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Abstract

Coulomb Matrix Eigenvalues (CME) are a global 3-dimensional representation of molecular structure,
which have been previously used to predict atomization energies, prioritize geometry searches, and
interpret rotational spectra. The properties of the CME representation and its relationship to molecular
structure are established using the Gershgorin circle theorem. Numerical bounds are studied using a
dataset of 309,000 conformational samples of all constitutional isomers of acyclic alkanes, ChHzn+2, from
methane (n = 1) to undecane (n = 11), to establish the extent to which the CME preserves chemical
intuitions about isomer and conformer similarity, and its ability to distinguish constitutional isomers are
performed. Neither supervised nor unsupervised machine learning algorithms can perfectly distinguish
constitutional isomers as the molecular size increases, but the misclassification rate can be kept below

1%.
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Introduction

Machine learning is now applied to many chemical problems.? Using an appropriate
representation is a first step for applying machine learning to any problem. Although it is possible to
learn representations,? it is more common to select a representation and then learn a function that uses
it as an input. Many molecular representations are now widely available in general packages such as
CheML,* DScribe,” and ChemReps;® as recently reviewed by Langer et al.” Molecular representations can
be divided into those that capture 1D (composition), 2D (molecular graph), 3D (shape), and 4D
(averaged over conformations or time) descriptions of the molecular structure. Alternatively, they can
be divided into local (in the vicinity around each atom) and global (taking into account the entire
molecule) types of representations.® Local representations lend themselves to additive expansions of
properties in terms of atoms, bonds, or groups, whereas global representations capture the gestalt of

the molecule as a whole, lending them to non-additive properties and long-range structure.

One global 3D descriptor—introduced in the landmark paper by Rupp et al. on machine learning
for molecular total energy—is the Coulomb matrix (CM) representation.’ The elements in the CM
representation, My, are defined using the atomic number, Z;, of atom i, and the interatomic

separations, R;j, between atoms i and j, as,

0.5Z%* fori=j
M;; = { y / (1)

Z;iZ;[Rij fori#j’
The exponents in the diagonal entries correspond to a polynomial fit relating atomic number to the total
energies of the free atoms; the off-diagonal entries describe Coulomb’s law like repulsions between the
bare nuclei. (To avoid confusion, we note that the CM representation is unrelated to the “Coulomb
matrix” of electron-electron integrals used in quantum chemistry calculations.) Although the CM is

invariant to molecular translations and rotations, it is not invariant to permutations of the atoms. To

Accepted manuscript: J. Schrier, “Can one Hear the Shape of a Molecule (from its Coulomb Matrix
Eigenvalues)?” J. Chem. Inf. Model. (2020) doi:10.1021/acs.jcim.0c00631



http://dx.doi.org/10.1021/acs.jcim.0c00631

address this, a plethora of alternative representation schemes deriving from or extending the CM
representation have been proposed such as Random and Sorted Coulomb Matrices,'® Bag of Bonds
(BoB),* encoded bond schemes for generating a representation independent of the molecule,*? and
Many-Body Tensor Representations.® (Local variants of the CM have been devised,** but we are only

interested in the global description.)

The CM can be made permutationally invariant by taking the sorted vector of Coulomb matrix
eigenvalues (CME). This has the additional advantage of reducing the size of the representation, as an N
atom system has N CMEs, rather than the N? entries in the full CM. The CME representation was
introduced by Rupp et al. and used as an input for atomization energy prediction models.® The CME has
also been used for determining molecular similarity, where it has been employed to perform nearest-
neighbor matching of molecules® and to prioritize and enforce diversity in genetic algorithm searches
for low-energy structures.’® In very recent work, CME has been used as an intermediate representation
for decoding rotational spectra.l” In this approach, a neural network converts observed rotational
spectra to an intermediate CME representation, and then other neural networks deduce chemical

formulas, functional group information, and SMILES strings from the intermediate CME representation.

Moussa observed a possible disadvantage of the CME representation in a comment on Rupp et
al.’s paper.’® Taking the eigenvalues creates a lossy representation, and the N-dimensional CME vector
corresponds to a 2N-dimensional space of N-atom molecules; these homometric molecules are
indistinguishable. For example, the CME of stereoisomers are homometric. For the purposes of total
energy calculations, losing this distinction is not important, as the effect of parity violation on chemical
energies is exceedingly small for organic molecules.’® Moussa also described an unphysical distortion of

acetylene with homometric CMEs to demonstrate how this representation might fail. However, it is
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unknown whether this is actually a problem if one limits the consideration to physically reasonable

molecular geometries.

The effectiveness of the CME as a molecular description depends on its ability to distinguish
different molecules in a meaningful way. The title of this paper alludes to the classic mathematics paper
by Kac about whether one can “hear the shape of a drum”—i.e., determine its shape from the
eigenvalue spectra.?’ The answer is not obvious. Experience suggests that bongos are distinguishable
from timpani, and certain geometrical features such as area and perimeter have unique mappings to
eigenspectra, but this question stimulated mathematical research in spectral theory and physical
applications of isospectrality,? ultimately resulting in constructive methods for generating isospectral
drums. Likewise, this paper investigates the representational properties of the CME, its interpretability,
and its ability to distinguish constitutional isomers. This provides an opportunity to explore how the
CME encodes molecular structure, and the extent to which that encoding preserves chemical intuitions

about isomer and conformer similarity.

Computational Methods

The 309 acyclic alkane constitutional isomers CnHzns2, from methane (n=1) to undecane (n=11), are
used as a specific test case. The goal is not to add to the extensive body of ab initio?? and machine
learning®?* work on alkanes, but rather to use alkanes as a simple, yet chemically meaningful example
when studying fundamental questions about molecular structure.?2® The constitutional isomers are
recursively enumerated, and the results are in agreement with Henze & Blair.?’ (See Supporting
Information.) Alkanes starting with heptane (n=7) have the possibility for stereogenic centers.

Stereoisomerism is not explicitly specified, as this is a known limitation of the CM representation.
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Rather, conformers are initialized with random choices for the stereogenic centers, so that the collection
of conformers is essentially a racemic mixture. Severe steric packing problems reduce the stability of
saturated alkanes starting at C17Hs6 28 but computational estimates suggest even the most sterically
crowded acyclic alkanes up to CisHs, should be stable at room temperature.? Therefore, limiting our
consideration to undecane (n = 11) and smaller keeps us below this threshold, and sufficient to

demonstrate the key findings of the paper.

For each of the 309 constitutional isomers, a sample of 1000 random conformations are
generated using the ETKDG algorithm (version 1).2° Benchmarking studies of conformational sampling
algorithms indicate that ETKDG is competitive with other conformational sampling programs.* The
generated conformations are used to create the CM and CME without energy minimization, so as to
explore the possible accessible conformational diversity of each isomer. Therefore, this dataset is
distinct from previous studies using the CME representation, in which only a single local minimum was
considered for each molecule or isomer, neglecting the conformational variety.>*” Furthermore, past
CME studies on organic molecules considered the GBD-9 dataset (only up to 9 heavy atoms); whereas
the current work considers up to undecane (11 carbons). In addition, the sampled conformations avoid
unrealistic bond lengths, bond angles, and steric clashes, and thus differ from Moussa’s acetylene

example.’®

Supervised machine classification was performed using logistic regression (LR), decision trees
(DT), random forests (RF), gradient boosted trees (GBT), support vector machines (SVM), and k-nearest
neighbor (k-NN, with k=1, 3, 5). The prediction task is to distinguish an isomer from all other isomers;
the misclassification rate is defined as the fraction of incorrectly assigned isomer labels. Each model was

trained and evaluated by five-fold cross validation, dividing the total dataset into five 80%-20% training-
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testing datasets with equal numbers of each isomer. For example, decane has 75 isomers, with 1000
conformers each; the 5-fold cross validation divides the data into 60,000 training examples (800 of each
isomer) and 15,000 test examples (200 of each isomer). The training set was used to determine optimal

hyperparameters for each model.

A Mathematica 12.1 notebook implementing all calculations is available in the Supporting
Information; this notebook includes interactive versions of the figures showing additional statistical

characterization of distributions and interactive browsing of the data.

Results and Discussion

Key properties of the CME representation can be understood using the Gershgorin circle
theorem.?! For a real symmetric matrix (such as the CM), each eigenvalue is within an interval whose
center is the diagonal element in the matrix and whose radius is the sum of the absolute values of the
entries in the row excluding the diagonal element. Carbon atoms have the largest diagonal entries in
the CM, not only because of a larger atomic number, but also exacerbated by the exponent in eq 1.
Carbon atoms have a diagonal entry of 36.858, whereas hydrogen atoms have a diagonal entry of only
0.5. Thus, the general trend should be to have n large eigenvalues corresponding to the n carbon atoms
in the alkane. Because C-C bonds contribute the largest off-diagonal elements because of the
numerator is largest and the short distances in the denominator of eq. (1), the magnitude of each of
these eigenvalues will increase as more carbon atoms are added, because of the off-diagonal
contributions. Proximal C-C bonds make a larger contribution than distal C-C pairs, because of the
inverse distance dependence of the off-diagonal terms. As a result, a more highly substituted carbon

center with more C-C bonds to it will have larger off-diagonal entries in its row, and thus (ceteris
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paribus) will have larger eigenvalues. These properties have the benefit of making the CME vector
emphasize changes in C-C bond patterns, while minimizing the difference caused by small changes, such
as rotation of a methyl group. In a large alkane, such as decane (n = 10), the typical C-C off diagonal
elements range from about 3-25, whereas the typical C-H off-diagonal elements range from 0.5-5.6, and
the typical H-H off-diagonal elements range from 0.07-0.57. However, the Gershgorin bounds are not
particularly tight, and methods for tightening the bounds by adding a constant matrix®? are of limited
use because of the large difference between the typical C-C and H-H off-diagonal matrix elements. As
the underlying reason for the predominance of the carbon on-diagonal and C-C bond off-diagonal terms
is the large atomic number, Z;, relative to hydrogen, this trend will also occur for heteroatom-containing

molecules.

Turning to numerical calculations on the sampled conformers, to illustrate the general trend, we
first examine the largest CME. In Figure 1, each black point is the mean largest eigenvalue (EV1),
averaged over conformers, for each constitutional isomer. The general increase with increasing
molecular weight is consistent with the Gershgorin trend. These numerical results show the precise
magnitude of the variations possible for different constitutional isomers, indicated by the boxed region
indicating the minimum and maximum value observed for each molecular formula. (Methane (n = 1)
through propane (n = 3) lack constitutional isomerism.) Although the EV1 for each isomer are distinct for
the shorter alkanes, by heptane (n = 7) there begin to be isomers whose EV1 is larger than that of some
of the corresponding octane (n = 8) values. There are clearly more isomers as the alkane size increases,
but the CME values are also becoming less distinct. The maximum CME eigenvalues grows more slowly

than a linear function of molecule size.
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Figure 1: Mean largest eigenvalue (EV1), averaged over 1000 conformers, as a function of molecular

size for acyclic alkanes CnHans2. Each black point corresponds to a single constitutional isomer; the boxes

indicate the observed minima and maxima.

The results shown in Figure 1 indicate that the maximum CME alone does not distinguish
different molecular formulas. However, the molecular formula of acyclic alkanes can be readily
determined from the CME vector by counting the number of CME values greater than one. The number
of CME entries whose value is greater than 1 is exactly equal to the number of carbon atoms in the
saturated alkane for all 309,000 conformers up to n=11 in our study. This is an upper bound on a more
general statement for molecules in general. For a random sample of 1000 organic molecules (not
restricted to alkanes) from PubChem, 89% have exactly the same number of “CME values greater than
1” as the number of non-hydrogen atoms, and all molecules satisfy the looser condition that the
number of “CME values greater than 1” is less than or equal to the number of non-hydrogen atoms.
Calculation details and structures of the molecules failing the more rigorous criterion are in the

electronic Supporting Information file.
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The EV1 is also insufficient to distinguish isomers. Figure 2 shows the distribution of EV1 for the
nine isomers of heptane (n = 7); this example is chosen because it has a relatively small number of
isomers so that the plot is not too overwhelming. The probability density functions are a Gaussian
kernel density estimate using Silverman’s rule to determine the bandwidth. The general trend is
consistent with the Gershgorin theorem arguments discussed above—n-heptane conformers have the
smallest EV1 and 2,2,3-trimethylbutane conformers have the largest—but the overlap of the
distributions of EV1 values can be quite significant. For example, the 2,4-dimethylpentane (blue) and 2-
ethylpentane (yellow) conformer EV1 values have a large overlap, indicating that EV1 alone is

insufficient to distinguish these isomers.
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Figure 2: Probability density function (PDF) of the largest coulomb matrix eigenvalue (EV1) of heptane

(n=7) isomers.

Expanding the description to include several CMEs makes it possible to distinguish constitutional
isomers and conformers. Figure 3 shows the distribution of the first two CMEs (EV1 and EV2) for n-
butane (blue) and isobutane (red). The cluster of points associated with each isomer are

distinguishable, and the cis- and trans-like conformers of n-butane are also distinct. This is a desirable
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behavior, as it suggests the feasibility of hierarchical clustering of nearby constitutional isomer groups
followed by larger distinctions between isomers. The eigenvalues pattern in Figure 3 illustrate general
considerations from the Gershgorin theorem. Isobutane has a more highly substituted carbon center,
resulting in a larger largest eigenvalue. But the second, third, and fourth eigenvalues are smaller,
because each methyl-group carbon is farther away from each other). In contrast, only primary and
secondary carbons are present in n-Butane. In the trans-like conformation, the 1- and 4-carbons are
farthest from each other, reducing the off-diagonal CM elements (and thus giving rise to the left cluster

of points), whereas in the cis-like conformation, they are closer (giving rise to the right cluster of points)
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Figure 3: First and second CME for butane. Blue and red points indicate n-Butane and isobutane,

respectively (depicted by the molecular diagrams).

Principal components analysis (PCA) can be used to determine the amount of information
contained in the CME vector. Figure 4 depicts the number of principal components required to describe
99% of the conformer variance for each isomer. Recall that a N=3n+2 atom molecule has an N-
dimensional CME vector description. Therefore, it is unsurprising that methane (n =1, N =5) requires 3

components to describe the vector. However, the number of principal components grows more slowly
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than the number of carbon atoms, n. For octane (n=8) and above, at most n-2 PCA components are
needed for any isomer, and nonane (n=9) and above each have at least one isomer for which only four
components suffice. These are all smaller than the n components needed to describe the carbon atom
chain. This demonstrates that each isomer’s CME vectors are highly correlated, and the information

contained in the CME vector is much less than the full (N=3n+2) dimensionality.

PCA Components for 99% variation

'}
k
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Figure 4: Number of principal components describing at least 99% of the variation in the CME vector.
Black points indicate values for each constitutional isomer; boxes indicate observed minima and
maxima; hues indicate the density of points at that value. The dotted red bisectrix is a guide to the eye

for the linear scaling with number of carbons, n.
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If provided with a set of CME vectors (without knowing their true identities), could they be
separated into subsets corresponding to each isomer? This is the problem of clustering, a form of
unsupervised machine learning used to find similarities between unlabeled examples to identify
common characteristics and groupings.>® Clustering is widely used in cheminformatics analysis, e.g., to
determine the set of features associated with activity of a drug candidate molecule.3* An ideal cluster
consists of all conformers of a specific isomer. An intracluster comparisons is between conformers of
the same isomer, and an intercluster comparison is between conformers of different isomers. For
simplicity, we consider only intercluster comparisons between isomers of the same molecular weight.
Because we have the correct labels, we can assess the clusterability of the data, independent of any

particular algorithm.

One measure of clusterability is the Dunn index, defined as the ratio of the intercluster
separation to the intracluster diameter, where separation is the minimum intercluster distance
(considered over all pairs of items in the two clusters), and diameter is the maximum intracluster
distance (considered over any pair of items in the same cluster).®® This provides a single value for each
collection of data (i.e., all of the isomers and conformers of a given molecular weight). A larger Dunn
index indicates compact and well separated clusters that are easier to divide into the proper grouping.
The Dunn index approaches zero for unclusterable datasets. Figure 5 shows the Dunn index as a
function of carbon atoms, computed using the Manhattan (L;), Euclidean (Lz), and Chebyshev (L)
metrics. (As noted earlier, only butane and above have more than one isomer, so methane, ethane, and
propane are not shown in this or subsequent figures.) Results for the three distance metrics are
qualitatively the same, but the Euclidean (L) metric is slightly larger in all cases, indicating a better
separation of clusters, which justifies using the Euclidean metric in subsequent calculations. The Dunn

index decreases as the molecular size increases, indicating that isomers of larger alkanes have less
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distinct CME vectors. Consequently, it becomes more difficult for any unsupervised clustering algorithm

separate unlabeled isomers as the molecular size increases.
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Figure 5: Dunn Index as a function of molecular size for acyclic alkanes. Numerical values for the
Euclidean (L;) metric are labeled. Inset shows the same data focusing on alkanes with 7 and more

carbons atoms.

The Silhouette index is another way to quantify the intrinsic clusterability and separability of a
dataset.®® Unlike the Dunn index, which assigns a value to the entire collection of data (i.e., all isomers
of a given molecular weight), a Silhouette index is assigned to each individual data item (i.e., each
conformer). The Silhouette index is defined using each item’s average intracluster distance, a; (taken
over all other items in the same cluster), and its average intercluster distance, b;, (taken over every point
in the other cluster). When there are multiple clusters (i.e., isomers), the cluster with the smallest
average intercluster distance is used (i.e., only consider the nearest isomer for the intercluster distances.
Finally, the Silhouette index is given by S; = (b; — a;)/max(a;, b;). Items with §; = 1 are in a well
separated cluster, where the average intercluster distance is much greater than the average intracluster

distance. Items with S; = 0 are located between two clusters, and those with negative S; are closer (on
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average) to points in a different cluster than to points in its own cluster. Points with negative S; will be
misclassified by unsupervised algorithms, and a large fraction of examples with negative silhouette

scores indicates the difficulty of unsupervised classification for the dataset.
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Figure 6: Negative Silhouette index occurrence as a function of molecular size. Black points indicate the
fraction of conformers with a negative Silhouette index, S; for each isomer. Bars indicate the observed
minima and maxima, and color intensity shows the density of occurrences. The purple line shows the

fraction of isomers having any negative Silhouette index conformers.

Figure 6 summarizes the silhouette index results for alkane isomers, using the Euclidean
distance. Only butane (n = 4) has all perfectly separable isomers. Although all alkanes have some
isomers without any negative S;, both the median and maximum fraction of conformers with negative S;
grows monotonically as a function of size. For example, 4.3% of n-pentane conformers have negative S;,
and two isomers of hexane have negative Silhouette scores: 5% of n-hexane conformers, and 0.2% of 3-
methylpentane conformers with negative S;. Considering the n-alkane series, the fraction of conformers
with negative S;increases monotonically with chain length, growing to 20% of n-undecane conformers.
This is less than most other undecane isomers: 152/159 isomers have at least one point with negative S;,

and the median undecane isomer has 29% of its conformers with a negative Si. The worst case is 4,4,5-

Accepted manuscript: J. Schrier, “Can one Hear the Shape of a Molecule (from its Coulomb Matrix
Eigenvalues)?” J. Chem. Inf. Model. (2020) doi:10.1021/acs.jcim.0c00631



http://dx.doi.org/10.1021/acs.jcim.0c00631

trimethyloctane for which 98.6% conformers have a negative S;. These results indicate that unsupervised
classification algorithm will fail to distinguish unlabeled isomers using the CME vectors. Preliminary
calculations using common unsupervised classification algorithms (DBSCAN, Spectral clustering, and k-
Means clustering) failed to give any meaningful clusters, but instead separated conformers and merged
different isomers, even when provided with the correct total number of isomer clusters to find. This
suggests the need for caution when using CMEs for diversity-oriented exploration, like that described in
ref 16, If only the CMEs are used to identify whether a compound is “novel” or not, there is a high

likelihood that some isomers will be excluded because of a similarity to conformers of different isomers.

Although unsupervised classification may fail, supervised classification algorithms—specifically,
logistic regression (LR), decision trees (DT), random forests (RF), gradient boosted trees (GBT), support
vector machines (SVM), and k-nearest neighbor (k-NN, with k=1, 3, 5)—are more successful at labeling a
CME to the correct isomer. The results of five-fold cross-validation for the isomer distinguishing task for
decane (n = 10) are shown in Figure 7; corresponding figures for butane (n = 4) through nonane (n=9)
are shown in the Supporting Information. First, we will discuss models using the entire N-dimensional
CME vector as input. All model types perfectly classify butane (n = 4) isomers. LR, SVM and the k-NN
models also have perfect classification across all folds for pentane (n = 5) and hexane (n = 6), whereas
DT, RF, and GBT models only achieve this for some of the folds. For the n=7-9 alkanes, there is at least
one fold for which the SVM model achieves a zero classification error, but the median misclassification
rate is non-zero over the folds. Consistent with the Dunn Index and Silhouette Index analyses (vide
supra), nearest-neighbor approaches have limited ability to separate the conformers and misclassify
about 1.5% of examples, which is worse than all other methods (except decision trees) for all alkanes.
Surprisingly, the simple LR classifier is competitive with RF and GBT methods for all alkanes, and all of

these (with the exception of DT) achieve better performance than the k-NN models, although still the
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error rates are greater than the SVM. Overall, the SVM classifier delivered the best performance (i.e.,
lowest misclassification rate) for all alkanes. In contrast, DT has the highest misclassification rate for all
alkanes, and its performance decreases with increasing molecule size. Focusing on the decane (n = 10)
case shown in Figure 7a, the SVM only misclassifies 16-28 of the 15,000 test items in the 75-way
classification task; the median misclassification rate is merely 0.15%, distributed across different
isomers. In general, the errors rates of all other classifiers perform about an order of magnitude worse,

about 1% error.
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Figure 7: Misclassification error rate for supervised classification of decane (n = 10) isomers; errors bars
indicate the results of 5-fold cross validation; solid boxes indicate the 25% and 75% quantiles, and
whiskers show the minima and maxima, and white lines indicate the median. (a) Using the full 32-

dimensional CMEs for each example; (b) using the 10 largest CMEs.

The largest n CME values are dominated by information about the carbon atoms (vide supra),
and that the information is contained in a subset of the full CME vector. This suggests that lower-
dimensional inputs suffice to distinguish isomers. To test this hypothesis, a parallel set of machine
learning calculations was performed using only the largest n CMEs; results are shown in Figure 7b. The
different vertical axis scales of Figures 7a and 7b indicate that truncating the CME vector dramatically

increases the misclassification error rate, except for 1-NN (whose median error rate decreases to 0.86%
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from 1.5% with the full CME vector), and 3-NN (decreasing to 1.3% from 1.4%). The improved
performance of the 1-NN and 3-NN methods is unsurprising, as exemplar-based models such as k-NN
perform best for low dimensional problems. (The intuition is that the ratio between the closest (1-NN)
distance and the average distance between random examples decreases rapidly as the number of
dimensions is increased, so the predictive power of the nearest example decreases relative to any
average example in the dataset.) Reducing the dimensionality to the 10 largest CMEs preserves
information primarily about the C-C bonding structure, allowing for a successful classification. The error
rate for 5-NN is about the same (1.6%) as with the full CME vector (1.4%), and for all other models the
error rate is increased dramatically, sometimes by an order of magnitude. The RF and SVM models
achieve median error rates of 2.9% and 3.1%, respectively, about thrice the error rate of the simple 1-
NN model. This is surprising, as it indicates that the successes of the SVM and RF models using the full
CME vector (depicted in Figure 7a) depend upon the information in the 2n+2 deleted entries dominated
by H-H interactions. This use of unexpected information is reminiscent of recent machine-learning based
infrared spectroscopic interpretation algorithms that use the fingerprint region in addition to the typical

functional group peaks taught to human chemists.?’

Conclusion

This paper examined the properties of the CME representation and its ability to distinguish realistic,
chemically plausible molecular structures. The central result is that the CME representation does not
perfectly distinguish constitutional isomers with 10-heavy atoms or more. This has several important
consequences for cheminformatics. First, it helps rationalize limitations of CME-based machine learning
for spectral interpretation. For example, neural networks can successfully deduce molecular formulas
from an intermediate CME representation, but cannot reliably extract molecular structures (i.e.,
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distinguish different constitutional isomers).Y”

The present study indicates that this limit is inevitable as
the molecular size increases, and may not be solved by a better model, but instead is because of a
limitation in the underlying CME representation itself. This is also consistent with Langer et al.’s
observations that local representations perform better than global representations for molecular energy
prediction as system size increases.” Second, the CME representation has been used to prioritize
diversity-oriented searches for global minima (e.g., of Lennard-Jones clusters®®). This is of broad
relevance as conformational sampling is important for generating augmented datasets for
cheminformatic-based drug design® and as a benchmark for computational chemistry methods. The
present study confirms that the CME representation preserves the general closeness of related isomers
(c.f., Figure 2) and related conformers (c.f., Figure 3), even if it fails to perfectly distinguish isomers for
larger species. Therefore, CME may suffice for roughly guide sampling a diverse space, without perfectly
distinguishing the species. For this purpose, the PCA results (c.f., Figure 4) and the results of 1-NN
classification using the largest n CMEs only (c.f., Figure 7b) suggest that the entire CME vector is
unnecessary, and restricting the representation to the largest eigenvalues for the heavy (non-hydrogen)
atoms encodes sufficient conformation and hydrogen position in a more compact form. This can enable
a reduction in storage space and computing time. Third, the large difference in magnitudes of the
carbon and hydrogen entries in the CM diminish the influence of hydrogen atom positions. The original
motivation was to make the diagonal terms correspond to atomization energies, as this was the original
prediction task in Rupp et al.® Although this captures the intuition that the heavy-atom framework
defines the molecule, it results in the large-value CMEs being dominated by C-C bond information. That
information is sufficient for a 1-NN classifier, but in general, machine learning models can take
advantage of information present in the small components. This suggests that alternate functional
forms for the CM that emphasize hydrogen atom positions might improve machine learning model

performance. Variations proposed to date, such as the London matrix,*® deemphasize the long-distance
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components and hydrogens, and thus may be exactly the opposite of what is desired for this purpose.
Finally, although this paper focused on alkanes, the analysis using the Gershgorin theorem and the
numerical sample from PubChem described here both suggest that these key results are equally relevant

to more general classes of molecules.

Associated Content

Supporting Information

A Mathematica 12.1 computational notebook implementing the calculations described in this paper is
available at [ACS Information], and the same notebook has been deposited at

https://notebookarchive.org/2020-06-1h9pgc7
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