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Abstract
As a unique continental archive, speleothem has been widely used in reconstructing paleoclimate change. However, the 
interpretation of Chinese speleothems δ18O has remained a subject of debate. Recently, a Community Atmosphere Model 
version 3 (CAM3) study indicated that the stalagmite δ18O from eastern China reflected the Indian summer monsoon (ISM) 
intensity rather than the East Asian summer monsoon (EASM) intensity during Heinrich events. Here, we present a high-
resolution speleothem δ18O record from Xianglong Cave in Shaanxi province, China, covering the period of 25.5–10.9 ka 
BP. The XL15 record shows similar variations with ice core record from Greenland and other climate records from China 
and India on millennial scale, including Heinrich 2 (H2), Heinrich 1 (H1), Bølling–Allerød (BA) and Younger Dryas (YD) 
events, supporting the connection between the Asian monsoon and northern high latitude climate. The δ18O amplitude of 
our record is larger than or similar to the stalagmite δ18O records from India during these events. In addition, differences of 
stalagmite δ18O in eastern China and the ISM region were observed on glacial-interglacial as well as decadal timescales. 
That means the ISM is not the sole controlling factor of Chinese stalagmite δ18O during Heinrich events. When subtracting 
the Indian stalagmite δ18O series from our XL15 record during H1 period, we found a significant negative correlation with 
sea surface temperature (SST) record of Western Pacific Warm Pool (WPWP). Consequently, our study suggests that the 
Chinese stalagmite δ18O is controlled by both the ISM and EASM on orbital-, millennial-, and decadal timescales.

Keywords  Chinese stalagmite · δ18O · Indian summer monsoon · East Asian summer monsoon · Heinrich events

1  Introduction

Among the global climatic system, the Asian summer mon-
soon (ASM) is one of the most important parts as well as the 
most active components. About 60% of the world’s popula-
tion are under the influence of the ASM. Therefore, changes 
of monsoonal rainfall affects the livelihood and well-being 

of societies directly. Spring-time solar heating of the Asian 
continent overturns the atmosphere circulation and initiates 
the ASM (Webster et al. 1998; Ding and Chan 2005; Cheng 
et al. 2012). With the increase in land-sea temperature con-
trast, the strong atmospheric circulation transports abundant 
moisture from distal ocean into most part of Asia (Cheng 
et al. 2012). That is to say, the ASM intensity is a concept of 
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wind field and could control the rainfall of the overall Asian 
monsoon region, but not necessarily the rainfall in a certain 
region (Cheng et al. 2009, 2016). The ASM is composed of 
two sub-systems: the Indian summer monsoon (ISM) and 
the East Asian summer monsoon (EASM), which are inde-
pendent to but also interacting with each other (Wang and 
Lin 2002; Ding and Chan 2005). Paleoclimatologists have 
done many studies in the ASM region and obtained abundant 
paleoclimatic archives and proxies on different timescales 
(An et al. 2000; Wang et al. 2001, 2005, 2008; Fleitmann 
et al. 2003, 2007; Hong et al. 2005; Yancheva et al. 2007; 
Cheng et al. 2009, 2016; Xu et al. 2012; Yang et al. 2014a; 
Yi et al. 2018; Zhang et al. 2018). Therein, speleothems 
are unique continental archives due to their precise absolute 
chronologies, continuous or semi-continuous precipitation, 
multiproxies and extensive terrestrial distributions (Wong 
and Breecker 2015).

Over the past two decades, speleothem studies have 
become more and more prevalent in reconstructing climate 
changes over the ASM region. However, there have been 
some controversies concerning how to interpret speleothem 
δ18O variations in eastern China. For example, Wang et al. 
(2001) suggested that changes of stalagmite δ18O reflect var-
iations in the proportion of the amount of summer to winter 
precipitation. Low δ18O value indicates higher proportion 
of summer monsoon precipitation, i.e., stronger EASM 
intensity. Yuan et al. (2004) invoked Rayleigh fractionation 
theory to demonstrate that the fraction of water vapor rained 
out between the moisture source (tropical Indo-Pacific) and 
cave site could be responsible for the observed Chinese sta-
lagmite δ18O variations. Decreased δ18O values resulted 
from the condensation of larger proportion of water vapor 
during transportation path (Yuan et al. 2004). Following 
this theory, Hu et al. (2008) reconstructed the monsoon pre-
cipitation changes in southwestern China by using the δ18O 
differences of two coeval stalagmites from Heshang Cave 
in central China and Dongge Cave in southwestern China. 
Cheng et al. (2009, 2016) attributed variations of stalagmite 
δ18O values to changes of the summer monsoon intensity or 
summer monsoon rainfall due to the low δ18O value of the 
summer monsoon precipitation. Depleted δ18O of stalag-
mite implies more spatially integrated monsoon precipitation 
between the cave site and the monsoon moisture sources, in 
other words, strengthened monsoon intensity (Cheng et al. 
2016). This is also supported by the latest modeling results 
(Liu et al. 2014). All of the above viewpoints link stalag-
mite δ18O with summer monsoon intensity and amount of 
rainfall in a large region on orbital to millennial scales. Cai 
et al. (2010) and Tan et al. (2015) suggested that ice volume, 
ocean circulation, and boundary conditions of the East Asian 
continent were relatively stable over shorter timescales, and 
speleothems δ18O may reflect local rainfall variability in 
some specific areas. For example, there is a distinct inverse 

relationship between rainfall and speleothems δ18O varia-
tions in southwestern China, where most of the moisture is 
from the Bay of Bengal (Tan et al. 2017).

Based on the discrepancies between stalagmite δ18O 
from southern China and loess/palaeosol magnetic records 
from northern China (e.g., Maher and Hu 2006) during the 
Holocene, Maher (2008), Maher and Thompson (2012) 
and Maher (2016) argued that the Chinese speleothem 
δ18O records reflect not rainfall amounts but rainfall source 
changes, ISM-sourced vapor being far-travelled and isotopi-
cally light, and EASM-sourced vapor having more proxi-
mal source and isotopically heavy. Tan (2009, 2011, 2014) 
suggested that stalagmite δ18O within monsoonal China is 
controlled by the “circulation effect” on different timescales. 
When the West Pacific Subtropical High (WPSH) extends 
southwestward, more water vapor from the western Pacific 
transports to eastern China and causes heavier δ18O in the 
precipitation and stalagmites. In contrast, when the WPSH 
retreats northeastward, more water vapor from the Indian 
Ocean transports to eastern China and causes lighter δ18O 
in the precipitation and stalagmites.

Recently, Pausata et al. (2011) suggested that Chinese 
stalagmite δ18O was controlled by variations in the ISM 
intensity through a modeled Heinrich 1 (H1) event. The 
Indian monsoon intensity was weak during Heinrich events 
and water vapor exported to eastern China was isotopically 
enriched, which caused the positive shift of stalagmite δ18O 
in eastern China. In addition, their simulation indicated that 
the amplitude of precipitation δ18O signal weakened with 
the increased distance from the moisture source to eastern 
China (Pausata et al. 2011). Following the view of Pausata 
et al. (2011), Johnson (2011), Yang et al. (2014b) and Liu 
et al. (2015) also considered Chinese speleothem δ18O as an 
indicator of rainfall changes in the ISM region rather than 
the EASM variability.

Here, we establish a new high-resolution stalagmite δ18O 
record from Xianglong Cave in Shaanxi province, cover-
ing the period of 25.5–10.9 ka BP. We compared the XL15 
record with other stalagmite δ18O records from China and 
India. Our study, together with other evidence and records, 
suggests that both the ISM and EASM could influence the 
stalagmite δ18O signal in eastern China on orbital-, millen-
nial-, and decadal timescales.

2 � Cave site and sample

Xianglong Cave [32°59′51″N, 106°19′41″E, 863  m asl] 
is located on the southern side of the Qinling Mountains, 
Shaanxi province (Fig.  1). This region is at the western 
margin of WPSH, and is strongly affected by the ASM. In 
summer (June–October), the northward summer monsoon 
brings humid/warm air and provides abundant monsoonal 
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precipitation at the site (> 70%, Liu et al. 2003). In winter, the 
southward winter monsoon carries dry/cold air. The records 
of Ningqiang meteorological station, which is located about 
20 km southwest of Xianglong Cave, show that the mean 
annual air temperature of the study area is 13 °C, and the mean 
annual rainfall is 1100 mm (Tan et al. 2013). Monitoring of 
precipitation at the cave site between June 2010 and June 2011 
shows that the δ18O of precipitation is lower during summer 
and autumn (with an average value of − 8.6‰) than winter and 
spring (with an average value of − 4.4‰) (Tan et al. 2015).

The bedrock of Xianglong Cave is Early Proterozoic dolo-
mite and the known length of cave exceeds 1200 m (Tan et al. 
2013). Plentiful drip water is observed inside the cave even 
during wintertime and the humidity of the inner cave is about 
100% all year long. There are abundant secondary carbonate 
deposits in the cave: stalactites and stalagmites, which are in 
various shapes. Some stalagmites and stalactites were broken 
during the tourism development.

Stalagmite XL15 was collected in the inner chamber. The 
total length of XL15 is 40 cm with a cylindrical shape. The 
deposition center is relatively stable from bottom to top. The 
stalagmite is primarily composed of calcite with a small 
amount on the edge of the upper part composed of aragonite 

(Fig. 2). The halved and polished stalagmite section shows 
clear growth layers.

Fig. 1   Location of Xianglong 
Cave (red five-pointed star). 
Numbers indicate locations of 
the following caves: (1) Kulishu 
(Ma et al. 2012; Orland et al. 
2015), (2) Hulu (Wang et al. 
2001), (3) Haozhu (Zhang et al. 
2016), (4) Songjia (Zhou et al. 
2008), (5) Xianyun (Cui et al. 
2017), (6) Xiaobailong (Cai 
et al. 2015; Tan et al. 2017), (7) 
Mawmluh (Dutt et al. 2015), (8) 
Timta (Sinha et al. 2005), (9) 
Bittoo (Kathayat et al. 2016). 
Yellow arrows indicate direc-
tions of the East Asian summer 
monsoon (EASM), Indian sum-
mer monsoon (ISM), East Asian 
winter monsoon, and westerly

Fig. 2   Polished section of XL15. Black bars indicate positions of 
U-Th dates. Black dashed line shows the drilling path for the analysis 
of stable isotopes
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3 � Methods

About 50–100 mg powder were drilled parallel to the 
growth planes of the stalagmites for U-Th dating. We 
obtained 17 subsamples from the bottom to top, as the 
drilling positions shown in Fig. 2. Measurements of Th 
and U isotopes were performed on a multi-collector induc-
tively coupled plasma mass spectrometer (MC-ICPMS, 
Thermo-Finnigan Neptune). The procedure for chemical 
separation of Th and U was described in Edwards et al. 
(1987), the details on instrumental methods should refer 
to Cheng et al. (2013).

Subsamples for O and C isotope analysis were col-
lected along the central growth axis at an average interval 
of 1 mm. A total of 344 subsamples were measured by 
Finnigan MAT-253 mass spectrometer equipped with an 
automated carbonate preparation system (Gasbench II). 
Results are reported in per mil (‰), relative to the Vienna 
Pee Dee Belemnite (VPDB). Precision of δ18O values is 
better than 0.12‰ at the 2σ level.

4 � Results

4.1 � Chronology

U series dating data are listed in Table 1. Results show 
that the 238U and 232Th concentrations are 140–238 ppb 
and 271–8750 ppt, respectively. Uncertainties of corrected 
230Th dates range from 50 to 300 years. All 230Th ages are 
in stratigraphic order within the range of errors. We com-
pared the age models of linear interpolation, COPRA (Bre-
itenbach et al. 2012) and StalAge (Scholz and Hoffmann 
2011), and chose the linear interpolation model to establish 
the chronology of XL15 (Fig. 3) due to two reasons. Firstly, 
both COPRA and StalAge use the Monte-Carlo simulation. 
However, when growth rates of stalagmite in the bound-
ary (e.g., the top or the bottom of the stalagmite) change 
drastically, the Monte-Carlo simulation may not build the 
true growth history (Scholz and Hoffmann 2011). As for 
XL15, the growth rate between the first and second dates 
(XL15-1 and XL15-2) is 124 µm/a, while the growth rate 
between the second and third dates (XL15-2 and XL15-2c) 
is 17 µm/a (Fig. 2). Due to the distinctive changes of growth 
rate, both COPRA and StalAge age models consider the first 
age datum as an outlier (Fig. 3) and exclude it in the chro-
nology. Secondly, the linear interpolation was widely used 
to build age models in previous studies. In order to com-
pare with previous studies, we chose the linear interpolation 
method. Results show that XL15 was continuously deposited 
from 25.5 to 10.9 ka BP.

4.2 � The δ18O record

The δ18O record of XL15 is shown in Fig. 4b. The δ18O of 
XL15 fluctuated between − 8.27‰ and − 2.74‰, with a 
mean temporal resolution of ~ 37 years. From 25.5 to 24.5 ka 
BP, the δ18O fluctuated around − 5.6‰. Afterwards, the 
δ18O values increased significantly during 24.5 and 23.7 ka 
BP. Then, the δ18O decreased and fluctuated around − 5.3‰. 
From 17.9 ka BP, the δ18O values decreased rapidly to 
− 8.01‰, followed by a dramatic increase to − 2.74‰ at 
16.1 ka BP, which is the heaviest value of the entire δ18O 
record. After this period, the δ18O decreased and increased 
again to − 5.15‰ at 11.8 ka BP.

4.3 � Test of equilibrium deposition

An essential prerequisite for using stalagmite δ18O to recon-
struct paleoclimate change is that the stalagmite was precipi-
tated under isotopic equilibrium conditions. Two commonly 
used equilibrium tests are Hendy Test (Hendy 1971) and 
Replication Test (Dorale and Liu 2009). The main contents 
of Hendy Test include: (1) δ18O values of the same growth 
layer remain stable without enrichment trend to the edge; 
(2) there is no significantly positive correlation between 
δ13C and δ18O in the same growth layer. In recent years, 
however, the validity of the Hendy Test is increasingly chal-
lenged (Fairchild et al. 2006; Romanov et al. 2008; Dorale 
and Liu 2009). It is difficult to ensure that the samples used 
for Hendy Test are taken from the same growth layer dur-
ing the actual sampling process (Fairchild et al. 2006). In 
addition, some studies showed that while the edge of the 
stalagmite was under kinetic fractionation, its center could 
still be under the equilibrium fractionation (Talma and Vogel 
1992; Spötl and Mangini 2002). Another widely used equi-
librium test is the replication of δ18O records from different 
stalagmites in the same cave or from different caves (Dorale 
et al. 1998; Wang et al. 2001; Dorale and Liu 2009; Cai 
et al. 2010). The δ18O of XL15 and Hulu record show broad 
similarities (r = 0.774, p < 0.01) during overlapping growth 
interval considering their dating errors and resolution differ-
ence (Fig. 4). The replication of these two records indicates 
that kinetic fractionation has minimal effect and the δ18O 
variations of our stalagmite were mainly of climatic origin.

5 � Discussion

5.1 � Interpretation of speleothem δ18O

Under isotopic equilibrium conditions, stalagmite δ18O is 
controlled by the cave temperature (−0.23‰/°C, O’Neil 
et  al. 1969) and the δ18O of drip water (Hendy 1971). 
Recently, Caley et al. (2014) suggested that regions within 
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87°E–116°E and 17°N–33°N underwent temperature ampli-
tude of only 3 °C over the past 150,000 years. Due to the 
thick roof of Xianglong Cave (~ 100 m, Tan et al. 2014a), 
the cave temperature is close to the average annual surface 
temperature outside the cave. A drop of 3 °C can only induce 
maximum amplitude of 0.7‰ in stalagmite δ18O values. 
In addition, the temperature effect on precipitation δ18O 
(≤ 0.24‰/°C) could offset the negative temperature effect 
on calcite-mother water fractionation in central China (John-
son et al. 2006; Cai et al. 2010; Zhou et al. 2014). There-
fore, δ18O variations in XL15, with the largest amplitude of 
~ 5.53‰, were mainly controlled by the δ18O of drip water, 
and reflected the annual weighted mean δ18O of meteoric 
precipitation in this region (Yonge et al. 1985).

The significances of stalagmite δ18O are different on 
different spatial–temporal scales. On orbital to millennial 
timescales, there are remarkably similar trends of stalag-
mite δ18O from different caves in eastern China, suggesting 
that Chinese stalagmite δ18O could represent changes in the 
overall Asian monsoon intensity or a first order change in 
spatially-integrated rainfall between cave site and moisture 
sources (Cheng et al. 2009, 2016). However, on centennial 
to decadal timescales, there are notably regional differences 
of stalagmite δ18O records from northern China to southern 
China (Tan et al. 2009; Ma et al. 2015), indicating factors 
such as moisture source, i.e., “circulation effect” (Maher 
and Thompson 2012; Tan 2014), regional and local rainfall 
amount (Tan et al. 2009, 2015, 2018), and cave environment 
(Cosford et al. 2008) may influence the stalagmite δ18O on 
shorter timescales.

Considering the significant positive correlation between 
XL15 record and Hulu record (r = 0.774, p < 0.01), we fol-
low previous suggestions (Maher 2008, 2016; Cheng et al. 
2009, 2016; Maher and Thompson 2012; Tan et al. 2018) 
in this study. The δ18O of XL15 is used as an indicator of 
monsoon intensity on orbital and millennial timescales. 
Lower δ18O values indicate strong summer monsoon inten-
sity with relatively more moisture from Indian Ocean. In 

contrast, higher δ18O values represent weak summer mon-
soon intensity with relatively more moisture from western 
Pacific (Maher 2008, 2016; Maher and Thompson 2012; 
Tan 2014). Since northern China is located near the edge of 
the ASM, the rainfall in northern China is sensitive to the 
ASM intensity and hence reflected by the speleothem δ18O 
(Zhang et al. 2008; Ma et al. 2012; Tan et al. 2014b; Orland 
et al. 2015; Li et al. 2017a). The good consistency between 
XL15 δ18O record and summer precipitation reconstruction 
from loess sequence in the western Chinese Loess Plateau 
(r = −0.695, p < 0.01) (Rao et al. 2013) supports this conclu-
sion. On centennial to decadal timescales, stalagmite δ18O 
of Xianglong Cave could reflect local monsoon rainfall as 
revealed by the good consistency with instrumental and his-
torical rainfall records (Tan et al. 2015, 2018).

5.2 � Millennial‑scale abrupt weak monsoon events 
during 25.5–10.9 ka BP

During the last glacial period, global climate was punctu-
ated by rapid millennial-scale climate fluctuations, known as 
Dansgaard-Oeschger events and Heinrich events (Dansgaard 
et al. 1984, 1993; Heinrich 1988; Bond et al. 1993). Heinrich 
events, as well as Younger Dryas (YD) event (also called H0 
event), are thought to be triggered by the slowdown of the 
Atlantic meridional overturning circulation (AMOC), which 
were due to the collapse of the Laurentide Ice Sheet and/or 
Fennoscandian Ice Sheet (Bard et al. 2000; Hemming 2004; 
McManus et al. 2004; Marchitto et al. 2007; Muschitiello 
et al. 2015). Although Heinrich events were first recognized 
in the North Atlantic region, they are a global phenomenon 
(Clement and Peterson 2008; Arienzo et al. 2015). During 
Heinrich events, western Atlantic got colder (Arienzo et al. 
2015), Europe became drier and/or colder (Genty et al. 
2003, 2006), northern South America (Peterson et al. 2000) 
and Africa were also drier (DeMenocal et al. 2000; Gasse 
2000; Stager et al. 2011). On the contrary, both southern 
South America (Kanner et al. 2012) and southwestern North 

Fig. 3   Age-depth model of XL15. All ages are reported as thousand 
years before present (1950 AD), ka BP. The age errors indicated in 
the plots are 2σ error. The red lines in b and c indicate the confidence 

level of 95%. a Linear interpolation method. b COPRA (Breitenbach 
et al. 2012). c StalAge (Scholz and Hoffmann 2011)
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America (Asmerom et al. 2010; McGee et al. 2012) became 
wetter, and Antarctica got warmer (Wolff et al. 2010).

The XL15 record shows similar variations with the GISP2 
δ18O record from northern high latitude (Fig. 4a, Grootes 
and Stuiver 1997), which indicates notable weak ASM dur-
ing Heinrich 2 (H2), H1 and YD events, which are centered 
at 24.2, 16.1 and 11.8 ka BP. In contrast, strong monsoons 
were observed during Bølling–Allerød (BA) period, which 

lasted from 14.4 to 12.8 ka BP. These results are coher-
ent with previous conclusion that the ASM declined during 
Heinrich events (Wang et al. 2001). Indeed, broad similari-
ties of XL15 record with Hulu (Wang et al. 2001), Songjia 
(Zhou et al. 2008), Haozhu (Zhang et al. 2016), Mawm-
luh (Dutt et al. 2015) and Bittoo records (Kathayat et al. 
2016) indicate a clear first-order covariations of climate over 
the whole Asian monsoon region on millennial timescale 

Fig. 4   Comparison of XL15 δ18O series with other records. a The 
δ18O record of GISP2 (Grootes and Stuiver 1997). b XL15 δ18O 
record. The age error bars (2σ) are color-coded by stalagmites. c The 
δ18O record from Hulu Cave (Wang et al. 2001). d The δ18O record of 
Songjia Cave (Zhou et al. 2008). e The δ18O record of Haozhu Cave 

(Zhang et al. 2016). f The δ18O record of Mawmluh Cave (Dutt et al. 
2015). g The δ18O record of Bittoo Cave (Kathayat et al. 2016). h The 
δ18O record of Jaraguá Cave (Novello et al. 2017). The vertical yel-
low bars denote H2, H1, and YD events, respectively
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(Fig. 4). We also compared the XL15 record with record 
of Jaraguá Cave from Brazil (Novello et al. 2017). Results 
support the viewpoint that millennial scale events first rec-
ognized in northern high latitude regions are hemispheric 
(Broecker 1994), though there is an inter-hemispheric anti-
phase of monsoonal rainfall on both millennial and orbital 
timescales (Wang et al. 2007; Cheng et al. 2012; Kanner 
et al. 2012).

During Heinrich events, the reduction of the AMOC 
resulted from the collapse of the Laurentide Ice Sheet and/or 
Fennoscandian Ice Sheet(McManus et al. 2004; Muschitiello 
et al. 2015) cooled the northern mid- and high-latitudes, and 
thus led to the enhancement of the interhemispheric temper-
ature contrast, pushed the Intertropical Convergence Zone 
(ITCZ) southward (Chiang et al. 2003; Chiang and Bitz 
2005; Zhang and Delworth 2005; Broccoli et al. 2006), and 
might result in a weak ASM and intensified South Ameri-
can monsoon. Nevertheless, several studies suggested a low-
latitude drive of high-latitude climate variability in Northern 
Hemisphere (Cane and Clement 1999; Caley et al. 2013; 
Kleppin et al. 2015). Thus it remains an open question.

5.3 � Is Chinese stalagmite δ18O solely controlled 
by the ISM?

Recently, a Community Atmosphere Model version 3 
(CAM3) result suggested that an abrupt increase of the sea-
ice extent in North Atlantic during H1 and YD events could 
decrease the temperature of the northern Indian Ocean and 
reduce the monsoonal precipitation over the northern Indian 
Ocean and Indian subcontinent (Pausata et al. 2011). Thus, 
the δ18O of precipitation over northern India was heavier, 
and the water vapor moved to China through recycling was 
isotopically enriched. In addition, the simulation results indi-
cated that the amplitude of precipitation δ18O signal weak-
ened with increasing distance from the moisture source (the 
Indian Ocean) to eastern China.

Here we compare the amplitudes of stalagmite δ18O of 
our XL15 record and other stalagmites from eastern China 
with those from India during Heinrich events (Fig. 5). We 
calculated the amplitude of stalagmite δ18O during Heinrich 
events by subtracting the lightest values from the heaviest. 
We believe this method is better than the average calculation 
for the following reasons: (1) the distribution of age-control-
ling points and dating errors may bring uncertainties to the 
determination of time periods of Heinrich events and Last 
Glacial Maximum (LGM), which further affect the average 
δ18O values of these periods. For example, the duration of 
YD in Bittoo record was much shorter than that in XL15, 
which could be caused by dating errors (Fig. 5); (2) the het-
erogeneous δ18O resolution within a given site (or stalagmite 
or record) could also affect calculated average values during 
Heinrich events and LGM. For example, if there are more 

depleted δ18O samples during some intervals, it will reduce 
the average values of LGM or Heinrich events. As shown 
in Fig. 5, the amplitude of δ18O values of XL15 (~ 5.3‰) 
is similar to that from Bittoo Cave (~ 5.3‰, Kathayat et al. 
2016) in northern India and greater than those from Mawm-
luh Cave (~ 3‰, Dutt et al. 2015) in northeastern India, Hulu 
(~ 2.9‰, Wang et al. 2001) and Songjia (~ 4‰, Zhou et al. 
2008) records in eastern China during H1 event. In addition, 
the amplitude of our XL15 record is also slightly larger than 
that in Mawmluh record during YD and H2 events. It also 
shows similar amplitude (~ 3‰) with Timta record from 
northern India (Sinha et al. 2005) during YD event.

However, the heterogeneous δ18O resolution could also 
affect the peak values. When the resolution is higher, larger 
δ18O amplitude may be revealed. This means the peak δ18O 
might be lighter during LGM and heavier during H1 with 
increased sampling resolution. However, the resolution of 
Bittoo record around the peak during LGM is 11 years, 
which is much higher than that of XL15 record (51 years). In 
contrast, the resolution of Bittoo record (67 years) is similar 
to XL15 record (40 years) around the peak during H1 event. 
This implies the δ18O amplitude of XL15 record might be 
larger than Bittoo record during H1 event, if the sampling 
resolution was similar.

In addition to peak-to-peak calculation for δ18O ampli-
tude, we also calculated average δ18O values in order to 
better compare our results to the modeling study of Pau-
sata et  al. (2011). We averaged the δ18O values during 
11.6–12.5 ka for YD, 13–14.5 ka for BA, 15.5–16.5 ka for 
H1 and 20–22 ka for LGM. Our results suggested that the 
amplitude of stalagmite δ18O from LGM to H1 is ~ 1.1‰, 
~ 1.4‰, ~ 1.5‰ for XL15, Bittoo and Mawmluh records, 
respectively, which are similar with the modelled results 
(Pausata et al. 2011). However, the amplitude of stalagmite 
δ18O from BA to YD in XL15, Bittoo, Timta and Mawmluh 
record is ~ 1.6‰, ~ 1.3‰, ~ 1.5‰ and ~ 0.7‰, respectively. 
The δ18O amplitude of XL15 is the largest among these 
records during YD event.

It was suggested that the temperature effect on δ18O 
of precipitation in central China is ≤ 0.24‰/°C (Johnson 
et al. 2006), which could cancel or reduce the negative 
temperature effect on calcite-mother water fractionation 
(~ −0.23‰/°C, O’Neil et al. 1969). As a result, the tempera-
ture would have neglected influence on δ18O of stalagmite in 
central China (Johnson et al. 2006). In addition, it was sug-
gested that higher elevation could magnify the rainout effect, 
resulting in a larger amplitude of stalagmite δ18O variation 
(Cai et al. 2012). The elevation of Bittoo, Timta, and Mawm-
luh Cave is ~ 3000 m, 1900 m and 1290 m, respectively, 
which are higher than the elevation of Xianglong Cave 
(863 m). Therefore, the actual amplitudes of δ18O caused by 
climate change would be smaller in stalagmites from north-
ern India if their elevation were the same as Xianglong Cave. 
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We indeed see the weakening δ18O amplitudes from Bittoo 
to Timta and Mawmluh records during Heinrich events, with 
their decreasing elevations. This means that the amplitude 
of stalagmite δ18O did not show a decreasing pattern from 
India to eastern China during Heinrich events as the model 
simulated (Pausata et al. 2011). Furthermore, the flux den-
sity of light δ18O atoms based on observational data does 
not show a decreasing pattern from India to eastern China 
(Maher and Thompson 2012).

Moreover, a newly published stalagmite δ18O record from 
Xianyun Cave (Cui et al. 2017), which is under the control of 

typical EASM in southeast China, showed a distinct discrep-
ancy in mutation mode of H1 event with that from Mawmluh 
Cave (Dutt et al. 2015). Our XL15 record, together with 
records from Hulu Cave (Wang et al. 2001), Songjia Cave 
(Zhou et al. 2008), Xianyun Cave (Cui et al. 2017) and 
Haozhu Cave (Zhang et al. 2016) in eastern China show 
three-stages (increasing-stable-increasing) in mutation mode 
of H1 event. In contrast, records from Bittoo Cave (Kathayat 
et al. 2016) and Mawmluh Cave (Dutt et al. 2015) in India 
show consistent increasing mode (Fig. 6). It is worth noting 
that the different mutation modes seen in these records might 

Fig. 5   The magnitude comparison of XL15 δ18O record (green) and 
Hulu (red, Wang et al. 2001), Songjia (plum, Zhou et al. 2008), Bit-
too (purple, Kathayat et al. 2016), Timta (orange, Sinha et al. 2005) 

and Mawmluh (brown, Dutt et al. 2015) cave records. The age error 
bars (2σ) are color-coded by stalagmites. The vertical yellow bars 
denote H2, H1, and YD events, respectively
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be ascribed to the distribution of age-controlling points, dat-
ing errors, as well as the heterogeneity of δ18O resolutions. 
More high-resolution and precisely dated records from both 
India and China are needed to verify this behavior.

Furthermore, the model of Pausata et al. (2011) did not 
show any changes in the seasonal distribution or annual aver-
age of precipitation at the cave sites in China associated with 
Heinrich events, which is in contrast with other moisture 
records in China (Zhou et al. 2001, 2005, 2016; Yancheva 
et al. 2007; Sun et al. 2010, 2011; Ma et al. 2012; Orland 
et al. 2015). For example, a seasonally resolved stalagmite 

record from Kulishu Cave showed an increasing trend of 
δ18O, which suggested that regional rainfall in northern 
China decreased during YD event (Ma et al. 2012; Orland 
et al. 2015). Recently, a floodplain deposition from Huai 
River Basin showed lower total organic carbon (TOC) and 
tree pollen percentage, and positive organic δ13C at around 
16 ka BP, which indicated a severe drought during H1 event 
in the Huai River Basin (Zhou et al. 2016). The decreased 
summer rainfall during Heinrich events was also recorded in 
the δ13CTOC data of a loess profile from the western Chinese 
Loess Plateau (Rao et al. 2013).

Fig. 6   Comparison of mutation mode of H1 between a XL15, b Hulu 
(Wang et  al. 2001), c Songjia (Zhou et  al. 2008), d Xianyun (Cui 
et al. 2017), e Haozhu (Zhang et al. 2016), f Bittoo (Kathayat et al. 

2016) and g Mawmluh (Dutt et  al. 2015) cave records. The vertical 
yellow bar denotes H1 event
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Different patterns of stalagmite δ18O variations from 
the EASM and ISM regions were also reported on other 
timescales. For example, a 252-kyrs-long speleothem δ18O 
record from Xiaobailong Cave in southwestern China, which 
is controlled by the ISM (Cai et al. 2015), showed a sig-
nificant ~ 100 ka cycle, which did not occur in stalagmite 
records from eastern China. In addition, a modern stalagmite 
δ18O record (1912–2009 AD) from Xianglong Cave showed 
anti-phase variations with the stalagmite δ18O record from 
India (Sinha et al. 2011) and the Indian monsoon rainfall 
index (Parthasarathy et al. 1995) during the last hundred 
years on decadal timescales (Tan et al. 2015). All the evi-
dence above do not support a sole control of the ISM on 
Chinese stalagmite δ18O variations.

5.4 � Both the EASM and ISM controlled Chinese 
stalagmite δ18O

It was suggested that both the Indian Ocean and Pacific 
sources could influence the stalagmite δ18O signal in east-
ern China (Maher 2008, 2016; Maher and Thompson 2012; 
Wang and Chen 2012; Tan 2014; Orland et al. 2015; Li et al. 
2017b). The calculated change in δ18O of precipitation dur-
ing the YD-Holocene transition from Kulishu record is 
1.3‰ (Orland et al. 2015), larger than the simulated result 
of 0.5–1.0‰ (Pausata et al. 2011). Orland et al. (2015) sug-
gested that the simulated results underestimated the effect 
of the Pacific. Recently, based on the comparison of stalag-
mite δ18O records between southwestern China and eastern 
China, along with modern precipitation δ18O analysis, Li 
et al. (2017b) demonstrated that stalagmite δ18O records 
and modern precipitation δ18O in Yunnan province were 
much more negative than the EASM regions on multiple 
timescales, which cannot be interpreted by the temperature, 
latitude, altitude, or amount effects. The only reasonable 
explanation is different moisture sources for the EASM and 
ISM regions.

Geographically, there is no clear boundary between the 
ISM and EASM in China. We roughly consider 100°–110°E 
as a broad range of boundary between the ISM and EASM 
(Wang and Lin 2002; Ding and Chan 2005; Li et al. 2014). 
In fact, the ISM and EASM are generally independent but 
associated with each other (Wang and Lin 2002; Ding and 
Chan 2005). The main components of the Indian monsoon 
system include: Southern Hemisphere Mascarene high, 
Somali cross-equatorial jet, southwest flow, Indian-Bengal 
low, Indian monsoon trough, and Tibetan Plateau low; while 
the EASM system consists of the Australian cold anticy-
clone, the cross-equatorial flow along the east to 100°E, 
southwest flow, the monsoon trough (or ITCZ) over the 
South China Sea and the tropical western Pacific, the WPSH, 
the disturbances over mid-latitudes and the Meiyu front (Tao 
and Chen 1985). The ISM is a tropical monsoon system but 

the EASM consists of both tropical and subtropical monsoon 
(Zhu et al. 1986; Tao and Chen 1987). Therefore, the EASM 
share the same component of southwest flow with the ISM, 
but with its own characteristics. We can divide monsoonal 
China into three regions: the southwest monsoon region 
which is affected by the Indian monsoon; the region influ-
enced by both the EASM and ISM, as well as the region 
affected by the EASM (Wang and Lin 2002). Even if in the 
EASM region, the ISM could affect the EASM moisture and 
hence precipitation δ18O by affecting the southwest flow. In 
order to extract the Pacific’s signal from XL15 during H1 
event, we chose Mawmluh as an ISM intensity record 
(Indian Ocean signal). The period of 14.5–17.5 ka BP was 
selected to include the duration of H1 event. We interpolated 
XL15 and Mawmluh δ18O record with an interval of 50 years 
during this period, and then normalized them using the for-
mula x ∗=

x−x
mean

x
max

−x
min

 (xmean, xmax, xmin represent the average, 
maximum and minimum of δ18O, respectively). Finally, the 
normalized Mawmluh record was subtracted from the nor-
malized XL15 record. The result can be viewed as a pure 
Pacific signal, i.e., subtropical monsoon (Fig. 7). When com-
paring the result with the sea surface temperature (SST) 
record from the Western Pacific Warm Pool (WPWP) (Stott 
et al. 2007), we found a significant negative correlation 
(r = − 0.319, p < 0.05), with increased SST corresponding to 
negative δ18O values. Modern meteorological data and 
model simulations indicated that high SSTs in the WPWP 
would strengthen the upper convection around the region of 
Philippine, which would cause the northward shift of the 
WPSH and the EASM Meiyu belt (Huang and Li 1987; 
Huang and Sun 1992; Cao et al. 2002; Huang et al. 2004), 
resulting in enhanced rainfall from the Pacific and negative 
rainfall δ18O.

6 � Conclusions

Based on 17 U-Th dates, we propose a high-resolution sta-
lagmite oxygen isotope record from Xianglong Cave in 
Shaanxi province, covering the period of 25.5–10.9 ka BP. 
Our record displays a clear first-order covariations of cli-
mate with northern high latitude and other Asian monsoon 
records on millennial timescale. The XL15 record supports 
the viewpoint that millennial scale events first recognized 
in northern high latitude regions are hemispheric, though 
there is an inter-hemispheric anti-phasing of monsoonal 
rainfall. However, a weakened δ18O signal from India to 
eastern China was not seen as simulated by model (Pausata 
et al. 2011) during Heinrich events. In addition, the differ-
ences between stalagmite records from eastern China and 
the ISM region were observed on glacial-interglacial scale 
and decadal scales. When subtracting the Indian stalagmite 
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δ18O signal from our XL15 record during H1 period, we 
got the Pacific signal during H1 event for the first time. The 
result is significantly negatively correlated with the WPWP 
SST, which is consistent with modern observation and 
model results. Consequently, our study suggests that Chinese 
stalagmite δ18O is controlled by both the ISM and EASM 
(Maher 2008, 2016; Maher and Thompson 2012; Wang and 
Chen 2012; Tan 2014; Orland et al. 2015; Tan et al. 2015; 
Li et al. 2017b).
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