unrealistic bond lengths, bond angles, and steric clashes, and thus differ from Moussa’s acetylene 

example.18  

 

Supervised machine classification was performed using logistic regression (LR), decision trees 

(DT), random forests (RF), gradient boosted trees (GBT), support vector machines (SVM), and k-nearest 

neighbor (k-NN, with k=1, 3, 5).  The prediction task is to distinguish an isomer from all other isomers; 

the misclassification rate is defined as the fraction of incorrectly assigned isomer labels. Each model was 

trained and evaluated by five-fold cross validation, dividing the total dataset into five 80%-20% training-
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testing datasets with equal numbers of each isomer.  For example, decane has 75 isomers, with 1000 

conformers each; the 5-fold cross validation divides the data into 60,000 training examples (800 of each 

isomer) and 15,000 test examples (200 of each isomer). The training set was used to determine optimal 

hyperparameters for each model.   

 

A Mathematica 12.1 notebook implementing all calculations is available in the Supporting 

Information; this notebook includes interactive versions of the figures showing additional statistical 

characterization of distributions and interactive browsing of the data.  

 

Results and Discussion 
 

 Key properties of the CME representation can be understood using the Gershgorin circle 

theorem.31 For a real symmetric matrix (such as the CM), each eigenvalue is within an interval whose 

center is the diagonal element in the matrix and whose radius is the sum of the absolute values of the 

entries in the row excluding the diagonal element.  Carbon atoms have the largest diagonal entries in 

the CM, not only because of a larger atomic number, but also exacerbated by the exponent in eq 1. 

Carbon atoms have a diagonal entry of 36.858, whereas hydrogen atoms have a diagonal entry of only 

0.5.  Thus, the general trend should be to have n large eigenvalues corresponding to the n carbon atoms 

in the alkane.  Because C-C bonds contribute the largest off-diagonal elements because of the 

numerator is largest and the short distances in the denominator of eq. (1), the magnitude of each of 

these eigenvalues will increase as more carbon atoms are added, because of the off-diagonal 

contributions.  Proximal C-C bonds make a larger contribution than distal C-C pairs, because of the 

inverse distance dependence of the off-diagonal terms. As a result, a more highly substituted carbon 

center with more C-C bonds to it will have larger off-diagonal entries in its row, and thus (ceteris 
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paribus) will have larger eigenvalues.  These properties have the benefit of making the CME vector 

emphasize changes in C-C bond patterns, while minimizing the difference caused by small changes, such 

as rotation of a methyl group.  In a large alkane, such as decane (n = 10), the typical C-C off diagonal 

elements range from about 3-25, whereas the typical C-H off-diagonal elements range from 0.5-5.6, and 

the typical H-H off-diagonal elements range from 0.07-0.57.  However, the Gershgorin bounds are not 

particularly tight, and methods for tightening the bounds by adding a constant matrix32 are of limited 

use because of the large difference between the typical C-C and H-H off-diagonal matrix elements. As 

the underlying reason for the predominance of the carbon on-diagonal and C-C bond off-diagonal terms 

is the large atomic number, 𝑍𝑍𝑖𝑖, relative to hydrogen, this trend will also occur for heteroatom-containing 

molecules. 

 

 Turning to numerical calculations on the sampled conformers, to illustrate the general trend, we 

first examine the largest CME.  In Figure 1, each black point is the mean largest eigenvalue (EV1), 

averaged over conformers, for each constitutional isomer. The general increase with increasing 

molecular weight is consistent with the Gershgorin trend.  These numerical results show the precise 

magnitude of the variations possible for different constitutional isomers, indicated by the boxed region 

indicating the minimum and maximum value observed for each molecular formula. (Methane (n = 1) 

through propane (n = 3) lack constitutional isomerism.) Although the EV1 for each isomer are distinct for 

the shorter alkanes, by heptane (n = 7) there begin to be isomers whose EV1 is larger than that of some 

of the corresponding octane (n = 8) values.  There are clearly more isomers as the alkane size increases, 

but the CME values are also becoming less distinct. The maximum CME eigenvalues grows more slowly 

than a linear function of molecule size. 
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Figure 1:  Mean largest eigenvalue (EV1), averaged over 1000 conformers, as a function of molecular 

size for acyclic alkanes CnH2n+2. Each black point corresponds to a single constitutional isomer; the boxes 

indicate the observed minima and maxima.  

 

The results shown in Figure 1 indicate that the maximum CME alone does not distinguish 

different molecular formulas. However, the molecular formula of acyclic alkanes can be readily 

determined from the CME vector by counting the number of CME values greater than one.  The number 

of CME entries whose value is greater than 1 is exactly equal to the number of carbon atoms in the 

saturated alkane for all 309,000 conformers up to n=11 in our study.  This is an upper bound on a more 

general statement for molecules in general. For a random sample of 1000 organic molecules (not 

restricted to alkanes) from PubChem, 89% have exactly the same number of “CME values greater than 

1” as the number of non-hydrogen atoms, and all molecules satisfy the looser condition that the 

number of “CME values greater than 1” is less than or equal to the number of non-hydrogen atoms.  

Calculation details and structures of the molecules failing the more rigorous criterion are in the 

electronic Supporting Information file. 
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The EV1 is also insufficient to distinguish isomers.  Figure 2 shows the distribution of EV1 for the 

nine isomers of heptane (n = 7); this example is chosen because it has a relatively small number of 

isomers so that the plot is not too overwhelming.  The probability density functions are a Gaussian 

kernel density estimate using Silverman’s rule to determine the bandwidth.  The general trend is 

consistent with the Gershgorin theorem arguments discussed above—n-heptane conformers have the 

smallest EV1 and 2,2,3-trimethylbutane conformers have the largest—but the overlap of the 

distributions of EV1 values can be quite significant.  For example, the 2,4-dimethylpentane (blue) and 2-

ethylpentane (yellow) conformer EV1 values have a large overlap, indicating that EV1 alone is 

insufficient to distinguish these isomers.  

 

 

 

Figure 2:  Probability density function (PDF) of the largest coulomb matrix eigenvalue (EV1) of heptane 

(n=7) isomers. 

 

Expanding the description to include several CMEs makes it possible to distinguish constitutional 

isomers and conformers.  Figure 3 shows the distribution of the first two CMEs (EV1 and EV2) for n-

butane (blue) and isobutane (red).  The cluster of points associated with each isomer are 

distinguishable, and the cis- and trans-like conformers of n-butane are also distinct.  This is a desirable 
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behavior, as it suggests the feasibility of hierarchical clustering of nearby constitutional isomer groups 

followed by larger distinctions between isomers.   The eigenvalues pattern in Figure 3 illustrate general 

considerations from the Gershgorin theorem.  Isobutane has a more highly substituted carbon center, 

resulting in a larger largest eigenvalue. But the second, third, and fourth eigenvalues are smaller, 

because each methyl-group carbon is farther away from each other).  In contrast, only primary and 

secondary carbons are present in n-Butane. In the trans-like conformation, the 1- and 4-carbons are 

farthest from each other, reducing the off-diagonal CM elements (and thus giving rise to the left cluster 

of points), whereas in the cis-like conformation, they are closer (giving rise to the right cluster of points) 

 

 

 

Figure 3:  First and second CME for butane.  Blue and red points indicate n-Butane and isobutane, 

respectively (depicted by the molecular diagrams). 

 

 Principal components analysis (PCA) can be used to determine the amount of information 

contained in the CME vector.  Figure 4 depicts the number of principal components required to describe 

99% of the conformer variance for each isomer.  Recall that a N=3n+2 atom molecule has an N-

dimensional CME vector description.  Therefore, it is unsurprising that methane (n = 1, N = 5) requires 3 

components to describe the vector.  However, the number of principal components grows more slowly 
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than the number of carbon atoms, n.  For octane (n=8) and above, at most n-2 PCA components are 

needed for any isomer, and nonane (n=9) and above each have at least one isomer for which only four 

components suffice.  These are all smaller than the n components needed to describe the carbon atom 

chain.  This demonstrates that each isomer’s CME vectors are highly correlated, and the information 

contained in the CME vector is much less than the full (N=3n+2) dimensionality.   

   

 

 

 

Figure 4:  Number of principal components describing at least 99% of the variation in the CME vector.  

Black points indicate values for each constitutional isomer; boxes indicate observed minima and 

maxima; hues indicate the density of points at that value.  The dotted red bisectrix is a guide to the eye 

for the linear scaling with number of carbons, n. 
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 If provided with a set of CME vectors (without knowing their true identities), could they be 

separated into subsets corresponding to each isomer?  This is the problem of clustering, a form of 

unsupervised machine learning used to find similarities between unlabeled examples to identify 

common characteristics and groupings.33   Clustering is widely used in cheminformatics analysis, e.g., to 

determine the set of features associated with activity of a drug candidate molecule.34  An ideal cluster 

consists of all conformers of a specific isomer.  An intracluster comparisons is between conformers of 

the same isomer, and an intercluster comparison is between conformers of different isomers.  For 

simplicity, we consider only intercluster comparisons between isomers of the same molecular weight.  

Because we have the correct labels, we can assess the clusterability of the data, independent of any 

particular algorithm. 

 

One measure of clusterability is the Dunn index, defined as the ratio of the intercluster 

separation to the intracluster diameter, where separation is the minimum intercluster distance 

(considered over all pairs of items in the two clusters), and diameter is the maximum intracluster 

distance (considered over any pair of items in the same cluster).35  This provides a single value for each 

collection of data (i.e., all of the isomers and conformers of a given molecular weight). A larger Dunn 

index indicates compact and well separated clusters that are easier to divide into the proper grouping.  

The Dunn index approaches zero for unclusterable datasets.  Figure 5 shows the Dunn index as a 

function of carbon atoms, computed using the Manhattan (L1), Euclidean (L2), and Chebyshev (L∞) 

metrics.  (As noted earlier, only butane and above have more than one isomer, so methane, ethane, and 

propane are not shown in this or subsequent figures.) Results for the three distance metrics are 

qualitatively the same, but the Euclidean (L2) metric is slightly larger in all cases, indicating a better 

separation of clusters, which justifies using the Euclidean metric in subsequent calculations.  The Dunn 

index decreases as the molecular size increases, indicating that isomers of larger alkanes have less 
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distinct CME vectors.  Consequently, it becomes more difficult for any unsupervised clustering algorithm 

separate unlabeled isomers as the molecular size increases.   

 

 

 

Figure 5:  Dunn Index as a function of molecular size for acyclic alkanes. Numerical values for the 

Euclidean (L2) metric are labeled.  Inset shows the same data focusing on alkanes with 7 and more 

carbons atoms. 

 

The Silhouette index is another way to quantify the intrinsic clusterability and separability of a 

dataset.36  Unlike the Dunn index, which assigns a value to the entire collection of data (i.e., all isomers 

of a given molecular weight), a Silhouette index is assigned to each individual data item (i.e., each 

conformer).  The Silhouette index is defined using each item’s average intracluster distance, ai (taken 

over all other items in the same cluster), and its average intercluster distance, bi, (taken over every point 

in the other cluster).  When there are multiple clusters (i.e., isomers), the cluster with the smallest 

average intercluster distance is used (i.e., only consider the nearest isomer for the intercluster distances.  

Finally, the Silhouette index is given by 𝑆𝑆𝑖𝑖 = (𝑏𝑏𝑖𝑖 − 𝑎𝑎𝑖𝑖)/max (𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖).  Items with 𝑆𝑆𝑖𝑖 ≈ 1 are in a well 

separated cluster, where the average intercluster distance is much greater than the average intracluster 

distance.  Items with 𝑆𝑆𝑖𝑖 ≈ 0 are located between two clusters, and those with negative 𝑆𝑆𝑖𝑖 are closer (on 
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average) to points in a different cluster than to points in its own cluster.  Points with negative Si will be 

misclassified by unsupervised algorithms, and a large fraction of examples with negative silhouette 

scores indicates the difficulty of unsupervised classification for the dataset.   

 

 

Figure 6:  Negative Silhouette index occurrence as a function of molecular size. Black points indicate the 

fraction of conformers with a negative Silhouette index, Si, for each isomer.  Bars indicate the observed 

minima and maxima, and color intensity shows the density of occurrences.  The purple line shows the 

fraction of isomers having any negative Silhouette index conformers. 

 

Figure 6 summarizes the silhouette index results for alkane isomers, using the Euclidean 

distance.   Only butane (n = 4) has all perfectly separable isomers.  Although all alkanes have some 

isomers without any negative Si, both the median and maximum fraction of conformers with negative Si 

grows monotonically as a function of size. For example, 4.3% of n-pentane conformers have negative Si, 

and two isomers of hexane have negative Silhouette scores:  5% of n-hexane conformers, and 0.2% of 3-

methylpentane conformers with negative Si.  Considering the n-alkane series, the fraction of conformers 

with negative Si increases monotonically with chain length, growing to 20% of n-undecane conformers.  

This is less than most other undecane isomers: 152/159 isomers have at least one point with negative Si, 

and the median undecane isomer has 29% of its conformers with a negative Si.  The worst case is 4,4,5-
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trimethyloctane for which 98.6% conformers have a negative Si. These results indicate that unsupervised 

classification algorithm will fail to distinguish unlabeled isomers using the CME vectors. Preliminary 

calculations using common unsupervised classification algorithms (DBSCAN, Spectral clustering, and k-

Means clustering) failed to give any meaningful clusters, but instead separated conformers and merged 

different isomers, even when provided with the correct total number of isomer clusters to find. This 

suggests the need for caution when using CMEs for diversity-oriented exploration, like that described in 

ref 16.  If only the CMEs are used to identify whether a compound is “novel” or not, there is a high 

likelihood that some isomers will be excluded because of a similarity to conformers of different isomers. 

 

Although unsupervised classification may fail, supervised classification algorithms—specifically, 

logistic regression (LR), decision trees (DT), random forests (RF), gradient boosted trees (GBT), support 

vector machines (SVM), and k-nearest neighbor (k-NN, with k=1, 3, 5)—are more successful at labeling a 

CME to the correct isomer.  The results of five-fold cross-validation for the isomer distinguishing task for 

decane (n = 10) are shown in Figure 7; corresponding figures for butane (n = 4) through nonane (n = 9) 

are shown in the Supporting Information.  First, we will discuss models using the entire N-dimensional 

CME vector as input. All model types perfectly classify butane (n = 4) isomers. LR, SVM and the k-NN 

models also have perfect classification across all folds for pentane (n = 5) and hexane (n = 6), whereas 

DT, RF, and GBT models only achieve this for some of the folds.  For the n=7-9 alkanes, there is at least 

one fold for which the SVM model achieves a zero classification error, but the median misclassification 

rate is non-zero over the folds.  Consistent with the Dunn Index and Silhouette Index analyses (vide 

supra), nearest-neighbor approaches have limited ability to separate the conformers and misclassify 

about 1.5% of examples, which is worse than all other methods (except decision trees) for all alkanes.  

Surprisingly, the simple LR classifier is competitive with RF and GBT methods for all alkanes, and all of 

these (with the exception of DT) achieve better performance than the k-NN models, although still the 
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error rates are greater than the SVM.  Overall, the SVM classifier delivered the best performance (i.e., 

lowest misclassification rate) for all alkanes.  In contrast, DT has the highest misclassification rate for all 

alkanes, and its performance decreases with increasing molecule size.   Focusing on the decane (n = 10) 

case shown in Figure 7a, the SVM only misclassifies 16-28 of the 15,000 test items in the 75-way 

classification task; the median misclassification rate is merely 0.15%, distributed across different 

isomers.  In general, the errors rates of all other classifiers perform about an order of magnitude worse, 

about 1% error.   
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Figure 7:  Misclassification error rate for supervised classification of decane (n = 10) isomers; errors bars 

indicate the results of 5-fold cross validation; solid boxes indicate the 25% and 75% quantiles, and 

whiskers show the minima and maxima, and white lines indicate the median. (a) Using the full 32-

dimensional CMEs for each example; (b) using the 10 largest CMEs. 

 

The largest n CME values are dominated by information about the carbon atoms (vide supra), 

and that the information is contained in a subset of the full CME vector. This suggests that lower-

dimensional inputs suffice to distinguish isomers.  To test this hypothesis, a parallel set of machine 

learning calculations was performed using only the largest n CMEs; results are shown in Figure 7b.   The 

different vertical axis scales of Figures 7a and 7b indicate that truncating the CME vector dramatically 

increases the misclassification error rate, except for 1-NN (whose median error rate decreases to 0.86% 
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from 1.5% with the full CME vector), and 3-NN (decreasing to 1.3% from 1.4%). The improved 

performance of the 1-NN and 3-NN methods is unsurprising, as exemplar-based models such as k-NN 

perform best for low dimensional problems.  (The intuition is that the ratio between the closest (1-NN) 

distance and the average distance between random examples decreases rapidly as the number of 

dimensions is increased, so the predictive power of the nearest example decreases relative to any 

average example in the dataset.)  Reducing the dimensionality to the 10 largest CMEs preserves 

information primarily about the C-C bonding structure, allowing for a successful classification.  The error 

rate for 5-NN is about the same (1.6%) as with the full CME vector (1.4%), and for all other models the 

error rate is increased dramatically, sometimes by an order of magnitude.  The RF and SVM models 

achieve median error rates of 2.9% and 3.1%, respectively, about thrice the error rate of the simple 1-

NN model.  This is surprising, as it indicates that the successes of the SVM and RF models using the full 

CME vector (depicted in Figure 7a) depend upon the information in the 2n+2 deleted entries dominated 

by H-H interactions. This use of unexpected information is reminiscent of recent machine-learning based 

infrared spectroscopic interpretation algorithms that use the fingerprint region in addition to the typical 

functional group peaks taught to human chemists.37 

 

Conclusion 
 

This paper examined the properties of the CME representation and its ability to distinguish realistic, 

chemically plausible molecular structures.  The central result is that the CME representation does not 

perfectly distinguish constitutional isomers with 10-heavy atoms or more.  This has several important 

consequences for cheminformatics.  First, it helps rationalize limitations of CME-based machine learning 

for spectral interpretation. For example, neural networks can successfully deduce molecular formulas 

from an intermediate CME representation, but cannot reliably extract molecular structures (i.e., 
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distinguish different constitutional isomers).17 The present study indicates that this limit is inevitable as 

the molecular size increases, and may not be solved by a better model, but instead is because of a 

limitation in the underlying CME representation itself. This is also consistent with Langer et al.’s 

observations that local representations perform better than global representations for molecular energy 

prediction as system size increases.7   Second, the CME representation has been used to prioritize 

diversity-oriented searches for global minima (e.g., of Lennard-Jones clusters16). This is of broad 

relevance as conformational sampling is important for generating augmented datasets for 

cheminformatic-based drug design38 and as a benchmark for computational chemistry methods.39 The 

present study confirms that the CME representation preserves the general closeness of related isomers 

(c.f., Figure 2) and related conformers (c.f., Figure 3), even if it fails to perfectly distinguish isomers for 

larger species.  Therefore, CME may suffice for roughly guide sampling a diverse space, without perfectly 

distinguishing the species. For this purpose, the PCA results (c.f., Figure 4) and the results of 1-NN 

classification using the largest n CMEs only (c.f., Figure 7b) suggest that the entire CME vector is 

unnecessary, and restricting the representation to the largest eigenvalues for the heavy (non-hydrogen) 

atoms encodes sufficient conformation and hydrogen position in a more compact form.  This can enable 

a reduction in storage space and computing time.  Third, the large difference in magnitudes of the 

carbon and hydrogen entries in the CM diminish the influence of hydrogen atom positions. The original 

motivation was to make the diagonal terms correspond to atomization energies, as this was the original 

prediction task in Rupp et al.9  Although this captures the intuition that the heavy-atom framework 

defines the molecule, it results in the large-value CMEs being dominated by C-C bond information.  That 

information is sufficient for a 1-NN classifier, but in general, machine learning models can take 

advantage of information present in the small components.  This suggests that alternate functional 

forms for the CM that emphasize hydrogen atom positions might improve machine learning model 

performance.  Variations proposed to date, such as the London matrix,40 deemphasize the long-distance 
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components and hydrogens, and thus may be exactly the opposite of what is desired for this purpose.    

Finally, although this paper focused on alkanes, the analysis using the Gershgorin theorem and the 

numerical sample from PubChem described here both suggest that these key results are equally relevant 

to more general classes of molecules.   

 

Associated Content 
 

Supporting Information 
 

A Mathematica 12.1 computational notebook implementing the calculations described in this paper is 

available at [ACS Information], and the same notebook has been deposited at 

https://notebookarchive.org/2020-06-1h9pgc7    
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