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Abstract: We study limit theorems in the context of random perturbations of dispers-
ing billiards in finite and infinite measure. In the context of a planar periodic Lorentz
gas with finite horizon, we consider random perturbations in the form of movements
and deformations of scatterers. We prove a central limit theorem for the cell index of
planar motion, as well as a mixing local limit theorem for piecewise Hölder continuous
observables. In the context of the infinite measure random system, we prove limit the-
orems regarding visits to new obstacles and self-intersections, as well as decorrelation
estimates. The main tool we use is the adaptation of anisotropic Banach spaces to the
random setting.
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Introduction

The Lorentz process is a physically interesting mechanical system modeled by mathe-
matical billiards with chaotic behavior. Introduced by Sinai in [37], it has been studied
extensively by many authors, see [8,9,12] and other related references. It is the deter-
ministic motion of a point particle starting from a random phase point and undergoing
specular reflections on the boundaries of strictly convex scatterers. Throughout this paper
we will consider a Z

2-periodic random configuration of scatterers, with finite horizon.
The diffusion limit of the planar Lorentz process can be described by a Wiener process
[9], and is thus closely related to the central limit theorem (CLT) and local limit theorem
(LLT).

The history of the LLT goes back to the historic De Moivre Laplace theorem for
independent identically distributed (iid) Bernoulli random variables. It has then been
generalized in many contexts. The CLT appears as a consequence of the LLT. In the
context of dynamical systems, the first LLT was established by Guivarc’h and Hardy for
subshifts of finite type [22]. The method they used, also used by Nagaev in [27], was
based on perturbations of an associated transfer operator and has since been used for
many expanding and hyperbolic dynamical systems. This method is now often called
the Nagaev–Guivarc’h method. For the Sinai billiard (with fixed scatterers), the LLT
was proved by Szász and Varjú in [35] using Young towers and the Nagaev-Guivarc’h
method. Also using Young towers, Pène established and used in [29–31] some precise
versions of the LLT to prove further limit theorems for the Sinai billiard (see also her
works with Saussol [33] and with Thomine [34] for other applications of the LLT).

The goal of this article is to prove the LLT, as well as several of its applications,
in the context of randomly deforming scatterers in a dispersing Lorentz gas with finite
horizon. In this context the use of Young towers does not appear very adequate, since a
different tower is associated to every different Z2-periodic configuration of scatterers. It
is therefore much more natural to work directly with the billiard transformations since
these transformations act on the same space M̄0 and preserve the same measure. To this
end, we will work with the spaces considered in [15–17], which are spaces B,Bw made
of distributions instead of being spaces of functions contained in L p for some p > 1
as in [22,35]. This will complicate our study. One advantage of the approach used by
Demers and Zhang is that the Banach spaces they construct in [16] are the same for
natural families of billiard transformations.

Since we are interested in random iterations of billiard transformations, we will
consider the full random billiard system corresponding to the skew product transforma-
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tion which takes into account both the billiard configuration (position and speed) and
the randomness of the configuration of scatterers. Let us mention that Aimino, Nicol
and Vaienti established in [2] an LLT (together with other limit theorems) for random
iterations of expanding dynamical systems. Their approach was based on the Nagaev-
Guivarc’h method applied to the restriction of the transfer operator of the full random
system to functions depending only on the phase space coordinate (and not on the ran-
dom coordinate). The advantage of their method is that they worked on a simple Banach
space (in which the randomness of the transformations is not taken into account). But
the disadvantage is that they had to reprove for this restricted operator theorems that
were already known for transfer operators. In the present paper, we apply directly the
Nagaev-Guivarc’h method to the transfer operator of the full random system acting on
suitable Banach spaces ˜B, ˜Bw which are easily defined using B,Bw. As a consequence,
our results apply to observables that may depend on both the position and speed of the
billiard, as well as the random coordinate.

This article is organized as follows. In Sect. 1, we specify our assumptions and
notation. In Sect. 2, we state our main limit theorems: LLT, asymptotic estimate of the
return time to the initial scatterer, asymptotic behavior of the number of self-intersections,
annealed and quenched limit theorem for a random billiard in random scenery, limit
theorems for some ergodic sums of the planar random billiard (in infinite measure),
mixing and decorrelation for the planar random billiard (in infinite measure). In Sect. 3,
we study the spectral properties of the transfer operator of the full random system.
Section 4 is devoted to the proof of our main results under general spectral assumptions.

1. Notation and Assumptions

1.1. Deterministic billiard systems. Let I ≥ 1 and let O1, . . . , OI be I convex open
subsets of R

2, having C3 boundary with strictly positive curvature, and such that the
closure of the sets (Ui,� := � + Oi )i=1,...,I ; �∈Z2 are pairwise disjoint. We consider the

Z
2-periodic billiard table Q := R

2\⋃�∈Z2
⋃I

i=1(Ui,�). We assumemoreover that every
line meets ∂Q (i.e. that the horizon is finite). We are interested in the behavior of a point
particle moving in Q at unit speed, going straight inside Q, and reflecting elastically off
∂Q (the reflected direction being the symmetric of the incident one with respect to the
normal line to Q at the reflection point).

We consider the planar billiard system (M0, μ0, T0) modeling the behavior of the
point particle at reflection times. A configuration is given by a pair (q, �v) ∈ M0 repre-
senting position and velocity, and corresponding to a reflected vector off ∂Q, with

M0 := {(q, �v) ∈ R
2 × R

2 : q ∈ ∂Q, ‖�v‖ = 1, 〈�n(q), �v〉 ≥ 0},
where �n(q) is the unit vector, normal to ∂Q at q and directed into Q. The transforma-
tion T0 maps a reflected vector to the reflected vector at the next reflection time. This
transformation preserves the measure μ0 given by dμ0 = c̃ cosϕ dr dϕ (where r is
the parametrized arclength coordinate on ∂Q corresponding to q and ϕ is the algebraic

measure of the angle ̂(�n(q), �v) and where c̃ = 1/(2
∑I

i=1 |∂Oi |), the reason for the
choice of c̃ will be clear in a few lines).

For every i ∈ {1, . . . , I } and every � ∈ Z
2, we define Mi,� := {(q, �v) ∈ M0 : q ∈

∂Ui,�} for the set of reflected vectors based on the obstacle Ui,�. For every � ∈ Z
2, we

will call an �-cell the set M̄� :=⋃I
i=1 Mi,� .
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Identifying the boundary of each scatterer ∂Oi with a circle Si of length |∂Oi |, we
define M̄0 := ∪I

i=1Si × [−π/2, π/2]. Thus M̄0 is a parametrization of M̄(0,0) in the
coordinates (r, ϕ) introduced above.Note thatmany configurations of obstacles Oi result
in the same parametrized space M̄0. We shall exploit this fact when defining the classes
of random perturbations that we shall consider.

Because of its Z
2 periodicity, the planar billiard system can be identified with a Z

2-
cylindrical extension over a dynamical system (M̄0, μ̄0, T̄0). Indeed, using the notation
x + � = (q + �, �v) for every x = (q, �v) ∈ M0 and every � ∈ Z

2, we observe that there
exists a transformation T̄0 : M̄0 → M̄0 (corresponding to the billiard map modulo Z

2)
and a function �0 : M̄0 → Z

2 called a cell-change such that

T0(x + �) = T̄0(x) + � +�0(x) .

This transformation T̄0 preserves the probability measure μ̄0 := μ0|M̄0
(the fact that μ̄0

is a probability comes from our choice for the normalizing constant c̃).
In the following, identifying a couple (x, �) ∈ M̄0×Z

2 with x +� ∈ M0, we identify
(M0, μ0, T0) with the Z

2-cylindrical extension of (M̄0, μ̄0, T̄0) by �0, i.e. we identify
M0 with M̄0 × Z

2, μ0 with μ̄0 ⊗m, where m :=∑

k∈Z2 δk is the counting measure on
Z
2.

1.2. Random perturbations of the initial billiard system. Before describing the random
perturbations we shall consider, we describe a class of maps F̄ on M̄0 with uniform
properties from which we will draw random sequences of maps. The class F̄ we will
use is a slightly simplified version of the one introduced in [16]. The perturbations in
[16] allowed billiards with infinite horizon, while for the present work we will assume
a finite horizon condition and that the invariant measure is absolutely continuous with
respect to the Lebesgue measure, which simplifies several of our assumptions.

We consider a probability space (E,T, η) containing 0 and a family (Tω)ω∈E of Z
2-

periodic planar Sinai billiard systems (with finite horizon) defined on M0, the quotient
billiard maps (modulo Z

2 for the position) T̄ω of which are in F̄ , and below we will
choose F̄ϑ0(T̄0) as a small ϑ0-neighbourhood of our original map T̄0, see (5).

For any ω ∈ EN, we will consider random iterations of the form T k
ω := Tωk−1 ◦

· · · ◦ Tω0 . Here ω = (ωk)k≥0, and Tωk ∈ F , for any k ≥ 0, where F is a collection of
Z
2 extensions of F̄ . This will be formalized below. In our model, the modification of

environment is applied during the reflection time of the particle; the particle stays on
the obstacle and moves with it during the modification of the billiard system. At its k-th
reflection time, the particle arrives on an obstacle in an environment parametrized by
ωk−1, but when it leaves it sees the environment ωk .

We identify (M0, μ0, Tω) with the Z
2-extension of (M̄0, μ̄0, T̄ω) by some function

�ω : M̄0 → Z
2 which is constant on each connected component of continuity of T̄ω.

We define the random billiard system (M̄, μ̄, T̄ ), corresponding to random iterations
of maps in F̄ , by setting:

M̄ := M̄0 × EN, μ̄ := μ̄0 ⊗ η⊗N, T̄ (x, (ωk)k≥0) := (T̄ω0x, (ωk+1)k≥0) .

We also define the planar random billiard system (M, μ, T ) with:

M := M0 × EN, μ := μ0 ⊗ η⊗N, T
(

x, �, (ωk)k≥0
) := (Tω0(x, �), (ωk+1)k≥0) .
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This dynamical system is a Z
2-extension of (M̄, μ̄, T̄ ) by � : M̄ → Z

2 given by:

�(x, (ωk)k≥0) = �ω0(x)) .

Observe that

T n (x, �, (ωk)k) = (Tωn−1 ◦ · · · ◦ Tω0(x, �), (ωn+k)k)

= (T̄ωn−1 ◦ · · · ◦ T̄ω0(x), � + Sn(x, (ωk)k), (ωn+k)k),

with

Sn(x, (ωk)k) :=
n−1
∑

k=0

� ◦ T̄ k(x, (ωk)k) =
n−1
∑

k=0

�ωk ◦ T̄ωk−1 ◦ · · · ◦ T̄ω0(x),

corresponding to the cell change, starting from x , after n iterations of maps labeled
successively by ω0, . . . , ωn−1.

Notation 1.1. As exemplified by the definitions above, we will use overlines such as μ̄,
M̄, T̄ to denote objects associated with the quotient random system, defined in finite
measure. When we introduce a subscript such as μ̄0, M̄0, T̄ω, these denote objects which
are not functions of the random coordinate, but are still defined on the quotient space.

1.3. A uniform family of maps. We fix the phase space M̄0 = ∪I
i=1Si × [−π/2, π/2]

as described above. Define S0 = {ϕ = ±π
2 } and for a fixed k0 ∈ N with value to be

chosen in (3), for k ≥ k0 we define the homogeneity strips,

Hk = {

(r, ϕ) ∈ M̄0 : π
2 − 1

k2
< ϕ < π

2 − 1
(k+1)2

}

, (1)

and the strips H−k are defined similarly in a neighborhood of ϕ = −π/2. For the
class of maps defined below, we will work with the extended singularity set S0,H =
S0 ∪ (∪k≥k0∂H±k). Thus for any F ∈ F̄ , the set SF±n := ∪n

i=0F
∓iS0,H represents the

singularity set for F±n .
We suppose F̄ is a class of maps F : M̄0 � such that each F ∈ F̄ is a C2 diffeomor-

phism of M̄0\SF
1 onto M̄0\SF−1 and satisfies the following properties.

(H1) Hyperbolicity and singularities. There exist continuous families of stable and
unstable cones, Cs(x) and Cu(x) in the tangent space of M̄0 at x ∈ M̄0\S−1 and x ∈
M̄0\S1, respectively, which are strictly invariant in the following sense: DF(x)Cu(x) �

Cu(Fx) and DF−1(x)Cs(x) � Cs(F−1x) for all F ∈ F̄ wherever DF and DF−1 are
defined.

We assume the sets∪n
i=0F

±iS0 (without homogeneity strips) comprise finitely many
smooth curves for each n ∈ N, while the sets SF±n (with homogeneity strips) have count-
ably many smooth curves. SF

n is uniformly transverse1 to Cu(x) and SF−n is uniformly
transverse toCs(x) for each n ≥ 0.Moreover,Cs(x) andCu(x) are uniformly transverse
on M̄0 and Cs(x) is uniformly transverse to the horizontal and vertical directions on all
of M̄0.2

1 The uniformity is assumed to be a lower bound on the angle between these curves and the relevant cone,
which is indepedent of x ∈ M̄0, n ∈ N and F ∈ F̄ .

2 This is not a restrictive assumption for perturbations of the Lorentz gas since the standard cones for the
associated billiard map satisfy this property [12, Section 4.5].
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We assume there exist constants Ce > 0 and � > 1 such that for all F ∈ F̄ and
n ≥ 0,

‖DFn(x)v‖ ≥ C−1
e �n‖v‖,∀v ∈ Cu(x), and ‖DF−n(x)v‖

≥ C−1
e �n‖v‖,∀v ∈ Cs(x), (2)

where ‖ · ‖ is the Euclidean norm on the tangent space to M̄0.
Finally, near singularities, we assume the maps in F̄ behave like dispersing billiards:

there exists Ca > 0 such that

Ca‖v‖ ≤ ‖DF−1(x)v‖ cos ϕ(F−1x) ≤ C−1
a ‖v‖, ∀v ∈ Cs(x),

where ϕ(z) denotes the angle ϕ at the point z = (r, ϕ) ∈ M̄0. We also require that the
second derivative is bounded by,3

Ca ≤ ‖D2F−1(x)‖ cos3 ϕ(F−1x) ≤ C−1
a .

(H2) Families of stable and unstable curves.Wecall a C2 curveW ⊂ M̄0 a stable curve
with respect to the class F̄ if the unit tangent to W lies in Cs(x) for all x ∈ W . We say
W is homogeneous if it lies in a single homogeneity strip Hk . We define homogeneous
unstable curves analogously.

Let ̂Ws denote the set of C2 homogeneous stable curves in M̄0 whose curvature is
bounded above by a constant B > 0. We assume there exists B large enough that F−1W
is a union of elements of ̂Ws for all W ∈ ̂Ws and F ∈ F̄ . A family ̂Wu of unstable
curves is defined analogously.

(H3) One-step expansion. Assume there exists an adapted norm ‖ · ‖∗ on the tangent
space to M̄0, equivalent to ‖ · ‖, in which the constant Ce in (2) can be taken to be 1.
This yields a uniform expansion and contraction in one step for maps in the class F̄ .

Let W ∈ ̂Ws . For F ∈ F̄ , we subdivide F−1W into maximal homogeneous curves
Vi = Vi (F) ∈ ̂Ws . We denote by |JVi F |∗ the minimum contraction on Vi under F in
the metric induced by the adapted norm ‖ · ‖∗. We assume that k0 in (1) can be chosen
sufficiently large that,

lim
δ→0

sup
F∈F̄

sup
W∈̂Ws

|W |<δ

∑

i

|JVi F |∗ < 1, (3)

where |W | denotes the arclength of W .
In addition, if we weaken the power of the Jacobian slightly, we assume that the sum

above still converges (although it need not be a contraction). Choosing δ0 so that the
expression in (3) is< 1 for δ < δ0, we assume there exists ζ0 ∈ (0, 1) and C1 > 0 such
that for all δ ∈ (0, δ0) and ζ ∈ [ζ0, 1],

sup
F∈F̄

sup
W∈̂Ws

|W |<δ

∑

i

|JVi F |ζC0(Vi )
≤ C1.

(H4) Bounded distortion.There exists a constantCd > 0 with the following properties.
Let W ′ ∈ ̂Ws and for F ∈ F̄ , n ∈ N, let x, y ∈ W ⊂ F−nW ′ such that FiW is a
homogeneous stable curve for each 0 ≤ i ≤ n. Then,

∣

∣

∣

∣

JW Fn(x)

JW Fn(y)
− 1

∣

∣

∣

∣

≤ CddW (x, y)1/3 , (4)

3 Since F−1 is C2 on M̄0\(S0 ∪ FS0), setting x = (r, ϕ) and F−1(x) = (r−1, ϕ−1), we may define the
norm ‖D2F−1(x)‖ to be the maximum over all the second partials of (r−1, ϕ−1) with respect to (r, ϕ) at x .
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where JW Fn denotes the (stable) Jacobian of Fn along W with respect to arclength.

(H5) Invariant measure. All the maps F ∈ F̄ have the same invariant measure μ̄0.

Remark 1.2. Assumption (H5) can be replaced more generally with the requirement that
all F ∈ F̄ preserve the same measure μ̄ which is absolutely continuous with respect to
Lebesgue and mixing. In addition, μ̄ should satisfy the following technical assumptions:
For k ≥ k0, μ̄(Hk) = O(k−q) for some q > 4; also, μ̄ can be disintegrated intomeasures
μα along any measurable foliation of M̄0 into stable manifolds {Wα, α ∈ A}, with a
factor measure λ, such that

μ̄0(A) =
∫

α∈A

∫

x∈Wα

1A(x) dμαdλ(α),

where dμα = ραdmα satisfies a regularity condition: | ln ρα(x) − ln ρα(y)| ≤ CFdWα

(x, y)1/3, for some constant CF ≥ Cd , dW (x, y) is the distance of x and y measured
along the curve W , and mα is arclength measure on Wα .

This generalization to other smooth invariant measures is of interest, for example,
when considering perturbations in the form of certain soft potentials rather than hard
scatterers, or the case of external forces due to gradient fields. See for instance [3,11]
and their inclusion in a similar perturbative framework [16].

A crucial lemma, which will allow us to draw random sequences from the class F̄ ,
is the following.

Lemma 1.3. Fix a class F̄ satisfying (H1)–(H5) with uniform constants. Let ω ∈ EN,
and suppose T̄ωk ∈ F̄ for all k ≥ 0.

Then for all n ∈ N, the composition T̄ n
ω := T̄ωn−1 ◦ · · · ◦ T̄ω0 satisfies assumptions

(H1)–(H5), with possibly larger constants (that are nonetheless independent of n and

ω), and with respect to the singularity sets S T̄ω
n = ∪n−1

k=0 T̄
−1
ω0

◦ · · · ◦ T̄−1
ωk

S0,H .

Lemma 1.3 is proved in [16, Section 5.3].

1.4. Distance in the class F̄ . To define a notion of distance dF̄ (·, ·) in the class of

maps F̄ , let F1, F2 ∈ F̄ and for ε > 0, let Nε(SFi−1) denote the ε-neighborhood of the

singularity set SFi−1. We say dF̄ (F1, F2) ≤ ε if for all x /∈ Nε(SF1−1 ∪ SF2−1):

(C1) d((F1)−1(x), (F2)−1(x)) ≤ ε;

(C2)

∣

∣

∣

∣

JW Fi (x)

JW Fj (x)
− 1

∣

∣

∣

∣

≤ ε, for all W ∈ ̂Ws and x ∈ W , i, j = 1, 2;

(C3) ‖D(F1)−1(x)v − D(F2)−1(x)v‖ ≤ √
ε, for any unit vector v tangent to

W ∈ ̂Ws at x .

For F0 ∈ F̄ and ϑ0 > 0, define

F̄ϑ0(F0) = {F ∈ F̄ : dF̄ (F, F0) < ϑ0}, (5)

to be the ϑ0 neighborhood of F0 in F̄ .
We remark that this definition of distance does not require the sets SF1−1 and SF2−1 to

be close in any sense, only that the maps are C1-close outside an ε-neighborhood of the
union of the two singularity sets. Next, we describe a perturbation family of billiards that
satisfying assumptions (H1)–(H5), to illustrate that these assumptions are reasonable.
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1.5. Applications: deterministic perturbations. Given I intervals J1, . . . JI , we fix the
phase space M̄0 = ⋃I

i=1 Ji × [−π/2, π/2] on which the maps in class F̄ are defined.
We use the notation Q̄ = ({Oi }Ii=1; {Ji }Ii=1) to denote the configuration of scatterers
O1, . . . , Ol placed on the billiard table such that |∂Oi | = |Ji |, i = 1, . . . , I . We
identify the endpoints of Ji so that each Ji can be identified with a circle and each
component of M̄0 is a cylinder. Since we have fixed J1, . . . , JI , M̄0 remains the same
for all configurations Q̄ that we consider. For each such configuration, we define

τmin(Q̄) = inf{τ(x) : τ(x) is defined for the configuration Q̄}.
Similarly, we define τmax, as well asKmin(Q̄) andKmax(Q̄), which denote the minimum
and maximum curvatures respectively of the ∂Oi in the configuration Q̄. The constant
Emax(Q̄) denotes the maximum C3 norm of the ∂Oi in Q̄.

For each fixed τ∗,K∗, E∗ > 0, define Q1(τ∗,K∗, E∗) to be the collection of all
configurations Q̄ such that:

τ∗ ≤ τmin(Q̄) ≤ τmax(Q̄) ≤ τ−1∗ , K∗ ≤ Kmin(Q̄) ≤ Kmax(Q̄) ≤ K−1∗ , Emax(Q̄) ≤ E∗.

Let F̄1(τ∗,K∗, E∗) be the corresponding set of billiard maps induced by the configura-
tions in Q1. The following lemma is proved in [16].

Lemma 1.4 ([16, Theorem 2.7]). Fix intervals J1, . . . , JI and let τ∗,K∗, E∗ > 0. The
family F̄1(τ∗,K∗, E∗) satisfies (H1)–(H5) with uniform constants depending only on
τ∗, K∗ and E∗.

We fix an initial configuration of scatterers Q̄0 ∈ Q1(τ∗,K∗, E∗) and consider con-
figurations Q̄ which alter each ∂Oi in Q̄0 to a curve ∂ Õi having the same arclength as
∂Oi . We consider each ∂Oi as a parametrized curve ui : Ji → R

2 and each ∂ Õi as
parametrized by ũi . Define

�(Q̄, Q̄0) =
l
∑

i=1

|ui − ũi |C2(Ji ,R2).

The following is proved in [16] .

Lemma 1.5 ([16,Theorem2.8]). Chooseϑ0 ≤ min{τ∗/2,K∗/2}and let F̄A(Q̄0, E∗;ϑ0)
be the set of all billiard maps corresponding to configurations Q̄ such that�(Q̄, Q̄0) ≤
ϑ0 and Emax(Q̄) ≤ E∗. Then F̄A(Q̄0, E∗;ϑ0) ⊂ F̄1(τ∗/2,K∗/2, E∗)anddF̄ (F̄1, F̄2) ≤
C |ϑ0|1/3 for any F̄1, F̄2 ∈ F̄A(Q0, E∗;ϑ0).

The importance of these results is that together, they will imply that the transfer
operators associated to maps in the neighborhood F̄ϑ0(T̄0) have a uniform spectral gap
if the transfer operator associated with T̄0 has a spectral gap. Moreover, small changes
in the configuration of scatterers are seen to generate small differences in the distance
dF̄ (·, ·).
Remark 1.6. The assumption in the discussion above and in Sect. 1.3 that the perturbed
scatterers ∂ Õi have the same arclength as the original ∂Oi is made so that all maps in
F̄ act on the same phase space M̄0, and so all the associated transfer operators act on
the same Banach space. This can be relaxed slightly if all scatterers are scaled by the
same constant. Then we can reparametrize each ∂ Õi (no longer according to arclength)
using the same interval Ji as for ∂Oi . This will change the derivative of the maps acting
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on this configuration of scatterers, but since the constants appearing in (H1)–(H5) have
some leeway built into the inequalities, for small reparametrizations the same properties
will continue to hold.

Unfortunately, to scale scatterers ∂ Õi by different constants as described in [16,
Remark 2.9], one would need to eliminate assumption (H5) since then the measure μ̄0
would not be preserved.

2. Main Results

In this section, we consider all T̄ω ∈ F̄ϑ0(T̄0), for some ϑ0 > 0 small enough and a fixed
map T̄0 : M̄0 �.

2.1. Local limit theorem. Adapting the proof of [16, Corollary 2.4] (with the slight
difference that, here, the observable �(x, ω) we are interested in depends also on ω),
we will prove the following central limit theorem.

Theorem 2.1 (Central limit theorem for the cell index).With respect to μ̄, the covariance
matrix of (Sn/

√
n)n converges to a non-negative symmetric function

�2 :=
⎛

⎝Eμ̄

[

�(i).�( j)
]

+
∑

k≥1

Eμ̄

[

�(i).�( j) ◦ T̄ k +�( j).�(i) ◦ T̄ k
]

⎞

⎠

i, j=1,2

, (6)

where, for every j = 1, 2, �( j) is the j-th coordinate of �, and using . to denote
multiplication.

Moreover (Sn/
√
n)n converges in distribution to a centered Gaussian distribution

with covariance matrix �2.

The fact that�2 is positive if ϑ0 is small enough will be proved in Lemma 3.18 (using
a continuity argument). In Sect. 3.2, we will define a Banach space ˜B, containing a class
of distributions on M̄ , and its dual ˜B′. For a function g : M̄ → R, define the functional
Hg , by

Hg(·) := Eμ̄[g. · ] . (7)

Remark 3.1 and Lemma 3.3 will give conditions on g that guarantee that Hg ∈ ˜B′.

Theorem 2.2 (Local limit theorem). For every f, g : M̄ → R such that Hg ∈ ˜B′ and
such that f ∈ ˜B,

Eμ̄

[

f.1{Sn=�}.g ◦ T̄ n] =
exp

(

−�−2�·�
2n

)

2πn
√
det�2

Eμ̄[ f ]Eμ̄[g] + O
(

n−
3
2 ‖ f ‖

˜B ‖Hg‖˜B′
)

.

(8)

Remark 2.3. Due to Lemma 3.3 and Remark A.1, it suffices for the conclusion of The-
orem 2.2 that f (·, ω) and g(·, ω) be piecewise Hölder continuous on M̄0 (with Hölder
bounds that are uniform in ω). For instance, the coordinates �(i) of the displacement
function � satisfy these conditions, as well as the free flight function for the billiard
map T̄ω, τ(·, ω).
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2.2. Return time, visit to new obstacles and self intersections. We define I0(x, ω) := i
if x ∈ ⋃�∈Z2 Mi,� as the index in {1, . . . , I } of the obstacle on which the particle is at
time 0 and Ik := I0 ◦ T k . Since the quantity I0(x, ω) does not depend on ω, we will
also write I0(x) for this quantity. Note that Ik(x, ω) does not depend on the index � of
the cell containing x , this allows us to define also Ik on M̄ (by projection).

Observe that the fact that the point particle is on the obstacle (i, �) at the k-th reflection
time (i.e. T k(x, ω) ∈ Mi,�) can be rewritten:

(�0 + Sk(x̄, ω), Ik(x̄, ω)) = (�, i),

if x = (x̄, �0) ∈ M̄0 × Z
2. We are interested here in the study of the probability that a

point particle starting4 from M̄ × {0} does not come back to its original obstacle until
time n, that is in μ̄(Bn) with

Bn := {∀k = 1, . . . , n : (Ik, Sk) �= (I0, (0, 0))} ⊂ M̄ .

We also study the probability that the obstacle visited at time n has not been visited
before, that is μ̄(B ′

n) with

B ′
n := {∀k = 0, . . . , n − 1 : (Ik, Sk) �= (In, Sn)} ⊂ M̄ .

Observe that, because of the reversibility of our model, μ̄(Bn) = μ̄(B ′
n).

Theorem 2.4. We have the following asymptotics

μ̄(Bn) = μ̄(B ′
n) =

2Iπ
√
det�2

log n
+ O

(

(log n)−
4
3

)

, as n → +∞ .

In Sect. 4.2, we give a proof of the above asymptotic estimates of μ̄(Bn) and μ̄(B ′
n) in

a more general context. This result will appear as an easy and direct consequence of the
local limit theorem, Theorem 2.2. We now consider the number of couples of times at
which the point particle hits the same obstacle:

Vn :=
n
∑

i, j=1

1{S j=Si , I j=Ii }.

Theorem 2.5. μ̄-almost surely, we have:

lim
n→∞

Vn

n log n
= 1

π
√
det�2

∑I
a=1 |∂Oa |2

(

∑I
b=1 |∂Ob|

)2 .

The proof of the previous result is delicate as it uses a precise estimate of the variance
of Vn . As can be seen from the works by Bolthausen [5] and by Deligiannidis and Utev
[14], going from a rough to a precise estimate of the variance of the number of self
intersections requires important additional work. In Sect. 4.3, we give a proof of this
result under general spectral assumptions. Our argument provides, in the case of random
walks, an alternative argument to the one given by Deligiannidis and Utev in [14]. Let us
indicate that even if we use the general scheme of the previous unpublished paper [31]

4 Throughout the paper, we shall use the notation 0 = (0, 0) as an element of Z
2.
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(in which an analogous result is proved for a single billiard map), this general scheme
being just the natural decomposition already used by Bolthausen in [5] to get a non-
optimal estimate of the variance, the method we use in the present paper to establish our
crucial estimates is different from [31]. In particular our method enables us to get rid of
some assumptions (bounded cell change function, Banach spaces continuously injected
in some L p) that were satisfied and used in [31].

The two previous results (probability to visit a new site, precise asymptotics for the
number of self-intersections), in addition to being interesting in their own right, will
greatly help us to prove the result of the next section.

2.3. Billiard in random scenery. We consider the following billiard dynamics. We as-
sume that the phase space for the initial configuration of the particle is M̄0, with initial
distribution μ̄0 and that the particle will experiment random iterations of billiard maps
Tωk , with (ωk)k≥0 a sequence of i.i.d. random variables with common distribution η,
idependently of the initial configuration. To each obstacle (i, �), we associate a random
variable ξ(i,�) defined on some probability space (�,P). We assume that these random
variables ξ(i,�) are i.i.d., centered, and square integrable. We assume that, each time the
point particle hits the obstacle (i, �), it wins the value ξ(i,�). Let Zn be the total amount
won by the particle up to the n-th reflection. For every n, we consider the linearized
process (˜Zn(t))t≥0 defined by

˜Zn(t) = Z�nt� + (nt − �nt�)(Z�nt�+1 − Z�nt�) .

Formally speaking Zn and ˜Zn are defined on the probability space (M̄ ×�, μ̄⊗ P).

Theorem 2.6. For every T > 0, the sequence of processes ((˜Zn(t)/
√
n log n)t∈[0,T ])n

in C([0, T ]) converges in distribution with respect to μ̄⊗ P to (Bt )t∈[0,T ], where B =
(Bt )t≥0 is a Brownian motion such that

E[B2
1 ] =

σ 2
ξ

π
√
det�2

∑I
a=1 |∂Oa |2

(

∑I
b=1 |∂Ob|

)2 .

If, moreover, there exists χ > 0 such that E[|ξ(1,0)|2(log+ |ξ(1,0)|)χ |)] < ∞, then,
for P-almost every realization of (ξi,�)i,�, (˜Zn)n converges in distribution to the same
Brownian motion B.

Let us indicate that it should be possible to remove the additional assumption E[|ξ(1,0)|2
(log+ |ξ(1,0)|)χ |)] < ∞ by using our estimates, combined with the very recent preprint
[13] instead of [21].

Let us say a few words about the historical background of this result. Limit distribu-
tional theorems of analogous processes when Sn is replaced by a random walk on Z

d

were first established at the end of the 70’s by Borodin in [6,7] and by Kesten and Spitzer
in [26], by Boltausen [5] in dimension 2 ten years later, and more recently by Deligian-
nidis and Utev in [14] and by Castell, Guillotin-Plantard and the second author in [10].
Let us also remark that when the random walk is the one dimensional simple symmetric
random walk on Z, the random walk in random scenery corresponds to an ergodic sum
of a dynamical system, the so-called T, T−1-transformation. This dynamical system has
been introduced in a list of open problems by Weiss [39, problem 2, p. 682] in the early
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1970s. This dynamical system is a famous natural example of a K -transformation which
is not Bernoulli and even not loosely Bernoulli as has been shown by Kalikow in [24].

We prove Theorem 2.6 in a more general context in Sect. 4.4. As noticed by Deli-
giannidis and Utev in [14] in the context of random walks, the estimate provided by
Theorem 2.5 simplifies greatly the proof of Theorem 2.6 compared to [5,30] ([30] con-
tained a proof of this result for a single billiard map, with the use of the properties of
Young towers). Furthermore,we simplify also the tightness argument used byBolthausen
in [5].

2.4. Limit theorems in infinite measure. The following results are consequences of our
perturbation result (Proposition 3.17), combined with the general results of [34] and of
[32].

Our next result deals with the asymptotic behavior of additive functionals of Sn , that
is of quantities of the form

∑n−1
k=0 g(Sk), for summable functions g : Z

2 → R. This can
be seen as the ergodic sum

∑n−1
k=0 G ◦ T k with G(x, �, ω) := g(�).

Theorem 2.7 (Additive functionals of Sn). If g is summable (i.e.
∑

�∈Z2 |g(�)| < ∞),
then

lim
n→∞

∑n−1
k=0 g(Sk)

log n
= 1

2π
√
det�2

∑

�∈Z2

g(�) E ,

where E is an exponential random variable with expectation 1 and where the conver-
gence is in the sense of distribution with respect to any probability measure absolutely
continuous with respect to μ̄.

If moreover
∑

�∈Z2 g(�) = 0 and
∑

�∈Z2 |�|ε|g(�)| < ∞, for some ε > 0, then

lim
n→∞

∑n−1
k=0 g(Sk)√
log n

= 1√
2π(det�2)

1
4

σg
√
E N ,

where the convergence is again in distribution, E is as above,N is a standard Gaussian
random variable independent of E and

σ 2
g :=

∑

�∈Z2

(g(�))2 + 2
∑

k≥1

⎛

⎝

∑

�,�′∈Z2

g(�)g(�′)μ̄0(Sk = �− �′)

⎞

⎠ .

For g : M0 → R, define Hg,� : B → R by Hg,�(h) = Eμ̄0 [g(·, �)h]. We also
obtain the decay rates of correlations for the process generated by our random systems
in infinite measure:

Theorem 2.8 (Mixing and decorrelation in infinite measure). Let K ≥ 1. Let f, g :
M0 → R be two functions such that

∑

�∈Z2

|�|2K (‖ f (·, �)‖B + ‖Hg,�‖B′
)

< ∞ .

Then, there exist real numbers C0( f, g), . . . ,CK ( f, g) such that,
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Eμ[f.g ◦ T n] =
∫

M0×EN

f.g ◦ Tωn ◦ · · · ◦ Tω1 dμ0 dη
⊗N((ωn)n)

=
K
∑

m=0

Cm( f, g)

nm+1 + o(n−K−1) ,

with C0( f, g) = 1
2π

√
det�2

∫

M0
f dμ0

∫

M0
g dμ0 and setting f(x, �, ω) := f (x, �) and

g(x, �, ω) := g(x, �) to be the extensions of f and g to M0 × EN.

3. Transfer Operators

In order to prove our main limit theorems, we will study the transfer operators associated
with the random maps T and T̄ as perturbations of the transfer operator associated with
a fixed quotient billiard map T̄0.

In this section, we fix a class ofmaps F̄ satisfying (H1)–(H5)with uniform constants.
T̄ denotes the quotient of the full random map T , while T̄ω, ω ∈ E denotes a quotient
billiard map belonging to F̄ , following the notation defined in Sect. 1.2.

Using (H3), choose δ0 > 0 for which there exists θ < 1 so that (3) gives,

sup
T̄ω∈F̄ϑ0

sup
W∈̂Ws

|W |<δ0

∑

i

|JVi T̄ω|∗ ≤ θ. (9)

We then define Ws ⊂ ̂Ws to be those stable curves in ̂Ws whose length is at most δ0.
Following [15], for any T̄ω ∈ F̄ and n ≥ 0, define T̄−n

ω Ws ⊂ Ws to be the set
of homogeneous stable curves W ∈ Ws whose images T̄ i

ωW ∈ Ws for 0 ≤ i ≤ n.
For p ∈ [0, 1] and letting C p(T̄−n

ω Ws) denote those functions ψ which are p-Hölder
continuous on elements of T̄−n

ω Ws , it follows from (H1) that ψ ◦ T̄ω ∈ C p(T̄−n−1Ws).
Thus if f ∈ (C p(T̄−n−1

ω Ws))′ is an element of the dual of C p(T̄−n−1
ω Ws), then LT̄ω :

(C p(T̄−n−1
ω Ws))′ → (C p(T̄−n

ω Ws))′ is defined by

LT̄ω f (ψ) = f (ψ ◦ T̄ω), ∀ ψ ∈ C p(T̄−n
ω Ws).

If in addition, f is a finite signed measure absolutely continuous with respect to μ̄0, then
we identify f with its density in L1(μ̄0), which we shall also denote f , i.e. f (ψ) =
∫

M̄0
ψ f dμ̄0. With this identification, we write L1(μ̄0) ⊂ (C p(T̄−n

ω Ws))′ for each
n ∈ N. Then acting on L1(μ̄0), LT̄ω has the following familiar expression,

Ln
T̄ω

f = f ◦ T̄−n
ω , for any n ≥ 0.

For brevity, sometimes we will denote LT̄ω by Lω.

Let P be the transfer operator of T̄ with respect to μ̄ := μ̄0 ⊗ η⊗N. This operator is
given by

P f (y, (ωk)k≥0) =
∫

E
Lω−1 f (·, (ωk−1)k≥0)(y) dη(ω−1).

Let us write · for the usual scalar product on R
2. We consider the family of operators

(Pu)u∈R2 given by

Pu f (y, (ωk)k) := P
(

eiu·� f
)

(y, (ωk)k) =
∫

E
Lu,ω−1 f (·, (ωk−1)k≥0)(y) dη(ω−1),
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where

Lu,ω−1 f = Lω−1(e
iu·�ω−1 f ) .

Note that

Pn
u f = Pn(eiu·Sn f ) .

Using results of [16], we will see that if we restrict T̄ω to a neighborhood F̄ϑ0(T̄0)
according to (5), then P is a small (depending onϑ0) perturbation of the transfer operator
P0 of the product system (M̄, μ̄ := μ̄0 × η⊗N, T̄0 × σ), where σ is the shift over EN

(i.e. σ((ωk)k≥0) = (ωk+1)k≥0) and where (T̄0 × σ)(x, ω) := (T̄0(x), σ (ω)).

3.1. Banach spaces B and Bw. We start by defining Banach spaces B ⊂ Bw of distribu-
tions on M̄0, on which the transfer operatorsLω associated to T̄ω ∈ F̄ are well-behaved.

In order to define our norms, we first require a notion of distance dWs (·, ·) between
stable curves as well as a distance d(·, ·) defined among functions supported on these
curves.

Due to the transversality condition on the stable cones Cs(x) given by (H1), each
W ∈ Ws can be viewed as the graph of a function ϕW (r) of the arc length parameter
r . For each W ∈ Ws , let JW denote the interval on which ϕW is defined and set
GW (r) = (r, ϕW (r)) to be its graph so that W = {GW (r) : r ∈ JW }. We let mW denote
the unnormalized arclength measure on W , defined using the Euclidean metric.

Let W1,W2 ∈ Ws and let ϕWi , GWi denote the corresponding functions defined
above, for i = 1, 2. Denote by �(JW1�JW2) the length of the symmetric difference
between JW1 and JW2 . If W1 and W2 belong to the same homogeneity strip, we define
the distance between them to be

dWs (W1,W2) = �(JW1�JW2) + |ϕW1 − ϕW2 |C1(JW1∩JW2 )
;

otherwise, we set dWs (W1,W2) = ∞.
For 0 ≤ p ≤ 1, let C̃ p(W ) denote the set of continuous complex-valued functions

onW with Hölder exponent p, measured in the Euclidean metric. Denote by C p(W ) the
closure of C∞(W ) in the C̃ p-norm5:

|ψ |C p(W ) = |ψ |C0(W ) + C (p)
W (ψ),

where C (p)
W (ψ) is the Hölder constant of ψ along W . It is remarkable to note that that

with this definition,

|ψ1ψ2|C p(W ) ≤ |ψ1|C p(W )|ψ2|C p(W ).

C̃ p(M̄0) and C p(M̄0) can be defined similarly.
Given two curves W1,W2 ∈ Ws with dWs (W1,W2) < ∞, and two test functions

ψi ∈ C p(Wi ,C), the distance between ψ1, ψ2 is defined6 as:

d(ψ1, ψ2) = |ψ1 ◦ GW1 − ψ2 ◦ GW2 |C0(JW1∩JW2 )
.

5 While C p(W ) is smaller than C̃ p(W ), it does contain C p′(W ) for all p′ > p.
6 Note that d(ψ1, ψ2) is only a pseudo-metric while dWs (·, ·) does not satisfy the triangle inequality, yet

they both serve as useful notions of distance when deriving the necessary Lasota-Yorke inequalities.
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We will define the relevant Banach spaces by closing C1(M̄0)with respect to the follow-
ing set of norms. Fix 0 < p ≤ 1

3 . Given a function f ∈ C1(M̄0), define the weak norm
of f by

| f |w := sup
W∈Ws

sup
ψ∈C p(W )
|ψ |C p (W )≤1

∫

W
fψ dmW . (10)

Choose7 q, γ , ς > 0 such that ς ≤ 1− ζ0, q < p and γ ≤ min{ς, p − q}. We define
the strong stable norm of f as

‖ f ‖s := sup
W∈Ws

sup
ψ∈Cq (W )

|ψ |Cq (W )≤|W |−ς

∫

W
fψ dmW (11)

and the strong unstable norm as

‖ f ‖u := sup
ε≤ε0

sup
W1,W2∈Ws

dWs (W1,W2)≤ε

sup
ψi∈C p(Wi )|ψi |C p (W )≤1
d(ψ1,ψ2)=0

1

εγ

∣

∣

∣

∣

∫

W1

fψ1 dmW −
∫

W2

fψ2 dmW

∣

∣

∣

∣

(12)

where ε0 > 0 is chosen less than δ0, the maximum length of W ∈ Ws which is
determined by (9). The strong norm of f is defined by

‖ f ‖B = ‖ f ‖s + c0‖ f ‖u,
where c0 is a small constant chosen so that the uniform Lasota-Yorke inequalities in [16,
Theorem 2.2] hold.

We define B to be the completion of C1(M̄0) in the strong norm8 and Bw to be the
completion of C1(M̄0) in the weak norm.

Remark 3.1. Due to [16, Lemma 3.4], we have for f ∈ Bw,

| f (ψ)| ≤ | f |w
(

|ψ |∞ + sup
W∈Ws

C (p)
W (ψ)

)

, for all ψ ∈ C p(Ws).

This permits us to extend Eμ̄0 [·] to a linear continuous form on Bw (and so on B) since

∀ f ∈ C1(M̄0), Eμ̄0 [ f ] =
∫

M̄0

f dμ̄0 = f (1M̄0
) .

We begin by recalling some properties of B and Bw proved in [15–17].

Lemma 3.2. a) [15, Lemma 3.7] B contains piecewise Hölder continuous functions f
with exponent ζ > γ/(1− γ ) as described in Lemma 3.3 below.

b) [16, Lemma 3.5] (cosϕ)−1 ∈ B. Thus, Lebesgue measure m = (cosϕ)−1μ̄0 ∈ B
and so is f m for any f as in item (a) above.

7 The restrictions on the constants are placed according to the dynamical properties summarized in (H1)–
(H5). For example, p ≤ 1/3 due to the distortion bounds in (H4), while ς ≤ 1 − ζ0 due to (H3), which is
relevant for the uniform Lasota-Yorke inequalities (Lemma 3.14).

8 As ameasure, f ∈ C1(M̄0) is identifiedwith f dμ̄0 according to our earlier convention.As a consequence,
Lebesgue measure dm = (cosϕ)−1dμ̄0 is not automatically included in B since (cosϕ)−1 /∈ C1(M̄0). It
follows from [16, Lemma 3.5] that in fact, m ∈ B (and Bw).
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c) [15, Lemma 2.1] Lω is well-defined as a continuous linear operator on both B and
Bw for any T̄ω ∈ F̄ . Moreover, there exists a sequence of continuous9 inclusions
Cζ (M̄0) ↪→ B ↪→ Bw ↪→ (C p(M̄0))

′, for all ζ > γ/(1− γ ).
d) [15, Lemma 3.10] The unit ball of (B, ‖ · ‖B) is compactly embedded in (Bw, | · |w).

The following lemma is crucial for describing the types of discontinuities allowed in
elements of B and for proving that the operator Lu,ω is analytic in u.

Lemma 3.3. LetP be a (mod 0) countable partition of M̄0 into open, simply connected
sets such that: (1) for each k ∈ N, there is an Nk < ∞ such that at most Nk elements
Z ∈ P intersect Hk; (2) there are constants K ,C0 > 0 such that for each Z ∈ P and
W ∈ Ws , Z ∩ W comprises at most K connected components and for any10 ε > 0,
mW (Nε(∂Z) ∩ W ) ≤ C0ε.

a) [17,Lemma3.5]Let ζ > γ/(1−γ ). If f ∈ Cζ (Z) for each Z ∈ Pand supZ∈P | f |Cζ (Z) <∞, then f ∈ B and ‖ f ‖B ≤ C supZ∈P | f |Cζ (Z), for some C > 0 independent of f .
In particular, Cζ (M̄0) ⊂ B for each ζ > γ/(1− γ ).

b) [17, Lemma 3.7] Suppose in addition that ζ > max{p, γ /(1 − γ )} and there is a
uniform bound on the Nk above. If g satisfies supZ∈P |g|Cζ (Z) < ∞ and f ∈ B, then
f g ∈ B and ‖ f g‖B ≤ C‖ f ‖B supZ∈P |g|Cζ (Z) for some C > 0 independent of f
and g.

3.2. Banach spaces ˜B and ˜Bw. In this section, we introduce the associated Banach
spaces ˜Bw and ˜B on M̄ on which P acts suitably. ˜B will correspond to a set of Lipschitz
functions from EN toB and ˜Bw will correspond to the set of uniformly bounded functions
from EN to Bw. For convenience, we will identify elements of BEN

with distributions
f on M̄0 × EN such that f (·, ω) ∈ B for all ω ∈ EN. Let L(B,B) denote the set of
bounded linear operators on B and let ‖ · ‖L(B,B) denote the norm on L(B,B) induced
by ‖ · ‖B.

Let κ > supω∈E ‖Lω‖L(B,B) ≥ 1. Let us define

˜B := { f ∈ BEN : ‖ f ‖
˜B < ∞} ,

with

‖ f ‖
˜B := sup

ω∈EN

‖ f (·, ω)‖B + sup
ω �=ω′

‖ f (·, ω)− f (·, ω′)‖B
d(ω, ω′)

,

and with

d((ωk)k, (ω
′
k)k) = κ

−min{k≥0:ωk �=ωk′ }.

It is immediate from this definition and the definition of B, that ˜B is the completion in
the ‖ · ‖

˜B norm of the set of functions

(C1(M̄0))
EN = { f : M̄0 × EN → C : f (·, ω) ∈ C1(M̄0) ∀ω ∈ EN} .

9 The first three of these are also injective. The fourth can be made injective by introducing a weight |W |−η

for test functions ψ in the weak norm (as appears in the definition of ‖ · ‖s ) and requiring η > p (see, for
example, [17, Lemma 3.8]).
10 In fact, Lemma 3.5 of [17] allows a nondegenerate tangency between ∂P and the stable cone:

mW (Nε(∂Z) ∩ W ) ≤ C0ε
t0 , for some t0 > 0. But we will not need this weaker condition here so we

assume t0 = 1 in order to simplify the proofs and also the definition of the norms (which otherwise would
depend on t0).
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In particular, ˜B is a Banach space.

Remark 3.4. It will be worthwhile to notice that, due to Lemma 3.3(a), for every ω ∈ E ,
the coordinates of �ω belong to B, so that the coordinates of � are in ˜B.

We also define

˜Bw := { f ∈ (Bw)
EN : | f |

˜Bw
< ∞} ,

with | f |
˜Bw

:= supω∈EN | f (·, ω)|w . As with ˜B, the space ˜Bw can also be realized as the

completion of (C1(M̄0))
EN

in the | · |
˜Bw

norm.

Remark 3.5. Using Remark 3.1, we extend Eμ̄[·] to a continuous linear form on ˜Bw (and
so on ˜B) by setting

∀ f ∈ ˜Bw, Eμ̄[ f ] =
∫

EN

Eμ̄0 [ f (·, ω)] dη⊗N(ω) .

It follows from Lemma 3.3(a) that for any obstacle Oa , 1Oa ∈ B, and from
Lemma 3.3(b) that f (·, ω) �→ 1Oa f (·, ω) is a bounded linear operator on B for each
ω ∈ EN and f ∈ ˜B. Thus f �→ 1Oa f is a bounded linear operator on ˜B as well.

We introduce the following notation for convenience.

Notation 3.6. For any positive integer m, any ω̃m ∈ Em and any ω ∈ EN, we will write
(ω̃m, ω) as the element of E

N obtained by concatenation; i.e. such that the first m terms
correspond to those of ω̃m and that the term of order m + k corresponds to the term of
order k of ω.

Lemma 3.7. (a) Let n be a positive integer. Denote the norm ‖ · ‖σ , for σ ∈ {w, s, u}. If
( f (·, ω̃n))ω̃n∈En is a measurable (in ω̃n) family of elements of Bw such that

sup
ω̃n∈En

‖ f (·, ω̃n)‖σ < ∞,

then
∥

∥

∥

∥

∫

En
f (·, ω̃n) dη

⊗n(ω̃n)

∥

∥

∥

∥

σ

≤
∫

En
‖ f (·, ω̃n)‖σ dη⊗n(ω̃n) ≤ sup

ω̃n∈En
‖ f (·, ω̃n)‖σ .

(b) If (Hω)ω∈E is a measurable (inω) family of uniformly bounded operators onB (resp.
Bw), then H : f (x, ω) �→ ∫

E Hω̃( f (x, (ω̃, ω))) dη(ω̃) defines a continuous linear
operator on ˜B (resp. ˜Bw) with operator norm dominated by supω∈E ‖Hω‖L(B,B).

Proof. (a) is just the triangle inequality. Let us prove Item (b). Let f ∈ ˜B or in ˜Bw and
writing ‖ · ‖σ for the associated norm, due to (a), for every ω ∈ EN, we have

‖H f (·, ω)‖σ ≤ sup
ω̃∈E

∥

∥Hω̃ f (·, (ω̃, ω))∥∥
σ

≤ sup
ω̃

‖Hω̃‖σ ‖ f (·, (ω̃, ω))‖σ ≤ sup
ω̃

‖Hω̃‖σ sup
ω̃′

‖ f (·, ω′)‖σ ,

which proves (b) if f ∈ ˜Bw. If, in addition, f ∈ ˜B, then for all ω,ω′ ∈ EN,
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‖H f (·, ω)− H f (·, ω′)‖B
≤ sup

ω̃

‖Hω̃‖σ sup
ω∈E

‖ f (·, (ω, ω))− f (·, (ω, ω′))‖σ

≤ sup
ω̃

‖Hω̃‖σ sup
ω,ω′∈EN

‖ f (·, (ω, ω))− f (·, (ω, ω′))‖σ
d(ω̃, ω̃′)

κ
−1d(ω, ω′) ,

where ω̃ = (ω, ω) and ω̃′ = (ω, ω′). ��
Remark 3.8. The previous lemma ensures in particular that P acts continuously on both
˜B and ˜Bw since Lω acts uniformly continuously on both B and Bw.

A key step in our proof is the study of the spectral properties on ˜B of P and of the family
of operators Pu defined by

Pu := P(eiu·�·) .
The next lemma ensures, in particular, that Pu is a linear operator on ˜B. Denote by�(1)

and �(2) the components of the vector �.

Lemma 3.9. For every u ∈ R
2, any positive integer m and any i1, . . . , im ∈ {1, 2},

P(�(i1) . . . �(im )eiu·�·) is a linear operator on ˜B and on ˜Bw, with operator norms
uniformly in O(supω∈E ‖�‖m∞).

Proof. This proof is a variation of the argument used in [16, Section 5.2]. Recall that
Pg(·, ω) = ∫

E g(T̄−1
ω (·), (ω, ω)) dη(ω), so that

P(�(i1) . . . �(im )eiu·� f )(·, ω)
=
∫

E

(

�(i1)
ω . . . �(im )

ω eiu·�ω

)

◦ T̄−1
ω Lω f (·, (ω, ω)) dη(ω) .

Let ω ∈ E . The singularity set for �ω ◦ T̄−1
ω is contained in S0 ∪ T̄ωS0, which

by assumption (H1) is comprised of finitely many smooth curves that are uniformly
transverse to Cs(x). Let Z denote the (finite) partition of M̄0\(S0 ∪ T̄ωS0) into its
maximal connected components, and note thatZ satisfies the hypotheses of Lemma 3.3.
In particular, Z ∩ Hk consists of only a finite number of connected components, which
is bounded independently of k for |k| ≥ k0. Note that �ω ◦ T̄−1

ω is constant on each
element of Z . We use Lemma 3.3(b) to estimate, for every f ∈ ˜B,

‖Lω(�
(i1)
ω . . . �(im )

ω eiu·� f )(·, ω)‖B
= ‖(i ·�ω)

n ◦ T̄−1
ω (Lω f )(·, ω)‖B

≤ C sup
Z∈Z

|(�(i1)
ω . . . �(im )

ω eiu·�ω) ◦ T̄−1
ω |C1(Z)‖Lω f (·, (ω, ω))‖B

≤ C ′‖�ω‖m∞‖ f (·, (ω, ω))‖B .

(13)

Analogously, for every f ∈ ˜Bw,

|Lω(�
(i1)
ω . . . �(im )

ω eiu·� f )(·, ω)|w ≤ C ′‖�‖m∞| f (·, (ω, ω))|w ,

and we conclude by Item (b) of Lemma 3.7. ��
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3.3. Pu as a perturbation of a quasicompact operator. For the remainder of Sect. 3, we
fix a billiard map T̄0, and for ϑ0 > 0, define F̄ϑ0(T̄0) as in (5). Our main results in this
setting will be that for ϑ0 sufficiently small, both P and Pu are quasi-compact and have a
spectral gap in ˜B. These statements are contained in Proposition 3.15 and Theorem 3.17.

Recall Pu := P(eiu·�·). Our next result states that Pu is a small perturbation (as
ϑ0 → 0) of Pu := P(eiu·�0 ·), where P is the transfer operator P0 of the direct product
(M̄, μ̄, T̄ ′

0 := T̄0 × σ), i.e.

P( f )(y, (ωk)≥0) =
∫

E
L0 f (·, (ωk−1)k)(y) dη(ω−1) ,

and

Pu( f )(y, (ωk)≥0) =
∫

E
Lu,0 f (·, (ωk−1)k)(y) dη(ω−1) .

Here, L0 = LT̄0 and Lu,0 = LT̄0(e
iu·�0 ·).

Proposition 3.10. There exists C > 0 such that for every u ∈ R
2 and every f ∈ ˜B,

|Pu f − Pu f |˜Bw
≤ C‖ f ‖

˜B ϑ
γ
2
0 .

Before proving this proposition, we state the following lemma.

Lemma 3.11. There exists C > 0 such that for all ω ∈ E and u ∈ R
2,

|Lu,ω f − Lu,0 f |w ≤ C‖ f ‖BdF̄ (T̄ω, T̄0)
γ /2, ∀ f ∈ B.

Proof. This lemma for u = 0 is proved in [16, Theorem 2.3]. We must show that the
relevant estimates are independent of u. For the convenience of the reader, we reproduce
the main points of the argument.

Let ε = dF̄ (T̄ω, T̄0) and let W ∈ Ws , f ∈ C1(M̄0) and ψ ∈ C p(W ) with
|ψ |C p(W ) ≤ 1. Following [16, Sect. 5] (also [16, Sect. 4.3]) we decompose T̄−1

0 W and
T̄−1
ω W into matched and unmatched pieces on which T̄0 and T̄ω are continuous, respec-

tively, T̄−1
0 W = (∪ jU 0

j )∪(∪kV 0
k ) and T̄

−1
ω W = (∪ jUω

j )∪(∪kV ω
k ). Thematched pieces

U 0
j andU

ω
j can be connected by a foliation of vertical line segments defined on a common

r -interval I j as in [16, eq. (4.12)]. The unmatched pieces satisfy |T̄0V 0
j |, |T̄ωV ω

j | ≤ Cε.
Thus following [16, eq. (5.2)] we write,
∫

W
(Lu,ω f − Lu,0 f )ψ dmW ≤

∑

�,k

∣

∣

∣

∣

∣

∫

V �
k

f eiu·�� ψ ◦ T̄� JV �
k
T̄� dmW

∣

∣

∣

∣

∣

+
∑

j

∣

∣

∣

∣

∣

∫

Uω
j

f eiu·�ω ψ ◦ T̄ω JUω
j
T̄ω dmW −

∫

U0
j

f eiu·�0 ψ ◦ T̄0 JU0
j
T̄0 dmW

∣

∣

∣

∣

∣

,

(14)

where � ∈ {0, ω} in the first sum. We estimate the integrals over the unmatched pieces
using the strong stable norm,

∫

V �
k

f eiu·�� ψ ◦ T̄� JV �
k
T̄� dmW

≤ ‖ f ‖s |V �
k |ς |eiu·�� ψ ◦ T̄�|C p(V �

k )
|JV �

k
T̄�|C p(V �

k )

≤ C‖ f ‖s |T�V �
k |ς |eiu·�� ψ ◦ T̄�|C p(V �

k )
|JV �

k
T̄�|1−ς

C0(V �
k )

,
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where we have used bounded distortion (H4) to bound

|JV �
k
T̄�|C p(V �

k )
≤ C |JV �

k
T̄�|C0(V �

k )
and |V �

k ||JV �
k
T̄�|C0(V �

k )
≤ C |T̄�V �

k | .
Next, since eiu·�� is constant on each V �

k , we have

|eiu·��ψ ◦ T̄�|C p(V �
k )

≤ |eiu·�� |∞|ψ ◦ T̄�|C p(V �
k )

= |ψ ◦ T̄�|C p(V �
k )

. (15)

Finally, since |ψ ◦ T̄�|C p(V �
k )

≤ C |ψ |C p(W ) by (H1) (see [16, eq. (4.6)]), we complete
the estimate on unmatched pieces,

∑

�,k

∣

∣

∣

∣

∣

∫

V �
k

f eiu·�� ψ ◦ T̄� JV �
k
T̄� dmW

∣

∣

∣

∣

∣

≤ C‖ f ‖sες
∑

�,k

|JV �
k
T̄�|1−ς

C0(V �
k )

, (16)

and the sum is uniformly bounded by (H3) since ς > ξ0.
Next we perform the estimate on matched pieces in (14). Since matched pieces lie

in the same connected component of M̄0\(S T̄ω
1 ∪ S T̄0

1 ), we have �ω = �0 on such
components. Thus,

∑

j

∣

∣

∣

∣

∣

∫

Uω
j

f eiu·�ω ψ ◦ T̄ω JUω
j
T̄ω dmW −

∫

U0
j

f eiu·�0 ψ ◦ T̄0 JU0
j
T̄0 dmW

∣

∣

∣

∣

∣

≤
∑

j

|eiu·�0 |C0(U0
j )

∣

∣

∣

∣

∣

∫

Uω
j

f ψ ◦ T̄ω JUω
j
T̄ω dmW −

∫

U0
j

f ψ ◦ T̄0 JU0
j
T̄0 dmW

∣

∣

∣

∣

∣

.

(17)

Since |eiu·�0 |C0(U0
j )

= 1, this is precisely the same expression as in [16, eq. (5.4)]. Thus

combining [16, eq. (5.9)] with (16) proves the lemma, with constant independent of
u ∈ R

2. ��
Proof of Proposition 3.10. This comes directly from Lemmas 3.11 and 3.7. Indeed, for
every f ∈ ˜B, we have

sup
ω∈EN

∣

∣(Pu − Pu) f (·, ω)
∣

∣

w

= sup
ω∈EN

∣

∣

∣

∣

∫

E

(

Lu,ω−1 − Lu,0
)

f (·, (ω−1, ω)) dη(ω−1)

∣

∣

∣

∣

w

≤ sup
ω∈EN

∫

E

∣

∣

(

Lu,ω−1 − Lu,0
)

f (·, (ω−1, ω))
∣

∣

w
dη(ω−1)

≤ C sup
ω′∈EN

‖ f (·, ω′)‖B ϑ
γ
2
0 = C‖ f ‖

˜B ϑ
γ
2
0 ,

since T̄ω ∈ F̄θ0(T̄0). ��
Lemma 3.12. P is quasicompact, 1 is its only dominating eigenvalue and it is a simple
eigenvalue (with eigenspace C.μ̄). In particular, there exists C̃ > 0 and α̃ ∈ (0, 1) such
that

∀ f ∈ ˜B, ‖Pn f − Eμ̄[ f ]1M̄‖
˜B ≤ C̃ α̃n‖ f ‖

˜B.
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Proof. Due to [16, Theorem 2.2 and Corollary 2.4]) L0 is quasicompact, 1 is its only
dominating eigenvalue and it is a simple eigenvalue (with eigenspace C.1M̄0

). In partic-

ular, there exists C̃ > 0, α̃0 ∈ (0, 1) such that

∀h ∈ B, ‖Ln
0h − Eμ̄0 [h]1M̄0

‖B ≤ C̃ α̃n
0‖h‖B .

Let f ∈ ˜B. Observe that

Pn( f )(y, (ωk)k≥0) =
∫

En
Ln
0 f (·, (ωk−n)k)(y) dη

⊗n(ω−n, . . . , ω−1)

and that

Eμ̄[ f ] =
∫

EN

Eμ̄0 [ f (·, ω′)] dη⊗N(ω′) .

First, setting ω̃n = (ω−n, . . . , ω−1), we have, using Lemma 3.3(a),

sup
ω

‖Pn( f )(·, ω)− Eμ̄[ f ]1M̄‖B

= sup
ω

∥

∥

∥

∥

∫

En
(Ln

0 f (·, (ωk−n)k)− Eμ̄[ f ]) dη(ω−1) . . . dη(ω−n)

∥

∥

∥

∥

B

≤ sup
ω

∥

∥

∥

∥

∫

En
Ln
0 f (·, (ωk−n)k)− Eμ̄0

[

f (·, (ωk−n)k)
]

dη(ω−1) . . . dη(ω−n)

∥

∥

∥

∥

B

+ ‖1M̄0
‖B sup

ω

∣

∣

∣

∣

∫

En

(

Eμ̄0

[

f (·, (ω̃n, ω))
]

−
∫

EN

Eμ̄0( f (·, (ω̃n, ω
′)))dη⊗N(ω′)

)

dη⊗n(ω̃n)

∣

∣

∣

∣

≤ sup
ω

∫

En

∥

∥Ln
0 f (·, (ωk−n)k)− Eμ̄0 [ f (·, (ωk−n)k)]

∥

∥

B dη(ω−1) . . . dη(ω−n)

+‖1M̄0
‖B sup

ω,ω′ : d(ω,ω′)<κ−n

∣

∣Eμ̄0

[

f (·, ω)− f (·, ω′)
]∣

∣

≤ C̃ α̃n
0

∫

En
‖ f (·, (ωk−n)k)‖B dη(ω−1) . . . dη(ω−n)

+‖1M̄0
‖B‖Eμ̄0 [·]‖B′ sup

ω,ω′ : d(ω,ω′)<κ−n

∥

∥ f (·, ω)− f (·, ω′)
∥

∥

B

≤ (C̃ α̃n
0 + C1κ

−n)‖ f ‖
˜B,

since 1M̄0
is in B and Eμ̄0 [·] is in the dual of B by Remark 3.1.

Second, for every ω and ω′ in EN, we have

‖Pn( f )(·, ω)− Pn( f )(·, ω′)‖B
=
∥

∥

∥

∥

∫

En

(

Ln
0 f (·, (ω̃n, ω))− Ln

0 f (·, (ω̃n, ω))
)

dη⊗n(ω̃n)

∥

∥

∥

∥

B

≤
∫

En

∥

∥Ln
0

(

f (·, (ω̃n, ω))− f (·, (ω̃n, ω))
)∥

∥

B dη⊗n(ω̃n)
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≤ sup
ω(1),ω(2) : d(ω(1),ω(2))<d(ω,ω′)κ−n

∣

∣

∣Eμ̄0

[

f (·, ω(1))− f (·, ω(2))
]∣

∣

∣

+C̃ α̃n
0‖ f ‖˜Bd(ω, ω′)κ−n

≤ ∥

∥Eμ̄0 [·]
∥

∥

B′ sup
ω(1),ω(2) : d(ω(1),ω(2))<d(ω,ω′)κ−n

∥

∥

∥ f (·, ω(1))− f (·, ω(2))

∥

∥

∥

B

+C̃ α̃n
0‖ f ‖˜Bd(ω, ω′)κ−n

≤ ∥

∥Eμ̄0 [·]
∥

∥

B′ ‖ f ‖˜Bd(ω, ω′)κ−n + C̃ α̃n
0‖ f ‖˜Bd(ω, ω′)κ−n .

This proves the lemma with α̃ = max{α̃0,κ
−1}. ��

3.4. Doeblin–Fortet–Lasota–Yorke type inequality for Pu. Wenext establish the spectral
properties of P and Pu on ˜B.

Proposition 3.13. There exist C̃ > 0 and τ̃ ∈ (0, 1), such that for every n ≥ 1, f ∈ ˜B,
u ∈ R

2 and n ≥ 0,

|Pn
u f |

˜Bw
≤ C̃ | f |

˜Bw
,

‖Pn
u f ‖

˜B ≤ C̃
(

τ̃ n‖ f ‖
˜B + | f |

˜Bw

)

. (18)

This result will follow directly from the next lemma.

Lemma 3.14. There exist C > 0 and τ ∈ (0, 1), such for every n ≥ 1, ω1, . . . , ωn ∈ E,
f ∈ B, u ∈ R

2 and n ≥ 0,

|Lu,ω1 · · ·Lu,ωn f |w ≤ C | f |w,
‖Lu,ω1 · · ·Lu,ωn f ‖B ≤ C

(

τ n‖ f ‖B + | f |w
)

. (19)

Proof. Here we denote Ln
u,ω := Lu,ω1 · · ·Lu,ωn , and T̄ n

ω = T̄ωn ◦ · · · ◦ T̄ω1 . The above

Lasota–Yorke inequalities are proved11 for Ln
ω as long as each T̄ωk ∈ F̄ by [16, Propo-

sition 5.6], with ω = (ωk)k≥1. As in the proof of Lemma 3.11, we must show that the
constants appearing in the inequalities are independent of u ∈ R

2, and all ω ∈ EN. We

will use the fact that Sn�ω is constant on elements of M̄0\S T̄ω
n .

We perform theweak norm estimate first. For f ∈ C1(M̄0),W ∈ Ws andψ ∈ C p(W )

with |ψ |C p(W ) ≤ 1, we must estimate,

∫

W
Ln
u,ω f ψ dmW =

∑

Wi∈Gn(W )

∫

Wi

f eiu·Sn�ω JWi T̄
n
ω ψ ◦ T̄ n

ω dmWi ,

11 The estimates in [16, Proposition 5.6] include a factor η ≥ 1, which comes from the Jacobian of T̄ω with
respect to μ̄0. Since we have assumed that Jμ̄0 T̄ω = 1 in our simplified version of (H5), we have η = 1 in
the present setting. Also note that the density function g for the random perturbation in [16] is identically 1 in
our setting as well.
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where Gn(W ) are the components of T̄−n
ω W , subdivided so that they each belong toWs .

Thus,
∫

W
Ln
u,ω f ψ dmW ≤

∑

Wi∈Gn(W )

| f |w|eiu·Sn�ωψ ◦ T̄ n
ω |C p(Wi )|JWi T̄

n
ω |C p(Wi )

≤ C | f |w
∑

Wi∈Gn(W )

|JWi T̄
n
ω |C0(Wi )

,

where as in (15), we have used that eiu·Sn�ω is constant on each Wi , so that

|eiu·Sn�ωψ ◦ T̄ n
ω |C p(Wi ) ≤ |eiu·Sn�ω |∞|ψ ◦ T̄ n

ω |C p(Wi ) ≤ |ψ |C p(W ) . (20)

The sum over the Jacobians is uniformly bounded by [16, Lemma 5.5]. Note that due to
(20), the bound is independent of u, and thus prescisely the same as in [16, eq. (5.21)].

For the strong stable norm estimate, the same observation holds, again since eiu·Sn�ω

is constant on each Wi . Thus by [16, eq. 5.22],

‖Ln
u,ω f ‖s ≤ C(θ(1−ς)n +�−qn)‖ f ‖s + C | f |w .

For the strong unstable norm estimate, we must compare values of test functions on
two stable curves W 1,W 2 that lie close together. As in the proof of Lemma 3.11 (see
also [16, Sect. 4.3]), we decompose T−n

ω W 1 and T−n
ω W 2 into matched and unmatched

pieces on which T n
ω is continuous, T−n

ω W � = (∪ jU �
j )∪ (∪kV �

k ), � = 1, 2. The matched

pieces U 1
j and U

2
j can be connected by a transverse foliation of unstable curves and are

defined over a common r -interval as in [16, eq. (4.3)].

Since for each j , U 1
j and U 2

j lie in the same component of M̄0\S T̄ω
n , it follows that

Sn�ω has the same constant value on both curves and so factors right out of the Lasota–
Yorke inequalities, precisely as in (17). Since |eiu·Sn�ω | = 1, the estimate on unmatched
pieces can be performed as in (16). Thus by [16, eq. (5.23)],

‖Ln
u,ω f ‖u ≤ C�−γ n‖ f ‖u + Cn

1‖ f ‖s .
Combining the inequalities for the stable and unstable components as in [16, Sect. 4]
then completes the proof of the Lasota–Yorke inequality for the strong norm. ��
Proof of Proposition 3.13. Observe that

(Pn
u f )(·, ω) =

∫

En
Lu,ω−n · · ·Lu,ω−1 f (·, (ωk−n)k≥0)(y) dη

⊗n(ω−n, . . . , ω−1) .

Due to Lemma 3.7 and to the first inequality of Lemma 3.14, for any f ∈ ˜Bw and n ≥ 1,
∣

∣Pn
u f
∣

∣

˜Bw
= sup

ω∈EN

∣

∣(Pn
u f )(·, ω)∣∣

w

≤ sup
ω∈EN

∫

En

∣

∣Lu,ω−n · · ·Lu,ω−1 f (·, (ωk−n)k≥0)
∣

∣

w
dη⊗n(ω−n, . . . , ω−1)

≤ C sup
ω′∈EN

∣

∣ f (·, ω′)
∣

∣

w
= C | f |

˜Bw
.
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Analogously, using againLemma3.7 and, this time, the second inequality ofLemma3.14,
we obtain, for any f ∈ ˜B and n ≥ 1,

sup
ω∈EN

∥

∥(Pn
u f )(·, ω)∥∥B ≤ C

(

τ n sup
ω∈EN

∥

∥ f (·, ω)∥∥B + sup
ω∈EN

∣

∣ f (·, ω)∣∣
w

)

.

Finally, using Lemma 3.7,

sup
ω �=ω′

‖Pn
u f (·, ω)− Pn

u f (·, ω′)‖B
d(ω, ω′)

= sup
ω �=ω′

‖ ∫En Lu,ω−n · · ·Lu,ω−1

(

f (·, (ω̃, ω))− f (·, (ω̃, ω′))
)

dη⊗n(ω̃)‖B
d(ω, ω′)

≤ sup
ω �=ω′

∫

En ‖Lu,ω−n · · ·Lu,ω−1

(

f (·, (ω̃, ω))− f (·, (ω̃, ω′))
) ‖B dη⊗n(ω̃)

d(ω, ω′)

≤
∫

En
sup
ω �=ω′

‖Lu,ω−n · · ·Lu,ω−1

(

f (·, (ω̃, ω))− f (·, (ω̃, ω′))
) ‖B

d(ω, ω′)
dη⊗n(ω̃)

≤
∫

En
sup

ω0 �=ω′
0

‖Lu,ω−n · · ·Lu,ω−1

(

f (·, ω0)− f (·, ω′
0)
) ‖B

κnd(ω0, ω
′
0)

dη⊗n(ω̃)

≤ κ
−nC sup

ω �=ω′

‖Lωn · · ·Lω1(h(·, ω)− h(·, ω′))‖B
d(ω, ω′)

≤ κ
−n sup

ω∈E
‖Lω‖nL(B,B) sup

ω �=ω′

‖h(·, ω)− h(·, ω′)‖B
d(ω, ω′)

since κ > supω∈E ‖Lω‖L(B,B), we obtain that Pu satisfies Doeblin–Fortet–Lasota–
Yorke conditions for (˜B and ˜Bw). ��

3.5. Quasicompactness of P and of Pu.

Proposition 3.15. Ifϑ0 is small enough, P is quasicompact on ˜B, 1 is its only dominating
eigenvalue and it is a simple eigenvalue (with eigenspace C.1M̄ ). In particular, there
exist C̃ > 0 and α̃ ∈ (0, 1), such that

∀ f ∈ ˜B, ‖Pn f − Eμ̄[ f ]1M̄‖
˜B ≤ C̃ α̃n‖ f ‖

˜B .

Proof. For ϑ0 sufficiently small, P satisfies the Lasota–Yorke inequalities of Proposi-
tion 3.13 uniformly inϑ0. Thus by Proposition 3.10 and the Keller–Liverani perturbation
theorem [25, Corollary 1], the spectra and spectral projectors of P and P on ˜B are close
forϑ0 small. Since the spectral gap forP on ˜B is uniform inϑ0 by Lemma 3.12, it follows
that P has a spectral gap on ˜B with a single and simple peripherical eigenvalue, provided
ϑ0 is sufficiently small. Since P is the dual operator of f �→ f ◦ T̄ , the spectral radius
ofP is 1 and 1 is an eigenvalue of P . We conclude that 1 is the dominating eigenvalue
and that it is simple. ��
Proposition 3.16. Pu, as an operator acting on ˜B, is an analytic perturbation of P.
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Proof. Observe that the n-th derivative of u �→ Pu is the operator defined by

f �→ in P
(

�(i1) . . . �(in)eiu·� f
)

.

Due to Lemma 3.9 and to classical results on analytic functions, we conclude that, in
L(˜B, ˜B), u �→ Pu is analytic on R

2 and that

Pu =
∞
∑

n=0

1

n!An,ω, with An f (u) = P((iu ·�)n f ) ,

where An f (u) is n-linear in u. ��
Our main results will follow from the following technical result.

Theorem 3.17. The function 1M̄ is in ˜B and Eμ̄[·] is a continuous linear form on ˜B and
˜Bw.
If ϑ0 is small enough, there exist β ∈ (0, π), C > 0 and α ∈ (0, 1), three analytic maps
u �→ λu from [−β, β]2 to C, u �→ Nu and u �→ �u from [−β, β]2 to L(˜B, ˜B) such that
a) λ0 = 1, �0 := Eμ̄[·]1M̄ ,
b) for every u ∈ [−β, β]2 and every integer n ≥ 1, Pn

u = λnu�u + Nn
u , �u Nu =

Nu�u = 0, �2
u = �u, and ‖Nn

u ‖L(˜B,˜B) ≤ Cαn.

Moreover, for every integer k ≥ 0, ‖(Nn
u )

(k)‖L(˜B,˜B) = O(αn), where (Nn
u )

(k) means
the k-th derivative of Nn

u .
c) for every u ∈ [−π, π ]2\[−β, β]2 and every integer n ≥ 1, we have ‖Pn

u ‖L(˜B,˜B) ≤
Cαn.

d) The positive symmetricmatrix�2 given by (6) satisfies λu = 1− 1
2 (�

2u ·u)+O(|u|3).
Proof of Theorem 3.17. The fact that 1M̄ is in ˜B comes from the fact that 1M̄0

is in B.
As seen in Remark 3.5, Eμ̄[·] is a continuous form on ˜B. The proof of the remaining
part of the theorem relies on Propositions 3.10, 3.13, 3.15 and 3.16.

Propositions 3.13, 3.15 and 3.16 immediately imply the existence of a spectral gap
for Pu for |u| sufficiently small, using standard perturbation theory [19, VII.6 Theorem
9]. This yields the analyticity and items (a) and (b) of the proposition with β depending
on ϑ0 and the uniform constants depending on the family F̄ϑ0 , but not on the probability
measure η.

For item (c), due to [1, Lemma 4.3], it is enough to prove that, if ϑ0 is small enough,
then for every u ∈ [−π, π ]2\[−β, β]2, Pu admits no eigenvalue of modulus 1. Assume
the contrary. There would exist a sequence of operators (P(k)

uk )k corresponding to a
sequence of vanishing neighbourhoods (Ek)k of T̄0 in F and with β ≤ |uk | ≤ π and
ρ(P(k)

uk ) = 1, where ρ(·) denotes the spectral radius. Up to extracting a subsequence,
we also have limk→+∞ uk = u∞. But, due to Proposition 3.10 and since u �→ Lu,0 is
continuous from R

2 to L(B,B), we would deduce that

lim
k→+∞‖P(k)

uk − Pu∞‖L(B,Bw) = 0.

Combining this with Proposition 3.13 and with the perturbation theorem of [25], this
would imply that ρ(Pu∞) = 1, which would contradict Proposition C.2. We conclude
that, as soon as ϑ0 is sufficiently small, supβ≤|u|≤π ρ(Pu) < 1 as claimed.
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It remains to prove item (d). Due to [16, Corollary 2.4], for any initial probability
measure ν ∈ B, (Sn/

√
n)n converges in distribution to a (possibly generalized) centered

Gaussian random variable with variance �2. As in [15, Proof of Theorem 2.6], �2 is
the variance of (Sn/

√
n)n , as n → ∞. Thus�2 is given by the Green-Kubo formula (6)

as long as the correlations Eμ̄[�(i).�( j) ◦ T̄ k] are summable. Indeed, the spectral gap
for P (Proposition 3.15) implies that the correlations decay exponentially in k since P
is the transfer operator for T̄ with respect to the measure μ̄.

Moreover, due to item (b) of the present theorem,

sup
t∈[−β,β]2

|Eμ̄[eit Sn ] − λnt Eμ̄[�t (1)]| = O(αn)

and so

lim
n→+∞ λnt/

√
n = e−

1
2 (�

2t ·t)

with uniform convergence on any compact set of R
2. This implies that

lim
n→+∞ n log

(

λt/
√
n

) = −1

2
(�2t · t) .

On the other hand, log(λt/√n) ∼ (λt/
√
n − 1) as n → +∞. Hence

lim
n→+∞ n(λt/

√
n − 1) = −1

2
(�2t · t).

Setting u = t/
√
n, we can then deduce the stated Taylor expansion since u �→ λu is

analytic. The positivity of �2 follows from the next lemma. ��
Lemma 3.18. If ϑ0 is small enough, �2 is positive.

Proof. Recall that �2 has been defined in (6). We consider �2
0 being defined by

�2
0 :=

⎛

⎝Eμ̄

[

�
(i)
0 .�

( j)
0

]

+
∑

k≥1

Eμ̄0

[

�
(i)
0 .�

( j)
0 ◦ T̄ k

0 +�
( j)
0 .�

(i)
0 ◦ T̄ k

0

]

⎞

⎠

i, j=1,2

.

(21)

It is enough to prove that �2 converges to �2
0 as ϑ0 goes to 0. We use (6) together with

the fact that �2
0 satisfies an analogous formula (with �(x, ω) replaced by �0(x) and

with T̄ (x, ω) replaced by T̄0(x)). Therefore

�2 −�2
0 = A0 + 2

∑

k≥1

Ak ,

with Ak := Eμ̄

[

�.� ◦ T̄ k] − Eμ̄0 [�0.�0 ◦ T̄ k
0

]

. Extending the definition of �0 on M̄
by setting �0(x, ω) := �0(x), we obtain

Ak := Eμ̄

[

�.� ◦ T̄ k −�0.�0 ◦ (T̄ ′
0)

k
]

= Eμ̄

[

Pk�.�− Pk�0.�0

]

= Eμ̄

[

(�−�0).P
k�
]

+ Eμ̄

[

�0.P
k(�−�0)

]

+ Eμ̄

[

�0.(P
k�0 − Pk�0)

]

.
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The two first terms of the right hand side of this formula are less than

4‖�‖2∞ sup
ω∈E

μ̄0(�ω −�0 �= 0) ,

which goes to 0 as ϑ0 → 0. The third term is dominated by

k max
(

‖P‖L(˜B,˜B), ‖P‖L(˜Bw,˜Bw)

)k−1 ‖P − P‖L(˜B,˜Bw)
‖�0‖˜B‖Eμ̄[�0·]‖˜B′

w
.

We deduce that this quantity goes to 0 using Remark 3.4, Lemma 3.9, and Proposi-
tion 3.10, and since Eμ̄[�0·] = Eμ̄[P(�0·)] (applying Lemma 3.9 with E = {0}).

We conclude with the use of the dominated convergence theorem, since
∣

∣

∣Eμ̄

[

�.� ◦ T̄ k
]∣

∣

∣ =
∣

∣

∣Eμ̄

[

Pk�.�
]∣

∣

∣

≤ ‖�‖
˜B˜C α̃k‖Eμ̄[�·]‖

˜B′ = ‖�‖
˜B˜C α̃k‖Eμ̄[P(�·)]‖

˜B′ ,

where we used Proposition 3.15 since Eμ̄[�] = 0, and a similar bound holds for
Eμ̄0 [�0.�0 ◦ T̄ k

0 ]. ��

4. Limit Theorems Under General Assumptions and Proofs of Our Results for
Billiards

We start with the proof of our results which are direct consequences of Theorem 3.17
and of general results existing in the literature.

Proofs of Theorems 2.1, 2.7 and 2.8. The convergence in distribution of Theorem 2.1
is a direct corollary of Theorem 3.17 by Lévy’s continuity theorem (as in [22,23,27])

since, for every u ∈ R
2, Eμ̄

[

e
i u√

n
·Sn] = Eμ̄

[

Pn
u/

√
n
1M̄
]

∼ λn
u/

√
n
∼ e− 1

2 (�
2u·u) as n

goes to infinity. Theorem 3.17 provides the announced expression for �2.
Theorem 3.17 gives exactly [34, Hypothesis 3.1] (with (A, μ, T ) = (M̄, μ̄, T̄ ),

F = �,U = [−β, β]2, B = ˜B, M = 1, d = 2, Ru = Nu , r = α and L ≡ 1). Therefore
applying [34, Theorem 2.4] (with (˜A, μ̃,˜T ) = (M, μ, T ), (A, μ, T ) = (M̄, μ̄, T̄ ),
F = �, an = √

n, α = 2, d = 2), we obtain Theorem 2.7.
Observe now that Theorem 3.17 implies that (Ps)s satisfies Condition (H2) of [32,

Definition 3.1] with respect to (˜B,∞,∞, 3, �2) (using Condition (H1) of [32, Def-
inition 2.1]). Thus, applying [32, Theorem 3.2] and using the formulas given in [32,
Remark 3.3], we get Theorem 2.8. ��

Wewill prove the other results in a general context. About these results, let usmention
that Theorem 2.4 and the first part of Theorem 2.6 have been proved in [18,29] and
in [30] for a single billiard map. We give here the proof in a more general context
with a significant simplification in the proof of Theorem 2.6 due to the better estimate
of the variance of the auto-intersection and to some simplification in the Bolthausen
tightness argument. The second part of Theorem 2.6 uses a general argument from [21].
Theorem 2.5 exists for a single billiard map, but only in an unpublished paper by the
second author [31]. Let us indicate that the generality of the proof we give in the present
paper is possible due to important modifications of the proof. Indeed we state general
results enabling the study of Z

2-extension with unbounded (square integrable) step
function and we do not use the fact that the Banach space we consider is continuously
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injected in L p for a suitable p > 1 (this property was true for Young Banach spaces on
towers constructed in [38] for a single billiard map but not for the spaces we consider
here); both of these conditions were used in the proof of [31].

We will prove the limit theorems we are interested in under the following general
hypothesis.

Assumption 4.1. Let (M, μ, T ) be aZ
2-extension of a probability preserving dynamical

system (M̄, μ̄, T̄ ) by a function � : M̄ → C. Let P be the transfer operator associated
with T̄ with respect to μ̄ and let (Pu := P(eiu·�·))u∈R2 . We assume that these operators
act on two Banach spaces ˜B1 and ˜B2 such that 1M̄ ∈ ˜B1 ↪→ ˜B2 (continuous inclusion)
and that Eμ̄[·] is a continuous linear form12 on ˜B2.
Assume that there exist β ∈ (0, π), C > 0 and α ∈ (0, 1), three continuous maps
u �→ λu from [−β, β]2 to C, u �→ Nu and u �→ �u from [−β, β]2 to L(˜B1, ˜B2) such
that

(A1) for every u ∈ [−β, β]2 and every integer n ≥ 1,

Pn
u = λnu�u + Nn

u , �u Nu = Nu�u = 0, �2
u = �u

and ‖Nn
u ‖L(˜B1,˜B1)

≤ Cαn .

(A2) for everyu ∈ [−π, π ]2\[−β, β]2 and every integern ≥ 1,wehave‖Pn
u ‖L(˜B1,˜B1)

≤
Cαn .

(A3) u �→ �u , seen as a L(˜B1, ˜B2)-valued function, is differentiable at 0 and �0 :=
Eμ̄[·]1M̄ ,

(A4) There exists a positive symmetricmatrix�2 such thatλu = 1− 1
2 (�

2u·u)+O(|u|3).
In this general context, we will also use the following notation and considerations.

We write Sn for the ergodic sum Sn := ∑n−1
k=0 � ◦ T̄ k . It will be crucial to notice that

Pn
u = Pn(eiu·Sn ·).
We consider a partition of M̄ in I subsets Ō1, . . . , ŌI of μ̄ positive measure (corre-

sponding to (∂Oi × S1) × EN in our example). We consider the function I0 which, at
every x ∈ M̄ , associates the index I0(x) of the atom ŌI0(x) of the partition containing
x . We also define Ik := I0 ◦ T̄ k .

We remark that our random map T̄ with T̄ω ∈ F̄ϑ0(T̄0) for all ω ∈ E satisfies all the
items of Assumption 4.1 due to Theorem 3.17.

4.1. Local limit theorem: general result and proof of Theorem 2.2. For every n ∈ N
∗,

� ∈ Z
2 and h ∈ ˜B1, we set:

H�,nh := Pn (1{Sn=�}h
)

. (22)

Recall that

1{k=�} = 1

(2π)2

∫

[−π,π ]2
ei(k−�)·u du (23)

where du is understood as du1du2 for u = (u1, u2) ∈ R
2 (integral with respect to the

Lebesgue measure), which leads us to the following formula

H�,nh = 1

(2π)2

∫

[−π,π ]2
e−i�·u Pn

u h du . (24)

12 Up to extending by continuity the definition of Eμ̄[·].
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Theorem 4.2. Assume general Assumption 4.1. Then

sup
�∈Z2

∥

∥

∥

∥

∥

H�,n − e− 1
2n�

−2�·�

2πn
√
det�2

�0

∥

∥

∥

∥

∥

L(˜B1,˜B2)

= O(n−
3
2 ) .

Moreover, there exists K0 ≥ 1 such that for every integer n ≥ 0 and every � ∈ Z
2,

‖H�,n‖L(˜B1,˜B1)
≤ 1

(2π)2

∫

[−π,π ]2
‖Pn

u ‖L(˜B1,˜B1)
du ≤ K0

n + 1
, (25)

Proof. Up to a change of β, there exists a > 0 such that, for every u ∈ [−β, β]2,
|λu | ≤ exp(−a|u|2). Hence, using Assumption 4.1, we have the following equalities in
L(˜B1, ˜B2):

1

(2π)2

∫

[−π,π ]2
e−i�·u Pn

u du = 1

(2π)2

∫

[−β,β]2
e−i�·u Pn

u du + O(αn)

= 1

(2π)2

∫

[−β,β]2
e−i�·uλnu�u du + O(αn)

= 1

(2π)2

∫

[−β,β]2
e−i�·uλnu(�0 + O(u)) du + O(αn)

= 1

(2π)2

∫

[−β,β]2
e−i�·u (e−

1
2 (�

2u.u) + O(|u|3)
)n

�0 + O(e−an|u|2 |u|) du + O(αn) .

Thus

1

(2π)2

∫

[−π,π ]2
e−i�·u Pn

u du

= 1

(2π)2n

∫

[−β
√
n,β

√
n]2

e
−i�· v√

n e−
1
2 (�

2v.v)�0

+O

(

ne−a(n−1) |v|
2

n
|v|3
n

3
2

+ e−a|v|2 v√
n

)

dv + O(αn)

= 1

(2π)2n

∫

[−β
√
n,β

√
n]2

e
−i�· v√

n e−
1
2 (�

2v.v)�0

+O

(

e−
a
2 |v|2 |v|3√

n
+ e−a|v|2 v√

n

)

dv + O(αn)

= 1

(2π)2n

∫

[−β
√
n,β

√
n]2

e
−i�· v√

n e−
1
2 (�

2v.v)�0 dv + O(n−
3
2 )

= 1

(2π)2n

∫

R2
e
−i �√

n
·v
e−

1
2 (�

2v.v)�0 dv + O(n−
3
2 )

= e− 1
2n�

−2�·�

2πn
√
det�2

�0 + O(n−
3
2 ) ,

where we have changed variables, v = u
√
n, and the O are in L(˜B1, ˜B2) with uniform

bound. This bound is in L(˜B1, ˜B2) and not in L(˜B1, ˜B1) because according to Assump-
tion (A3), the map u �→ �u is differentiable from [−β, β] to L(˜B1, ˜B2) and a priori not
from [−β, β] to L(˜B1, ˜B1).
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For the second estimate, we write

1

(2π)2

∫

[−π,π ]2
‖Pn

u ‖L(˜B1,˜B1)
du

= 1

(2π)2

∫

[−β,β]2
|λu |n‖�u‖L(˜B1,˜B1)

du + O(αn)

≤ 1

(2π)2

∫

[−β,β]2
e−a|u|2n sup

u∈[−β,β]
‖�u‖L(˜B1,˜B1)

du + O(αn)

≤ O(n−1) ,

using again the change of variable v = u
√
n. ��

Due to Theorem 3.17, Theorem 2.2 is a direct consequence of the following result.

Corollary 4.3. Assume general Assumption 4.1. Let f, g : M̄ → R such that Hg(·) :=
Eμ̄[g·] ∈ ˜B′

2 and such that f ∈ ˜B1. Then

Eμ̄

[

f.1{Sn=�}.g ◦ T̄ n] =
exp

(

−�−2�·�
2n

)

2πn
√
det�2

Eμ̄[ f ]Eμ̄[g] + O
(

n−
3
2 ‖ f ‖

˜B1
‖Hg‖˜B′

2

)

.

(26)

Proof. Observe that we have

Eμ̄

[

f.1{Sn=�}.g ◦ T̄ n] = Eμ̄

[

Pn( f.1{Sn=�}).g
] = Hg

(

Pn(1{Sn=�} f )
)

,

recalling (7). We conclude due to Theorem 4.2. ��

4.2. Return time to the original obstacle: general result andproof of Theorem2.4. Recall
that Ik(x) corresponds to the index of the atom ŌIk (x) containing T̄ k x and that Sn(x)
corresponds to the label of the copy of M̄ in M containing T k(x, 0). We also define
Ik on M̄ by canonical projection. We consider the set Bn of x ∈ M̄ such that the orbit
(T n(x, 0))n≥0 won’t return to the initial atom ŌI0(x) × {0} until time n:

Bn := {∀k = 1, . . . , n : (Ik, Sk) �= (I0, (0, 0))} ⊂ M̄ .

Analogously we define B ′
n the set of points x ∈ M̄ for which the atom visited at time n

has not been visited before:

B ′
n := {∀k = 0, . . . , n − 1 : (Ik, Sk) �= (In, Sn)} ⊂ M̄ . (27)

We set Bn(a) := Ōa ∩ Bn and B ′
n(a) := T̄−n(Ōa) ∩ Bn . We prove the following result

on the probability of these sets.

Proposition 4.4. Assume general Assumption 4.1.
If 1Ōa

∈ ˜B1 and if f �→ Eμ̄[ f 1Bk (a)] are uniformly bounded (uniformly in k) in ˜B′
2,

then

μ̄(Bn(a)) = 2π
√
det�2

log n
+ O

(

(log n)−
4
3

)

. (28)
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If f �→ Eμ̄[ f 1Ōa
] is in ˜B′

2 and if Pk1B′
k (a)

are uniformly bounded (uniformly in k)

in ˜B1, then

μ̄(B ′
n(a)) =

2π
√
det�2

log n
+ O

(

(log n)−
4
3

)

. (29)

Proof. As in [29], we follow the idea of the proof of Dvoretzky and Erdös [20] and adapt
it to our context. Considering the last visit time to Ōa × {0} of (T k(x, 0)) until time n,
we write

μ̄(Ōa) =
n
∑

k=0

μ̄
(

Ōa ∩ {Sk = 0} ∩ T̄−k(Bn−k(a))
)

(30)

and, analogously,

μ̄(Ōa) = μ̄
(

T̄−n Ōa
) =

n
∑

k=0

μ̄
(

(T̄−n Ōa) ∩ {Sn − Sn−k = 0} ∩ B ′
n−k(a)

)

(31)

considering the first visit time to Ōa×{Sn} before time n. Moreover, due to Corollary 4.3
and to our assumptions on Ōa and on Bn(a), there exists C" > 0 such that

∀k ∈ N
∗,

∣

∣

∣

∣

μ̄
(

Ōa ∩ {Sk = 0} ∩ T̄−k(Bn−k(a))
)

− μ̄(Ōa)μ̄(Bn−k(a))

2kπ
√
det�2

∣

∣

∣

∣

≤ C"

k
3
2

.

(32)

Since μ̄
(

(T̄−n Ōa) ∩ {Sn − Sn−k = 0} ∩ B ′
n−k(a)

) = Eμ̄

[

1Ōa
Pk
(

1{Sk=0}Pn−k

1B′
n−k(a)

)]

, and using Theorem 4.2, we also have

∀k ∈ N
∗,

∣

∣

∣

∣

∣

μ̄
(

(T̄−n Ōa) ∩ {Sn − Sn−k = 0} ∩ B′
n−k(a)

)− μ̄(Ōa)μ̄(B′
n−k(a))

2kπ
√
det�2

∣

∣

∣

∣

∣

≤ C"

k
3
2

.

(33)

We will prove (28) using (30) and (32). The proof of (29) using (31) and (33) follows
the same scheme, and we omit it.

μ̄(Ōa) ≥
n−1
∑

k=�mn 

μ̄(Ōa)μ̄(Bn−1−k(a))

2kπ
√
det�2

+
n
∑

k=mn

C"

k
3
2

≥ μ̄(Bn(a)) (log(n)− log(mn))
μ̄(Ōa)

2π
√
det�2

+
n
∑

k=mn

C"

k
3
2

≥ log(n) μ̄(Bn(a))

(

1− log(mn)

log n

)

μ̄(Ōa)

2π
√
det�2

+ O(m
− 1

2
n ) ,

with mn = �(log n)2 , which leads to

log(n) μ̄(Bn(a)) ≤ 2π
√
det�2 + O

(

log log n

log n

)

. (34)
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Moreover

μ̄(Ōa) ≤
m′
n−1
∑

k=0

μ̄(B�n log n −k(a)) +
�n log n −n
∑

k=m′
n

μ̄(Ōa)μ̄(B�n log n −k(a))

2kπ
√
det�2

+
�n log n 
∑

k=�n log n −n+1

μ̄(Ōa)μ̄(B�n log n (a))
2kπ

√
det�2

+
�n log n 
∑

k=m′
n

C"

k
3
2

≤ m′
n

log n
+ μ̄(Bn(a))

(

(

log(n log n − n + 1)− log(m′
n − 1)

) μ̄(Ōa)

2π
√
det�2

)

+
log(n log n)− log(n log n − n)

2π
√
det�2

+ C"(m′
n)

− 1
2 ,

where we used the facts that μ̄(B�n log n −k(a)) ≤ μ̄(Bn(a)) = O((log n)−1) for every
k ≤ �n log n − n and that μ̄(Bm(a)) ≤ 1 for k > �n log n − n. This leads us to

μ̄(Ōa) ≤ log n
μ̄(Ōa)

2π
√
det�2

μ̄(Bn(a))

(

1 + O

(

log log n + logm′
n

log n

))

+O

(

m′
n

log n
+ (m′

n)
− 1

2

)

,

≤ log n
μ̄(Ōa)

2π
√
det�2

μ̄(Bn(a))

(

1 + O

(

log log n

log n

))

+O
(

(log n)−
1
3

)

,

by taking m′
n := �(log n) 2

3 � and so

log(n) μ̄(Bn(a)) ≥ 2π
√
det�2 + O

(

(log n)−
1
3

)

. (35)

The proposition follows from (34) and (35). ��
In view of applying Proposition 4.4 in our context of random iterations of billiards,

we will use the following result.

Lemma 4.5 (Estimate for random iterations of billiard maps). Assume we are in the
particular case of billiards, with assumptions and notations of Sects. 1–3. There exists
K1 > 0 such that, for every positive integer �, for every (ω1, . . . , ω�) ∈ E�, for every
uniformly bounded function g : M̄0 → R which is uniformly p-Hölder continuous on
connected components of M̄0\

(∪�
k=1T̄

−1
ω1

◦ · · · ◦ T̄−1
ωk

(S0,H )
)

, and for all f ∈ Bw,

|Eμ̄0 [ f g]| ≤ K1| f |w
(

|g|∞ + sup
C∈Cω1,...,ω�

C (p)
g|C

)

. (36)

Moreover, for every f ∈ B,

‖Lu,ω�
. . .Lu,ω1(g f )‖B ≤ K1‖ f ‖B

(

|g|∞ + sup
C∈Cω1,...,ω�

C (p)
g|C

)

, (37)
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whereCω1,...,ω�
is the set of connected components of M̄0\

(∪�
k=1T̄

−1
ω1

◦ · · · ◦ T̄−1
ωk

(S0,H )
)

and where C (p)
g|C is the Hölder constant of g restricted to C.

The proof of Lemma 4.5 can be found in “Appendix A”.

Remark 4.6. The purpose of Lemma 4.5 in our billiard context is to show that K1 can be
chosen independently of �. If one wishes similar bounds on piecewise Hölder continuous
functions onM0 with respect to a fixed partition, thenRemark 3.1 andLemma3.3 provide
such estimates under general conditions on the boundaries of partition elements.

Indeed, we will apply the lemma to the function g = 1Bn(a), where Bn(a) is defined
in Sect. 2.2 (see also Sect. 4.2).

Next we are ready to prove the main Theorem 2.4.

Proof of Theorem2.4. Assumption 4.1 follows from Theorem 3.17. The other assump-
tions of Proposition 4.4 follow from Lemma 4.5 since 1Bn(a) satisfies the assumptions
on g in that lemma (uniformly in n). ��

4.3. Number of self-intersections: general result and Proof of Theorem 2.5. Weconsider
the number of self-intersections Vn of the process (Ik, Sk)k defined by

Vn :=
n
∑

k,�=1

1{S�=Sk , I�=Ik }. (38)

Theorem 4.7. Assume general Assumption 4.1 with ˜B2 = ˜B1. Assume moreover:

(A5) the operator f �→ f 1Ōa
is a linear operator on ˜B1 for every a ∈ {1, . . . , I }.

Then (Vn/(n log n))n converges μ̄-almost surely to 1
π
√
det�2

∑I
a=1 μ̄(I0 = a)2.

The proof of Theorem 2.5 will follow from the following lemmas. Recalling (38), let us
write Ek,� := {Sk = S�, Ik = I�} and E� := E0,�.

Lemma 4.8. Assume general assumptions of Theorem 4.7. For � > k, we have

μ̄
(

Ek,� ∩ T̄−k Ōa

)

=
(

μ̄(Ōa)
)2

2π
√
det�2(�− k)

+ O((�− k)−
3
2 ) ,

and so

μ̄(Ek,�) = c1
�− k

+ O((�− k)−
3
2 ) and Eμ̄[Vn] = 2c1n log n + O(n) ,

with c1 := 1
2π

√
det�2

∑I
a=1 μ̄(I0 = a)2.

Proof. Since μ̄ is T̄ -invariant, for k < �, recalling (22) we have

μ̄
(

Ek,� ∩ T̄−k Ōa

)

= μ̄
(

E�−k ∩ Ōa
) = μ̄(I0 = a, S�−k = 0, I�−k = a)

= Eμ̄

[

1Ōa
H0,�−k(1Ōa

)
]

= μ̄(Ōa)
2

2π
√
det�2(�− k)

+ O((�− k)−
3
2 ) ,
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due to Theorem 4.2 since 1Ōa
∈ ˜B1 and since Eμ̄[1Ōa

·] ∈ ˜B′
1. Hence

μ̄(Ek,�) =
I
∑

a=1

μ̄
(

Ek,� ∩ T̄−k Ōa

)

=
∑I

a=1

(

μ̄(Ōa)
)2

2π
√
det�2(�− k)

+ O((�− k)−
3
2 ) ,

and

Eμ̄[Vn] =
n
∑

k,�=1

μ̄(Ek,�) = n + 2
∑

1≤k<�≤n

μ̄(E�−k)

= n + 2
n−1
∑

m=1

(n − m)μ̄(Em) = O(n) + 2c1n log n .

��
Lemma 4.9. Assume general assumptions of Theorem 4.7. There exists C1 > 0 such
that for all non-negative integers n,m, k, for all i, j, i ′, j ′ ∈ {1, . . . , I }, and for all
N1, N2 ∈ Z

2, we have

|Covμ̄(1{I0=i,Sn=N1,In=i ′}, 1{In+m= j,Sn+m+k−Sn+m=N2,In+m+k=i ′})| ≤ C1α
m

(n + 1)(k + 1)
.

In particular

|Covμ̄(1E0,n , 1En+m,n+m+k )| ≤
I 2 C1α

m

(n + 1)(k + 1)
.

Proof. The covariance we are interested in can be rewritten

Covμ̄
(

1Ōi
1{Sn=N1}1Ōi ′ ◦ T̄ n, (1Ō j

1{Sk=N2}1Ō j ′ ◦ T̄ k) ◦ T̄ n+m
)

= Eμ̄

[

Pn+m+k
((

1Ōi
1{Sn=N1}1Ōi ′ ◦ T̄ n − Eμ̄[1Ōi

1{Sn=N1}1Ōi ′ ◦ T̄ n]
)

(1Ō j
1{Sk=N2}1Ō j ′ ◦ T̄ k) ◦ T̄ n+m

)]

.

Moreover, using several times Pm( f g ◦ T̄ m) = g Pm( f ) and the definition ofH�,n , we
obtain that this quantity is equal to

Eμ̄

[

1Ō j ′ HN2,k

(

1Ō j
(Pm − Eμ̄)

(

1Ōi ′HN1,n

(

1Ōi

)) )]

and so is bounded by

a j ′ · ‖HN2,k‖L(˜B1,˜B1)
· a j · ‖Pm − Eμ̄‖L(˜B1,˜B1)

· ai ′ · ‖HN1,n‖L(˜B1,˜B1)
‖1Ōi

‖
˜B1

≤ K 2
0

(n + 1)(k + 1)
Cαma j ′a jai‖1Ōi

‖
˜B1

,

due to (25) and assumption (A5) of Theorem 4.7, together with (A1) of Assumptions 4.1
applied to u = 0. Here ai := ‖1Ōi

× ·‖L(˜B1,˜B1)
.
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This gives the first estimate of the lemma. To get the second one from the first one,
we just observe that

1Ek,� :=
I
∑

i=1

1Ōi∩{S�−k=0}∩T̄−(�−k) Ōi
◦ T̄ k .

��
We will use the notation An ∼ Bn for two positive quantities whenever

limn→∞ An
Bn

= 1.

Lemma 4.10. Assume general assumptions of Theorem 4.7. We have Varμ̄(Vn) ∼ cn2 ,
with

c :=
(

∑I
a=1(μ̄(Ōa))

2
)2

det�2

(

1 + 2J

π2 − 1

6

)

,

J :=
∫

y1,y2,y3>0:y1+y2+y3<1

1− y1 − y2 − y3
y1y2 + y2y3 + y1y3

dy1dy2dy3.

The proof of Lemma4.10 is rather technical and involved, sowemove it to the “Appendix
B”.

Proof of Theorem 4.7. Set nk := exp(
√
k log k). For every ε > 0, due to the Bienaymé-

Chebychev inequality and using Lemmas 4.8 and 4.10,

∑

k≥1

μ̄
(|Vnk − Eμ̄[Vnk ]| > εEμ̄[Vnk ]

) ≤
∑

k≥1

Varμ̄(Vnk )

ε2(Eμ̄[Vnk ])2

=
∑

k≥1

O((log nk)
−2) =

∑

k≥1

O(k−1(log k)−2) < ∞ .

Hence (Vnk/Eμ̄[Vnk ])k converges μ̄-almost surely to 1. Due to Lemma 4.8, (Vnk/

(nk log nk))k converges almost surely to 2c1. Since nk log nk ∼ nk+1 log nk+1 and since
(Vn)n is increasing, if n ∈ {nk, . . . , nk+1}, then

Vnk/(nk+1 log nk+1) ≤ Vn/(n log n) ≤ Vnk+1/(nk log nk),

and so (Vn/(n log n))n converges μ̄-almost surely to 2c1. ��
Proof of Theorem 2.5. Due to Remark 3.5, Theorem 3.17 and to Lemma 4.5, the as-
sumptions of Theorem 4.7 are satisfied. Therefore (Vn/(n log n))n converges μ̄-almost
surely to

1

π
√
det�2

I
∑

a=1

μ̄(I0 = a)2 = 1

π
√
det�2

I
∑

a=1

(

2|∂Oa|
2
∑I

b=1 |∂Ob|

)2

= 1

π
√
det�2

∑I
a=1 |∂Oa |2

(

∑I
b=1 |∂Ob|

)2 . (39)

��
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4.4. Random scenery: general result and proof of Theorem 2.6. Assume that to each
atom Ōi×{�} is associated a randomvariable ξi,�, independent and identically distributed
across i ∈ [1, . . . I ] and � ∈ Z

2, centered with variance σ 2
ξ and defined on a common

probability space (�,F ,P). We define the random variable (defined on M̄ ×�):

Zn :=
n−1
∑

k=0

ξIk ,Sk .

We also define a linearly interpolated version of Zn by,

˜Zn(t) := Z�nt� + (nt − �nt�)ξ(I�nt�+1,S�nt�+1).

Theorem 4.11 (Annealed and ξ -quenched CLT forZ). Assume general Assumption 4.1
and that,

i) for every a ∈ {1, . . . , I }, f �→ 1Ōa
f is a continuous linear operator on ˜B1;

ii) and supk∈N ‖Pk1B′
k (a)

‖
˜B1

< ∞ (recalling (27));

iii) there exists c′ > 0 such that Eμ̄[|Sn|2] ∼ c′n.

Then, (˜Zn := (˜Zn(t)/
√
n log n)t>0)n converges in distribution, with respect to μ̄ ⊗ P

(and to the uniform norm on C([0, T ]) for every T > 0), to a Brownian motion B =
(Bt )t≥0 such that E[B2

1 ] =
σ 2
ξ

π
√
det�2

∑I
a=1 μ̄(I0 = a)2.

If, moreover, there exists χ > 0 such that E[|ξ(1,0)|2(log+ |ξ(1,0)|)χ |)] < ∞, then, for
P-a.e. realization of (ξi,�)i,�, (˜Zn)n converges also in distribution, with respect to μ̄, to
the same Brownian motion B.

Assaidbefore, it shouldbepossible to remove the additional assumptionE[|ξ(1,0)|2(log+
|ξ(1,0)|)χ |)] < ∞ by using our estimates, combined with the very recent preprint [13]
instead of [21].

Proof of Theorem 2.6. Using Theorem 4.11, we prove Theorem 2.6. Assumption 4.1
holds in the setting of Theorem 2.6 due to Theorem 3.17. Moreover, assumption (i) of
Theorem 4.11 follows from Remark 3.5, while assumption (ii) follows from Lemma 4.5
and (iii) comes from Theorem 2.1. With the hypotheses of Theorem 4.11 verified, The-
orem 2.6 follows using the same calculation as in (39). ��
We proceed to prove Theorem 4.11.

For the annealed central limit theorem, we mostly follow the proof by Bolthausen for
random walks in random scenery in dimension 2 [5]. In comparison with [30], the fact
that the almost sure convergence of Vn has been proved greatly simplifies the proof.

Lemma 4.12. Assume the general assumptions of Theorem 4.11. Fix ϑ > 0. For μ̄-
almost every x ∈ M̄, sup�

∑n
k=1 1{Sk=�} = o(nϑ).

Proof. For every � ∈ Z
2 and every N ∈ N

∗,

Eμ̄

⎡

⎣

(

n
∑

k=1

1{Sk=�}

)N
⎤

⎦ ≤ N !
∑

1≤k1≤···≤kN≤n

μ̄
(

Sk1 = Sk2 = · · · = SkN = �
)

= N !
∑

1≤k1≤···≤kN≤n

Eμ̄

[

H0,kN−kN−1 · · ·H0,k2−k1H�,k1(1)
]
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≤ N !
∑

1≤k1≤···≤kN≤n

(K0)
N

(k1 + 1)(k2 − k1 + 1) · · · (kN − kN−1 + 1)

= O(K N
0 N ! (log n)N ) , (40)

due to Theorem 4.2. Moreover, due to (iii) combined with a result by Billingsley (see
[4] and [36])

Eμ̄

[

max
k=1,...,n

|Sk |2
]

= O(n(log n)2)

and so due to the Markov inequality, for every s > 0, μ̄
(

maxk=1,...,n |Sk | > n1+s
) ≤

Eμ̄

[

maxk=1,...,n |Sk |2
]

n2+2s
= O(n−1−s) . Now fix ϑ > 0. Then,

μ̄

(

sup
�

n
∑

k=1

1{Sk=�} > nϑ
)

≤ μ̄

(

max
k=1,...,n

|Sk | > n1+ϑ
)

+ μ̄

(

sup
|�|≤n1+ϑ

n
∑

k=1

1{Sk=�} > nϑ
)

≤ O(n−1−ϑ) + (2n1+ϑ + 1)2 sup
|�|≤n1+ϑ

μ̄

(

n
∑

k=1

1{Sk=�} > nϑ
)

≤ O(n−1−ϑ + (log n)Nn2+2ϑ−ϑN ) ,

where we used the inequality E[X > nϑ ] ≤ E[XN ]n−ϑN for any N ∈ N
∗ combined

with (40). Now choosing N > (3 + 3ϑ)/ϑ , we conclude the proof of the lemma by the
Borel-Cantelli lemma. ��
Recall that, for x ∈ M̄ , the randomvariableZn(x) canbe rewritten:Zn(x) =∑n

k=1 ξIk ,Sk =
∑I

i=1
∑

�∈Z2 ξi,�Nn(i, �)(x), where Nn(i, �)(x) := ∑n
k=1 1{Sk=�,Ik=i}(x) is the num-

ber of visits to the obstacle of index (i, �) up to time n and where (ξi,�)i,� is a sequence
of i.i.d. centered square integrable random variables defined on some probability space
(�,F ,P).

Note that the variance ofZn(x) (with respect toP) is σ 2
ξ Vn(x), where σ 2

ξ := E[ξ2(1,0)],
since, under P, Zn(x) is a sum of independent random variables of respective variances
σ 2
ξ (Nn(i, �)(x))2.

Lemma 4.13 (Convergence of finite-dimensional distributions). Assume the assump-
tions of Theorem 4.11. For every m ≥ 1, every 0 < t1 < t2 < · · · < tm, For μ̄-

almost every x ∈ M̄,
(

∑m
j=1 a j

(

Z�nt j � − Z�nt j−1�
)

(x)/
√
n log n

)

n
converges in dis-

tribution (with respect to P) to a centered Gaussian random variable with variance
2c1σ 2

ξ

∑m
j=1 a

2
j (t j − t j−1).
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Proof. We fix x ∈ M̄ . The variance of
∑m

j=1 a j
(

Z�nt j � − Z�nt j−1�
)

(x) (with respect to
P) is equal to, recalling (38),

σ 2
ξ

I
∑

i=1

∑

�∈Z2

⎛

⎝

m
∑

j=1

a j
(

N�nt j �(i, �)(x)−N�nt j−1�(i, �)(x)
)

⎞

⎠

2

= σ 2
ξ

I
∑

i=1

∑

�∈Z2

m
∑

j, j ′=1

a ja j ′
�nt j �
∑

k=�nt j−1�+1

�nt j ′ �
∑

k′=�nt j ′−1�+1
1{Sk=�,Ik=i,Sk′=�,Ik′=i}(x)

= σ 2
ξ

m
∑

j, j ′=1

a ja j ′
�nt j �
∑

k=�nt j−1�+1

�nt j ′ �
∑

k′=�nt j ′−1�+1
1{Sk=Sk′ ,Ik=Ik′ }(x)

= σ 2
ξ

⎛

⎝

m
∑

j=1

a2jV�nt j �−�nt j−1� ◦ T̄ �nt j−1�

+
∑

1≤ j< j ′≤m

a ja j ′
((

V�nt j ′ �−�nt j−1� − V�nt j ′−1�−�nt j−1�
)

◦ T̄ �nt j−1�

+
(

V�nt j ′−1�−�nt j � − V�nt j ′ �−�nt j �
)

◦ T̄ �nt j �
))

∼ 2c1σ
2
ξ

m
∑

j=1

a2j (t j − t j−1)n log n ,

(41)

for μ̄-a.e. x ∈ M̄ , due to the proof of Theorem 4.7 (since (Vn/(n log n))n converges
μ̄-almost surely to 2c1, as well as any sequence of random variables with the same
marginal distributions).

Note that, with respect to P,
∑m

j=1 a j
(

Z�nt j � − Z�nt j−1�
)

(x) is a sum of independent
centered random variables with variances

⎛

⎜

⎝
σ 2
n,i,�(x) := σ 2

ξ

⎛

⎝

m
∑

j=1

a j (N�nt j �(i, �)(x)−N�nt j−1�(i, �)(x))

⎞

⎠

2
⎞

⎟

⎠

i,�

.

Hence, due to Lemma 4.12 and to the Lindeberg Theorem, for μ̄-almost every x ∈ M̄ ,
the sequence of random variables

(
∑m

j=1 a j
(

Z�nt j � − Z�nt j−1�
)

(x)

Var(
∑m

j=1 a j (Z�nt j � − Z�nt j−1�)(x))

)

n

converges in distribution (with respect to P) to a standard Gaussian random variable.
The conclusion then follows from (41). ��
Lemma 4.14. Under the assumptions of Theorem 4.11, the sequence of random vari-
ables

(

˜Zn(t)/
√
n log n

)

n is tight (with respect to μ̄⊗ P) in C([0, T ]) for every T > 0.
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Proof. Due to Theorem 4.7, it is enough to prove the tightness of
(

˜Zn(t)/
√

σ 2
ξ Vn

)

n
.

Due to [4, Lemma p. 88], it is enough to prove that

lim
λ→+∞ lim sup

n→+∞
λ2(μ̄⊗ P)

(

max
k=1,...,n

|Zk | ≥ λσξ
√

Vn

)

= 0. (42)

We modify the proof of tightness of Bolthausen in [5]. For completeness, we explain
the adaptations to make. Following [5] (see also [30, bottom of page 824], using the fact
that (Zn)n has positively associated increments knowing (Sn)n , we obtain that, for any
λ >

√
2,

(μ̄⊗ P)

(

max
j≤n

|Z j | ≥ λσξ
√

Vn

)

≤ 2(μ̄⊗ P)
(

|Zn| > (λ−√
2)σξ

√

Vn

)

.

Now we simplify the conclusion of [5]. Since we know that (Zn/
√
Vn)n converges in

distribution to a Gaussian random variable Y , so

lim sup
n→+∞

(μ̄⊗ P)

(

max
j≤n

|Z j | ≥ λσξ
√

Vn

)

≤ 2P

(

|Y | > (λ− √
2)σξ

)

and P (|Y | > x) = O(e−cY x2) for some cY > 0, which proves (42) and so the tightness.
��

Proof of Theorem 4.11. The first result of Theorem 4.11 is a direct consequence of
Lemmas 4.13 and 4.14.

Now let us prove the last point. For this, we use the general argument developed by
Guillotin-Plantard, Dos Santos and Poisat in [21]. Indeed the proof of [21] only uses the
following assumptions:

• ! is a denumerable set,
• ˜S := (˜Sn)n≥0 is a sequence of !-valued random variables,
• ξ := (ξ)y∈! is a sequence of independent identically distributed real valued random
variables, which are centered and such that E[|ξy |2(log+ |ξy |)χ |)] < ∞ for some
χ > 0,

• the sequences of random variables ξ and ˜S are independent,

•
(

1√
n log n

(
∑�nt�−1

k=0 ξ
˜Sk + (nt − �nt�)ξ

˜S�nt�)
)

t∈[0,1] converges in distribution inC(0, T )

to the Brownian motion B,
• supy∈! E[˜Nn(y)] = O(log n) with ˜Nn(y) := #{k = 0, . . . , n − 1 : ˜Sk = y} =
∑n−1

k=0 1{˜Sk=y} being the local time of ˜S.

• ∑y∈!(E[(˜Nn(y))])2 = O(n), with the same notation.

• P(˜Sn �∈ {˜S0, . . . ,˜Sn−1}) = O((log n)−1).

We apply this to ! = {1, . . . , I } × Z
2 and ˜Sn = (In, Sn). For the antepenultimate

condition, observe that, due to Corollary 4.3,

E[˜Nn(a, �)] =
n−1
∑

k=0

Eμ̄

[

1{Sk=�}.1Ōa
◦ T̄ n

]

=
n−1
∑

k=0

Eμ̄

[

1Ōa
H�,k(1)

]

= O(log n) .
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For the penultimate condition,

∑

y∈!
(E[(˜Nn(y))])2 =

∑

y∈!

n−1
∑

k, j=0

Eμ̄×μ̄[1˜Sk=˜S′j=y] =
n−1
∑

i, j=0

Eμ̄×μ̄[1˜Sk=˜S′j ],

considering an independent copy ˜S′ = (˜S′n = (I ′
n, S

′
n))n of ˜S. Now, using again (23)

combined with Assumption 4.1 with β and a > 0 as in the proof of Theorem 4.2, we
obtain

Eμ̄×μ̄

[

1
˜Sk=˜S′j

]

≤ Eμ̄×μ̄

[

1Sk=S′j

]

=
∫

[−π,π ]2
Eμ̄×μ̄

[

eiu·Sk e−iu·S′j
]

du

=
∫

[−π,π ]2
Eμ̄

[

eiu·Si
]

Eμ̄

[

e−iu·S′j
]

du

=
∫

[−π,π ]2
Eμ̄

[

Pk
u 1
]

Eμ̄

[

P j
−u1

]

du

≤
∫

[−β,β]2
e−ak|u|2 ∣

∣Eμ̄ [�u1]
∣

∣ e−aj |u|2 ∣
∣Eμ̄ [�u1]

∣

∣ du + O(αk+ j )

≤
∫

R2
e−ak|u|2 ∣

∣Eμ̄ [�u1]
∣

∣ e−aj |u|2 ∣
∣Eμ̄ [�u1]

∣

∣ du + O(αk+ j )

= O(|1 + k + j |−1) .

Therefore

∑

y∈!
(E[(˜Nn(y))])2 = O

⎛

⎝

∑

0≤ j,k≤n−1

1

1 + k + j

⎞

⎠ = O(n) .

The last condition comes from the second part of Proposition 4.4. Note that in order
to invoke Proposition 4.4, we need that the operator f �→ Eμ̄[ f 1Ōa

] is continuous on
˜B ′
2. This follows from the fact that we have assumed (i) in the statement of the theorem,

that f �→ f 1Ōa
is a continuous operator on ˜B1, and that by Assumption 4.1, Eμ̄[·] acts

continuously on ˜B2. The second condition needed to conclude (29) from Proposition 4.4
is precisely assumption (ii) in the statement of the theorem. ��
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Appendix A. Proof of Lemma 4.5

Here we prove the Lemma 4.5, which was used in Sect. 4.2, especially used in the proof
of Theorem 2.4.
Let us prove that (36) holds true. By density, it suffices to perform the estimate for
f ∈ C1(M̄0). In the proof below, we use the fact that the invariant measure μ̄0 is
absolutely continuous with respect to the Lebesgure measure.
Choose � ≥ 1 and fix ω� := (ω1, . . . , ω�). Let g be as in the statement of the lemma.
For brevity, denote by T̄ �

ω�
= T̄ω�

◦ · · · ◦ T̄ω1 the composition of random maps and by

L�
ω�

its associated transfer operator. Also, set H p
� (g) = |g|∞ + supC∈Cω1,...,ω� C

(p)
g|C . We

must estimate

Eμ̄0 [ f g] =
∫

M̄0

f g dμ̄0 =
∫

M̄0

L�
ω�

f · g ◦ (T̄ �
ω�
)−1 dμ̄0.

To do this, we decompose M̄0 into a countable collection of local rectangles, each
foliated by a smooth collection of stable curves on which we may apply our norms. This
technique follows closely the decomposition used in [16, Lemma 3.4].
We partition each connected component of M̄0\(∪|k|≥k0Hk), into finitelymany boxes Bj
whose boundary curves are elements ofWs andWu , as well as the horizontal boundaries
ofH±k0 .We construct the boxes Bj so that each has diameter in (δ/2, δ), for some δ > 0,
and is foliated by a smooth foliation of stable curves {Wξ }ξ∈" j , such that each curve
Wξ is stretched completely between the two unstable boundaries of Bj . Indeed, due to
the continuity of the cones Cs(x) from (H1), we can choose δ sufficiently small that the
family {Wξ }ξ∈" j is a family of parallel line segments.
We disintegrate the measure μ̄0 on Bj into a family of conditional probability measures
dμξ = cξ cosϕ dmWξ , ξ ∈ " j , where cξ is a normalizing constant, and a factor measure
λ j (ξ) on the index set " j . Since μ̄0 is absolutely continuous with respect to Lebesgue
measure on M̄0, we have λ j (" j ) = μ̄0(Bj ) = O(δ2).
Similarly, on each homogeneity strip Ht , t ≥ k0, we choose a smooth foliation of
parallel line segments {Wξ }ξ∈"t ⊂ Ht which completely cross Ht . Due to the uniform
transversality of the stable cone with ∂Ht , we may choose a single index set"t for each
homogeneity strip. We again disintegrate μ̄0 into a family of conditional probability
measures dμξ = cξ cosϕ dmWξ , ξ ∈ "t , and a transverse measure λt (ξ) on the index
set "t . This implies that λt ("t ) = μ̄0(Ht ) = O(|t |−5) for each |t | ≥ k0.
Notice that on each homogeneity strip Hk , the function cosϕ satisfies,

| log cosϕ(x)− log cosϕ(y)| ≤ Cd(x, y)1/3 (43)

for some uniform constant C > 0 (uniform in k).
We are ready to estimate the required integral. Let G�(Wξ ) denote the components of
(T̄ �

ω�
)−1Wξ , with long pieces subdivided to have length between δ0/2 and δ0, as in the

proof of Lemma 3.14.
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∫

L�
ω�

f · g ◦ (T̄ �
ω�
)−1 dμ̄0

=
∑

j

∫

Bj

L�
ω�

f · g ◦ (T̄ �
ω�
)−1dμ̄0 +

∑

|t |≥k0

∫

Ht

L�
ω�

f · g ◦ (T̄ �
ω�
)−1dμ̄0

=
∑

j

∫

" j

∫

Wξ

L�
ω�

f · g ◦ (T̄ �
ω�
)−1 dμξdλ j (ξ)

+
∑

|t |≥k0

∫

"t

∫

Wξ

L�
ω�

f · g ◦ (T̄ �
ω�
)−1 dμξdλt (ξ)

=
∑

j

∫

" j

∑

Wξ,i∈G�(Wξ )

∫

Wξ,i

f g cξ cosϕ ◦ T̄ �
ω�

JWξ,i T̄
�
ω�

dmWξ,i dλ j (ξ)

+
∑

|t |≥k0

∫

"t

∑

Wξ,i∈G�(Wξ )

∫

Wξ,i

f g cξ cosϕ ◦ T̄ �
ω�

JWξ,i T̄
�
ω�

dmWξ,i dλt (ξ) .

Next we use the assumption that g is Hölder continuous on connected componts of
M̄0\(∪�

k=1T̄
−1
ω1

◦· · ·◦T̄−1
ωk

(S0,H )). Since elements ofG�(Wξ ) are also subdivided accord-
ing to these singularity sets, we have that g is Hölder continuous on eachWξ,i ∈ G�(Wξ ).
Thus,

∫

Wξ,i

f g cξ cosϕ ◦ T̄ �
ω�

JWξ,i T̄
�
ω�

dmWξ,i

≤ | f |w|g|C p(Wξ,i )cξ | cosϕ ◦ T̄ �
ω�

|C p(Wξ,i )|JWξ,i T̄
�
ω�

|C p(Wξ,i )

≤ | f |wH p
� (g)|JWξ,i T̄

�
ω�

|C0(Wξ,i )

C

|Wξ | ,

where we used (43) in the last estimate, as well as the fact that the normalizing constant
cξ is proportional to |Wξ |−1. This implies that

Eμ̄0 [ f g] ≤ C | f |wH p
� (g)

(
∑

j

∫

" j

∑

Wξ,i∈G�(Wξ )

|JWξ,i T̄
�
ω�

|C0(Wξ,i )
|Wξ |−1 dλ j (ξ)

+
∑

|t |≥k0

∫

"t

∑

Wξ,i∈G�(Wξ )

|JWξ,i T̄
�
ω�

|C0(Wξ,i )
|Wξ |−1 dλt (ξ)

)

.

Now
∑

Wξ,i∈G�(Wξ )
|JWξ,i T̄

�
ω�

|C0(Wξ,i )
is bounded by a uniform constant independent of ξ

and ω� by [16, Lemma 5.5(b)]. Moreover,
∫

" j
|Wξ |−1dλ j (ξ) ≤ Cδ0 for some constant

C > 0 since we chose our foliation to be comprised of long cone-stable curves. We
conclude that the first term to the right hand side of the last inequality is uniformly
bounded by C1| f |wH p

� (g) since the sum over j is finite.
For the second term on the right hand side of the last inequality, we again use [16,

Lemma 5.5(b)] as well as the fact that |Wξ |−1 = O(t3) for ξ ∈ "t , while λt ("t ) =
O(t−5). Thus

∑

|t |≥k0

∫

"t

|Wξ |−1dλt (ξ) ≤
∑

|t |≥k0

Ct−2 ≤ Ck−1
0 .
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We conclude that
∣

∣Eμ̄0 [ f g]
∣

∣ ≤ K1| f |wH p
� (g),

for some uniform constant K1 depending on F̄ϑ0 , but not on f , � or ω�. This completes
the proof of (36).
To prove (37), we follow the proof of Lemma 3.14. Note that for f ∈ C1(M̄0),W ∈ Ws ,
and a test function ψ , we have

∫

W
Lu,ω�

. . .Lu,ω1( f g) ψ dmW =
∑

Wi

∫

Wi

f g eiu·S� ψ ◦ T̄ �
ω�

JWi T̄
�
ω�

dmWi ,

where the sum is taken over Wi ∈ G�(W ), the components of (T̄ �
ω�
)−1W , subdivided as

before. This is the same type of expression as in [16, eq. (5.24)] or [16, eq. (4.4)], but
now the test function is

g eiu·S� ψ ◦ T̄ �
ω�

JWi T̄
�
ω�

rather than simply ψ ◦ T̄ �
ω�

JWi T̄
�
ω�
. Since S� is constant on each Wi ∈ G�(W ), and we

have assumed that g is (uniformly in �) Hölder continuous on each Wi ∈ G�(W ), the
proof of the Lasota–Yorke inequalities follows as in the proof of [16, Proposition 5.6].
The bound (37) then follows as in the proof of Lemma 3.14.

Remark A.1. As a consequence of this lemma, if g : M̄ → R is a bounded measur-
able function such that, for every ω = (ωk)k≥0 ∈ EN, there exists positive integer
�ω such that g(·, ω) is p-Hölder on every connected component (uniformly on ω) of

M̄0\
(

∪�ω−1
k=0 T̄−1

ω0
◦ · · · ◦ T̄−1

ω�(ω)−1
(S0,H )

)

. Then, for every f ∈ ˜Bw, we have

∣

∣Eμ̄[g f ]
∣

∣ =
∣

∣

∣

∣

∫

E
Eμ̄0 [g(·, ω) f (x, ω)] dη(ω)

∣

∣

∣

∣

= K1‖ f ‖˜Bw

(

‖g‖∞ + sup
ω∈EN

sup
C∈Cω1,...,ω�(ω)

C (p)
(g(·,ω))|C

)

,

with the same notations as in the previous lemma. Therefore, Eμ̄[g·] is in ˜B′
w.

Appendix B. Proof of Lemma 4.10

Note that Vn = n + 2
∑

1≤k<�≤n 1{S�=Sk ,I�=Ik }. Hence

Varμ̄(Vn) = 4
∑

1≤k1<�1≤n

∑

1≤k2<�2≤n

Dk1,�1,k2,�2 ,

with Dk1,�1,k2,�2 := μ̄(Ek1,�1 ∩ Ek2,�2)− μ̄(Ek1,�1)μ̄(Ek2,�2). It follows that
∣

∣Varμ̄(Vn)− 8(A2 + A3)
∣

∣ ≤ 8(A1 + A4), (44)

with

A1 :=
∑

1≤k1<�1≤k2<�2≤n

∣

∣Dk1,�1,k2,�2

∣

∣ , A2 :=
∑

1≤k1<k2<�1<�2≤n

Dk1,�1,k2,�2 ,
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A3 :=
∑

1<k1<k2<�2<�1≤n

Dk1,�1,k2,�2 , A4 :=
∑

(k1,k2,�1,�2)∈En∪Fn

∣

∣Dk1,�1,k2,�2

∣

∣ ,

with

En := {(k1, k2, �1, �2) ∈ {1, . . . , n} : k1 = k2 < min(�1, �2)},
Fn := {(k1, k2, �1, �2) ∈ {1, . . . , n} : max(k1, k2) < �1 = �2}.

We will start with the two easiest estimates: the estimates of the error terms A1 and A4.
The method we will use to estimate the main terms A2 and A3 differs from [31].
Due to Lemma 4.9,

A1 ≤ I 2
∑

1≤k1<�1≤k2<�2≤n

C1α
k2−�1

(�1 − k1)(�2 − k2)
= O(n(log n)2) = o(n2).

Let us now prove that A4 = o(n2) by writing

∑

(k1,k2,�1,�2)∈En

∣

∣Dk1,�1,k2,�2

∣

∣

≤ 2
∑

1≤k<�1≤�2≤n

(

μ̄(Ek,�1 ∩ Ek,�2) + μ̄(Ek,�1)μ̄(Ek,�2)
)

≤ 2
∑

1≤k<�1≤�2≤n

(

μ̄(S�1 = S�2 = Sk) + μ̄(S�1 = Sk)μ̄(S�2 = Sk)
)

≤ 2
∑

1≤k<�1≤�2≤n

(

Eμ̄

[

H0,�2−�1H0,�1−k(1)
]

+ Eμ̄

[

H0,�1−k(1)
]

Eμ̄

[

H0,�2−k(1)
])

≤ K ′
0

∑

1≤k<�1≤�2≤n

(

1

(�1 − k)(�2 − �1 + 1)
+

1

(�1 − k)(�2 − k)

)

for some K ′
0 > 0 due to Theorem 4.2, since Eμ̄[·] is a continuous linear operator on

˜B1 and since 1 ∈ ˜B1. This leads to
∑

(k1,k2,�1,�2)∈En

∣

∣Dk1,�1,k2,�2

∣

∣ = O(n(log n)2).
Analogously, we obtain

∑

(k1,k2,�1,�2)∈Fn
∣

∣Dk1,�1,k2,�2

∣

∣ = O(n(log n)2). Hence A4 =
o(n2).
For A2, we study separately the terms μ̄(Ek1,�1 ∩ Ek2,�2) and the terms μ̄(Ek1,�1)μ̄

(Ek2,�2). First by Lemma 4.8,

∑

1≤k1<k2<�1<�2≤n

μ̄(Ek1,�1)μ̄(Ek2,�2)

= c21
∑

1≤k1<k2<�1<�2≤n

(

(�1 − k1)
−1 + O((�1 − k1)

−3/2)
)

(

(�2 − k2)
−1 + O((�2 − k2)

−3/2)
)

= o(n2) + c21
∑

1≤k1<k2<�1<�2≤n

1

(�1 − k1)(�2 − k2)
, (45)
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where we used the fact that
∑

1≤k1<k2<�1<�2≤n

1

�1 − k1

1

(�2 − k2)
3
2

≤
n
∑

m1,m2,m3,m4=1

1

m2 + m3

1

(m3 + m4)
3
2

≤ n
n
∑

m3=1

n
∑

m2=1

1

m2 + m3

n
∑

m4=1

1

(m3 + m4)
3
2

= O

⎛

⎝n
n
∑

m3=1

log n m
− 1

2
3

⎞

⎠

= O(n
3
2 log n) = o(n2) .

Therefore, due to the Lebesgue dominated convergence theorem, we obtain
∑

1≤k1<k2<�1<�2≤n

μ̄(Ek1,�1)μ̄(Ek2,�2)

= o(n2) + c21n
2
∫

1
n≤�nx�

n <
�ny�
n <

�nz 
n <

�nt 
n ≤1

dxdydzdt
( �nz 

n − �nx�
n

) ( �nt 
n − �ny�

n

)

∼ c21n
2
∫

0<x<y<z<t<1

dxdydzdt

(z − x)(t − y)

= c21
π2

12
n2 = n2

48 det�2

(

I
∑

a=1

μ̄(I0 = a)2
)2

. (46)

The rest of the estimate of A2 is new (it is different from [31]). Fix for the moment
1 ≤ k1 < k2 < �1 < �2 ≤ n. Note that

μ̄(Ek1,�1 ∩ Ek2,�2)

=
I
∑

a,b=1

μ̄
(

T̄−k1 Ōa ∩ T̄−k2 Ōb ∩ T̄−�1(Ōa)

∩T̄−�2 Ōb ∩ {Sk2 − Sk1 = −(S�1 − Sk2) = S�2 − S�1}
)

.

Using now (23) as for (24), we observe that 1{Sk2−Sk1=−(S�1−Sk2 )=S�2−S�1 } is equal to the
following quantity

1

(2π)4

∫

([−π,π ]2)2
eiu·((Sk2−Sk1 )+(S�1−Sk2 ))eiv·((S�2−S�1 )+(S�1−Sk2 )) du dv ,

which is also equal to

1

(2π)4

∫

([−π,π ]2)2
eiu·(Sk2−Sk1 )ei(u+v)·(S�1−Sk2 )eiv·(S�2−S�1 ) du dv

= 1

(2π)4

∫

([−π,π ]2)2
eiu·Sk2−k1◦T̄ k1 ei(u+v)·S�1−k2◦T̄ k2 eiv·S�2−�1◦T̄ �1 du dv .
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Now using the P-invariance and T̄ -invariance of μ̄ and several times the formula
Pm( f.g ◦ T̄ m) = gPm( f ), we obtain

μ̄(Ek1,�1 ∩ Ek2,�2)

=
I
∑

a,b=1

1

(2π)4

∫

([−π,π ]2)2
Eμ̄

[

1Ōb
P�2−�1
v

(

1Ōa
P�1−k2
u+v

(

1Ōb
Pk2−k1
u (1Ōa

)
))]

du dv .

Due to our spectral assumptions, we observe that

Pn
u = λnu�u + O(αn) ,

up to defining λu = e− 1
2�

2u·u for u outside [−β, β]2 and so, proceding as in the proof
of Theorem 4.2, we obtain that, for every n ≥ 2 and every u, v ∈ [−π, π ]2,

Pn
u = e−

n
2�

2u·u
Eμ̄[·]1 + O(αn) + O(e−2na|u|2(|u| + n|u|3))

= e−
n
2�

2u·u
Eμ̄[·]1 + O(e−na|u|2 |u|) ,

and |λnu | ≤ e−2a|u|2 for some a > 0 (such that e−2a|π |2 > αn , max(λn−1
u , e− n−1

2 �2u·u) ≤
e−2an|u|2 ) since n|u|2e−2na|u|2 = O(e−na|u|2). Therefore, we obtain

Eμ̄

[

1Ōb
P�2−�1
v

(

1Ōa
P�1−k2
u+v

(

1Ōb
Pk2−k1
u (1Ōa

)
))]

= (μ̄(Ōa)μ̄(Ōb))
2e−

1
2 Q(�u,�v) + O

(

(|u| + |v|)e−naQ(u,v)
)

, (47)

where we have set

Q(u, v) := (�2 − �1)|v|2 + (�1 − k2)|u + v|2 + (k2 − k1)|u|2
= (�2 − k2)|v|2 + 2(�1 − k2)u · v + (�1 − k1)|u|2
= (AQ(u, v)) · (AQ(u, v)) = |AQ(u, v)|2 ,

with A2
Q :=

⎛

⎜

⎝

�1 − k1 0 �1 − k2 0
0 �1 − k1 0 �1 − k2

�1 − k2 0 �2 − k2 0
0 �1 − k2 0 �2 − k2

⎞

⎟

⎠
which is symmetricwith determinant

det A2
Q = (�1 − k1)

2(�2 − k2)
2 + (�1 − k2)

4 − 2(�1 − k2)
2(�1 − k1)(�2 − k2)

= ((k2 − k1)(�1 − k2) + (k2 − k1)(�2 − �1) + (�1 − k2)(�2 − �1))
2.

(48)

Due to the form of A2
Q , we observe that A

2
Q has eigenvectors of the forms (∗, 0, ∗, 0) and

(0, ∗, 0, ∗), that it has two double eigenvalues of sum (withoutmultiplicity) �1−k1+�2−
k2 and of product (withoutmultiplicity)

√

det A2
Q . Therefore its dominating eigenvalue is

smaller than the sum and so is less than 4max(k2−k1, �1−k2, �2−�1) and so (using the
fact that the product of the two eigenvalues is larger than the maximum times the median
of these three values) the smallest eigenvalue of A2

Q cannot be smaller than a quarter of
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the median of k2−k1, �1−k2, �2−�1, that we denote bymed(k2−k1, �1−k2, �2−�1).
So
∫

([−π,π ]2)2
e−nQ(�u,�v) dudv = (det�)−2

∫

(�[−π,π ]2)2
e−nQ(u,v) dudv

= (det AQ)
−1(det�)−2

∫

AQ(�([−π,π ]2)2)
e−|(x,y)|2 dxdy

= (det AQ)
−1(det�)−2

(∫

(R2)2
e−|(x,y)|2 dxdy + O(e−a1med(k2−k1,�1−k2,�2−�1)

2
)

)

= (2π)2(det AQ)
−1(det�)−2

(

1 + O(e−a1med(k2−k1,�1−k2,�2−�1)
2
)
)

,

for some a1 > 0. Moreover
∫

(R2)2
|(u, v)|e−naQ(u,v) dudv = (det AQ)

−1
∫

(R2)2
|A−1

Q (u, v)|e−a|(x,y)|2 dxdy

= O
(

(det AQ)
−1 med(k2 − k1, �1 − k2, �2 − �1)

− 1
2

)

.

Therefore

μ̄(Ek1,�1 ∩ Ek2,�2)

=
(

∑I
a=1 μ̄(Ōa)

2
)2

(2π)2 det AQ det�2

(

1 + O
(

med(k2 − k1, �1 − k2, �2 − �1)
− 1

2

))

. (49)

But using (48),

∑

1≤k1<k2<�1<�2≤n

(det AQ)
−1

=
∑

1≤k1<k2<�1<�2≤n

1

(k2 − k1)(�1 − k2) + (k2 − k1)(�2 − �1) + (�1 − k2)(�2 − �1)

=
∑

m1,m2,m3,m4≥1 : m1+m2+m3+m4≤n

1

m2m3 + m2m4 + m3m4

= n2
∫

(0,+∞)4

1{ �ny1 
n + �ny2 

n + �ny3 
n + �ny4 

n ≤1
}

�ny2 
n

�ny3 
n + �ny2 

n
�ny4 
n + �ny3 

n
�ny4 
n

dy1 dy2 dy3 dy4

∼ n2
∫

(0,+∞)4

1{y1+y2+y3+y4≤1}
y2y3 + y2y4 + y3y4

dy1 dy2 dy3 dy4 ,

due to the dominated convergence theorem. Therefore

∑

1≤k1<k2<�1<�2≤n

(det AQ)
−1 ∼ n2

∫

(0,+∞)3

(1− y2 − y3 − y4)1{y2+y3+y4≤1}
y2y3 + y2y4 + y3y4

dy2 dy3 dy4 = n2 J . (50)
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Analogously

∑

1≤k1<k2<�1<�2≤n

(det AQ)
−1 (med(k2 − k1, �1 − k2, �2 − �1))

− 1
2

=
∑

m1,m2,m3,m4≥1 : m1+m2+m3+m4≤n

1

(m2m3 + m2m4 + m3m4)med(m2,m3,m4)
1
2

≤ n
∑

1≤m2≤m3≤m4≤n

1

(m2m3 + m2m4 + m3m4)m
1
2
3

≤ n
∑

1≤m2≤m3≤m4≤n

1

m
3
2
3m4

≤ n log n
n
∑

m2=1

n
∑

m3=m2

m
− 3

2
3

≤ n log n
n
∑

m2=1

O(m
− 1

2
2 ) = O(n

3
2 log n) = o(n2) .

(51)

Equations (49), (50) and (51) lead to

∑

1≤k1<k2<�1<�2≤n

μ̄(Ek1,�1 ∩ Ek2,�2) =
(

∑I
a=1 μ̄(Ōa)

2
)2

((2π)2 det�2)
J + o(n2) .

Combining this with (46), we conclude that

A2 ∼ n2

det�2

(

I
∑

a=1

μ̄(I0 = a)2
)2
(−1

48
+

J

4π2

)

. (52)

The study of A3 is themost delicate.We can observe that both sums
∑

1≤k1<k2<�2<�1≤n

μ̄(Ek1,�1 ∩ Ek2,�2) and
∑

1≤k1<k2<�2<�1≤n μ̄(Ek1,�1)μ̄(Ek2,�2) are in O(n2 log n). How-
ever, we will see that their difference is in n2. Once again our proof differs from
the one in [31] and is based on the same idea as the one used to prove A2. We set
Ek,�(b) := Ek,� ∩ {Ik = b}. Due to the first part of Lemma 4.8,

A3 =
∑

1≤k1<k2<�2<�1≤n

μ̄(Ek1,�1 ∩ Ek2,�2)− μ̄(Ek1,�1)μ̄(Ek2,�2)

= o(n2) +
∑

1≤k1<k2<�2<�1≤n

I
∑

a,b=1

(−Ik1,k1,l1,l2 + μ̄(Ok1,k2,l1,l2 ∩ Sk1,k2,l1,l2)
)

= o(n2) +
∑

1≤k1<k2<�2<�1≤n

I
∑

a,b=1

(−Ik1,k1,l1,l2
)

(53)

+
∑

1≤k1<k2<�2<�1≤n

I
∑

a,b=1

(

1

(2π)2

∫

[−π,π ]2
Eμ̄

[

1Ōa
P�1−�2
u

(

1Ōb
H0,�2−k2

(

1Ōb
Pk2−k1
u

(

1Ōa

)))]

du
)

, (54)
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where

I1(k1, k1, l1, l2) = (μ̄(Ōa))
2μ̄(Ek2,�2(b))

2π
√
det�2(�1 − k1)

,

Ok1,k2,l1,l2 = Ōa ∩ T̄−(k2−k1) Ōb ∩ T̄−(�2−k1) Ōb ∩ T̄−(�1−k1) Ōa,

Sk1,k2,l1,l2 = {S�2−k2 ◦ T̄ k2−k1 = 0} ∩ {S�1−�2 ◦ T̄ �2−k1 = −Sk2−k1}.
Now, as we did for (47) (and using Theorem 4.2), we get that

Eμ̄

[

1Ōa
P�1−�2
u

(

1Ōb
H0,�2−k2

(

1Ōb
Pk2−k1
u

(

1Ōa

)))]

= (μ̄(Ōa))
2e−

(�1−�2)+(k2−k1)
2 |�u|2

Eμ̄

[

1Ōb
H0,�2−k21Ōb

]

+ O

( |u|
�2 − k2

e−na|u|2
)

.

Therefore

1

(2π)2

∫

(−π,π)2
Eμ̄

[

1Ōa
P�1−�2
u

(

1Ōb
H0,�2−k2

(

1Ōb
Pk2−k1
u

(

1Ōa

)))]

du

= (μ̄(Ōa))
2μ̄
(

Ek2,�2 (b)
)

2π(�1 − �2 + k2 − k1)
√
det�2

+ O

(

1

(�2 − k2)(�1 − �2 + k2 − k1)
3
2

)

. (55)

We will now prove that the term in O in this last formula is negligable. Indeed its sum
over {1 ≤ k1 ≤ k2 ≤ �2 ≤ �1 ≤ n} is in O of the following quantity:

∑

m1+m2+m3+m4≤n

(

1

m3(m4 + m2)
3
2

)

≤ n log n
n
∑

m2=1

n
∑

m4=1

(m4 + m2)
− 3

2

≤ O

⎛

⎝n log n
n
∑

m2=1

m
− 1

2
2

⎞

⎠ = O(n
3
2 log n) = o(n2) .

This combined with (54) and (55) leads to

A3 = o(n2) +
∑

1≤k1<k2<�2≤�1≤n

I
∑

a,b=1

(μ̄(Ōa))
2μ̄
(

Ek2,�2(b)
)

2π
√
det�2

(

1

�1 − �2 + k2 − k1
− 1

�1 − k1

)

,

i.e.

A3 = o(n2) +

∑I
a(μ̄(I0 = a))2

2π
√
det�2

∑

m1+m2+m3+m4≤n

(

c1
m3

+ O(m
− 3

2
3 )

)

m3

(m2 + m4)(m2 + m3 + m4)

= o(n2) + c21
∑

m1+m2+m3+m4≤n

1

(m2 + m4)(m2 + m3 + m4)
,
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since

∑

m1+m2+m3+m4≤n

1

m
1
2
3 (m2 + m4)(m2 + m3 + m4)

= O

⎛

⎝n
n
∑

m2,m3,m4=1

m
− 1

2
3 (m2m4)

−1

⎞

⎠ = o(n2) .

Therefore, due to the Lebesgue dominated convergence theorem,

A3 ∼ n2c21

∫

y1,y2,y3,y4>0:y1+y2+y3+y4<1

1

(y2 + y4)(y2 + y3 + y4)
dy1dy2dy3dy4 ∼ c21

2
n2.

To conclude the proof of the lemma, we use the estimate for A3 together with (44)
and (52) to obtain,

8A2 + 8A3 = 4c21n
2 +

8n2

det�2

(

I
∑

a=1

μ̄(Ōa)
2

)2
(−1

48
+

J

4π2

)

= n2

det�2

(

I
∑

a=1

μ̄(Ōa)
2

)2
[

2J + 1

π2 − 1

6

]

.

This finished the proof.

Appendix C. Spectrum of Pu

In this appendix, we are interested in the spectrum of the family of operators Pu . We
start by stating a result for the unperturbed operators Lu,0.

Lemma C.1. Let u ∈ R
2, h ∈ B and λ ∈ C be such that Lu,0h = λh in B and |λ| ≥ 1.

Then either h ≡ 0 or u ∈ 2πZ
2, λ = 1 and h is μ̄0-almost surely constant.

Proof. Recall that for ψ ∈ C p(M̄0), we have ψ ◦ T̄ n
0 ∈ C p(T̄−nWs). Note that

Lu,0h(ψ) = h(eiu·�0ψ ◦ T̄0).

Thus for n ≥ 1,

Ln
u,0h(ψ) = h(eiu·Sn�0ψ ◦ T̄ n

0 ),

where Sn�0 = �0+�0◦T̄0+· · ·+�0◦T̄ n−1
0 denotes the partial sum.By [16, Lemma3.4],

using the invariance of h,

|h(ψ)| = |λ|−n|h(eiu·Sn�0ψ ◦ T̄ n
0 )|

≤ C |λ|−n|h|w
(|eiu·Sn�0ψ ◦ T̄ n

0 |∞ + C (p)
T̄−n
0 Ws (e

iu·Sn�0 · ψ ◦ T̄ n
0 )
)

, (56)
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where C (p)
T̄−n
0 Ws (·) denotes the Hölder constant of exponent p measured along elements

of T̄−n
0 Ws . Since |eiu·Sn�0 | = 1 and Sn�0 is constant on each element of T̄−n

0 Ws , we
have

C (p)
T̄−n
0 Ws (e

iu·Sn�0 · ψ ◦ T̄ n
0 )

≤ |eiu·Sn�0 |∞C (p)
T̄−n
0 Ws (ψ ◦ T̄ n

0 ) + |ψ ◦ T̄ n
0 |∞C (p)

T̄−n
0 Ws (e

iu·Sn�0)

≤ C�−pnC (p)
Ws (ψ).

Using this estimate in (56) and taking the limit as n → ∞ yields |h(ψ)| = 0 if |λ| > 1
and |h(ψ)| ≤ C |h|w|ψ |∞ for all ψ ∈ C p(Ws) if |λ| = 1. From this we conclude that
the spectrum of Lu,0 is always contained in the unit disk. Furthermore, when |λ| = 1,
then h is a signed measure. For the remainder of the proof, we assume |λ| = 1.
Let Vu,0 be the eigenspace of Lu,0 corresponding to eigenvalue λu,0, and �u,0 the

eigenprojection operator. Sincewe are assumingVu,0 is non-empty, Lemma 3.14 implies
that Lu,0 is quasi-compact with essential spectral radius bounded by τ < 1. Moreover,
Lemma 3.14 implies that ‖Ln

u,0‖L(B,B) remains bounded for all n ≥ 0, so using [15,
Lemma 5.1], we conclude thatLu,0 has no Jordan blocks corresponding to its peripheral
spectrum.
Using these facts, �u,0 has the representation

lim
n→∞

1

n

n
∑

j=1

λ− jL j
u,0 = �u,0.

In addition, for f ∈ C1(M̄0), ψ ∈ C p(Ws),

∣

∣�u,0 f (ψ)
∣

∣ =
∣

∣

∣

∣

∣

∣

lim
n→∞

1

n

n
∑

j=1

λ− j f ((eiu·S j�0ψ ◦ T̄ j
0 )

∣

∣

∣

∣

∣

∣

≤ | f |∞|ψ |∞.

Since �u,0C1(M̄0) is dense in the finite dimensional space �u,0B, therefore �u,0C1
(M̄0) = �u,0B = Vu,0. So for h ∈ Vu,0, there exists f ∈ C1(M̄0) such that�u,0 f = h.
Now for each ψ ∈ C p(M̄0),

|h(ψ)| = |�u,0 f (ψ)| ≤ | f |∞�01(|ψ |) = | f |∞μ̄0(|ψ |).
Thus h is absolutely continuous with respect to μ̄0. For simplicity, we identify h and its
density with respect to μ̄0; then h ∈ L∞(M̄0, μ̄0). Now for any ψ ∈ C p(Ws), we have

λ

∫

M̄0

hψ dμ0 =
∫

M̄0

L0(e
iu·�0h) · ψ dμ̄0

=
∫

M̄0

(eiu·�0h) ◦ T̄−1
0 · ψ dμ̄0.

Accordingly, λ h = (eiu·�0h)◦ T̄−1
0 , μ̄0-a.e. Or equivalently, we have λ h◦ T̄0 = eiu·�0h.

Hence λn h ◦ T̄ n
0 = eiu·Sn�0h.

LetGλ be the closed multiplicative group generated by λ and letmλ be the normalized
Haarmeasure onGλ. (Gλ is finite ifλ is a root of unity; it is {z ∈ C : |z| = 1} otherwise.)
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The dynamical system (Gλ,mλ, Tλ) is ergodic, where Tλ denotes multiplication by λ in
Gλ. Due to [28], the dynamical system (M0×Gλ, μ0⊗mλ, T0×Tλ) in infinite measure
is conservative and ergodic. But the function H : M0 × Gλ → C defined as follows is
(T0 × Tλ)-invariant:

∀(x̄, �, y) ∈ M̄0 × Z
2 × Gλ, H(x̄ + �, y) := yh(x̄)e−iu·�.

Indeed, for μ0 ⊗ mλ-a.e. (x̄ + �, y) ∈ M0 × Gλ,

H((T0 × Tλ)(x̄ + �, y)) = H(T̄0(x̄) + � +�0(x̄), λy) = λyh(T̄0(x̄))e
−iu·(�+�0(x̄))

= ye−iu·�(λh(T̄0(x̄))e−iu·�0(x̄))

= ye−iu·�h(x̄) ,

due to our assumption on h.We conclude that H is a.e. equal to a constant, which implies
that u ∈ 2πZ

2, λ = 1, and h is μ̄0-a.s. constant. ��
Proposition C.2. Given β > 0, there exists C > 1 and α ∈ (0, 1) such that

∀n ∈ N
∗, sup

β≤|u|≤π

‖Pn
u ‖L(˜B,˜B) ≤ Cαn .

Proof. Fix β > 0. Due to [1, Lemma 4.3], Lemma C.1, and the continuity in u provided
by [17, Lemma 5.4] (see also Lemma 3.16 applied to Lu,0 rather than Pu), we know that
there exists C > 1 and α ∈ (0, 1) such that

∀n ∈ N
∗, sup

β≤|u|≤π

‖Ln
u,0‖L(B,B) ≤ Cαn .

Therefore, for every f ∈ ˜B, we have
sup
ω∈EN

∥

∥Pn
u f (x, ω)

∥

∥

B

= sup
ω∈EN

∥

∥

∥

∥

∫

En
Ln
u,0 f (·, (ω̃, ω)) dη⊗n(ω̃)

∥

∥

∥

∥

B

≤ sup
ω∈EN

∫

En

∥

∥Ln
u,0 f (·, (ω̃, ω))

∥

∥

B dη⊗n(ω̃)

≤ sup
ω∈EN

Cαn sup
ω′

∥

∥ f (·, ω′)
∥

∥

B

where we used Lemma 3.7 to obtain the second line. Analogously,

sup
ω �=ω′

∥

∥Pn
u f (x, ω)− Pn

u f (x, ω′)
∥

∥

B
d(ω, ω′)

= sup
ω �=ω′

∥

∥

∥

∫

En Ln
u,0

(

f (·, (ω̃, ω))− f (·, (ω̃, ω′))
)

dη⊗n(ω̃)

∥

∥

∥

B
d(ω, ω′)

≤ sup
ω �=ω′

∫

En

∥

∥

∥Ln
u,0

(

f (·, (ω̃, ω))− f (·, (ω̃, ω′))
)

∥

∥

∥

B
d(ω, ω′)

dη⊗n(ω̃)
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≤ Cαn
κ
n sup
ω �=ω′

∥

∥ f (·, ω′)− f (·, ω′)
∥

∥

B
d(ω, ω′)

.

We conclude by putting these two estimates together. ��
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