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Abstract

As a unique continental archive, speleothem has been widely used in reconstructing paleoclimate change. However, the
interpretation of Chinese speleothems 8'80 has remained a subject of debate. Recently, a Community Atmosphere Model
version 3 (CAM3) study indicated that the stalagmite 8'80 from eastern China reflected the Indian summer monsoon (ISM)
intensity rather than the East Asian summer monsoon (EASM) intensity during Heinrich events. Here, we present a high-
resolution speleothem &'®0 record from Xianglong Cave in Shaanxi province, China, covering the period of 25.5-10.9 ka
BP. The XL15 record shows similar variations with ice core record from Greenland and other climate records from China
and India on millennial scale, including Heinrich 2 (H2), Heinrich 1 (H1), Bglling—Allergd (BA) and Younger Dryas (YD)
events, supporting the connection between the Asian monsoon and northern high latitude climate. The §'*0 amplitude of
our record is larger than or similar to the stalagmite §'0 records from India during these events. In addition, differences of
stalagmite 5'®0 in eastern China and the ISM region were observed on glacial-interglacial as well as decadal timescales.
That means the ISM is not the sole controlling factor of Chinese stalagmite §'%0 during Heinrich events. When subtracting
the Indian stalagmite 8'%0 series from our XL15 record during H1 period, we found a significant negative correlation with
sea surface temperature (SST) record of Western Pacific Warm Pool (WPWP). Consequently, our study suggests that the
Chinese stalagmite 8'%0 is controlled by both the ISM and EASM on orbital-, millennial-, and decadal timescales.
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1 Introduction of societies directly. Spring-time solar heating of the Asian

continent overturns the atmosphere circulation and initiates

Among the global climatic system, the Asian summer mon-
soon (ASM) is one of the most important parts as well as the
most active components. About 60% of the world’s popula-
tion are under the influence of the ASM. Therefore, changes
of monsoonal rainfall affects the livelihood and well-being
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the ASM (Webster et al. 1998; Ding and Chan 2005; Cheng
et al. 2012). With the increase in land-sea temperature con-
trast, the strong atmospheric circulation transports abundant
moisture from distal ocean into most part of Asia (Cheng
et al. 2012). That is to say, the ASM intensity is a concept of

College of Geography Science, Fujian Normal University,
Fuzhou 350007, China

Department of Earth Sciences, University of Minnesota,
Minneapolis, MN 55455, USA

Department of Geological Sciences, Center for Water
Research, University of Texas at San Antonio, San Antonio,
TX 78249, USA

Open Studio for Oceanic-Continental Climate
and Environment Changes, Pilot National Laboratory
for Marine Science and Technology, Qingdao 266061, China

@ Springer


http://orcid.org/0000-0003-1932-7102
http://crossmark.crossref.org/dialog/?doi=10.1007/s00382-019-04671-x&domain=pdf

2970

D.Lietal.

wind field and could control the rainfall of the overall Asian
monsoon region, but not necessarily the rainfall in a certain
region (Cheng et al. 2009, 2016). The ASM is composed of
two sub-systems: the Indian summer monsoon (ISM) and
the East Asian summer monsoon (EASM), which are inde-
pendent to but also interacting with each other (Wang and
Lin 2002; Ding and Chan 2005). Paleoclimatologists have
done many studies in the ASM region and obtained abundant
paleoclimatic archives and proxies on different timescales
(An et al. 2000; Wang et al. 2001, 2005, 2008; Fleitmann
et al. 2003, 2007; Hong et al. 2005; Yancheva et al. 2007;
Cheng et al. 2009, 2016; Xu et al. 2012; Yang et al. 2014a;
Yi et al. 2018; Zhang et al. 2018). Therein, speleothems
are unique continental archives due to their precise absolute
chronologies, continuous or semi-continuous precipitation,
multiproxies and extensive terrestrial distributions (Wong
and Breecker 2015).

Over the past two decades, speleothem studies have
become more and more prevalent in reconstructing climate
changes over the ASM region. However, there have been
some controversies concerning how to interpret speleothem
8'%0 variations in eastern China. For example, Wang et al.
(2001) suggested that changes of stalagmite 8'%0 reflect var-
iations in the proportion of the amount of summer to winter
precipitation. Low 8'30 value indicates higher proportion
of summer monsoon precipitation, i.e., stronger EASM
intensity. Yuan et al. (2004) invoked Rayleigh fractionation
theory to demonstrate that the fraction of water vapor rained
out between the moisture source (tropical Indo-Pacific) and
cave site could be responsible for the observed Chinese sta-
lagmite 8'80 variations. Decreased §'0 values resulted
from the condensation of larger proportion of water vapor
during transportation path (Yuan et al. 2004). Following
this theory, Hu et al. (2008) reconstructed the monsoon pre-
cipitation changes in southwestern China by using the 5'30
differences of two coeval stalagmites from Heshang Cave
in central China and Dongge Cave in southwestern China.
Cheng et al. (2009, 2016) attributed variations of stalagmite
5'%0 values to changes of the summer monsoon intensity or
summer monsoon rainfall due to the low 8'%0 value of the
summer monsoon precipitation. Depleted §'%0 of stalag-
mite implies more spatially integrated monsoon precipitation
between the cave site and the monsoon moisture sources, in
other words, strengthened monsoon intensity (Cheng et al.
2016). This is also supported by the latest modeling results
(Liu et al. 2014). All of the above viewpoints link stalag-
mite 8'%0 with summer monsoon intensity and amount of
rainfall in a large region on orbital to millennial scales. Cai
et al. (2010) and Tan et al. (2015) suggested that ice volume,
ocean circulation, and boundary conditions of the East Asian
continent were relatively stable over shorter timescales, and
speleothems 8'%0 may reflect local rainfall variability in
some specific areas. For example, there is a distinct inverse
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relationship between rainfall and speleothems 8'80 varia-
tions in southwestern China, where most of the moisture is
from the Bay of Bengal (Tan et al. 2017).

Based on the discrepancies between stalagmite 8'%0
from southern China and loess/palacosol magnetic records
from northern China (e.g., Maher and Hu 2006) during the
Holocene, Maher (2008), Maher and Thompson (2012)
and Maher (2016) argued that the Chinese speleothem
880 records reflect not rainfall amounts but rainfall source
changes, ISM-sourced vapor being far-travelled and isotopi-
cally light, and EASM-sourced vapor having more proxi-
mal source and isotopically heavy. Tan (2009, 2011, 2014)
suggested that stalagmite 8'30 within monsoonal China is
controlled by the “circulation effect” on different timescales.
When the West Pacific Subtropical High (WPSH) extends
southwestward, more water vapor from the western Pacific
transports to eastern China and causes heavier §'0 in the
precipitation and stalagmites. In contrast, when the WPSH
retreats northeastward, more water vapor from the Indian
Ocean transports to eastern China and causes lighter 5'30
in the precipitation and stalagmites.

Recently, Pausata et al. (2011) suggested that Chinese
stalagmite 8'%0 was controlled by variations in the ISM
intensity through a modeled Heinrich 1 (H1) event. The
Indian monsoon intensity was weak during Heinrich events
and water vapor exported to eastern China was isotopically
enriched, which caused the positive shift of stalagmite 5'30
in eastern China. In addition, their simulation indicated that
the amplitude of precipitation 5'%0 signal weakened with
the increased distance from the moisture source to eastern
China (Pausata et al. 2011). Following the view of Pausata
et al. (2011), Johnson (2011), Yang et al. (2014b) and Liu
et al. (2015) also considered Chinese speleothem 880 as an
indicator of rainfall changes in the ISM region rather than
the EASM variability.

Here, we establish a new high-resolution stalagmite 5'%0
record from Xianglong Cave in Shaanxi province, cover-
ing the period of 25.5-10.9 ka BP. We compared the XL15
record with other stalagmite 8'%0 records from China and
India. Our study, together with other evidence and records,
suggests that both the ISM and EASM could influence the
stalagmite 8'%0 signal in eastern China on orbital-, millen-
nial-, and decadal timescales.

2 Cave site and sample

Xianglong Cave [32°59'51"N, 106°19'41"E, 863 m asl]
is located on the southern side of the Qinling Mountains,
Shaanxi province (Fig. 1). This region is at the western
margin of WPSH, and is strongly affected by the ASM. In
summer (June—October), the northward summer monsoon
brings humid/warm air and provides abundant monsoonal
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Fig. 1 Location of Xianglong 60°E 80°E

Cave (red five-pointed star).
Numbers indicate locations of
the following caves: (1) Kulishu
(Ma et al. 2012; Orland et al.
2015), (2) Hulu (Wang et al.
2001), (3) Haozhu (Zhang et al.
2016), (4) Songjia (Zhou et al.
2008), (5) Xianyun (Cui et al.
2017), (6) Xiaobailong (Cai

et al. 2015; Tan et al. 2017), (7)
Mawmluh (Dutt et al. 2015), (8)
Timta (Sinha et al. 2005), (9)
Bittoo (Kathayat et al. 2016).
Yellow arrows indicate direc-
tions of the East Asian summer
monsoon (EASM), Indian sum-
mer monsoon (ISM), East Asian
winter monsoon, and westerly

precipitation at the site (>70%, Liu et al. 2003). In winter, the
southward winter monsoon carries dry/cold air. The records
of Ninggiang meteorological station, which is located about
20 km southwest of Xianglong Cave, show that the mean
annual air temperature of the study area is 13 °C, and the mean
annual rainfall is 1100 mm (Tan et al. 2013). Monitoring of
precipitation at the cave site between June 2010 and June 2011
shows that the 8'%0 of precipitation is lower during summer
and autumn (with an average value of —8.6%o) than winter and
spring (with an average value of —4.4%o) (Tan et al. 2015).

The bedrock of Xianglong Cave is Early Proterozoic dolo-
mite and the known length of cave exceeds 1200 m (Tan et al.
2013). Plentiful drip water is observed inside the cave even
during wintertime and the humidity of the inner cave is about
100% all year long. There are abundant secondary carbonate
deposits in the cave: stalactites and stalagmites, which are in
various shapes. Some stalagmites and stalactites were broken
during the tourism development.

Stalagmite XI.15 was collected in the inner chamber. The
total length of XL15 is 40 cm with a cylindrical shape. The
deposition center is relatively stable from bottom to top. The
stalagmite is primarily composed of calcite with a small
amount on the edge of the upper part composed of aragonite
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Fig.2 Polished section of XL15. Black bars indicate positions of
U-Th dates. Black dashed line shows the drilling path for the analysis
of stable isotopes

(Fig. 2). The halved and polished stalagmite section shows
clear growth layers.
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3 Methods

About 50-100 mg powder were drilled parallel to the
growth planes of the stalagmites for U-Th dating. We
obtained 17 subsamples from the bottom to top, as the
drilling positions shown in Fig. 2. Measurements of Th
and U isotopes were performed on a multi-collector induc-
tively coupled plasma mass spectrometer (MC-ICPMS,
Thermo-Finnigan Neptune). The procedure for chemical
separation of Th and U was described in Edwards et al.
(1987), the details on instrumental methods should refer
to Cheng et al. (2013).

Subsamples for O and C isotope analysis were col-
lected along the central growth axis at an average interval
of 1 mm. A total of 344 subsamples were measured by
Finnigan MAT-253 mass spectrometer equipped with an
automated carbonate preparation system (Gasbench II).
Results are reported in per mil (%o), relative to the Vienna
Pee Dee Belemnite (VPDB). Precision of §'%0 values is
better than 0.12%o at the 2o level.

4 Results
4.1 Chronology

U series dating data are listed in Table 1. Results show
that the 238U and 2**Th concentrations are 140-238 ppb
and 271-8750 ppt, respectively. Uncertainties of corrected
230Th dates range from 50 to 300 years. All 2*°Th ages are
in stratigraphic order within the range of errors. We com-
pared the age models of linear interpolation, COPRA (Bre-
itenbach et al. 2012) and StalAge (Scholz and Hoffmann
2011), and chose the linear interpolation model to establish
the chronology of XL.15 (Fig. 3) due to two reasons. Firstly,
both COPRA and StalAge use the Monte-Carlo simulation.
However, when growth rates of stalagmite in the bound-
ary (e.g., the top or the bottom of the stalagmite) change
drastically, the Monte-Carlo simulation may not build the
true growth history (Scholz and Hoffmann 2011). As for
XL15, the growth rate between the first and second dates
(XL15-1 and XL15-2) is 124 um/a, while the growth rate
between the second and third dates (XL15-2 and XL15-2c¢)
is 17 ym/a (Fig. 2). Due to the distinctive changes of growth
rate, both COPRA and StalAge age models consider the first
age datum as an outlier (Fig. 3) and exclude it in the chro-
nology. Secondly, the linear interpolation was widely used
to build age models in previous studies. In order to com-
pare with previous studies, we chose the linear interpolation
method. Results show that XI.15 was continuously deposited
from 25.5 to 10.9 ka BP.
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4.2 The 830 record

The 8'80 record of XL15 is shown in Fig. 4b. The 8'80 of
XL15 fluctuated between — 8.27%o0 and — 2.74%o, with a
mean temporal resolution of ~37 years. From 25.5 to 24.5 ka
BP, the §'%0 fluctuated around — 5.6%0. Afterwards, the
5'%0 values increased significantly during 24.5 and 23.7 ka
BP. Then, the 8'30 decreased and fluctuated around — 5.3%o.
From 17.9 ka BP, the §'%0 values decreased rapidly to
—8.01%o, followed by a dramatic increase to —2.74%o at
16.1 ka BP, which is the heaviest value of the entire §'%0
record. After this period, the 8'%0 decreased and increased
again to —5.15%o at 11.8 ka BP.

4.3 Test of equilibrium deposition

An essential prerequisite for using stalagmite 5'%0 to recon-
struct paleoclimate change is that the stalagmite was precipi-
tated under isotopic equilibrium conditions. Two commonly
used equilibrium tests are Hendy Test (Hendy 1971) and
Replication Test (Dorale and Liu 2009). The main contents
of Hendy Test include: (1) 8'80 values of the same growth
layer remain stable without enrichment trend to the edge;
(2) there is no significantly positive correlation between
8!C and 8'%0 in the same growth layer. In recent years,
however, the validity of the Hendy Test is increasingly chal-
lenged (Fairchild et al. 2006; Romanov et al. 2008; Dorale
and Liu 2009). It is difficult to ensure that the samples used
for Hendy Test are taken from the same growth layer dur-
ing the actual sampling process (Fairchild et al. 2006). In
addition, some studies showed that while the edge of the
stalagmite was under kinetic fractionation, its center could
still be under the equilibrium fractionation (Talma and Vogel
1992; Spotl and Mangini 2002). Another widely used equi-
librium test is the replication of §'®0 records from different
stalagmites in the same cave or from different caves (Dorale
et al. 1998; Wang et al. 2001; Dorale and Liu 2009; Cai
etal. 2010). The §'%0 of XL15 and Hulu record show broad
similarities (r=0.774, p <0.01) during overlapping growth
interval considering their dating errors and resolution differ-
ence (Fig. 4). The replication of these two records indicates
that kinetic fractionation has minimal effect and the §'%0
variations of our stalagmite were mainly of climatic origin.

5 Discussion

5.1 Interpretation of speleothem §'%0

Under isotopic equilibrium conditions, stalagmite 8'0 is
controlled by the cave temperature (—0.23%0/°C, O’Neil

et al. 1969) and the 8'%0 of drip water (Hendy 1971).
Recently, Caley et al. (2014) suggested that regions within
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Fig.3 Age-depth model of XL15. All ages are reported as thousand
years before present (1950 AD), ka BP. The age errors indicated in
the plots are 20 error. The red lines in b and ¢ indicate the confidence

87°E-116°E and 17°N-33°N underwent temperature ampli-
tude of only 3 °C over the past 150,000 years. Due to the
thick roof of Xianglong Cave (~ 100 m, Tan et al. 2014a),
the cave temperature is close to the average annual surface
temperature outside the cave. A drop of 3 °C can only induce
maximum amplitude of 0.7%o in stalagmite 5'%0 values.
In addition, the temperature effect on precipitation 8'30
(£0.24%0/°C) could offset the negative temperature effect
on calcite-mother water fractionation in central China (John-
son et al. 2006; Cai et al. 2010; Zhou et al. 2014). There-
fore, 5'%0 variations in XL15, with the largest amplitude of
~5.53%o, were mainly controlled by the 8'80 of drip water,
and reflected the annual weighted mean 8'%0 of meteoric
precipitation in this region (Yonge et al. 1985).

The significances of stalagmite §'0 are different on
different spatial-temporal scales. On orbital to millennial
timescales, there are remarkably similar trends of stalag-
mite §'%0 from different caves in eastern China, suggesting
that Chinese stalagmite 8'30 could represent changes in the
overall Asian monsoon intensity or a first order change in
spatially-integrated rainfall between cave site and moisture
sources (Cheng et al. 2009, 2016). However, on centennial
to decadal timescales, there are notably regional differences
of stalagmite 8'%0 records from northern China to southern
China (Tan et al. 2009; Ma et al. 2015), indicating factors
such as moisture source, i.e., “circulation effect” (Maher
and Thompson 2012; Tan 2014), regional and local rainfall
amount (Tan et al. 2009, 2015, 2018), and cave environment
(Cosford et al. 2008) may influence the stalagmite 5'30 on
shorter timescales.

Considering the significant positive correlation between
XL15 record and Hulu record (r=0.774, p <0.01), we fol-
low previous suggestions (Maher 2008, 2016; Cheng et al.
2009, 2016; Maher and Thompson 2012; Tan et al. 2018)
in this study. The 8'0 of XL15 is used as an indicator of
monsoon intensity on orbital and millennial timescales.
Lower 8'%0 values indicate strong summer monsoon inten-
sity with relatively more moisture from Indian Ocean. In
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level of 95%. a Linear interpolation method. b COPRA (Breitenbach
et al. 2012). ¢ StalAge (Scholz and Hoffmann 2011)

contrast, higher 8'%0 values represent weak summer mon-
soon intensity with relatively more moisture from western
Pacific (Maher 2008, 2016; Maher and Thompson 2012;
Tan 2014). Since northern China is located near the edge of
the ASM, the rainfall in northern China is sensitive to the
ASM intensity and hence reflected by the speleothem 30
(Zhang et al. 2008; Ma et al. 2012; Tan et al. 2014b; Orland
et al. 2015; Li et al. 2017a). The good consistency between
XL15 §'®0 record and summer precipitation reconstruction
from loess sequence in the western Chinese Loess Plateau
(r=-0.695, p<0.01) (Rao et al. 2013) supports this conclu-
sion. On centennial to decadal timescales, stalagmite 5'30
of Xianglong Cave could reflect local monsoon rainfall as
revealed by the good consistency with instrumental and his-
torical rainfall records (Tan et al. 2015, 2018).

5.2 Millennial-scale abrupt weak monsoon events
during 25.5-10.9 ka BP

During the last glacial period, global climate was punctu-
ated by rapid millennial-scale climate fluctuations, known as
Dansgaard-Oeschger events and Heinrich events (Dansgaard
et al. 1984, 1993; Heinrich 1988; Bond et al. 1993). Heinrich
events, as well as Younger Dryas (YD) event (also called HO
event), are thought to be triggered by the slowdown of the
Atlantic meridional overturning circulation (AMOC), which
were due to the collapse of the Laurentide Ice Sheet and/or
Fennoscandian Ice Sheet (Bard et al. 2000; Hemming 2004;
McManus et al. 2004; Marchitto et al. 2007; Muschitiello
et al. 2015). Although Heinrich events were first recognized
in the North Atlantic region, they are a global phenomenon
(Clement and Peterson 2008; Arienzo et al. 2015). During
Heinrich events, western Atlantic got colder (Arienzo et al.
2015), Europe became drier and/or colder (Genty et al.
2003, 2006), northern South America (Peterson et al. 2000)
and Africa were also drier (DeMenocal et al. 2000; Gasse
2000; Stager et al. 2011). On the contrary, both southern
South America (Kanner et al. 2012) and southwestern North
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record. The age error bars (20) are color-coded by stalagmites. ¢ The
8'%0 record from Hulu Cave (Wang et al. 2001). d The 5'®0 record of
Songjia Cave (Zhou et al. 2008). e The 8'80 record of Haozhu Cave

America (Asmerom et al. 2010; McGee et al. 2012) became
wetter, and Antarctica got warmer (Wolff et al. 2010).

The XL15 record shows similar variations with the GISP2
8'80 record from northern high latitude (Fig. 4a, Grootes
and Stuiver 1997), which indicates notable weak ASM dur-
ing Heinrich 2 (H2), H1 and YD events, which are centered
at 24.2, 16.1 and 11.8 ka BP. In contrast, strong monsoons
were observed during Bglling—Allergd (BA) period, which

(Zhang et al. 2016). f The 8'30 record of Mawmluh Cave (Dutt et al.
2015). g The 8'30 record of Bittoo Cave (Kathayat et al. 2016). h The
8'30 record of Jaragua Cave (Novello et al. 2017). The vertical yel-
low bars denote H2, H1, and YD events, respectively

lasted from 14.4 to 12.8 ka BP. These results are coher-
ent with previous conclusion that the ASM declined during
Heinrich events (Wang et al. 2001). Indeed, broad similari-
ties of XL15 record with Hulu (Wang et al. 2001), Songjia
(Zhou et al. 2008), Haozhu (Zhang et al. 2016), Mawm-
luh (Dutt et al. 2015) and Bittoo records (Kathayat et al.
2016) indicate a clear first-order covariations of climate over
the whole Asian monsoon region on millennial timescale
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(Fig. 4). We also compared the XL15 record with record
of Jaragua Cave from Brazil (Novello et al. 2017). Results
support the viewpoint that millennial scale events first rec-
ognized in northern high latitude regions are hemispheric
(Broecker 1994), though there is an inter-hemispheric anti-
phase of monsoonal rainfall on both millennial and orbital
timescales (Wang et al. 2007; Cheng et al. 2012; Kanner
et al. 2012).

During Heinrich events, the reduction of the AMOC
resulted from the collapse of the Laurentide Ice Sheet and/or
Fennoscandian Ice Sheet(McManus et al. 2004; Muschitiello
et al. 2015) cooled the northern mid- and high-latitudes, and
thus led to the enhancement of the interhemispheric temper-
ature contrast, pushed the Intertropical Convergence Zone
(ITCZ) southward (Chiang et al. 2003; Chiang and Bitz
2005; Zhang and Delworth 2005; Broccoli et al. 2006), and
might result in a weak ASM and intensified South Ameri-
can monsoon. Nevertheless, several studies suggested a low-
latitude drive of high-latitude climate variability in Northern
Hemisphere (Cane and Clement 1999; Caley et al. 2013;
Kleppin et al. 2015). Thus it remains an open question.

5.3 Is Chinese stalagmite §'20 solely controlled
by the ISM?

Recently, a Community Atmosphere Model version 3
(CAM3) result suggested that an abrupt increase of the sea-
ice extent in North Atlantic during H1 and YD events could
decrease the temperature of the northern Indian Ocean and
reduce the monsoonal precipitation over the northern Indian
Ocean and Indian subcontinent (Pausata et al. 2011). Thus,
the 8'80 of precipitation over northern India was heavier,
and the water vapor moved to China through recycling was
isotopically enriched. In addition, the simulation results indi-
cated that the amplitude of precipitation 5'®0 signal weak-
ened with increasing distance from the moisture source (the
Indian Ocean) to eastern China.

Here we compare the amplitudes of stalagmite §'0 of
our XL 15 record and other stalagmites from eastern China
with those from India during Heinrich events (Fig. 5). We
calculated the amplitude of stalagmite 8'30 during Heinrich
events by subtracting the lightest values from the heaviest.
We believe this method is better than the average calculation
for the following reasons: (1) the distribution of age-control-
ling points and dating errors may bring uncertainties to the
determination of time periods of Heinrich events and Last
Glacial Maximum (LGM), which further affect the average
5'80 values of these periods. For example, the duration of
YD in Bittoo record was much shorter than that in XL15,
which could be caused by dating errors (Fig. 5); (2) the het-
erogeneous 8'%0 resolution within a given site (or stalagmite
or record) could also affect calculated average values during
Heinrich events and LGM. For example, if there are more
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depleted 8'30 samples during some intervals, it will reduce
the average values of LGM or Heinrich events. As shown
in Fig. 5, the amplitude of 5'®0 values of XL15 (~5.3%o0)
is similar to that from Bittoo Cave (~5.3%o, Kathayat et al.
2016) in northern India and greater than those from Mawm-
luh Cave (~3%o, Dutt et al. 2015) in northeastern India, Hulu
(~2.9%0, Wang et al. 2001) and Songjia (~4%o, Zhou et al.
2008) records in eastern China during H1 event. In addition,
the amplitude of our XL15 record is also slightly larger than
that in Mawmluh record during YD and H2 events. It also
shows similar amplitude (~3%o) with Timta record from
northern India (Sinha et al. 2005) during YD event.

However, the heterogeneous §'%0 resolution could also
affect the peak values. When the resolution is higher, larger
5'0 amplitude may be revealed. This means the peak 5'30
might be lighter during LGM and heavier during H1 with
increased sampling resolution. However, the resolution of
Bittoo record around the peak during LGM is 11 years,
which is much higher than that of XL.15 record (51 years). In
contrast, the resolution of Bittoo record (67 years) is similar
to XL 15 record (40 years) around the peak during H1 event.
This implies the §'30 amplitude of XL15 record might be
larger than Bittoo record during H1 event, if the sampling
resolution was similar.

In addition to peak-to-peak calculation for 8'%0 ampli-
tude, we also calculated average 8'80 values in order to
better compare our results to the modeling study of Pau-
sata et al. (2011). We averaged the 8'30 values during
11.6-12.5 ka for YD, 13-14.5 ka for BA, 15.5-16.5 ka for
H1 and 20-22 ka for LGM. Our results suggested that the
amplitude of stalagmite 5'%0 from LGM to H1 is ~ 1.1%o,
~1.4%o0, ~1.5%0 for XL15, Bittoo and Mawmluh records,
respectively, which are similar with the modelled results
(Pausata et al. 2011). However, the amplitude of stalagmite
8'%0 from BA to YD in XL15, Bittoo, Timta and Mawmluh
record is ~ 1.6%o, ~ 1.3%o0, ~ 1.5%0 and ~0.7%o, respectively.
The 8'%0 amplitude of XL15 is the largest among these
records during YD event.

It was suggested that the temperature effect on 5'%0
of precipitation in central China is <0.24%0/°C (Johnson
et al. 2006), which could cancel or reduce the negative
temperature effect on calcite-mother water fractionation
(~—0.23%0/°C, O’Neil et al. 1969). As a result, the tempera-
ture would have neglected influence on §'%0 of stalagmite in
central China (Johnson et al. 2006). In addition, it was sug-
gested that higher elevation could magnify the rainout effect,
resulting in a larger amplitude of stalagmite 8'%0 variation
(Cai et al. 2012). The elevation of Bittoo, Timta, and Mawm-
luh Cave is ~3000 m, 1900 m and 1290 m, respectively,
which are higher than the elevation of Xianglong Cave
(863 m). Therefore, the actual amplitudes of §'%0 caused by
climate change would be smaller in stalagmites from north-
ern India if their elevation were the same as Xianglong Cave.
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Fig.5 The magnitude comparison of XL15 8'%0 record (green) and
Hulu (red, Wang et al. 2001), Songjia (plum, Zhou et al. 2008), Bit-
too (purple, Kathayat et al. 2016), Timta (orange, Sinha et al. 2005)

We indeed see the weakening §'%0 amplitudes from Bittoo
to Timta and Mawmluh records during Heinrich events, with
their decreasing elevations. This means that the amplitude
of stalagmite 8'0 did not show a decreasing pattern from
India to eastern China during Heinrich events as the model
simulated (Pausata et al. 2011). Furthermore, the flux den-
sity of light 8'80 atoms based on observational data does
not show a decreasing pattern from India to eastern China
(Maher and Thompson 2012).

Moreover, a newly published stalagmite 8'%0 record from
Xianyun Cave (Cui et al. 2017), which is under the control of

and Mawmluh (brown, Dutt et al. 2015) cave records. The age error
bars (20) are color-coded by stalagmites. The vertical yellow bars
denote H2, H1, and YD events, respectively

typical EASM in southeast China, showed a distinct discrep-
ancy in mutation mode of H1 event with that from Mawmluh
Cave (Dutt et al. 2015). Our XL15 record, together with
records from Hulu Cave (Wang et al. 2001), Songjia Cave
(Zhou et al. 2008), Xianyun Cave (Cui et al. 2017) and
Haozhu Cave (Zhang et al. 2016) in eastern China show
three-stages (increasing-stable-increasing) in mutation mode
of H1 event. In contrast, records from Bittoo Cave (Kathayat
et al. 2016) and Mawmluh Cave (Dutt et al. 2015) in India
show consistent increasing mode (Fig. 6). It is worth noting
that the different mutation modes seen in these records might
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Fig.6 Comparison of mutation mode of H1 between a XL 15, b Hulu
(Wang et al. 2001), ¢ Songjia (Zhou et al. 2008), d Xianyun (Cui
et al. 2017), e Haozhu (Zhang et al. 2016), f Bittoo (Kathayat et al.

be ascribed to the distribution of age-controlling points, dat-
ing errors, as well as the heterogeneity of §'®0 resolutions.
More high-resolution and precisely dated records from both
India and China are needed to verify this behavior.
Furthermore, the model of Pausata et al. (2011) did not
show any changes in the seasonal distribution or annual aver-
age of precipitation at the cave sites in China associated with
Heinrich events, which is in contrast with other moisture
records in China (Zhou et al. 2001, 2005, 2016; Yancheva
et al. 2007; Sun et al. 2010, 2011; Ma et al. 2012; Orland
et al. 2015). For example, a seasonally resolved stalagmite
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2016) and g Mawmluh (Dutt et al. 2015) cave records. The vertical
yellow bar denotes H1 event

record from Kulishu Cave showed an increasing trend of
5'80, which suggested that regional rainfall in northern
China decreased during YD event (Ma et al. 2012; Orland
et al. 2015). Recently, a floodplain deposition from Huai
River Basin showed lower total organic carbon (TOC) and
tree pollen percentage, and positive organic 8'3C at around
16 ka BP, which indicated a severe drought during H1 event
in the Huai River Basin (Zhou et al. 2016). The decreased
summer rainfall during Heinrich events was also recorded in
the 8'3C o data of a loess profile from the western Chinese
Loess Plateau (Rao et al. 2013).
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Different patterns of stalagmite 8'0 variations from
the EASM and ISM regions were also reported on other
timescales. For example, a 252-kyrs-long speleothem 830
record from Xiaobailong Cave in southwestern China, which
is controlled by the ISM (Cai et al. 2015), showed a sig-
nificant ~ 100 ka cycle, which did not occur in stalagmite
records from eastern China. In addition, a modern stalagmite
8130 record (1912-2009 AD) from Xianglong Cave showed
anti-phase variations with the stalagmite 8'%0 record from
India (Sinha et al. 2011) and the Indian monsoon rainfall
index (Parthasarathy et al. 1995) during the last hundred
years on decadal timescales (Tan et al. 2015). All the evi-
dence above do not support a sole control of the ISM on
Chinese stalagmite 8'30 variations.

5.4 Both the EASM and ISM controlled Chinese
stalagmite §'%0

It was suggested that both the Indian Ocean and Pacific
sources could influence the stalagmite 8'%0 signal in east-
ern China (Maher 2008, 2016; Maher and Thompson 2012;
Wang and Chen 2012; Tan 2014; Orland et al. 2015; Li et al.
2017b). The calculated change in 8'30 of precipitation dur-
ing the YD-Holocene transition from Kulishu record is
1.3%o0 (Orland et al. 2015), larger than the simulated result
of 0.5-1.0%0 (Pausata et al. 2011). Orland et al. (2015) sug-
gested that the simulated results underestimated the effect
of the Pacific. Recently, based on the comparison of stalag-
mite 830 records between southwestern China and eastern
China, along with modern precipitation 8'80 analysis, Li
et al. (2017b) demonstrated that stalagmite 8'%0 records
and modern precipitation 8'%0 in Yunnan province were
much more negative than the EASM regions on multiple
timescales, which cannot be interpreted by the temperature,
latitude, altitude, or amount effects. The only reasonable
explanation is different moisture sources for the EASM and
ISM regions.

Geographically, there is no clear boundary between the
ISM and EASM in China. We roughly consider 100°-110°E
as a broad range of boundary between the ISM and EASM
(Wang and Lin 2002; Ding and Chan 2005; Li et al. 2014).
In fact, the ISM and EASM are generally independent but
associated with each other (Wang and Lin 2002; Ding and
Chan 2005). The main components of the Indian monsoon
system include: Southern Hemisphere Mascarene high,
Somali cross-equatorial jet, southwest flow, Indian-Bengal
low, Indian monsoon trough, and Tibetan Plateau low; while
the EASM system consists of the Australian cold anticy-
clone, the cross-equatorial flow along the east to 100°E,
southwest flow, the monsoon trough (or ITCZ) over the
South China Sea and the tropical western Pacific, the WPSH,
the disturbances over mid-latitudes and the Meiyu front (Tao
and Chen 1985). The ISM is a tropical monsoon system but

the EASM consists of both tropical and subtropical monsoon
(Zhu et al. 1986; Tao and Chen 1987). Therefore, the EASM
share the same component of southwest flow with the ISM,
but with its own characteristics. We can divide monsoonal
China into three regions: the southwest monsoon region
which is affected by the Indian monsoon; the region influ-
enced by both the EASM and ISM, as well as the region
affected by the EASM (Wang and Lin 2002). Even if in the
EASM region, the ISM could affect the EASM moisture and
hence precipitation 8'30 by affecting the southwest flow. In
order to extract the Pacific’s signal from XL15 during H1
event, we chose Mawmluh as an ISM intensity record
(Indian Ocean signal). The period of 14.5-17.5 ka BP was
selected to include the duration of H1 event. We interpolated
XL15 and Mawmluh 8'30 record with an interval of 50 years
during this period, and then normalized them using the for-

X=X
mula x = —=a (x X represent the average,

max ™ Xmin

maximum and minimum of §'%0, respectively). Finally, the
normalized Mawmluh record was subtracted from the nor-
malized XL15 record. The result can be viewed as a pure
Pacific signal, i.e., subtropical monsoon (Fig. 7). When com-
paring the result with the sea surface temperature (SST)
record from the Western Pacific Warm Pool (WPWP) (Stott
et al. 2007), we found a significant negative correlation
(r=-0.319, p<0.05), with increased SST corresponding to
negative 8'%0 values. Modern meteorological data and
model simulations indicated that high SSTs in the WPWP
would strengthen the upper convection around the region of
Philippine, which would cause the northward shift of the
WPSH and the EASM Meiyu belt (Huang and Li 1987;
Huang and Sun 1992; Cao et al. 2002; Huang et al. 2004),
resulting in enhanced rainfall from the Pacific and negative
rainfall §'%0.

mean® Xmax’ Xmin

6 Conclusions

Based on 17 U-Th dates, we propose a high-resolution sta-
lagmite oxygen isotope record from Xianglong Cave in
Shaanxi province, covering the period of 25.5-10.9 ka BP.
Our record displays a clear first-order covariations of cli-
mate with northern high latitude and other Asian monsoon
records on millennial timescale. The XL15 record supports
the viewpoint that millennial scale events first recognized
in northern high latitude regions are hemispheric, though
there is an inter-hemispheric anti-phasing of monsoonal
rainfall. However, a weakened 8'%0 signal from India to
eastern China was not seen as simulated by model (Pausata
et al. 2011) during Heinrich events. In addition, the differ-
ences between stalagmite records from eastern China and
the ISM region were observed on glacial-interglacial scale
and decadal scales. When subtracting the Indian stalagmite
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Fig.7 Comparison of a normalized XL15 8'%0 record, b normalized Mawmluh 8'80 record (Dutt et al. 2015), ¢ SST record from the western
tropical Pacific Warm Pool (Stott et al. 2007), d difference between XL.15 and Mawmluh record (normalized)

880 signal from our XL15 record during H1 period, we
got the Pacific signal during H1 event for the first time. The
result is significantly negatively correlated with the WPWP
SST, which is consistent with modern observation and
model results. Consequently, our study suggests that Chinese
stalagmite 8'30 is controlled by both the ISM and EASM
(Maher 2008, 2016; Maher and Thompson 2012; Wang and
Chen 2012; Tan 2014; Orland et al. 2015; Tan et al. 2015;
Liet al. 2017b).
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