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Abstract

We report exact analytical results for the energy of the Bose Laughlin state of small systems of
electrons at half filling factor of the lowest Landau level. The results apply to a disk geometry and the
number of particles in the system consists of up to four electrons immersed in a neutralizing jellium
background. Exact calculation of various forms of energy becomes feasible after one transforms all
the quantities of interest in terms of Jacobi coordinates. Analytical results of this nature serve as
excellent benchmarks to test the accuracy of various computational methods and approaches used
in the field.

I. INTRODUCTION

The physics of quantum Hall effects is essentially the
physics of two remarkable phenomena known as the inte-
ger quantum Hall effect (IQHE) [1–4] and the fractional
quantum Hall effect (FQHE) [5–15]. Both phenomena
occur in a two dimensional (2D) electronic system in a
strong perpendicular magnetic field. When electrons in a
2D system are subject to a perpendicular magnetic field,
their energy values are quantized to a set of discrete levels
called Landau levels (LLs). Each LL can accommodate
up to a certain number of electrons, namely, the number
of available quantum states (the degeneracy) of each LL
is some quantity, Ns. The actual number of electrons
divided by this quantity gives the filling factor defined
as ν = N/Ns where N is the number of electrons. The
filling factor uniquely defines a quantum Hall many-body
state. If N ≥ Ns the filling factor is ν ≥ 1 and the IQHE
happens when ν is integer. The origin of the IQHE can
be understood from the basic quantum mechanics [16] in
terms of single particle states without inclusion of elec-
tron interactions [17]. On the other hand, when N < Ns,
the filling factor is ν < 1. For such a case, electrons par-
tially fill the available quantum states in the lower spin
sub-band of the lowest Landau level (LLL). FQHE occurs
at fractional values ν = 1/3, 1/5, and so on.

In a strong magnetic field when all electrons are ac-
commodated in the LLL, the kinetic energy of electrons
is frozen to a constant value. As a result, the physics
of the system is dominated by electron–electron inter-
actions. FQHE represents a novel quantum many-body
incompressible electronic liquid phase that arises due to
strong electron-electron correlations. The most robust
FQHE states occur in the LLL at filling factors, ν = 1/3
and 1/5. A good description of such states is provided by
Laughlin’s wave function [6]. Laughlin’s approach when
applied to a filling factor, ν = 1/2 leads to a Bose Laugh-
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lin state for the electrons. The Bose Laughlin wave func-
tion is not directly related to the physics of the FQHE,
but it has been speculated that such a wave function
might be a good candidate to describe a rapidly rotat-
ing, dilute Bose-Einstein condensate (BEC) at very low
temperature [18–27]. The effect of fast rotation in a BEC
system of harmonically confined 2D bosons mimics a per-
pendicular magnetic field [28–30]. It has been predicted
that, for fast rotation, the harmonically confined BEC
system enters in the quantum Hall regime [31–39]. A
strongly correlated state in this regime may be described
by a Bose Laughlin wave function for the appropriate
even-denominator filling factor. A weakly interacting
BEC that rotates in either a harmonic trap or a weakly
anharmonic trapping potential was recently studied. It
was found that, in the case of a purely harmonic po-
tential, the gas makes a transition from the mean-field
regime to the correlated Laughlin regime [40]. Quantum
Hall states of bosons in rotating anharmonic traps have
also been considered in a model of bosons in the LLL
in a rotating trap where the confinement potential is a
sum of a quadratic and a quartic term [41]. In all these
cases, the interactions between particles are modeled by
a Dirac delta potential. Calculations show a transition
from a pure Laughlin state to a state containing an addi-
tional giant vortex at the center of the trap (a Laughlin
quasi-hole). Results seem to indicate that when a BEC
rotates in a purely harmonic potential with an angular
frequency which is close to the trap frequency, its many-
body state becomes a Bose Laughlin state. However, it
is remarked that achieving these states experimentally
is very difficult since in a real experiment no trapping
potential is ever exactly harmonic [42].

The renewal of interest on the Bose Laughlin state calls
for the necessity of analytical results that would serve as
undisputed benchmarks to test the accuracy of various
complicated calculations [43–45]. The objective of this
work is to address this need and report some exact an-
alytical results for the energy of a quantum Hall system
with 2 ≤ N ≤ 4 electrons described by a Bose Laughlin
wave function for filling factor ν = 1/2 of the LLL.
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II. MODEL

In this work we adopt a disk geometry model [46–48].
In the disk geometry, the electrons are confined to a 2D
plane. A positive uniformly charged disk represents the
jellium background [49, 50] and ensures the overall charge
neutrality of the system. We consider systems of N ≥ 2
electrons each with charge −e (e > 0) and mass me in
presence of a positive uniformly charged finite disk with
area, ΩN = π R2

N where RN is the radius of the disk. The
electrons are subject to a uniform perpendicular mag-
netic field of the form:

~B = (0, 0,−B) , (1)

where B is the magnitude of the magnetic field. The

choice of the negative sign of the z-component of ~B is
a matter of convenience [51]. With this choice, one can
express the resulting wave functions in terms of the com-
plex variable, z = x + i y rather than its complex con-
jugate. It is assumed that the electrons have their spins
fully polarized in the direction of the magnetic field. The
density of the system (number of electrons per unit area)
or, equivalently, the uniform density of the background
is constant:

ρ0 =
N

ΩN

. (2)

For a quantum Hall state with a given filling factor, ν
the density of the system can also be written as:

ρ0 =
ν

2π l20
, (3)

where l0 =
√

~/(eB) is the electron’s magnetic length
and ~ is the reduced Planck’s constant. By using Eq.(2)
in conjunction with Eq.(3) one can calculate that the
radius of the positive neutralizing background disk varies
with N as:

RN

l0
=

√

2N

ν
. (4)

The quantum Hamiltonian for the system is:

Ĥ = K̂ + V̂ , (5)

where K̂ and V̂ are, respectively, the kinetic and poten-
tial energy operators. The kinetic energy operator (in a
magnetic field) is:

K̂ =
1

2me

N
∑

i=1

[

~̂pi + e ~A(~ri)
]2

, (6)

where ~̂p is the usual 2D linear momentum operator, ~A(~r)
is the magnetic vector potential for a symmetric gauge
and ~r is a 2D position vector. The total potential energy
operator is written as:

V̂ = V̂ee + V̂eb + V̂bb , (7)

and consists of electron-electron (ee), electron-
background (eb) and background-background (bb)
interaction potential energy terms:

V̂ee =
N
∑

i<j

v(~ri − ~rj) , (8)

V̂eb = −ρ0

N
∑

i=1

∫

ΩN

d2r v(~ri − ~r ) , (9)

and

V̂bb =
ρ20
2

∫

ΩN

d2r

∫

ΩN

d2r ′ v(~r − ~r ′) . (10)

The interaction potential appearing in the expressions
above is a standard Coulomb interaction potential:

v(~ri − ~rj) =
ke e

2

|~ri − ~rj |
, (11)

where rij = |~ri−~rj | is the separation distance between a
pair of particles/elementary charges. It is customary in
the literature not to include Coulomb’s electric constant,
ke in expressions for the interaction potential and/or en-
ergy. In all expressions above, ~ri (or ~rj) denote electronic
2D position vectors while ~r and ~r ′ are background coor-
dinates that are confined within the disk.

III. ENERGY OF THE BOSE LAUGHLIN

STATE AT HALF FILLING

We consider a quantum Hall state of electrons at filling
factor ν = 1/2 of the LLL. Electrons are fermions, there-
fore, the correct quantum state for the electrons should
be described by an antisymmetric wave function with
respect to the particle’s coordinates given that the sys-
tem is considered to be fully-spin polarized. However,
Laughlin’s approach for this specific filling factor leads
to a symmetric wave function. We call such a symmetric
wave function, a Bose Laughlin wave function [52] and
its form is:

Ψ(z1, . . . , zN ) =
N
∏

i<j

(zi − zj)
2
exp



−
N
∑

j=1

|zj |2
4 l20



 ,

(12)
where zj = xj + i yj are 2D position vectors in complex

notation and i =
√
−1 is the imaginary number. Since

the wave function in Eq.(12) is symmetric under the ex-
change of coordinates, it represents a Bose liquid state.
In order to avoid any misunderstanding, we again point
out that the wave function in Eq.(12) is not the true
quantum ground state for a system of electrons at fill-
ing factor ν = 1/2 of the LLL. The Bose Laughlin wave



3

function would had been the expected quantum ground
state at filling factor ν = 1/2 should the electrons had
been bosons (but they are not).
Because the wave function lies entirely in the LLL,

the expectation value of the kinetic energy operator is a
constant:

〈K̂〉
N

=
~ωc

2
, (13)

where ωc is the cyclotron frequency. In order to calcu-
late the total ground state interaction energy of the sys-
tem, we must calculate each of the following terms: 〈V̂ee〉,
〈V̂eb〉 and 〈V̂bb〉, where in a short-hand notation 〈Ô〉 de-
notes the standard quantum expectation value of a given
operator, 〈Ψ|Ô|Ψ〉/〈Ψ|Ψ〉 with respect to the wave func-

tion used to describe the system. One can write 〈V̂ee〉
as:

〈V̂ee〉 =
N(N − 1)

2

〈

v(~r1 − ~r2)
〉

, (14)

and this expression applies to systems with an arbitratry
number of N ≥ 2 electrons. The expression for 〈V̂eb〉 can
be written as:

〈V̂eb〉 = −ρ0

∫

d2r1 ρN (~r1)

∫

ΩN

d2r v(~r1 − ~r) , (15)

where ρN (~r1) is the one-particle density function:

ρN (~r1) = N

∫

d2r2 . . .
∫

d2rN |Ψ(z1, . . . , zN )|2
〈Ψ|Ψ〉 , (16)

and

〈Ψ|Ψ〉 =
∫

d2r1

∫

d2r2 . . .

∫

d2rN |Ψ(z1, . . . , zN )|2 ,

(17)

represents the norm. The quantity 〈V̂bb〉 is:

〈V̂bb〉 =
ρ20
2

∫

ΩN

d2r

∫

ΩN

d2r′ v(~r − ~r ′) . (18)

Note that
∫

ΩN
means integration over a finite disk region

while
∫

means integration over the whole 2D space. The
total ground state interaction energy per particle can be
written as a sum of three terms:

ε = εee + εeb + εbb , (19)

where ε = 〈V̂ 〉/N , εee = 〈V̂ee〉/N , εeb = 〈V̂eb〉/N and

εbb = 〈V̂bb〉/N are, respectively, the total, ee, eb and bb
interaction energies per particle.
Among the quantities above, only εbb dos not depend

on the nature of the wave function used. The calcula-
tion of 〈V̂bb〉 and consequently εbb is straightforward but
not very easy to perform. Details of this calculation are
provided in Appendix. A. The final εbb result for the

Bose Laughlin state at ν = 1/2 consisting of an arbitrary
number N of particles is written as:

εbb =
8

3π

√

N

4

ke e
2

l0
. (20)

The layout of the calculation of 〈V̂eb〉 and consequently
εeb is given in Appendix. B.
The calculation of 〈V̂ee〉 and consequently εee involves

the magnitude squared of the Bose Laughlin wave func-
tion in Eq.(12) which can be written as:

|Ψ(z1, . . . , zN )|2 =
[

FN (~r1, . . . , ~rN )
]2

exp

[

−SN (~r1, . . . , ~rN )

2 l20

]

,

(21)
where

FN (~r1, . . . , ~rN ) =
N
∏

i<j

(~ri − ~rj)
2
, (22)

and

SN (~r1, . . . , ~rN ) =

N
∑

j=1

r2j . (23)

In the expressions above, all coordinates, ~rj are 2D vec-
tors while rj = |~rj | ≥ 0 are their corresponding magni-
tudes.
The Jacobi coordinates are described in various publi-

cations [53, 54]. For this reason, we highlight very briefly
their main properties without going into much details.

The Jacobi coordinates, ~ξ1, . . . , ~ξN for a system of N
identical particles with positions, ~r1, . . . , ~rN are written
as:



































~ξ1 = ~r1 − ~r2
~ξ2 = ~r1+~r2

2 − ~r3
· · · · · · · · ·
~ξj =

~r1+...+~rj
j

− ~rj+1

· · · · · · · · ·
~ξN = ~R = ~r1+...+~rN

N
,

(24)

where ~R is the center-of-mass coordinate of the system.
The Jacobi coordinates are orthogonal in any dimension:

∫ N
∏

k=1

d~rk =

∫ N
∏

k=1

d~ξk ; N ≥ 2 . (25)

The Jacobi coordinates satisfy the following relation:

N
∑

k=1

r2k =
N−1
∑

j=1

j

j + 1
ξ2j +NR2 ; N ≥ 2 . (26)

The usefulness of Jacobi coordinates stands on the
fact that the two functions, FN (~r1, . . . , ~rN ) and
SN (~r1, . . . , ~rN ) can be conveniently written in their
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terms. As a result, the exact calculation of many quan-
tities is facilitated when all the relevant expressions are
rewritten in terms of the Jacobi coordinates. Explicit an-
alytic expressions for FN (~r1, . . . , ~rN ) and SN (~r1, . . . , ~rN )

in terms of the Jacobi coordinates, ~ξ1, . . . , ~ξN are pro-
vided in Ref.[55] where the Laughlin state at filling fac-
tor ν = 1/3 was studied. For example, for N = 2 and 3
electrons one has:







F2(~ξ1) = ξ21

S2(~ξ1, ~R) =
ξ2
1

2 + 2R2

(27)

and











F3(~ξ1, ~ξ2) =
ξ2
1

16

[

(4 ξ22 + ξ21)
2 − 16 (~ξ1 ~ξ2)

2
]

S3(~ξ1, ~ξ2, ~R) =
ξ2
1

2 +
2 ξ2

2

3 + 3R2 .

(28)

The expressions are a little bit more elaborate for N = 4
electrons:

F4(~ξ1, ~ξ2, ~ξ3) =
ξ21
16

[

(4 ξ22 + ξ21)
2 − 16 (~ξ1 ~ξ2)

2
]

(

ξ23 +
4

9
ξ22 − 4

3
~ξ2 ~ξ3

)

[

(

ξ21
4

+ ξ23 +
ξ22
9

+
2

3
~ξ2 ~ξ3

)2

− 1

9

(

~ξ1 ~ξ2 + 3 ~ξ1 ~ξ3

)2
]

(29)

and

S4(~ξ1, ~ξ2, ~ξ3, ~R) =
ξ21
2

+
2 ξ22
3

+
3 ξ23
4

+ 4R2 . (30)

Since all quantities of interest can be written in terms
of the Jacobi coordinates, the only steps left to final-

ize an analytic calculation involve lengthy but relatively
straighforward calculations of integrals. The most diffi-
cult integrals originate from the 〈V̂ee〉 term because this
quantity involves two-body operators. For such a case,
one can write the interaction energy per particle using
Jacobi coordinates as:

εee =
〈V̂ee〉
N

=
(N − 1)

2

∫

d2ξ1 · · ·
∫

d2ξN−1

∫

d2R
[

FN (~ξ1, · · · , ~ξN−1)
]2

e
− 1

2 l2
0

SN (~ξ1,··· ,~ξN−1, ~R) ke e2

ξ1

∫

d2ξ1 · · ·
∫

d2ξN−1

∫

d2R
[

FN (~ξ1, · · · , ~ξN−1)
]2

e
− 1

2 l2
0

SN (~ξ1,··· ,~ξN−1, ~R)
. (31)

Calculations for N = 2, 3 and 4 particles may appear
challenging, but, in our opinion, they are straightfor-
ward. Details of the energy calculations for a system
of N = 2 particles are provided in Appendix. C. We
think that such mathematical details would be useful for
the reader to understand the flow of the calculations not
only for the specific N = 2 case, but also for a more gen-
eral situation of a system with an arbitrary number N
of particles. For the sake of brevity, we skip the details
of the calculations for N ≥ 3 particles and go straight
to the final analytic results for various energy terms (εee
can also be found in Ref. [29]) that correspond to a Bose
Laughlin state of electrons at filling factor ν = 1/2 of
the LLL. In the following expressions, exp(x) represents
the usual exponential function while In(x) are modified
Bessel functions [56] of the first kind of order n.

A. N=2



























εee =
3
√
π

32
ke e2

l0

εeb = −
√

π
2

11 I0(2)+55 I1(2)
16 exp(2)

ke e2

l0

εbb =
4
√
2

3π
ke e2

l0

(32)

B. N=3



























εee =
1353

√
π

8192
kee

2

l0

εeb = −
√

π
2

5659 I1(3)−2893 I0(3)
352 exp(3)

ke e2

l0

εbb =
4√
3π

ke e2

l0

(33)
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C. N=4



























εee =
4200674715

√
π

18555600896
kee

2

l0

εeb = −
√

π
2

177876789 I1(4)−142531687 I0(4)
1698816 exp(4)

ke e2

l0

εbb =
8
3π

ke e2

l0

(34)

The numerical values of the corresponding analytical
energy results after being approximated with an accuracy
of five digits after the decimal point are given in Table I.
In Table I we also show specific numerical values of vari-
ous forms of energy. The reported results are rounded at
the fifth digit after the decimal point.

TABLE I: Interaction energies per particle (in units of
ke e

2/l0) for the Bose Laughlin state at filling factor ν = 1/2
for systems with N = 2, 3 and 4 electrons in a disk geometry.
The energy estimates are rounded at the fifth digit after the
decimal point. The various interaction energies, namely, εee,
εeb, εbb and ε = εee + εeb + εee represent, respectively, the
electron-electron (ee), electron-background (eb), background-
background (bb), and total energy per particle.

N εee εeb εbb ε
2 0.16617 -1.19326 0.60021 -0.42688
3 0.29274 -1.46283 0.73511 -0.43498
4 0.40125 -1.69042 0.84883 -0.44034

IV. CONCLUSIONS

In this work we report exact analytic results for the en-
ergy of Bose Laughlin states corresponding to small sys-
tems of N = 2, 3 and 4 electrons at half filling factor of
the LLL. The results obtained for various forms of energy
per particle apply to a quantum Hall system of electrons
in a disk geometry. As seen from the results in Table I,
one notices that εeb ≈ −2 εbb even for small values of N
as the ones considered in this work. By comparing the
expression in Eq.(15) to that in Eq.(18) one expects such
a conclusion to be valid when ρ(~r1) ≈ ρ0 with the un-
derstanding that ρ(~r1) becomes negligible for |~r1| > RN .
Our first guess would had been that this condition is
satisified for relatively large values of N . However, we
are somehow surprised to see that the condition holds
reasonably well also for small systems with 2 ≤ N ≤ 4
electrons. As already seen from Monte Carlo simulation
studies, the overall energy per particle decreases mono-
tonically as N increases. The thermodynamic (N → ∞)
value of the energy per particle for the Bose Laughlin
state at half filling of the LLL was estimated in Ref. [52]
to be −0.48415 ke e

2/l0. This implies that the relative
difference between the energy value for N = 4 and its
N → ∞ counterpart is only about 9%.

The exact energy results obtained in this work can be
immediately used to test the accuracy of numerical ap-
proaches or treatments used to study strongly correlated
systems of electrons similar in nature to the quantum
Hall states currently studied. From this perspective, one
may rely on them to gauge the accuracy of Monte Carlo
calculations for quantum Hall systems of electrons in a
disk geometry. For example, Ref.[52] reports some Monte
Carlo results for the energy of the Bose Laughlin state at
even-denominator filling factors at various N including
N = 4 electrons. It is reassuring to see that the Monte
Carlo results for N = 4 electrons at filling factor ν = 1/2
reported in Ref.[52] agree rather accurately with the ex-
act analytical value calculated in this work (such ana-
lytical result were unavailable at that time). The small
discrepancies noted may likely originate from the use of
tabulated functions in Monte Carlo calculations to calcu-
late the eb energy term. It is also important to note that,
although we limited our calculations to systems with up
to N = 4 electrons, the method employed can in princi-
ple be extended to larger systems. The only drawback in
such a scenario is an undesirable increase in the mathe-
matical complexity of various expressions.

For a given quantum Hall 2D system of N particles,
any conventional calculation of the expectation value of
a quantum operator with respect to a wave function will
involve 2N dimensional integrals. The benefit of using
the Jacobi transformations is that, in specific cases and
depending on the nature of the wave function, one may
reduce the number of variables. Such is the situation
that arises for a Laughlin-like wave function. The poly-
nomial part of a Laughlin-like wave function depends on
2D position vectors ~r1, . . . , ~rN for a system of N particles
and is very difficult to deal with. However, rewriting this
quantity in terms of Jacobi coordinates leads to expres-

sions that depend on N−1 variables, ~ξ1, . . . , ~ξN−1 for the
same system of N particles. This is an important sim-
plification when it comes to small systems of N = 2 − 4
particles as can be illustrated by looking at the general
expression of the interaction energy per particle in terms
of Jacobi coordinates given in Eq.(31). By looking at
the mathematical structure of the expression in Eq.(31)
one notices that the two-body Coulomb interaction term
under the numerator’s integrand can be written as a func-
tion of only one variable (in this case ξ1) and the N -th

Jacobi variable, ~ξN = ~R will eventually ”disappear” from
the calculations. As stated earlier, one can, in principle,
extend such calculations to larger systems with N ≥ 5
particles. However, as one may deduce by looking at the

expression for F4(~ξ1, ~ξ2, ~ξ3) in Eq.(29), what happens is
that the polynomial functions become very complicated
for N ≥ 5. In a nutshell, there are limitations to the
method as N increases. One may find still useful to
push the calculations beyond N = 4 particles which is
the value where we stopped. However, we think that
the method loses its elegance and simplicity if pushed
to systems with N ≥ 5 particles. Analytical results of
this nature can be very useful but they cannot substitute
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more powerful numerical methods such as Monte Carlo
simulations which can be extended to systems with hun-
dreds of particles. Therefore, Monte Carlo simulation
methods or similarly powerful numerical methods should
be chosen when dealing with any many-body system that
is cumbersome to be treated analytically.
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APPENDIX A: BACKGROUND-BACKGROUND

ENERGY

We want to calculate the background-background en-
ergy of a uniformly charged disk:

〈V̂bb〉 =
ρ20
2

∫

ΩN

d2r

∫

ΩN

d2r ′ ke e
2

|~r − ~r ′| , (A1)

where ~r and ~r ′ are 2D vectors. This quantity represents
the Coulomb repulsion self-energy of the charge con-
tained on a uniformly charged disk with area, ΩN = π R2

N

containing a total charge QN = N e. Note that, in the
above expression, ρ0 = N/ΩN is uniform particle density
(not uniform charge density). The quantity in Eq.(A1)
can be written more explicitely in 2D polar coordinates
as:

〈V̂bb〉 =
ρ20
2

∫ RN

0

dr r

∫ 2π

0

dϕ

∫ RN

0

dr ′ r ′
∫ 2π

0

dϕ ′ ke e
2

|~r − ~r ′| ,
(A2)

where r = |~r| ≥ 0 and r ′ = |~r ′| ≥ 0. The calculation of
the integral in Eq.(A2) can be facilitated by writing:

1

|~r − ~r ′| =
+∞
∑

m=−∞

∫ ∞

0

dk eim (ϕ−ϕ ′) Jm(k r) Jm(k r ′) ,

(A3)
where Jm(x) are Bessel functions of the first kind of order
m. Integration over the angular variables results in:

∫ 2π

0

dϕ

∫ 2π

0

dϕ ′ 1

|~r − ~r ′| = (2π)2
∫ ∞

0

dk J0(k r) J0(k r
′) .

(A4)
One uses the result from Eq.(A4) to express the quantity
in Eq.(A2) as:

〈V̂bb〉 =
ρ20
2

(ke e
2) (2π)2

∫ ∞

0

dk

∫ RN

0

dr r J0(k r)

∫ RN

0

dr ′ r ′ J0(k r
′) . (A5)

The following formula applies:
∫ a

0

dx xJ0(x) = a J1(a) . (A6)

Based on such formula one calculates that:

〈V̂bb〉 =
ρ20
2

(ke e
2) (2π)2

∫ ∞

0

dk

[

RN

J1(k RN )

k

]2

.

(A7)
Another integral formula is worth mentioning:

∫ ∞

0

dx
[J1(x)

x

]2

=
4

3π
. (A8)

A straightforward application of the formula in Eq.(A8)
leads to:

〈V̂bb〉 =
ρ20
2

(ke e
2) (2π)2 R3

N

4

3π
. (A9)

One may group the terms in Eq.(A9) the following way:

〈V̂bb〉 =
8

3π
(ke e

2) ρ20
(π R2

N )2

RN

. (A10)

The expression in Eq.(A10) allows one to obtain the fol-
lowing compact result:

〈V̂bb〉 =
8

3π

ke (N e)2

RN

. (A11)

We know from Eq.(4) that RN/l0 =
√

2N/ν. By sub-
situting the expression for RN from Eq.(4) in Eq.(A11)
one obtains:

〈V̂bb〉 =
8N

3π

√

ν N

2

ke e
2

l0
. (A12)
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From here, the background-background energy per par-
ticle follows:

εbb =
〈V̂bb〉
N

=
8

3π

√

ν N

2

ke e
2

l0
. (A13)

The filling factor is ν = 1/2 in our case and as a result
one has:

εbb =
8

3π

√

N

4

ke e
2

l0
; ν = 1/2 . (A14)

It is obvious from start that the background-background
energy term does not depend on the nature of the wave
function used to describe the quantum system.

APPENDIX B: ELECTRON-BACKGROUND

ENERGY

We want to calculate the following quantity:

〈V̂eb〉 = −ρ0

∫

d2r1 ρN (~r1)

∫

ΩN

d2r v(~r1 − ~r) , (B1)

where v(~r1 − ~r) = ke e
2/|~r1 − ~r| and

ρN (~r1) = N

∫

d2r2 . . .
∫

d2rN |Ψ(z1, . . . , zN )|2
〈Ψ|Ψ〉 , (B2)

is the one-particle density function corresponding to a
quantum state of N particles. The value of 〈V̂eb〉 depends
on the nature of the wave function that is used to describe
the system since the one-particle density function ρN (~r1)
depends on the wave function. We can write the quantity
in Eq.(B1) more explicitely as:

〈V̂eb〉 = −ρ0

∫

d2r1 ρN (~r1)

∫ RN

0

dr r

∫ 2π

0

dϕ
ke e

2

|~r1 − ~r| .
(B3)

One can expand 1/|~r1 − ~r| the same way as in Eq.(A3)
to obtain: the result:

∫ 2π

0

dϕ
1

|~r1 − ~r| = 2π

∫ ∞

0

dk J0(k r1) J0(k r) . (B4)

This allows us to write:

〈V̂eb〉 = −ρ0 (ke e
2) (2π)

∫

d2r1 ρN (~r1)

∫ RN

0

dr r

∫ ∞

0

dk J0(k r1) J0(k r) . (B5)

After rerranging the terms, one writes

〈V̂eb〉 = −ρ0 (ke e
2) (2π)

∫

d2r1 ρN (~r1)

∫ ∞

0

dk J0(k r1)

∫ RN

0

dr r J0(k r) . (B6)

The formula in Eq.(A6) leads to the following result:
∫ RN

0

dr r J0(k r) = RN

J1(k RN )

k
. (B7)

This means that we can write the expression in Eq.(B6)
as:

〈V̂eb〉 = −ρ0 (ke e
2) (2π)RN

∫ ∞

0

dk

k
J1(kRN )fN (k) ,

(B8)
where

fN (k) =

∫

d2r1 ρN (~r1) J0(k r1) , (B9)

is an auxiliary function. For a quantum Hall state with
filling factor ν, one has ρ0 = ν/(2π l20) which allows us

to write:

〈V̂eb〉 = −ν
RN

l0

ke e
2

l0

∫ ∞

0

dk

k
J1(kRN )fN (k) . (B10)

Since RN/l0 =
√

2N/ν one can write the quantity in
Eq.(B10) as:

〈V̂eb〉 = −
√
2 ν N

ke e
2

l0

∫ ∞

0

dk

k
J1(kRN )fN (k) . (B11)

The electron-background enegy per particle follows:

εeb =
〈V̂eb〉
N

= −
√

2 ν

N

ke e
2

l0

∫ ∞

0

dk

k
J1(k RN ) fN (k) .

(B12)
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For the particular case of filling factor ν = 1/2 one has:

εeb = − 1√
N

ke e
2

l0

∫ ∞

0

dk

k
J1(kRN ) fN (k) ; ν = 1/2 .

(B13)
Note that the calculation of εeb involves a multi-step ap-
proach. One must, first, calculate ρN (~r1). From there
one must obtain fN (k) defined in Eq.(B9) and, finally,
one must calculate the integral in Eq.(B13).

APPENDIX C: ENERGY FOR N = 2

By using the Jacobi variables, one can write the inter-
action energy per particle for a system of N = 2 particles
as:

εee =
1

2

∫

d2ξ1
∫

d2R
[

F2(~ξ1)
]2

e
− 1

2 l2
0

S2(~ξ1, ~R) ke e2

ξ1

∫

d2ξ1
∫

d2R
[

F2(~ξ1)
]2

e
− 1

2 l2
0

S2(~ξ1, ~R)
,

(C1)

where F2(~ξ1) = ξ21 and S2(~R, ~ξ1) =
ξ2
1

2 + 2R2. One can
rewrite the quantity in Eq.(C1) as:

εee =
1

2

∫

d2ξ1 ξ
4
1 e

−
ξ2
1

4 l2
0

ke e2

ξ1

∫

d2ξ1 ξ41 e
−

ξ2
1

4 l2
0

. (C2)

The integrals above are simple and the final result is:

εee =
3
√
π

32

ke e
2

l0
. (C3)

The one-particle density function for a system ofN = 2
particles can be written as:

ρN=2(~r1) = 2

∫

d2r2 |Ψ(z1, z2)|2
∫

d2r1
∫

d2r2 |Ψ(z1, z2)|2
, (C4)

where

|Ψ(z1, z2)|2 = (~r1 − ~r2)
4 e

− 1

2 l2
0

(r2
1
+r2

2
)
. (C5)

After completing the integrals one can express the final
result as:

ρN=2(~r1) = ρ0 e
− 1

2

(

r1
l0

)

2

[

1 +

(

r1
l0

)2

+
1

8

(

r1
l0

)4
]

,

(C6)

where ρ0 = ν/(2π l20) is the uniform density at filling
factor ν = 1/2. The one-particle density function is
isotropic. It depends only on variable r1 = |~r1| ≥ 0
and does not depend on angle ϕ1. The reader can verify,
starting from the expression in Eq.(C6) that:

∫

d2r1 ρN=2(~r1) = 2 . (C7)

Since ρN=2(~r1) is isotropic one has:

fN=2(k) = 2π

∫ ∞

0

dr1 r1 ρN=2(~r1) J0(k r1) . (C8)

The final result after carrying out the integration is:

fN=2(k) = e−
1

2
(k l0)

2

[

2− (k l0)
2
+

1

16
(k l0)

4

]

, (C9)

Based on Eq.(B13) one has for N = 2:

εeb = − 1√
2

ke e
2

l0

∫ ∞

0

dk

k
J1

(

2
√
2 k l0

)

fN=2(k) .

(C10)
The integrals are standard and the final result is:

εeb = −
√

π

2

11 I0(2) + 55 I1(2)

16 exp(2)

ke e
2

l0
, (C11)

where In(x) are modified Bessel functions of the first kind
of order n. Note that in this case we denote the expo-
nential function as exp(x) and not ex so that there is no
confusion with the symbol e of charge.

The result for the εbb for a system of N = 2 particles
is easily obtained from the general formula in Eq.(A14)
and is written as:

εbb =
4
√
2

3π

ke e
2

l0
. (C12)
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