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Abstract—Cyber-physical Manufacturing Systems (CPMS) can
be defined by the integration of control, network communication,
and computing with a physical manufacturing process. In this
work, we present a hybrid model of CPMS combining sensor
data, context information, and expert knowledge. We used the
identification of Global Operational States (GOS) and a multi-
model framework to improve anomaly detection and diagnosis.
The anomaly detection is based on context-sensitive adaptive
threshold limits. Root cause diagnosis is based on classification
models and expert knowledge. The proposed approach was
implemented using Internet-of-Things (IoT) to extract data from
a CNC machine. Results showed that using a context-sensitive
modeling strategy allowed to combine physics-based and data-
driven models for residual analysis to detect an anomaly in the
part, machine, or process. The identification of root cause was
improved by adding context information in classification models
to identify worn or broken tools and wrong material.

Note to Practitioners— Anomaly detection and diagnosis of
manufacturing equipment is a complex problem. Some of the
challenges are complex machine dynamics and non-stationary
operating conditions. This paper describes a framework for mod-
eling manufacturing equipment using a combination of sensor
data, context information, and system knowledge. The proposed
modeling framework is used to improve anomaly detection for
diagnostics using a context-sensitive strategy. This work aims
to support more effective maintenance actions by identifying
problems in the machine, part, or process. The modeling and
anomaly detection strategy was used to identify anomalies in
CNC machines and can be extended to other equipment on the
plant floor.

I. INTRODUCTION

Equipment and process monitoring play a key role in manu-
facturing. Anomaly detection has arisen as a critical first step in
monitoring machine, part, and process to support health moni-
toring, scrap avoidance and process optimization. An anomaly
can be defined as an occurrence that is different from what is
standard, normal or expected, and it can be abrupt or gradual
[1]. Root cause diagnosis focuses on finding the cause of
abnormal behavior with as much detail as possible to determine
the location, and size of a fault. In manufacturing machines,
proper anomaly detection and diagnosis represents a challenge
partly due to machine interactions, multiple operational states,
and similarities between symptoms of different failure modes.

Physics-based model Fault Detection and Diagnosis (FDD)
requires knowledge of equations that govern the machine
dynamics. Physics-based model FDD approach has been de-
veloped to detect machine tool faults. However, due to noise
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caused by component and part interactions during the manufac-
turing process, implementation has not been completely feasi-
ble [2]. Data-driven models have been used to detect anomalies
in CNCs, gantries, and robots. Extensive research has been
done to monitor machining operations to detect anomalies
based on different signal processing and analysis strategies
[3]. However, in order to improve detection and diagnosis,
some knowledge of the system, whether from physics-based
models or experts, is required [4]. A comparison between
physics-based and data-driven models [5] shows that both have
advantages and disadvantages based in part on factors such
as detail of data available, model development efforts, and
implementation challenges. The goal of this work is to improve
anomaly detection to answer the following questions: 1) How
to detect anomalies considering the different machine-part
interactions? 2) How to improve the diagnosis of anomalies
by considering the operational context?

Recent advances in machine communication, data extraction
and real-time analysis have enabled development of cyber-
physical systems. A cyber-physical system is defined by the
integration of cyber and physical components such as com-
munication and control networks, sensors, and actuators in a
multi-layer architecture [6]. In this work, a novel approach
to model manufacturing operations as a hybrid system is
presented. This work is based on HDEVS a general, scalable,
and hierarchical formalism for modeling hybrid and discrete
event system used for representing systems with finite number
of states in finite intervals of time. The model considers the
machine-part interaction to define discrete states based on the
operational context of the machine. Moreover, the model lever-
ages local computing, communication, and control for CPS
in manufacturing to estimate discrete states and continuous
variables. Initial work by the authors for anomaly detection
was developed in [7]. This manuscript extends [7] with three
main contributions:

The first contribution of this paper is a framework for model-
ing Cyber-Physical Manufacturing Systems (CPMS) merging
both physics-based and data-driven models. The framework
is based on a hybrid model combining discrete states and
continuous dynamics developed using HDEVS formalism.

The second contribution is to develop a framework for
anomaly detection based on context-sensitive adaptive thresh-
old limits and diagnosis based on context-specific classification
models. Context is defined based on machine, part, and process
data and information.

The third contribution is an experimental demonstration of
the proposed framework to detect and diagnose anomalies
contained within the part, machine, and process of a machining
operation. Data from the machine controller and electric drives
was extracted using industrial communication protocols.



This paper introduces two new aspects to consider when
modeling manufacturing equipment, first context information
to provide insight into the machine operation and part interac-
tions, and second non-instantaneous events as some events are
defined by a pattern in a continuous signal. Moreover, other
formalisms such as hybrid FSM can be extended by defining
GOS introduced in this work and be used to develop models
of CPMS using other formal methods.

The remainder of this paper is organized as follows. Section
2 provides background on the research area. Section 3 defines
the modeling framework providing details of discrete states and
continuous dynamics. Section 4 describes the anomaly detec-
tion and diagnosis methods. Section 5 presents a case study
to validate the approach for anomaly detection and diagnosis
in a machining application. Finally, Section 6 concludes the
paper and discusses other applications and future work.

II. BACKGROUND

In this paper, an abstract model of manufacturing operations
studied as Cyber-Physical Manufacturing Systems (CPMS) is
presented for anomaly detection and diagnosis.

A. Cyber-Physical Manufacturing Systems
A cyber-physical manufacturing system (CPMS) is com-

posed of cyber and physical components. The cyber compo-
nent includes data, control algorithms, and communication net-
works. The physical component includes machines, robots, and
actuators interacting with a product as part of a manufacturing
process. The analysis of CPMS requires data extraction and
model development.

1) Data extraction: Communication networks in manufac-
turing have evolved over time from the transfer of a simple
binary signal to a complex exchange of messages and vari-
ables in “bus” architectures. Recent developments in Ethernet
Industrial Protocol (I/P) for machine-machine communication
have enabled data exchange between different machines on the
manufacturing floor. Some of the most common protocols for
data extraction are OPC-UA and MTConnect. Both protocols
aim to standardize information exchange in a hierarchical
fashion to enable machine controller data extraction. OPC-
UA is more flexible when dealing with multiple machines in a
system [8], while the MTConnect protocol has been developed
specifically to extract controller data from CNC machines [9].

To model and study CPMS, information about the machine
and physical process is needed to create an abstract repre-
sentation. Extraction of the required sensor data and context
information can be accomplished by setting up a message
gateway from a local controller to a server. These messages
contain data from sensors monitoring continuous variables,
binary signals, machine states, and event occurrences. In [10]
a CPS model of a CNC machine tool was developed by
extracting energy consumption and instruction codes from the
controller using OPC-UA. Electric current consumption data
has also been used to improve manufacturing sustainability
using MTConnect [11]. However, the capability of extracting
sensor data and context information to provide insight into
machine operations has not been fully developed for anomaly
detection.

2) Modeling: Cyber-Physical Systems are often modeled
as hybrid systems based on both discrete and continuous
variables. Different formalisms have been used to model hybrid
systems such as hybrid automata or Finite State Machines
(FSM) and hybrid Petri-nets. The formalism can be seen as the
“semantics” linking the cyber and physical domains. In [12]
different formalisms and tools to model CPS are discussed
and compared for different applications concluding that the
selection of the proper formalism depends on the application
(i.e.: robot control design, software design, simulation).

Formal methods such as hybrid Finite State Machines (FSM)
have also been explored for modeling manufacturing machines
to evaluate the reachability and robustness of a control strategy
at machine level [13]. However, the analysis of manufacturing
systems with multiple machines and parts using finite states
machines can present some scalability challenges particularly
when adding state that describe the machine-part interaction.
Hybrid Petri-nets have been used to model manufacturing
systems with multiple machines for verification of possible
deadlock conditions in the control logic [14] [15]. No matter
which formalism is used for modeling the discrete behavior of
CPS, the increasing complexity of the manufacturing operation
can represent a challenge due to possible “state explosion” as
the number of states increases when studying the combination
of machine, part, and process.

The modeling framework presented here is based on the Hy-
brid Discrete Event System Specification (HDEVS) formalism
developed for modeling and simulation [16]. This formalism
can be used for representing discrete and continuous variables
along with their transition and trajectories in a hierarchical
fashion [17]. In [18] the supply chain of a semiconduc-
tor manufacturing facility was modeled and simulated using
HDEVS to define inventory control policies. Results in [19]
show the ability to simulate complex machine operation using
HDEVS. The validation and verification of hybrid or discrete
event system developed using the HDEVS formalism has
been developed based on Quantized Sate Systems methods
and translating a HDEVS model into a hybrid automata for
verification with tools such as UPPALL [20].

Physics-based models have been developed using the identi-
fication of model parameters to estimate state and output vari-
ables. For manufacturing machines such as milling machines,
robots, and conveyors, the system identification and model
development steps are presented in [2]. Model development
without the need for prior knowledge is discussed in [21]. In
[22] a hybrid timed automaton model was developed using
energy consumption based on historical data for estimation of
expected behavior. However, for many manufacturing applica-
tions, information about the control strategy can be combined
with expert knowledge to improve both physics-based and
data-driven models.

Analysis of CPMS in industry has had a wide range of
applications such as process control, manufacturing planning
and scheduling, condition monitoring, and network reconfig-
uration. In [23] system level control of CPMS for decision
making shows how the implementation of communication
networks and cloud computing can improve the flexibility of
material handling systems. Anomaly detection models have



also been improved by studying CPMS given that more data is
made available for process monitoring. Different models have
been suggested for modeling CPMS, however many seem to
converge on a hybrid model based on discrete and continuous
variables. An algorithm to specify a hybrid automaton based on
historical data is presented in [22]. However, applications are
still limited, and expert knowledge is needed for diagnosis in
cases where results require operational context considerations.

B. Anomaly detection
In manufacturing, anomaly and fault detection on machine

tools have been extensively studied using both physics-based
and data-driven models. The former is based on a mathematical
model representing physical parameters and machine dynamic-
s. The latter is based on statistical analysis of historical data. In
[2], physics-based models for fault diagnosis were developed
for different machines and actuators by monitoring the dif-
ference between real and expected values of state and output
variables. However, case studies show implementation chal-
lenges due to changes in the machine dynamics and an increase
in signal noise during the manufacturing operation caused by
the machine-part interactions. In [24], fault diagnosis of linear
drives subject to system noise was improved through the use
of Kalman Filters. However, model uncertainties and noise are
not considered.

Data-driven models often implement machine learning to
build a regression or classification model. In [25] a data-driven
model for fault detection was developed using joint motor
torque data. The study focused on changes in data distribution
caused by a fault. The model used historical data from a
repetitive task under the assumption of constant trajectory
and working conditions. Faults have also been detected by
evaluation of states of the plant and a DES model of fault-
free behavior at any point in time [26]. Supervised machine
learning, where knowledge of data class, source, or condition
is used by the classification algorithm, has proven to be an
effective tool for diagnosing anomalies. Nonetheless, selection
of the proper classification algorithms for studying time-series
data should be based on the type of data and application [27].

Limit-based methods for anomaly detection often require
consideration of the impact of false positives and false nega-
tives (type I and type II errors respectively). This consideration
can be based on cost [28] [29] or risk [30] [31]. In manufac-
turing, the risks associated with part or process anomalies are
evaluated using Failure Mode and Effect Analysis (FMEA)
[32]. However, the ability to assign risk for specific threshold
limits often requires knowledge of the manufacturing task.

Efforts to model the dynamics and operations of CPMS
have been constrained to physics-based or data-driven models.
Moreover, anomaly detection and diagnosis methods often do
not consider the different machine-part interactions. However,
new data extraction techniques such as IoT have granted access
to context information that can complement both modeling
strategies and anomaly detection and diagnosis algorithms.
This work aims to improve modeling and analysis of CPMS
for anomaly detection by introducing a multi-model framework
for detection and context-sensitive classification for diagnosis.

III. MODELING CYBER-PHYSICAL MANUFACTURING
SYSTEMS

The interconnection of information management systems
and plant floor data has set the groundwork for modeling
and analysis of Cyber-Physical Manufacturing Systems. In-
formation from the cyber domain, data from the physical
domain, and expert knowledge can be combined to develop
new abstractions of manufacturing machines and processes.
In this section, we describe an approach to model a cyber-
physical manufacturing system as a hybrid system, merging
contextual information about the part, machine, and process
with sensor and controller data and knowledge-based models.
The development of the hybrid system model requires three
steps: identification of Global Operational States (GOS), iden-
tification of Continuous Dynamics (CD) models, and definition
of the hybrid system by specifying the CD for each GOS of the
manufacturing operations. The hybrid system here presented is
developed using the HDEVS formalism for anomaly detection.
Other formalisms such as hybrid FSM could be extended by
defining each GOS including the appropriate CD within each
GOS.

A. Discrete States
Global Operational States (GOS) represent the discrete set of

states characterized by the operational context of the machine.
In [7] GOS was defined as the combination of functional,
dynamic, and interactive states identified using implicit process
descriptors. In this work, we extend the GOS by adding explicit
process descriptors.

1) Implicit Descriptors: Implicit descriptors require inter-
pretation of machine data and control logic by an expert to
provide context. In this work, implicit descriptors are defined
as states in different domains: Functional (F), Dynamic (D),
and Interactive (I) using Discrete Event System Specification
(DEVS) [16]. Each domain is represented in an atomic model
defined as a tuple H .
Hi = (Ei, Si, δi) for i ∈ F,D, I where:
Ei = {e1, e2, ...} Set of events
Si = {s1, s2, ...} Set of states
δ : S × E → S Transition function
a) Functional: The functional domain is defined by the

working conditions of the machine based on states and events.
• Functional state: A qualitative aspect that captures the

working condition of the machine. The functional states
can be defined from the control logic based on a discrete
set of conditions in which the machine can be operating
(e.g: idle, standby, positioning, processing, changing tool,
setup).

• Functional event: An instantaneous occurrence that causes
a transition from one state to another. Functional events
can be determined by changes in digital signals or adja-
cent machine states (e.g: part arrival, e-stop pushed).

Identification of functional states requires some information
about the control system. This information can be in the form
of a Finite State Machine (FSM) or control logic in the PLC.
The study of the manufacturing operation may help identify the
states, events, and transitions relevant for anomaly detection.



b) Dynamic: The dynamic domain is defined by the type
of motion of the different actuators during a manufacturing
process.
• Dynamic state: Defined as a quantitative aspect of the

machine operation such as velocity. The behavior of
continuous variables is bounded within specific ranges
to define a discrete set (e.g: constant speed, accelerating,
stopped).

• Dynamic event: An occurrence defined by rising or falling
of a continuous state variable or its derivative beyond
a specific limit. Dynamic events can be detected by
monitoring changes in signal descriptors such as mean or
slope, or root mean square (e.g: velocity or acceleration
changes).

Dynamic states can be defined based on ranges of velocity,
acceleration, or deceleration. Events or transitions can be
detected using change-point detection [33].

c) Interactive: The interactive domain is defined by the
type of contact between the machine and the part.
• Interactive state: A description of the tasks or processes

during a manufacturing operation based on the machine
effects on the part (e.g: “cutting air”, face milling,
drilling).

• Interactive event: A change in the machine-part inter-
action characterized by a specific pattern in the time-
series data. An interaction event eI can be described by
a matrix of machine output signals describing a specific
pattern (Ypat) (e.g: rise and fall of electric current when a
machine starts cutting a part) eI = [Ypat(1)...Ypat(n)]T .

In a manufacturing process, machines interact with a part in
multiple ways. The nature of these interactions affects machine
output signals differently. An understanding of the interactions
can aid anomaly detection and diagnostic processes. Identifi-
cation of interactive states and events requires knowledge of
the manufacturing operation to identify data patterns. Given
a matrix of continuous output variables G = [Y (1)...Y (m)]T

collected during a manufacturing operation, the time instance
when eI has occurred can be obtained using the search
algorithm in [7].

The functional, dynamic, and interactive states provide
context information about the manufacturing process. The
combination of all possible states from each domain can result
in state explosion. However, some combinations of states are
unfeasible (e.g.: idle, constant speed, face milling). A data-
or knowledge-driven approach can help reduce the number of
possible combinations to consider and avoid “state explosion”
by identifying unreachable states. Unreachable states can be
defined by those states of the machine-part interaction that
cannot be reached as specific process steps are not defined as
part of the manufacturing process. Moreover, when studying
the machine-part interactions some interactions are constrained
due to the process requirements such as processing speeds
or events for a specific manufacturing process. Knowledge of
the control logic and the manufacturing operation can support
limiting the number of combined states to a feasible set.

2) Explicit Descriptors: Explicit descriptors extracted from
the machine or system level controller provide context infor-

mation without the need for expert analysis. In this work,
explicit descriptors are defined by the part (p), the tool (t),
and the process step (s).

a) Part: A number identifying the type of part being
processed is often available in the system level controller.
Considering that modern machines have the ability to process
different parts, extracting part type information allows one to
differentiate between materials, geometries, or features when
defining the operational context.

b) Tool: A number identifying the tool used in the
manufacturing process is often available in the machine level
controller. Considering that a machine could use different tools
in a manufacturing process such as cutting tools on a CNC,
or end-effectors on a robot, differentiation between tool size,
geometry, or material can provide context information about
the manufacturing operation.

c) Process step: A number identifying the specific step in
a manufacturing process is often available in the machine level
controller. Identifying the specific step in the process provides
information about the task a machine is performing, which
could be related to G-code instruction within a CNC machine
or a moving instruction to a robot.

Machines are typically able to process various part types,
operate with different tools, and perform a large number of
process steps. However, the manufacturing operations for a
specific part type are often limited to a finite number of tools
and process steps. Expert knowledge can help identify the
relationship between the explicit descriptors.

3) Global Operational State: The abstraction of
manufacturing equipment as a CPMS requires machine
and system level controller data (e.g: continuous variables,
discrete states of adjacent machines, internal and external
events, part, tool, and process step) collected in discrete-time
given a fundamental timestep ∆t. Variables are monitored
every k∆t where k ∈ Z+ represents the discrete-time unit.
In this paper, we define the CPMS abstraction at a machine
level as a coupled model describing a Global Operational
State (GOS) defined based on implicit and explicit descriptors.

GOS(k) = [SF (k), SD(k), SI(k), p(k), t(k), s(k)]

For every timestep k the GOS is defined by implicit de-
scriptors given SF (k), SD(k), and SI(k) representing func-
tional, dynamic, and interactive states and explicit descrip-
tors as defined by p(k), t(k), s(k) describing part, tool,
and process step respectively. The operational context of the
machine then is studied based on a set of states represent-
ed in GOS = {GOS1, GOS2, . . . }. For example if the
machine is idle while waiting for a part to be loaded one
can define GOS1 = {Idle, Stopped,NoInteraction, 0, 0, 0}.
Once a part with ID number 1 has been loaded, tool number
5 is installed, and the manufacturing operation is initiated
with process steps number 1, one can define GOS2 =
{Processing,Accelerating,NoInteraction, 1, 5, 1}

B. Continuous
The continuous dynamics model captures state and output

variables in continuous time. In the most basic form, the



machine dynamics can be captured in a differential equation
of the form ẋ = f(x, u, t) and y = h(x, u, t) where x ∈ Rn,
y ∈ Rm, and u ∈ Rq represent state, output, and input
vectors respectively. The functions f(·) and h(·) describe the
evolution of continuous state and output variables respectively.
The proper structure of f(·) and h(·) to capture the machine
dynamics can be represented in a physics-based or data-driven
model. Physics-based models require prior knowledge of the
machine dynamics. In [2] the structure and parameter estima-
tion to develop physics-based models for different machines
is presented. Data-driven models us historical data instead of
prior knowledge of the machine dynamics. In [34] different
types of data-driven models are discussed. In this work, we
leverage prior art in the development of continuous models
to develop a multi-model framework. Different continuous
models are defined within various discrete states to develop
a hybrid model.

C. Hybrid
In this paper, we define a model of the continuous dynamics

of a machine while operating in a specific context. Combining
the discrete state and continuous dynamics into a model leads
to the hybrid system representation defined by the tuple M
M = (GOS, U, Y,X, F,H), where:

- GOS represents the discrete set of Global Operational
States

- U is the continuous input space of the system in which
the continuous input variables u take their values. For our
purpose U ⊂ Rm

- X is the continuous state space variable where X ⊂ Rn

- Y is the continuous output space of y where Y ⊂ Rq

- F : GOS × X × U → TX is the mapping of U and X
into TX that assigns a model of state variable evolution f
to each GOS

- H : GOS ×X × U → Y is the mapping of U and X into
Y that assigns a model of output variables h to each GOS
A simple example is a machining operation of part number

1 using tool number 5 following a sequence of steps 1 to 13.
The machine, part, and process are modeled as a hybrid system
presented in Fig.1. The discrete and continuous behavior are
summarized in table 1.

TABLE I. HYBRID SYSTEM DESCRIPTION

GOS1 GOS2 GOS3 GOS4

SF Proc. Proc. Proc. Proc.
SD Const. Const. Const. Const.
SI No int Side mill. No int Face mill.
p 1 1 1 1
t 5 5 5 5
s 1 1 1,2,3 3-13
F f1 f2 f1 f3
H h1 h2 h1 h3

D. Scalability
Expert knowledge can be obtained through process observa-

tion, analysis of the part manufacturing process, and review of
the machine control sequence and logic. Information about the

Fig. 1. Example of hybrid model for analysis of a machining operation

machine, part and process can help reduce the complexity of
the model by identify unfeasible set of states due the machine
control logic reachability constraints. For example, the logic on
the programmable controller might limit the operational speed
during specific cycles or process steps. Also, the command or
processing steps to manufacture a specific part might require
a specific type of machine-part interaction such as face tool
interaction to drill a hole or high speed for face milling. Expert
knowledge can help reduce model complexity by identifying
two key aspects of the hybrid model:

1) Discrete states: Modeling all possible implicit and explicit
descriptors of the GOS could result in a state explosion.
A knowledge-based approach can leverage the repetitive
action of manufacturing to reduce the number of states
based on the process requirements and capabilities.

2) Dynamic models: The machine dynamics and the effec-
t of machine-part interaction during the manufacturing
process can be captured by a limited number of models.
A library of physics-based and data-driven models can
then be used to monitor the manufacturing process while
operating in different discrete states.

3) Hybrid system: As shown in table 1, the models in F can
be shared between GOS as the dynamic model f1 is used
for studying the machine in GOS1 and GOS3. Moreover,
the mapping between discrete states and dynamics models
developed using a knowledge-based approach can help
identify what model from the library best captures the
operation on a discrete state.

IV. ANOMALY DETECTION AND DIAGNOSIS

Identification of the proper operational state and context can
help the evaluation of machine data for anomaly detection. In
this work, a context-sensitive analysis framework is proposed
for detection of static anomalies. Anomalies are detected based
on adaptive threshold limits by studying residuals between
estimated and actual values at a single point in time. The root
cause is diagnosed using supervised clustering or classification



models where a specific classification model is assigned to
each operational context.

A. Detection
In this work, anomalies are detected by evaluating residual

values within specified intervals called thresholds. Residuals at
time t are the difference between measured signals Y (t) and
estimated outputs Ŷ (t). The proper dynamic model to generate
the estimated output for each operational context is defined
by the hybrid model. The residual generation for the output
variables can then be defined as:
ry(t) = Y (t)− Ŷ (t)

Noise in the measured signal and model errors could lead to
non-zero values under normal conditions. Filtering the signal
to reduce noise and using a set of n measured values as a
reference for normal or expected performance, it is possible to
define the mean µy and standard deviation σy of the residual
as:
µy(t) =

∑n
i=1(ryi

(t)/n) and σ2
y =

∑n
i=1(ryi

(t)− µy(t))2/n
Context-sensitive adaptive threshold limits are defined to

separate normal and abnormal values. These limits are based
on confidence in the model and risks associated with the
operational context as defined by the GOS.

1) Confidence Intervals: Based on experimental data, the
confidence intervals describe the likelihood that residual values
fall within a specific range. The confidence intervals for GOSi

are defined based on mean (µi), standard deviation (σi) and
standard score (Zi) as:

∆ryi = µi ± Ziσi
The score Zi defines the confidence level (e.g: 90%, 95%,

99%) to balance detection errors. The Receiver Operating
Characteristic (ROC) curve can be used to evaluate the ac-
curacy of a binary classifier as determined by a discrimination
threshold based on the ratio between true positives (detection)
and a false positive (false alarm) [28].

Guidelines: The Z-score defines the classification limits
between normal and abnormal performance as the number of
standard deviations from the mean of the expected residual.
Optimal Z-score can be obtained by:

1) Collecting data from normal and abnormal operations
2) Evaluate the mean and standard deviation of the residual
3) Build ROC curve by assessing the true positive (TP) and

false positive (FP) for Z ∈ {0.1, . . . , 3.0}.
4) Calculate the slope m(TP, FP ) of the ROC curve for

every Z-score
5) The optimal Z-score balancing the trade-offs between de-

tections and false alarms is defined by m(TP, FP ) = 1.
If the cost associated with false negatives is larger that the

cost of a false positive the optimal slope can be less than 1
(i.e.: m(TP, FP ) = 0.8) [35].

As part of a manufacturing operation, it is possible to
have multiple tasks with different combinations of processes,
machine setups, and parts. The confidence in a dynamic model
capturing the behavior of input or output variables might be
different based on the operational context. The confidence
intervals for each state in GOS are defined by mean µy ,
variance σy

2, and score Zy .

2) Process Risk Analysis: Using relational identifiers of
specific steps or tasks in the manufacturing process can help
map the risks associated with anomalous performance based on
information from the FMEA. Data extracted out of the machine
regarding both part and process can be used to change the
allowable threshold for the output variables residuals ry .

Different techniques to assess risk are presented in [30] [31].
In this work we introduce a risk coefficient ψR to modify the
detection limits for each GOS so that:

∆ry = µi ± ψRi
Zσi

The risk coefficient modifies the classification limits defined
by the confidence intervals based on prior risk analysis. The
confidence intervals as defined by the Z-score can be calculated
based on the trade-offs between detection errors. The risk
coefficient can be assigned based on the negative impact of
an anomaly over the part’s performance or process safety.

Guidelines: The risk coefficient ψR is defined by evalu-
ating the severity of part or process failure based on FMEA.
The value of ψR can be selected based on:

1) Evaluate design and process FMEA
2) Define the critical part features or process step based on

high-risk Priority Number
3) Assign ψR < 1 to the GOS associated with critical part

features or process steps
The vector ψR defines the risk coefficient for each op-

erational context in GOS. An example of context-sensitive
adaptive threshold limits for the part and process in Fig.1 is
presented in Fig.2. Considering that the accuracy of physics-
based or data-driven models during various GOS could be
different, it is possible to have off-sets on mean residual values.

Fig. 2. Data partitioning and adaptive threshold limits

B. Diagnosis
In a manufacturing operation, abnormal behavior could be

related to problems in the part, machine, tool, or process.
Identifying the root cause using data-driven methods could
be a challenge partially because changes in speed, task, and
machine-part interaction cause the signal to be non-stationary.
Moreover, not all anomalies are equally likely to occur under
different operating conditions.

Partitioning a non-stationary output signal by GOS can
improve the diagnosis model by creating multiple segments
of similar operational context. After an abnormal condition



has been detected in a specific GOS, a classification model
is used for root cause diagnosis. In this work, we introduce
context-sensitive classification models for diagnosis by; first,
partitioning the signals, second, extracting features from the
different partitions of the signals, and third, defining a specific
classification model for partitions of GOS. The selection of
the features to be extracted from the continuous signal such as
peak value, Root Mean Square (RMS), or decay time can be
sensitive to the operational context of the machine as defined
in the GOS partition. Moreover, different classification models
can be defined for the various partitions. An example would
be to use supervised classification methods for root cause di-
agnosis [36]. A Support Vector Machines (SVM) classification
model can be developed for each partition, i.e. for each GOSi

a SVMi is defined for i ∈ {1...p}. Moreover, understanding
the process and different machine-part interactions can help
improve anomaly diagnosis by defining the most likely failure
mode of each GOS and the effect that different anomalies have
over features of a signal in the time or frequency domain.

V. IMPLEMENTATION AND EVALUATION

The methodology presented in the previous section was
implemented to detect anomalies in a machining operation.
The experimental setup is based on a 3 axis CNC machine
enabled with OPC-UA communication. Using Rockwell Au-
tomation IoT adapter we were able to extract position, velocity,
acceleration, current and voltage from each drive on the CNC
machine, along with part and process information such as part
number and G-code command. The continuous signals were
pre-processed using a Finite Impulse Response (FIR) filter.
The machine was studied as a cyber-physical manufacturing
system by considering the control architecture, communication
capabilities, and manufacturing operation. The model was
developed using a combination of continuous signals and
context information described in Fig.3. The validity of the
model was evaluated by comparing the error between the
model output and data from the real system under normal
operating conditions.

Fig. 3. IoT data extraction schema

The case study focused on a part with multiple features
manufactured using different tools and machining operations.
The study aims to detect and diagnose anomalies on the
machine, part, or process. Detection was performed by mon-
itoring the residual of output variables throughout the entire
manufacturing operation, while diagnosis utilized classification

models developed using context information. Figure 4 shows
the part, features, and tool trajectory. Table 2 describes the
manufacturing operation and tool used for each part feature.

Fig. 4. Sample part machining description

TABLE II. SAMPLE PART AND PROCESS INFORMATION

Feature Operation Tool Feedrate ProcessNumber Number Diameter Step

1 Side milling (fillet) 1 3/8” 2 5 to 89
2 Drilling 1 3/8” 1.8 90 to 94
3 Circular milling 1 3/8” 1.8 95 to 137
4 Side milling (chamfer) 1 3/8” 2 138 to 213
5 Pocket milling 1 3/8” 1.8 214 to 399
6 End milling 1 3/8” 2.5 400 to 474
7 Pocket milling 2 5/16” 1.5 475 to 764
8 Slot cutting (X axis) 2 5/16” 2 765 to 937
9 Slot cutting (45 deg) 2 5/16” 2 938 to 1151
10 Slot cutting (Y deg) 2 5/16” 2 1152 to 1317

A. Cyber-Physical Manufacturing System Model
The manufacturing operation was modeled as a hybrid

system based on discrete states and continuous dynamics. The
discrete states were defined by the operational context of the
machine according to the Global Operation States GOS, and
the continuous dynamics in each GOS were studied by either
physics-based (pb) or data-driven (dd) models.

1) Discrete States: Defined by the combination of implicit
(functional, dynamic, and interactive states) and explicit de-
scriptors (part, tool, and process step) to specify the GOS.
The implicit descriptors were defined using PLC logic, cutting
speed, and tool-part interaction. The explicit descriptors were
defined by part number, tool number, and line of the G-code
program. The data required to identify the descriptors were
extracted from the machine and system controller. The atomic
model for each domain is defined as follows

a) Functional: An atomic model of functional states
built using information from the control logic. The functional
states were machine Idle or Processing. The transition
between states was triggered by events PartArrival and
PartDeparture. The occurrence of an event was detected
by a Presence Sensor (PS) mounted in the CNC machine.
Figure 5 shows the functional atomic model HF including
states, events, and transitions.



Fig. 5. Functional Atomic Model

HF = (UF , SF , δF ) where:
UF = {eF1 , eF2 } Set of events
SF = {sF1 , sF2 } Set of states

sF1 = Idle sF2 = Processing
2) Dynamic: The atomic model for dynamic states included

cutting and traveling speeds of the manufacturing operation.
Cutting speed is defined as the rate at which the cutting tool
passes along a workpiece. Speed is calculated as the magnitude
of the velocity vector, CS =

√
q̇2x + q̇2y + q̇2z The states were

segmented by speed and acceleration for each drive. Figure 6
presents the dynamic model.

Fig. 6. Functional Atomic Model

HD = (UD, SD, δD) where:
UD = {eD1 , eD2 , . . . , eD8 } Set of events
SD = {sD1 , sD2 , . . . , sD5 } Set of states

sD1 : CS = 0 sD2 : CS = 1.8 sD3 : CS = 2
sD4 : CS = 2.5 sD5 : CS = 50

3) Interactive: Defined by the contact between tool and
workpiece which is distinct for different machining opera-
tions. The states and operations in this case study include
NoInteraction for “cutting air” operations, EndInteraction
for drilling operations, and SideInteractions for pocket or
shoulder milling operations. Figure 7 shows the states and
transitions.

Fig. 7. Machine-part interaction states

sI1 = No.Int sI2 = End.Int

sI3 = Side.Int1 sI4 = Side.Int2

Interactive events are defined by the characteristic effects
that machine-part interactions have over output signals. Process
observation and signal analysis methods were combined to
identify patterns that describe the effect of changes in interac-
tion over output signals (e.g.: current, voltage). Figure 8 shows
the current signature of the X-axis, Y-axis, and Spindle while
machining part feature 6. Events are characterized by time-
series patterns such as a spike in spindle current and a drop in
the Y-axis current. Using the partitioning algorithm presented
in [7], interactive events within the manufacturing process were
identified.

Fig. 8. Current of XY drives and spindle partitioned by interactive state

4) Continuous Dynamics: State variables include position
q and velocity q̇, and the output variables were current I
and voltage V . Considering that the dynamics of the machine
and signal noise are different depending on the machine-part
interaction, the multi-model framework presented on section
III was used.

a) Physics-based: Models of the X and Y axis drives on
the CNC machine. A one-mass model based on the physics of
the electric drive is defined as [2]:

V̂ (t) = ψq̇(t) + Lİ(t) +RI(t) (1)

Î(t) = (Jq̈(t) +MF1q̇(t) +MF0sin(q̇(t)))/ψ (2)

where the measured signals are speed q̇, acceleration q̈, ar-
mature voltage V , and armature current I . The identified
machine parameters are magnetic flux ψ, armature inductance
L, armature resistance R, overall moment of inertia J , and
friction coefficients MF0 and MF1.

b) Data-driven: Autoregressive models were developed
to study the current and voltage of the X and Y drives.
The order of the models was estimated based on the Box-
Jenkins analysis using time series data [34]. The model was
developed to estimate current (I) and voltage (V ) based on
previous observations, and exogenous inputs velocity (q̇) and
acceleration (q̈). An Autoregressive Model with independent
predictors (ARMAX) was defined as:

φ
V

(B)V̂ (t) = β
V

(B)q̇(t− n) + ε(t) (3)

φ
I
(B)Î(t) = φ

I1
(B) ˙q(t− n) + φ

I2
(B)q̈(t− n) + ε (4)

The parameters φ, β are polynomials with respect to the
backward shift operator (B) identified by fitting norm-based
models with regularization, n is the system delay, and ε is the
system disturbance [37].

5) Hybrid Model: Used to specify which continuous model
to use in each discrete state. Each part feature involved multiple
GOS, but only two types of models (physics-based and data-
driven) are defined based on interactive state SI . The value
of some model parameters such as friction or autoregressive
terms changed based on the dynamic state SD.

Figure 9 shows the discrete states and continuous dy-
namic model for machining part feature 1 (side milling -
fillet) represented as a hybrid system. Two different GOS
are defined. GOS2 captures the operational context with no
machine-part interaction when the machine is “cutting air” and
the tool is traveling to the part entry point. During GOS2



Fig. 9. Description of hybrid model with interactive events

the machine dynamics are estimated using a physics-based
model. The interactive event eI3 is characterized by a spike
in the spindle current consumption caused by the contact
between the tool and the part and indicates the transition to
GOS3. During GOS3 the tool is machining the part, and the
machine dynamics are estimated using a data-driven model.
The interactive event eI4 is characterized by a drop in the
spindle current consumption and indicates the transition back
to GOS2.

B. Anomaly Detection
This case study aims to detect anomalies by monitoring

residuals and event occurrence. The models used to estimate
the output variables are defined by the operational context of
the machine and characterized by the GOS. In this case study,
we evaluate the abilities to detect the following anomalies:
• Tool: Worn tool, broken tool
• Part: Wrong material, wrong dimensions
These anomalies can be detected by monitoring the magni-

tude of the residual, and time intervals between occurrences
of interactive events.

1) Residual Analysis: For anomaly detection we imple-
mented context-sensitive adaptive threshold limits presented in
section IV.A. Context is defined by the discrete states described
in the GOS. The limits on residual were defined by mean µ
and standard deviation σ estimated by evaluating the output of
the continuous dynamic model to 20 independent data samples
collected under normal operation. Figure 10 shows the GOS,
and residual of the output variables for three part features
under normal and abnormal conditions. Table III summarizes
the partitions, states, model and limits.

Fig. 10. Adaptive Threshold Limits of electric current residual

Results illustrate that both the wrong material and worn tool
conditions cause the residual to exceed the threshold during a
GOS that involves a machine-part interaction. The root cause

TABLE III. RESIDUAL ANALYSIS INFORMATION

Partition Feature State Interaction Model Limits (A)

1 1 GOS2 No Interaction Îx,pb ±0.21

2 1 GOS3 Side Interaction Îx,dd ±0.15

3 1 GOS2 No Interaction Îx,pb ±0.21

4 1 GOS3 Side Interaction Îx,dd ±0.15

5 2 GOS2 No Interaction Îx,pb ±0.21

6 2 GOS4 End Interaction Îx,dd ±0.43

7 3 GOS5 No Interaction Îx,pb ±0.29

8 3 GOS6 Side Interaction Îx,dd ±0.2

was identified using supervised learning classification models
to differentiate between these two conditions.

2) Event Occurrence: The time at which an interactive event
occurs can be used to identify anomalies. Changes in the
part geometry, machine fixture location, or orientation, or tool
condition might affect the time instance in which the machine
and part interact. The time when the interactive event should
occur and the time lapse of each GOS under normal conditions
can be identified using historical data. As part of the case study,
we identified the average and standard deviation time intervals
associated with each GOS. Results showed that wrong part
dimensions of -5mm on the X-axis and -0.8mm on the Z-axis
caused an average delay on the occurrence of the interactive
event of 1.39 and 0.42 seconds respectively. A similar effect
was observed when the part was poorly clamped causing the
part to shift during the machining operation and changing the
duration of an interactive state. Abnormal duration of the time
interval of an interactive state can complement the anomaly
detection and diagnosis process.

C. Root Cause Diagnosis
In this study, classification and rule-based methods were

used to perform root cause diagnosis. After an anomaly was
detected, context information was used to decouple the failure
modes as not all the anomalies are equally likely to occur in
different GOS and could affect the output signal in different
ways.

1) Classification-based: Supervised learning was used to
identify the root cause of residual values outside the normal

Fig. 11. Effect of Worn/Broken tool on spindle current for two different tool
sizes and part features



(a) (b) (c)

Fig. 12. Classification model for diagnosing wrong material or a worn tool: (a) features from entire signal, accuracy 75% (b) features extracted using signals
partitioned by part feature, accuracy 81.2% (c) signal partitioned by part feature and GOS during side interaction and multiple passes, accuracy 93.6%

thresholds. A linear SVM for binary classification was trained
using key characteristics in the time domain such as mean,
max, peak-to-peak, and RMS, and features on the frequency
domain such as peak magnitude and frequency. Orthogonal
transformation was used to define the set of variables that best
describe the difference between different failure modes was
defined to improve the classification accuracy. A soft margin,
to define hyperplane that separates many, but not all data points
was specified using L1-norm minimization.

The signals we studied were current and voltage from the
XY drives and spindle. A total of 36 features were used
to develop the classification model. Figure 12 shows the
classification hyperplane and RMS values of spindle and X
drive current. The results showed that considering the context
information helped improve the diagnosis. The accuracy of the
classification model improved from 75% when using the entire
signal to 93.6% when the signal was partitioned by GOS.
Partitioning the signal by part feature and GOS, and using
only the states associated with side interactions SI

2 and SI
3

helped isolate the signal to stationary conditions of similar
operational context.

2) Rule-based: In this work, we used process observation
and signal analysis to define the characteristics of the peak
in spindle current such as max magnitude, rise time, rise
level, fall time, and fall level for different part features prior
to breakage. Magnitudes and patterns were used to define
context-sensitive diagnosis rules. Figure 11 shows the different
effects of tool breakage while machining feature 6 with a 3/8”
diameter mill bit and feature 7 with a 5/16” diameter mill bit.
The effect of tool breakage over spindle current is distinct for
each part feature due to the different tool size and machine-
part interactions involved in the manufacturing operations.
The difference in magnitude between the two graphs can be
explained by the distinct spindle current consumption required
to increase the torsional shear stress above the failure point
for the different tools. The pattern of the current consumption
prior to failure could be explained by the particular interaction
between the tool and the part for machining each part feature.

D. Discussion

In a manufacturing operation, anomalies can be caused by
problems in the machine, part, tool, or process. In this work,
anomalies in the part and tool were detected and diagnosed
using a context-sensitive modeling framework. For detection,
we implemented residual analysis using both physics-based
and data-driven models. Results showed that anomalies related
to part material or tool condition can be detected by monitoring
the magnitude of the residual. Anomalies caused by changes
in part dimensions or orientation had no effect on the residual
but affected the time intervals between interactive events.

The non-stationary condition of the signal when studying the
entire process represents a challenge for root cause diagnosis.
Features extracted from the entire signal do not show a
clear difference between the wrong material and worn tool.
However, considering the GOS of the machine helped partition
the signal and develop context-specific classification models.
Moreover, knowledge of the magnitude and pattern of spindle
current consumption prior to tool breakage for each part feature
and GOS helped develop diagnosis rules. Results showed the
advantages of using context information to improve the diag-
nosis of some anomalies. The steps for anomaly detection and
diagnosis using the modeling framework here presented can
be summarized to; first modeling, define the machine Global
Operation States (GOS) and continuous dynamic models, sec-
ond anomaly detection, Monitor the residual between estimated
variables and machine data within the limits specified for each
GOS, third diagnosis, partition the data by GOS and extract
signal features for each partition for classification.

VI. CONCLUSION

In this paper, we presented a modeling strategy to study
cyber-physical manufacturing systems (CPMS) using a hybrid
model. Discrete states are defined based on implicit and ex-
plicit process descriptors as Global Operational States (GOS).
Continuous dynamics are described using both physics-based
and data-driven models.

The main contribution of this work is a framework to
improve anomaly detection and diagnosis. Anomaly detection
is based on residual analysis considering the GOS to define



context-sensitive adaptive threshold limits. Root cause diag-
nosis is based on context-specific classification models. The
benefit of this framework is the ability to diagnose anomalies
in the machine, part, or tool to support effective maintenance
actions. A timely and effective maintenance action can help
reduce downtime and improve manufacturing productivity. The
modeling approach was implemented in a machining operation.
Results demonstrated that context information improved the
classification accuracy from 75% to 94%, and enhanced the
detection and diagnosis of tool breakage.

Future work will focus on expanding the modeling frame-
work, testing scalability, model verification and implementing
additional data extraction techniques. The effect of hidden
or non-observable states in the machine controller will be
explored in the continuation of this work. The research will be
extended to study other machines, including a wider range of
anomalies, and developing predictive models to detect dynamic
anomalies.
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