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ABSTRACT
One important application of transcranial magnetic stimulation
(TMS) is to map cortical motor topography by spatially sampling
the motor cortex, and recording motor evoked potentials (MEP)
with surface electromyography. Standard approaches to TMS map-
ping involve repetitive stimulations at different loci spaced on a
(typically 1 cm) grid on the scalp. These mappings strategies are
time consuming and responsive sites are typically sparse. Further-
more, the long time scale prevents measurement of transient cor-
tical changes, and is poorly tolerated in clinical populations. An
alternative approach involves using the TMS mapper expertise to
exploit the map’s sparsity through the use of feedback of MEPs to
decide which loci to stimulate. In this investigation, we propose a
novel active learning method to automatically infer optimal future
stimulus loci in place of user expertise. Specifically, we propose
an active Gaussian Process (GP) strategy with loci selection crite-
ria such as entropy and mutual information (MI). The proposed
method twists the usual entropy- and MI-based selection criteria by
modeling the estimated MEP field, i.e., the GP mean, as a Gaussian
random variable itself. By doing so, we include MEP amplitudes
in the loci selection criteria which would be otherwise completely
independent of the MEP values. Experimental results using real
data shows that the proposed strategy can greatly outperform com-
peting methods when the MEP variations are mostly confined in a
sub-region of the space.

CCS CONCEPTS
•Theory of computation→Active learning;Gaussian pro-

cesses; • Applied computing→ Health informatics.
KEYWORDS

Transcranial Magnetic Stimulation, Motor Evoked Potentials,
Motor Cortex, Gaussian Process, Active Learning
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1 INTRODUCTION
Transcranial magnetic stimulation (TMS), provides a non-invasive
causal probe of human cortical function. A strong magnetic field
applied to the scalp induces an electric field (E-field) within the
brain, which at sufficient intensity may result in supratheshold
depolarization of spatially selective cortical neuronal populations
and a macroscopic physiological response [18]. TMS can be used
for mapping muscle topography by spatially sampling the motor
cortex, and recording motor evoked potentials (MEP) [22] using
electromyography (EMG). Changes in motor topography assessed
with TMS have been associated with changes in function post
stroke, highlighting the potential of this technique for elucidating
biomarkers of recovery [17].

Traditionally, data acquisition has involved a time consuming
process in which repetitive stimuli are delivered at loci on a prede-
fined grid [20], limiting it’s use for clinical assessment. Recently,
our group has shown that more efficient mapping can be performed
using user-guided selection of stimulation loci based on real time
feedback of MEP responses [23, 24]. This strategy, however, still
requires relatively extensive sessions and, more importantly, hu-
man expertise in order to create reliable maps. In this contribution,
we aim at reducing the time and expertise needed to create reliable
motor cortex MEP maps by selecting stimulus loci using active
machine learning strategies.

In the context of machine learning, active learning consists of
a family of strategies in which learning algorithms take action in
selecting procedures or making queries that influence what data are
added to its training set [3]. Active learning for field estimation finds
correlates in different applications such as optimal sensor place-
ment [8, 16], active Gaussian processes [9], weather forecast [4],
kriging [6], among others. In most of the above-mentioned stud-
ies smooth regression strategies based on stochastic formulations,
more specifically Gaussian Processes (GPs), are naturally coped
with information-based criteria (Entropy and Mutual information)
for (near-) optimal location selection. Although such strategies are
successful in reducing uncertainty and providing smooth estima-
tion across the entire spatial domain, they may wast valuable time
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and resources when the field of interest is confined in a small region
of the space. The reasoning for this behavior is due to the fact that
the GP’s covariance depends exclusively on the selected location
points neglecting the information provided by the measurements
taken at these locations. For TMS mapping active learning is a sur-
rogate for human expertise when the objective is to optimally select
loci and respective MEP measurements used to learn MEP spatial
fields. Therefore, accounting for the amplitude of the measurement
is critical.

Our specific objective here is to find the excitation area (region
of interest) and stimulate in that region. To this aim, we designed
an alternative approach to traditional active learning that takes
into account the variations of the function to predict optimal future
stimulus loci. This new design led to an iterative algorithm that
alternates between the GP characterization of the MEP field and loci
selection using entropy and mutual information criteria. Differently
from previous works which directly considered Gaussian distribu-
tion provided by the GP for computing the entropy or MI, here, we
model the GP mean as a Gaussian random variable and construct
our loci selection criteria based on this random variable. The re-
sulting algorithm provides results that are much closer to expert
user-guided mapping strategies, and are faster and more accurate
than are given by traditional active GP strategies [16]. Simulations
with real data was performed to assess the main characteristics of
the proposed method.

This paper is organized as follows. Section 2 briefly presents the
TMS Mapping Procedure. Section 3 presents a general discussion
about Gaussian Process Regression. Section 4 presents the proposed
active sampling methodology. Experimental results are presented
in Section 5 and final discussion and future work are discussed in
section 6.

2 TRANSCRANIAL MAGNETIC
STIMULATION MAPPING PROCEDURE

TMS mapping was conducted on a single healthy right handed sub-
ject (male, 34 years old) following IRB approved informed consent
and screening for contraindications to TMS. TMS mapping proce-
dures have been previous published elsewhere [23, 24]. Briefly, the
subject was seatedwith the right arm, hand, and fingers comfortably
secured in a brace to limit motion. Surface electromyographic activ-
ity (EMG, Delsys Trigno, 2kHz) was used to record motor evoked
potentials (MEPs), quantified as the peak-to-peak amplitude 20-
50ms after the TMS pulse (fig 1b), from the first dorsal interosseus
[FDI] of the right hand. All TMS (Magstim Rapid2, 70mm double
coil) stimuli were delivered to the left sensorimotor area. To as-
sure spatial TMS precision the subject’s head was coregistered to
a high-resolution anatomical MRI for frameless neuronavigation
(Advanced Neuro Technology). The TMS coil was held tangential to
the scalp with the handle posterior 45◦ off the sagittal plane. Follow-
ing determination of the hotspot the FDI resting motor threshold
(RMT) was calculated as the minimum intensity required to elicit
MEPs > 50µV in the FDI muscle on 50% of 6 consecutive trials. All
mapping was performed with the subject at rest and stimulation
intensity set to 110% of the determined RMT. During mapping the
TMS operator choose the 294 stimulus loci at their discretion, based

(a)

(b)

Figure 1: A graphical depiction of the analysis of MEPmaps:
(a) User points on the brain. (b)MEP signal and peak-to-peak
amplitude

on live feedback of MEP amplitude and shape with the goal to max-
imize the information obtained by increasing the density of points
in excitable and border regions while placing very few points in
null-response areas (fig 1a) [24].

3 GAUSSIAN PROCESS FOR TMS MAPPING
Gaussian process (GP) regression methods consist of defining sto-
chastic models for functions and performing inference in functional
spaces [21]. These methods have been shown to be useful in a
wide variety of fields and tasks including regression and classifi-
cation [21], detection [11, 12], unmixing [10], and Bayesian opti-
mization [7], to name but a few. This section briefly presents the
standard Gaussian process regression [21]. Given a set of N input-
output pairs {xk ,yk }Nk=1, x ∈ X ⊂ Rd , y ∈ R related according to
an arbitrary model such as

yk = ψ (xk ) + ηk (1)

with η ∼ N(0,σ 2
η ), and ψ ∈ H considered to be a function of a

reproducing kernel Hilbert space H defined over a compact set
X, GPs assume a Gaussian functional distribution as prior for the
functionψ |xk ∼ N(0,κ(xk ,xk )), where κ is a kernel function such
that κ(·,x) ∈ H . For a set of input points X = [x1, . . . ,xN ] the
prior distribution forψ becomesψ |X ∼ N(0,K), whereK ∈ RN×N

is the Gram matrix with entries [K]i j = κ(x i ,x j ). For a given set
of measurements y = [y1, . . . ,yN ]⊤ associated with the positions
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X , the prior distribution becomes

y ∼ N(0,K + σ 2
ηI ). (2)

The predictive distribution allows one to “predict” the value of the
function ψ⋆ for a new input value x⋆. Thus, we have ψ⋆ |x⋆ ∼

N(0,κ⋆⋆), where κ⋆⋆ ≜ κ(x⋆,x⋆). Since y and ψ⋆ are jointly
Gaussian their joint PDF is given by(

y

ψ⋆

)
∼ N

(
0,

(
K + σ 2

ηI κ⋆
κ⊤⋆ κ⋆⋆

))
, (3)

whereκ⋆ ≜ [κ(x1,x⋆), . . . ,κ(xN ,x⋆)]
⊤. Finally the predictive dis-

tribution can be obtained by conditioningψ⋆ over the observation
and the its respective positions as

ψ⋆ |y,X ,x⋆ ∼ N(ψ̂⋆, s
2
⋆) (4)

with ψ̂⋆ = κ⊤⋆
(
K + σ 2

ηI
)−1
y, and s2

⋆ = κ⋆⋆ − κ⊤⋆

(
K + σ 2

ηI
)−1
κ⋆.

The Bayesian framework also provides strategies to estimate free
parameters, such as the kernel parameters θ and the noise power
σ 2
η . The classical approach [21] aims at maximizing the marginal

likelihood p(y |X ,σ 2
η ,θ ) with respect to (σ 2

η ,θ ).

4 ACTIVE SAMPLE SELECTION
Active sample selection finds correlates in many fields and applica-
tions such as Optimal Sensor placement [8, 16], Active Gaussian
processes [9], weather forecast [4], etc. In most scenarios the prob-
lem is often stated as given a set of input-output pairs (xℓ,yℓ),
ℓ ∈ V , V being the index set of all possible data pairs, select a
subset A ⊂ V , with cardinality |A| = nA ≪ |V| = nV , which
can be obtained using some optimality criterion.

The literature presents near-optimal strategies that are often
based on information theoretic criteria to select appropriate data
samples. This copes very well with GPs since GPs provides a proper
stochastic framework which can be exploit to compute the desired
criteria [16, 19]. In [8, 16, 19] optimal point selection strategies are
presented in conjunction with GPs. In these works, the authors
consider entropy- and mutual information-based criteria to provide
a greedy near-optimal strategy which boils down to analyze the
variances provided by the GP. Although these strategies succeeded
in reducing GP uncertainty across the space, the variances provided
by the GP depend exclusively on the location points xk neglecting
completely information regarding field variations. This implies that
even if the mapped field presents variations confined into a specific
region, such methodologies will lead to evenly (depending on the
kernel selected) sampling the entire space what can lead to lost of
resolution in the region of interest.

To circumvent this issue, we propose here an alternative ap-
proach that takes into account the variations of the functionψ and
that are much closer to expert human mapping strategies. We use
the GP estimation (i.e., the GP mean) ψ̂ to construct an iterative
strategy where GP estimation and sample selection are performed
sequentially.

Thus, given an index setA with respective sample pairs (XA,yA )

the GP estimation ψ̂p∈V can be obtained by taking the mean of (4).
Assuming a zero-mean Gaussian prior for ψ̂p with covariance κ(·, ·)
we have

ψ̂p ∼ N(0,κpp ) (5)

with κpp ≜ κ(ψ̂p , ψ̂p ) and the MEP field at selected indices ψ̂A is
distributed

ψ̂A ∼ N(0,KAA ) (6)

withKAA ≜ κ(ψ̂A,ψ̂A ). Now, consider a sample ψ̂ℓ , ℓ ∈ V\A , the
joint distribution of ψ̂ℓ and ψ̂A is given by(

ψ̂A

ψ̂ℓ

)
∼ N

(
0,

(
KAA κAℓ

κ⊤
Aℓ

κℓℓ

))
, (7)

with κAℓ ≜ [κ(ψ̂A1 , ψ̂ℓ), . . . ,κ(ψ̂AnA
, ψ̂ℓ)]

⊤. Using the identity
in [1, pg. 87] we have

ψ̂ℓ |ψ̂A ∼ N

(
µψ̂ℓ |A

,σ 2
ψ̂ℓ |A

)
(8)

with

µψ̂ℓ |A
= κ⊤

AℓK
−1
AAψA (9)

σ 2
ψ̂ℓ |A

= κℓℓ − κ
⊤
AℓK

−1
AAκAℓ . (10)

Next we present the entropy and MI resulting problems.

4.1 Grid Entropy Criterion
The goal of active learning for our use case is to select future stimu-
lus locations which are most informative with respect to the entire
grid of possible sampling locations. As said, a good conception
of uncertainty is the conditional entropy when we consider finite
subsetsA of measured locations andV all other possible locations.
We can define conditional entropy of the available measurement
locations V\A after A measured locations,

H (ψ̂V\A
|ψ̂A ) = −

∫
p(ψ̂V\A

,ψ̂A ) logp(ψ̂V\A
|ψ̂A )dψ̂V\A

dψ̂A .

(11)
Thus, an informative set of measurements would minimize this
conditional entropy leading to an optimization problem known to
be NP-Complete [15]. To minimize this issue the literature presents
greedy heuristics in which starting with an initial set A0, |A0 | =
nA0 < nA , the algorithm greedily adds new samples until the
desired cardinality nA is achieved [16]. In such approaches at each
iteration the index ℓ maximizing the conditional entropyH (ψ̂ℓ |ψ̂A )

should be selected, leading to

ℓ∗ = arg max
ℓ∈V\A

H (ψ̂ℓ |ψ̂A ) (12)

where ℓ is a index not in A. The conditional entropy for Gaussian
random variables is well known and given by [5]

H (ψ̂ℓ |ψ̂A ) =
1
2

log
(
2πeσ 2

ψ̂ℓ |A

)
(13)

leading to a simple and effective selection strategy. Since log(ζ ) is
monotonically increasing for ζ ∈ R+, problem (12) can be solved
by finding the sample index ℓ ∈ V\A , that maximizes the quantity

δ
Entropy
ψ ,ℓ

= σ 2
ψ̂ℓ |A

= κℓℓ − κ
⊤
AℓK

−1
AAκAℓ . (14)
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4.2 Mutual Information
A known issue with the entropy criterion discussed above is the ten-
dency to select loci along the edges of the sample space. This issue
can be understood by the fact that the entropy grid approach aims
at selecting the ψ̂ℓ with largest variance σψ̂ℓ |A

. These uncertainties
are known to be larger in the edges of the sampling space specially
when more flexible interpolation methods are considered [13].

An alternative approach, proposed by Caselton and Zidek [2], is
based on the mutual information (MI) of random variables within
the set A and inV\A . This strategy leads to an optimization cri-
terion that searches for the subset of locations that most signifi-
cantly reduce the uncertainty about the estimates in the rest of the
space [16]. Different from the entropy, the MI criterion tends to find
loci that are most informative about the unstimulated locations.
The resulting optimization problem aims at maximizing the mutual
information I (ψ̂V\A

;ψ̂A ) = H (ψ̂V\A
) − H (ψ̂V\A

|ψ̂A ) and can be
also shown to be NP-Complete.

In [16], a greedy approximation algorithm was presented which
reduces to select the next sampling point that provides the maxi-
mum increase in mutual information I (ψ̂V\A

;ψ̂A ).
Krause described an approximation for maximizing mutual infor-

mation [16] which led to a greedy algorithm. The idea is to at each
iteration select the location that provides the maximum increase in
mutual information. Thus, at each iteration the goal is to greedily
select the location index ℓ ∈ V that maximizes

I (ψ̂VA∪ℓ
;ψ̂A∪ℓ)−I (ψ̂V\A

;ψ̂A )

= H (ψ̂ℓ |ψ̂A ) − H (ψ̂ℓ |ψ̂V\A
)

= log
(
σ 2
ψ̂ℓ |A

)
− log

(
σ 2
ψ̂ℓ |V\A

)
+ cte (15)

where cte is a constant.
This leads to selecting a location that provides the largest vari-

ance ratio

δMI
ψ ,ℓ =

κℓℓ − κ
⊤
Aℓ

K−1
AA

κAℓ

κℓℓ − κ
⊤
Āℓ

K−1
ĀĀ

κĀℓ

(16)

where Ā = V\A∪ℓ .

4.3 The sampling algorithm
The proposed iterative methodology is summarized in Algorithm 1.
It is designed to work with a set of selectable pointsV and assumes
prior knowledge of the kernel parameters θ . Besides V and θ , the
inputs of Algorithm 1 are the initial index set A0 and respective
measurements yA0 , the set of all possible loci XV and the final
desired cardinality nA . The algorithm follows a iterative sequence
interchanging between computing δψ ,ℓ for all ℓ ∈ V\A lines 4–6,
finding the optimal index (line 7) and MEP field estimation in lines
2 and 10. When a new index ℓ∗ is selected (line 7) and included
in the set of selected indices (line 8) a new measurement, yℓ∗ , is
obtained at the respective location xℓ∗ (line 9). When the desired
cardinality is achieved the algorithim performs a GP fit (line 12)
and estimation (line 13), and return the set of selected indices A
and the final MEP field estimation ψ̂V for all set XV .

Algorithm 1: Sampling Algorithm
Input :V , A0, XV , yA0 nA , GP parameters θ
Output :A, ψ̂V

1 A = A0;
2 Obtain estimated field ψ̂V by taking the mean of (4);
3 for n = 1 . . . ,nA do
4 for ℓ ∈ V\A do
5 Compute δψ ,ℓ using (14) or (16);
6 end
7 ℓ∗ = arg maxℓ δψ̂ ,ℓ

;
8 A = A ∪ {ℓ∗};
9 Get MEP sample yℓ∗ at location xℓ∗ ;

10 Obtain estimated field ψ̂V by taking the mean of (4);
11 end
12 Fit GP using the pairs (xA,yA ) ;
13 Obtain estimated field ψ̂V by taking the mean of (4);
14 return A, ψ̂V ;

5 EXPERIMENTS
In this section we present our simulation of experimental results
using the active GP forMEP interpolation and TMSmapping for one
subject. We compare the methodology proposed in Section 4 using
Entropy and MI, namely, Entropyψ and MIψ with the Entropy
and MI directly using the GP distribution [16], and a Random
(uniform) point selection TMS mapping approach.

To assess the performance of the different algorithms we resort
to a metric: the normalized mean squared error (NMSE), between
the target function and the predicted map. NMSE is given by the
formula:

NMSE(ψ,ψ̂) =
∥ψ − ψ̂∥2

2
∥ψ∥2

2

whereψ is the vector containing the MEP amplitudes of the target
function and ψ̂ is the GP estimation using the set of selected points.

Monte Carlo simulations with nMC = 100 runs were also per-
formed to assess the mean behavior and standard deviation of the
different methods. For all simulations a initial set A0 with cardi-
nality |A| = 20 was selected randomly, and the kernel parameters
θ were fixed and assumed to be known a priori.

5.1 Data-set derived from human expert
mapping

The experimental dataset was composed of 282 of 293 stimuli ob-
tained from a healthy human participant using a user guided ap-
proach. Eleven stimuli were excluded for excessive subject head
movement, poor coil placement or voluntary muscle contraction.
The data was concatenated and a GP was used to interpolate all
available points. Figure 2 presents the resulting GP interpolation in
3D (left) and 2D (right). The black circles in the right panel are the
points selected by the human expert.

For all subsequent simulations we used the GP interpolated map
of Figure 2 as our target function (ground truth).

2020-02-03 14:33. Page 4 of 1–7.
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Figure 2: Target function / Expert HumanMapper. X, Y axes
represent anterior-posterior and lateral-medial directions,
respectively. MEP amplitude is presented in microvolts (µV )

on the Z axis.

5.2 Results
The results discussed in this section are summarized in Figures 3
and 4 and Table 1 for the 5 selected methods. For all 5 methods
the final cardinality was nA = 282 including the 20 initial points
assumed in A0, that is, a total of 262 new points were selected
using each one of the selected methods.

Figure 3 shows the estimated maps and selected points provided
by eachmethod.When comparing with the target function, Figure 2,
a simple visual inspection shows a clear superiority of the results
obtained withMIψ (Figure 3a) and Entropyψ (Figure 3c) since the
resulting maps captured the two main peaks of the cortical topog-
raphy as well as the smaller side-lobes. This contrasts with the
more bell-shaped maps obtained by using the other methodologies.
When analyzing the selected points for all methods, the proposed
strategies (Figures 3d and 3b ) concentrated the selected loci in the
region of interest. The reasoning for this behavior follows from the
fact that the proposed strategy selects locations based on the GP
mean values instead of spatial locations that are uncorrelated with
the field amplitude. This also explains the more uniform spread
obtained with Entropy and MI in Figures 3d and 3h, respectively.
Monte Carlo simulations were also performed and are presented in
Figure 4 where the NMSE mean (solid color) and standard devia-
tion (STD) (transparent shade) for the number of samples used is
depicted for all 5 methods. The plots show that for all methods the
NMSE and the STD decreased as n increases. Although all methods
present high STD for n < 100, theMI presents the best average per-
formance followed byMIψ . When n > 100, Entropyψ outperforms
the competing methods presenting both smaller average NMSE and
STD, and displaying convergence at n > 150 . MIψ also converges
for n > 230 presenting a comparable average NMSE and STD to
the Entropyψ and outperforming the other competing methods.
The final results for n = 262 are presented in Table 1 showing that
the proposed methodology clearly outperformed the competing al-
gorithms and corroborating the conclusions obtained by the visual
inspection of Figures 2 and 3.

6 CONCLUSIONS
In this paper we proposed an active GP strategy for TMS mapping.
The proposed method modified the usual GP-Entropy/ MI-based
selection criteria by modeling the GP mean as a Gaussian random
variable. The experiments show that the proposed strategies (MIψ
and Entropyψ ) is suitable for localizing and sampling the region

(a) MIψ (b) MIψ .

(c) Entropyψ . (d) Entropyψ

(e) Random. (f) Random.

(g) MI. (h) MI.

(i) Entropy. (j) Entropy.

Figure 3: Results comparing different point selection meth-
ods.

of the space containing most of the the fields variation. The re-
sults also show a trade-off among the different algorithms. When
the number of samples is very small (n < 100) more exploratory
strategies (MI, Entropy, and Random) lead to smaller average NMSE.
When more samples are available, n > 100 the proposed method
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Figure 4: NMSE for test the algorithms (n: number of stim-
uli).

Table 1: Final NMSE for predicted map

Method NMSE

MIψ 0.021 ± 0.006
Entropyψ 0.029 ± 0.003
Random 0.122 ± 0.055
MI 0.119 ± 0.035
Entropy 0.115 ± 0.038

(MIψ and Entropyψ ) clearly show better convergence rates and
accuracy. Our results indicate that the proposed method was able to
mimic user expertise reducing the need for TMS operator training.
Reducing the need for expertise in TMS mapping could eliminate a
potential barrier to use of TMS mapping of motor topography as
biomarker of pathology or to track recovery due to intervention.
More widespread use of TMS in this fashion will likely increase our
understanding of who may recovery from intervention, thereby
increasing the effectiveness of rehabilitation [24]. Recently, sev-
eral robotic TMS positioning systems have become commercially
available [14]. Combining active learning for the selection of stim-
ulus loci during automated TMS mapping of motor topography
using robotic positioning would even further reduce barriers of use.
Additionally, the proposed Entropyψ method was able to achieve
maximal accuracy with only 150 stimulations. At a commonly used
inter-stimulus interval of 4 seconds, this means that mapping could
be achieved in as little as 10 minutes. This increased efficiency is
critical for the use of TMS mapping in populations who may not tol-
erate prolonged mapping such as individuals in the acute period of
recovery from stroke sessions, or for the measurement of transient
changes in cortical representations due to intervention. Natural
extensions of this work are related to considering methodologies
for recursive parameter estimation for GPs allowing for a com-
pletely blind strategy, providing theoretical convergence analysis
and proposing new sampling criteria that can balance an initial
exploratory analysis (such as the one obtained by the MI) with the
more region focused criteria such as the proposed strategies.
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