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We investigate the ground state energy of a finite classical system consisting of an arbitrary
number of electric dipoles localized at the sites of a regular one-dimensional crystal lattice. The
ground state energy per dipole can be exactly calculated in the thermodynamic limit but an exact
analytical expression for the energy valid for an arbitrary finite number of dipoles is not possible. In
this work we obtain an approximate analytical expression for the ground state energy that applies to
any given finite number of dipoles. The approximate analytical expression that we report reproduces
the exact numerically calculated values of the ground state energy with an astonishing accuracy.
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Understanding the interaction between electric dipoles
or their magnetic counterparts is crucial to many scien-
tific disciplines. Any electric or magnetic dipole poss-
eses a given dipole moment, a vector quantity. Since the
interaction potential energy between a pair of electric
dipoles has the same mathematical form as that of mag-
netic dipoles (apart from irrelevant constants), from now
on we specifically consider a system of electric dipoles.
The electric dipole moment for a pair of opposite point

charges, ±q is written as ~p = q~l where q > 0 is the

magnitude of the charge and ~l is the separation vector
between them. By convention, the direction of such a
vector is taken from the negative towards the positive
charge. In the point dipole limit, the electric dipole has
a constant magnitude. The dipole-dipole interaction is
the most important interaction among neutral particles.
It gives rise to van der Waals forces [1–7] and is also cru-
cial to understand living organisms. For example, every
process of protein formation that involves protein folding
is dependent on dipole-dipole interactions [8–12].

The potential energy possessed by two electric dipoles
interacting with each other depends on the dipole mo-
ment of each particle, their separation distance and the
orientation in space of the dipole moments. There-
fore, unlike the Coulomb interaction between two point
charges [13–16], the dipole-dipole interaction between
two point dipoles is highly anisotropic. The anisotropy
of the dipole-dipole interaction leads to nontrivial effects.
For example, it is not at all easy to determine the ground
state energy at zero temperature for a given system of
dipoles placed on a two-dimensional (2D) or a three-
dimensional (3D) lattice of a given type [17–27]. Under
most general conditions, this can be done only via numer-
ical methods. The exception is a system of dipoles placed
in a regular one-dimensional (1D) crystal lattice where
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the ground state energy per dipole can be analytically
calculated in the thermodynamic limit (when the number
of dipoles goes to infinity). However, an exact analytical
expression that applies to the ground state energy of an
arbitrary finite number of dipoles is not possible. The
purpose of this work is to report an approximate analyt-
ical expression for the ground state energy of an abitrary
system with N ≥ 2 dipoles on a regular 1D crystal lat-
tice which reproduces with very high accuracy the exact
ground state energy values obtained numerically.
The model under consideration is that of N ≥ 2 elec-

tric dipoles localized on N sites of a regular 1D crystal
lattice with lattice parameter, a. The potential energy of
interaction between two dipoles i and j located at lattice
sites ~ri and ~rj is written as:

Uij = k

[

~pi · ~pj
r3ij

− 3
(~pi · ~rij) (~pj · ~rij)

r5ij

]

, (1)

where k is Coulomb’s constant, ~rij = ~rj − ~ri is the inter-
particle separation vector and rij = |~rij | = |~rj − ~ri| ≥ 0
is the separation distance between the dipole moments ~pi
and ~pj of equal magnitude p. The ground state energy of
the pair of dipoles at zero temperature is obtained when
~pi is parallel to ~pj and both are parallel to the separation
vector ~rij .
This allows us to state that the ground state energy

for a system with N ≥ 2 dipoles is achieved when:

~pi ‖ ~pj ‖ ~rij ; i < j . (2)

The ground state energy configuration for such a case
represents a linear chain of dipoles as shown schemati-
cally in Fig. 1 for a system of N = 5 dipoles. The total
ground state energy of a finite system with an arbitrary
number of dipoles localized in a regular 1D crystal lattice
can be written as:

U(N) = −2E0

N
∑

i<j

1

(j − i)3
, (3)

where

E0 =
k p2

a3
, (4)
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FIG. 1: Schematic view of the ground state energy configura-
tion for a system of N = 5 electric dipoles located at the sites
of a regular 1D crystal lattice. Dipoles are represented by
short arrows and a is the lattice parameter (distance between
two neighbouring sites).

is a suitable unit of energy. One can write the result is
Eq.(3) as:

U(N) = −2E0 SN , (5)

where

SN =
N
∑

i<j

1

(j − i)3
=

N−1
∑

i=1

N
∑

j=i+1

1

(j − i)3
. (6)

Calculation of U(N) for an arbitrary number of N ≥ 2
dipoles hinges upon the calculation of SN which, for finite
N , can be done only numerically.

In this work, we show that SN can be approximated by
an analytical function denoted as f(N) that is so accu-
rate in reproducing the numerical values of SN that can
be considered as exact for all practical purposes. Further-
more, it is noted that the accuracy of such an analytical
description improves as the value of N increases. This
is precisely the most desirable property when one must
study interacting systems with a growing size.

The method that we use to obtain such an approximate
analytical formula starts from the observation that one
can write the finite series SN in Eq.(6) as:

SN = (N−1)
1

13
+(N−2)

1

23
+. . .+

[

N−(N−1)
] 1

(N − 1)3
.

(7)
By regrouping the terms in the series above one has:

SN = N

[

1

13
+

1

23
+ . . .+

1

(N − 1)3

]

−

[

1

12
+

1

22
+ . . .+

1

(N − 1)2

]

. (8)

At this juncture, one adds and substracts additional
terms to the quantity in Eq.(8) to rewrite it as:

SN = N

[

1

13
+

1

23
+ . . .+

1

(N − 1)3
+

1

N3
+ . . .+

1

∞3
−

(

1

N3
+ . . .+

1

∞3

)]

−

[

1

12
+

1

22
+ . . .+

1

(N − 1)2
+

1

N2
+ . . .+

1

∞2
−

(

1

N2
+ . . .+

1

∞2

)]

. (9)

At this point one recognizes that the quantity in Eq.(9)
is equivalent to:

SN = N ξ(3)− ξ(2) +

[

1

N2
+ . . .+

1

∞2

]

−N

[

1

N3
+ . . .+

1

∞3

]

, (10)

where

ξ(s) =
∞
∑

n=1

1

ns
; s > 1 , (11)

is the so-called Riemann zeta function. The next step is
straightforward, approximate SN with an analytic func-
tion f(N) written as:

f(N) = N ξ(3)− ξ(2) +

∫

∞

N

dx

x2
−N

∫

∞

N

dx

x3
. (12)

Simple calculations lead to the following final result:

f(N) = N ξ(3)− ξ(2) +
1

2N
. (13)

As we will show, the analytic function f(N) in Eq.(13)
reproduces very accurately the exact values of SN (calcu-
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TABLE I: Numerically exact values of SN and analytically
obtained ones using the expression for f(N) are compared for
a given number of N = 2, 3, . . . , 20 dipoles. The data have
a numerical accuracy of five digits after the decimal point
meaning that the fifth digit after the decimal point is rounded.

N SN f(N)

2 1.00000 1.00918

3 2.12500 2.12790

4 3.28704 3.28829

5 4.46470 4.46535

6 5.65036 5.65074

7 6.84065 6.84089

8 8.03386 8.03402

9 9.22902 9.22913

10 10.42555 10.42563

11 11.62308 11.62315

12 12.82137 12.82142

13 14.02023 14.02023

14 15.21955 15.21958

15 16.41923 16.41925

16 17.61921 17.61923

17 18.81943 18.81945

18 20.01985 20.01987

19 21.22045 21.22046

20 22.42119 22.42120

lated numerically) for any arbitrary number N = 2, 3, . . .
of dipoles.

Looking back at Eq.(10), one might be tempted to be-
lieve that a natural first step is to cancel out the first
terms of the last two sums, i.e. (1/N2−N/N3) and then
make the approximation of replacing the sums with inte-
grals. We tried that, but we noticed that we would get a
worse approximation than the one obtained in Eq.(12).
Note that the expression for SN in Eq.(10) contains the
difference between two infinite sums. Replacing the sums
with integrals as done in Eq.(12) will necessarily result
in errors. It turns out that the errors introduced while
approximating each of the two sums with an integral ex-
pression cancel out to a very large degree when the differ-
ence is calculated. This is the reason why the expression
for f(N) in Eq.(13) is such an accurate approximation
to SN in Eq.(10). One can pursue the matter in more
depth and, perhaps, recalculate the finite sums in Eq.(6)
differently. This may lead to an improved approximate
expression for SN that goes beyond the function f(N) in
Eq.(13). However, we expect that such an improvement
of f(N) would be quite small (of the order of 1/N3 as we
estimate it later on).

Results for SN and f(N) for systems with 2 ≤ N ≤ 20
dipoles are shown in Table. I. The difference f(N) −
SN for a system of 2 ≤ N ≤ 10 dipoles is shown in
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FIG. 2: Difference f(N)−SN between the analytical function,
f(N) = N ξ(3)− ξ(2) + 1

2N
and the numerically exact series,

SN =
∑N

i<j
1

(j−i)3
calculated for values 2 ≤ N ≤ 10 (filled

circles). The deviation f(N) − SN is fitted quite well by the
function 1

12N3 represented as a solid line.

Fig. 2 as filled circles. We used several simple functions
to find a good fit for the data points in Fig. 2 (the filled
circles). We found out that the deviation f(N)−SN can
be approximated quite well by the function 1

12N3 which
is shown as a solid line in Fig. 2. This result suggests
that the difference f(N) − SN decreases approximately
as 1/(12N3) with increasing N .
The numerical results in Table. I indicate that the dif-

ference f(N)−SN decreases from ∼ 9×10−3 (the largest
discrepancy for N = 2) to ∼ 8×10−5 (for N = 10). This
difference becomes practically zero when the size of the
system grows further. Note that SN ≈ N ξ(3) for large
N . This means that SN/N is convergent. In fact, it is
straightforward to verify that:

lim
N→∞

SN

N
= lim

N→∞

f(N)

N
= ξ(3) ≈ 1.20206 . (14)

This leads to the correct value for the ground state energy
per dipole in the thermodynamic limit:

lim
N→∞

U(N)

N
= −2 ξ(3)E0 ≈ −2.40412E0 , (15)

where E0 is the unit of energy defined in Eq.(4).
At this juncture, it worth commenting that one might

find attractive of using similar techniques to obtain ap-
proximations for the ground state energy of finite systems
of dipoles in higher dimensional 2D or 3D crystal lattices.
The ground state configuration for a system of arbitrary
N dipoles placed at the sites of a 2D or 3D crystal lattice
is highly non-trivial. It may be possible that approximate
analytical expressions may be found in the N → ∞ limit
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by using similar techniques. However, it is unlikely that
highly accurate expressions can be obtained in such a
simple way when considering a finite system with an ar-
bitrary number of N ≥ 2 dipoles in a 2D or 3D crystal
lattice.
To conclude, in this work we investigated the ground

state energy of a finite system with an arbitrary num-
ber N ≥ 2 of electric dipoles localized at the sites of a
regular 1D crystal lattice. We derived an analytic ex-
pression for the ground state energy of the system at
any given number N ≥ 2 of dipoles. The analytic for-
mula that we obtained gives results that are extremely
accurate. The energy obtained from the analytic formula
differs from the numerically exact values by a very small
amount (for example, the difference is ∼ 8 × 10−5 for a
system with N = 10 dipoles). The results are practically
indistinguishable as the size of the system grows further
(for example, the difference becomes ∼ 8 × 10−8 for a
system with N = 100 dipoles). Based on these consid-

erations, we can conclude that, for any arbitrary system
of N dipoles in a regular 1D crystal lattice, there is no
practical difference between the energy −2E0 f(N) and
the numerically calculated ground state energy, U(N) =
−2E0 SN since it was verified that f(N) approximates
the numerically exact values of SN with an astonishing
accuracy that only increases as N increases. This result
is very appealing due to its simplicity and appears to be
an attractive feature of this particular regular 1D crystal
lattice model.
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