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Abstract: We study limit theorems in the context of random perturbations of dispers-
ing billiards in finite and infinite measure. In the context of a planar periodic Lorentz
gas with finite horizon, we consider random perturbations in the form of movements
and deformations of scatterers. We prove a central limit theorem for the cell index of
planar motion, as well as a mixing local limit theorem for piecewise Holder continuous
observables. In the context of the infinite measure random system, we prove limit the-
orems regarding visits to new obstacles and self-intersections, as well as decorrelation
estimates. The main tool we use is the adaptation of anisotropic Banach spaces to the
random setting.
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Introduction

The Lorentz process is a physically interesting mechanical system modeled by mathe-
matical billiards with chaotic behavior. Introduced by Sinai in [37], it has been studied
extensively by many authors, see [8,9,12] and other related references. It is the deter-
ministic motion of a point particle starting from a random phase point and undergoing
specular reflections on the boundaries of strictly convex scatterers. Throughout this paper
we will consider a Z?-periodic random configuration of scatterers, with finite horizon.
The diffusion limit of the planar Lorentz process can be described by a Wiener process
[9], and is thus closely related to the central limit theorem (CLT) and local limit theorem
(LLT).

The history of the LLT goes back to the historic De Moivre Laplace theorem for
independent identically distributed (iid) Bernoulli random variables. It has then been
generalized in many contexts. The CLT appears as a consequence of the LLT. In the
context of dynamical systems, the first LLT was established by Guivarc’h and Hardy for
subshifts of finite type [22]. The method they used, also used by Nagaev in [27], was
based on perturbations of an associated transfer operator and has since been used for
many expanding and hyperbolic dynamical systems. This method is now often called
the Nagaev—Guivarc’h method. For the Sinai billiard (with fixed scatterers), the LLT
was proved by Szdsz and Varju in [35] using Young towers and the Nagaev-Guivarc’h
method. Also using Young towers, Péne established and used in [29-31] some precise
versions of the LLT to prove further limit theorems for the Sinai billiard (see also her
works with Saussol [33] and with Thomine [34] for other applications of the LLT).

The goal of this article is to prove the LLT, as well as several of its applications,
in the context of randomly deforming scatterers in a dispersing Lorentz gas with finite
horizon. In this context the use of Young towers does not appear very adequate, since a
different tower is associated to every different Z2-periodic configuration of scatterers. It
is therefore much more natural to work directly with the billiard transformations since
these transformations act on the same space M and preserve the same measure. To this
end, we will work with the spaces considered in [15-17], which are spaces B, B5,, made
of distributions instead of being spaces of functions contained in L? for some p > 1
as in [22,35]. This will complicate our study. One advantage of the approach used by
Demers and Zhang is that the Banach spaces they construct in [16] are the same for
natural families of billiard transformations.

Since we are interested in random iterations of billiard transformations, we will
consider the full random billiard system corresponding to the skew product transforma-
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tion which takes into account both the billiard configuration (position and speed) and
the randomness of the configuration of scatterers. Let us mention that Aimino, Nicol
and Vaienti established in [2] an LLT (together with other limit theorems) for random
iterations of expanding dynamical systems. Their approach was based on the Nagaev-
Guivarc’h method applied to the restriction of the transfer operator of the full random
system to functions depending only on the phase space coordinate (and not on the ran-
dom coordinate). The advantage of their method is that they worked on a simple Banach
space (in which the randomness of the transformations is not taken into account). But
the disadvantage is that they had to reprove for this restricted operator theorems that
were already known for transfer operators. In the present paper, we apply directly the
Nagaev-Guivarc’h method to the transfer operator of the full random system acting on
suitable Banach spaces B, 3, which are easily defined using 3, B,,. As a consequence,
our results apply to observables that may depend on both the position and speed of the
billiard, as well as the random coordinate.

This article is organized as follows. In Sect. 1, we specify our assumptions and
notation. In Sect. 2, we state our main limit theorems: LLT, asymptotic estimate of the
return time to the initial scatterer, asymptotic behavior of the number of self-intersections,
annealed and quenched limit theorem for a random billiard in random scenery, limit
theorems for some ergodic sums of the planar random billiard (in infinite measure),
mixing and decorrelation for the planar random billiard (in infinite measure). In Sect. 3,
we study the spectral properties of the transfer operator of the full random system.
Section 4 is devoted to the proof of our main results under general spectral assumptions.

1. Notation and Assumptions

1.1. Deterministic billiard systems. Let I > 1 and let Oq, ..., O; be I convex open
subsets of R?, having C> boundary with strictly positive curvature, and such that the
closure of the sets (Uj¢ := €+ O;);_1, .. ¢cz2 are pairwise disjoint. We consider the

72 -periodic billiard table Q := R\ | J (T2 UlI: 1 (Ui,¢). We assume moreover that every
line meets d Q (i.e. that the horizon is finite). We are interested in the behavior of a point
particle moving in Q at unit speed, going straight inside Q, and reflecting elastically off
0 Q (the reflected direction being the symmetric of the incident one with respect to the
normal line to Q at the reflection point).

We consider the planar billiard system (M, (o, 7o) modeling the behavior of the
point particle at reflection times. A configuration is given by a pair (g, V) € M repre-
senting position and velocity, and corresponding to a reflected vector off 9 Q, with

Mo :={(g,9) e RZxR*: ¢ €930, |3l =1, (ii(g), V) > 0},

where 7i(q) is the unit vector, normal to d Q at g and directed into Q. The transforma-
tion Tp maps a reflected vector to the reflected vector at the next reflection time. This
transformation preserves the measure g given by dug = ccos@ drde (where r is
the parametrized arclength coordinate on d Q corresponding to g and ¢ is the algebraic

measure of the angle (71(q), v) and where ¢ = 1/(2 21'1:1 |00;]), the reason for the
choice of ¢ will be clear in a few lines).

Foreveryi € {1,...,I}and every ¢ € 72, we define M :=1{(g,v) € My : q €
oU; ¢} for the set of reflected vectors based on the obstacle U; ;. For every £ € 72, we
will call an £-cell the set My := Uil=1 M .
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Identifying the boundary of each scatterer d O; with a circle S; of length [0 0;|, we
define My = U 1Si x [=m/2,7/2]. Thus My is a parametrization of Mg ) in the
coordinates (r, <p) 1ntr0duced above. Note that many configurations of obstacles O; result
in the same parametrized space M. We shall exploit this fact when defining the classes
of random perturbations that we shall consider.

Because of its Z? periodicity, the planar billiard system can be identified with a 72-
cylindrical extension over a dynamical system (M, [to, To). Indeed, using the notation
x+€=(q+¢,0) forevery x = (¢, V) € My and every { € 7?2, we observe that there
exists a transformation 7y : Mo — Mo (corresponding to the bllhard map modulo 73
and a function ®¢ : My — Z? called a cell- -change such that

To(x +£0) = To(x) + £ + Do(x) .

This transformation Tp preserves the probability measure 1o := ol Mo (the fact that g
is a probability comes from our choice for the normalizing constant ¢).

In the following, identifying a couple (x, £) € My x 7% with x + £ € My, we identify
(Mo, 1o, Tp) with the Z2- -cylindrical extension of (Mo, jig, Tp) by ®o, i.e. we identify
My with My x 72, wo with 1p ® m, where m := ZkeZZ Jy is the counting measure on
72,

1.2. Random perturbations of the initial billiard system. Before describing the random
perturbations we shall consider, we describe a class of maps F on M with uniform
properties from which we will draw random sequences of maps. The class F we will
use is a slightly simplified version of the one introduced in [16]. The perturbations in
[16] allowed billiards with infinite horizon, while for the present work we will assume
a finite horizon condition and that the invariant measure is absolutely continuous with
respect to the Lebesgue measure, which simplifies several of our assumptions.

We consider a probability space (E, ¥, ) containing 0 and a family (7},),cg of 72-
periodic planar Sinai billiard systems (with finite horizon) defined on M), the quotient
billiard maps (modulo 7 for the position) T,, of which are in F, and below we will
choose Fy,(Tp) as a small tp-neighbourhood of our original map T, see (5).

For any @ € EY, we will consider random iterations of the form Ta’j = Ty, ©

- o T,,. Here ® = (w)k=0, and T, € F, for any k > 0, where F is a collection of
72 extensions of F. This will be formalized below. In our model, the modification of
environment is applied during the reflection time of the particle; the particle stays on
the obstacle and moves with it during the modification of the billiard system. At its k-th
reflection time, the particle arrives on an obstacle in an environment parametrized by
wi—1, but when it leaves it sees the environment wy.

We identify (Mo, o, T,,) with the 7Z2-extension of (M, o, T.) by some function
®,, : My — 77 which is constant on each connected component of continuity of 7,.
We deﬁne the random billiard system (M, ji, T), corresponding to random iterations
of maps in F, by setting:

M:=Mox EY,  ji:=j0®n", T (@=0) = TogX. @ks1)k=0) -
We also define the planar random billiard system (M, ., T') with:

M:=Myx EY,  pi=po@n®, T (x, 0 (@r=0) = (Tuy(x, ), (@ks1)k0) -
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This dynamical system is a Z>-extension of (M, ji, T) by ® : M — Z? given by:

D (x, (@i=0) = Py (X)) .

Observe that
T" (x, £, (i) = (Tw,—y 0+ 0 Ty (x, 0), (Wnk)k)
= Ty 0+ 0 Tay (x), £+ Sy (x, (@) (@it i)
with
n—1 n—1
Su(x, (@) =Y Do THx, (k) = Y Py 0 Ty 0+ 0 T (),
k=0 k=0

corresponding to the cell change, starting from x, after n iterations of maps labeled
successively by wog, ..., w,—1.

Notation 1.1. As exemplified by the definitions above, we will use overlines such as (1,
M, T to denote objects associated with the quotient random system, defined in finite
measure. When we introduce a subscript such as [1o, Mo, T,, these denote objects which
are not functions of the random coordinate, but are still defined on the quotient space.

1.3. A uniform family of maps. We fix the phase space My = U{ZIS,- X [—m/2, /2]
as described above. Define Sop = {¢ = :I:%} and for a fixed kg € N with value to be
chosen in (3), for k > ko we define the homogeneity strips,

={np)eMy: 5 -1

A

1
(p< %_ (k+l)2}’ (1)

and the strips H_; are defined similarly in a neighborhood of ¢ = —m /2. For the
class of maps defined below, we will work with the extended singularity set So. y =
S0 U (Ug=ko0H4x). Thus for any F € F, the set Sin = U?:()F Fi So. n represents the
singularity set for F*".

We suppose Fisa class of maps F : My O such that each F € F is a C? diffeomor-
phism of Mo\S; £ onto Mo\ST | and satisfies the following properties.

(H1) Hyperbolicity and singularities. There exist continuous families of stable and
unstable cones, C*(x) and C*(x) in the tangent space of My at x € My\S—| and x €
Mo\Sl , respectively, which are strictly 1nvar1ant in the following sense: D F (x)C" (x) -
C"(Fx)and DF~ l()c)Cs(x) C CS(F~'x) forall F € F wherever DF and DF~! are
defined.

We assume the sets U}_ F’ + S (without homogeneity strips) comprise finitely many

smooth curves for each n € N, while the sets S, (with homogeneity strips) have count-

ably many smooth curves. Sf is uniformly transverse' to C*(x) and S¥, is uniformly
transverse to C* (x) foreachn > 0. Moreover, C*(x) and C*(x) are uniformly transverse
on Mo and C*(x) is uniformly transverse to the horizontal and vertical directions on all
of M, ()

! The uniformity is assumed to be a lower bound on the angle between these curves and the relevant cone,
which is indepedent of x € My, n € Nand F € F.

2 This is not a restrictive assumption for perturbations of the Lorentz gas since the standard cones for the
associated billiard map satisfy this property [12, Section 4.5].
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We assume there exist constants C, > 0 and A > 1 such that for all F € F and
n=>0,

IDF™(x)v]| = C;'A™|v]l, Vv € C*(x), and [|DF " (x)v]|
> C; A vl Yo € CF(x), 2)

where || - || is the Euclidean norm on the tangent space to M.
Finally, near singularities, we assume the maps in F behave like dispersing billiards:
there exists C, > 0 such that

Callvll < IDF~ (x)v]lcos p(F~'x) < C7 M|, Vv e C*(x),

where ¢(z) denotes the angle ¢ at the point z = (r, ¢) € My. We also require that the
second derivative is bounded by,

C. < |D*F'(x)||cos’ o(F'x) < C; !

(H2) Families of stable and unstable curves. We call aC? curve W C M astable curve
with respect to the class F if the unit tangent to W lies in C*(x) for all x € W. We say
W is homogeneous if it lies in a single homogeneity strip H. We define homogeneous
unstable curves analogously.

Let W* denote the set of C2 homogeneous stable curves in My whose curvature is
bounded above by a constant B > 0. We assume there exists B large enough that '~ 'w
is a union of elements of WS for all W € W* and F € F. A family WW" of unstable
curves is defined analogously.

(H3) One-step expansion. Assume there exists an adapted norm | - ||, on the tangent
space to Mo, equivalent to || - ||, in which the constant C, in (2) can be taken to be 1.
This yields a uniform expansion and contractlon in one step for maps in the class F.

Let W € Ws For F € F, we subdivide F~!W into maximal homogeneous curves
Vi = Vi(F) € W*. We denote by |Jy, F'|; the minimum contraction on V; under F in
the metric induced by the adapted norm || - ||.. We assume that ko in (1) can be chosen
sufficiently large that,

11m sup  sup Z [Jv, Fle <1, 3)
FeF ‘I}VEIWY i
where |W| denotes the arclength of W.

In addition, if we weaken the power of the Jacobian slightly, we assume that the sum
above still converges (although it need not be a contraction). Choosing ¢ so that the
expression in (3) is < 1 for 6 < §p, we assume there exists o € (0, 1) and C; > 0 such
that for all § € (0, §g) and ¢ € [, 1],

sup  sup E |JVF|C°(V) < (.
FeF WeWs i
[W|<$

(H4) Bounded distortion. There exists a constant Cy > 0 with the following properties.

Let W € WS and for F € F,n € N,letx,y € W C F~"W’ such that F'W is a
homogeneous stable curve for each 0 < i < n. Then,

‘ Jw F" (x)

JwF"(y)

3 Since F~1isC% on Mo\ (Sp U FSp), setting x = (r, ¢) and Fl) = (r—1, ¢—1), we may define the
norm || D?F~! (x)|| to be the maximum over all the second partials of (r_1, ¢_1) with respect to (r, ¢) at x.

— 1| < Cadw(x, )3, 4)
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where Jy F" denotes the (stable) Jacobian of F" along W with respect to arclength.
(HS) Invariant measure. All the maps F € F have the same invariant measure 0.

Remark 1.2. Assumption (H5) can be replaced more generally with the requirement that
all F € F preserve the same measure & which is absolutely continuous with respect to
Lebesgue and mixing. In addition, i should satisfy the following technical assumptions:
Fork > ko, i(Hy) = O (k™?) for some g > 4;also, [t can be disintegrated into measures
e along any measurable foliation of Mj into stable manifolds {W,,« € A}, with a
factor measure A, such that

Ho(A) =/ [ La(x) dppgdi(a),
ac A JxeW,

where djy = padmy satisfies a regularity condition: | In py (x) — In p (¥)| < Crdw,
(x, y)l/ 3 for some constant Cp > Cg, dw (x, y) is the distance of x and y measured
along the curve W, and m,, is arclength measure on Wj,.

This generalization to other smooth invariant measures is of interest, for example,
when considering perturbations in the form of certain soft potentials rather than hard
scatterers, or the case of external forces due to gradient fields. See for instance [3,11]
and their inclusion in a similar perturbative framework [16].

A crucial lemma, which will allow us to draw random sequences from the class F,
is the following.

Lemma 1.3. Fix a class F satisfying (H1)—(H5) with uniform constants. Let w € EV,
and suppose T, € F forall k > 0.

Then for all n € N, the composition T,) := T, , o --- o Ty, satisfies assumptions
(H1)—(HS), with possibly larger constants (that are nonetheless independent of n and
w), and with respect to the singularity sets SHTQ = U'k’;é Tw_ol 0---0 Tw_kISO,H

Lemma 1.3 is proved in [16, Section 5.3].

1.4. Distance in the class F. To define a notion of distance dg(-, ) in the class of
maps F Jlet Fi, Fr € F and for € > 0, let N, (Sfil) denote the e-neighborhood of the
singularity set Sf’i. We say d7(Fy, F2) < e if forall x ¢ N, (Sfl1 U szl):

(CH) d(F)7 '), (F) ') <

Jw F; -
(C2) Jwki) <e forall We W andx e W,i,j =1,2;
Jw Fj(x)

(C3) A||D(F1)_1(x)v — D(Fz)_l(x)v|| < /e, for any unit vector v tangent to
W e W* at x.

For Fj € F and Yo > 0, define
Foo(Fo) = {F € F : dg(F, Fy) < 9o}, )

to be the ¥y neighborhood of Fj in F.
We remark that this definition of distance does not require the sets Sf‘l and szl to

be close in any sense, only that the maps are C'-close outside an e-neighborhood of the
union of the two singularity sets. Next, we describe a perturbation family of billiards that
satisfying assumptions (H1)—-(HS), to illustrate that these assumptions are reasonable.
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1.5. Applications: deterministic perturbations. Given [ intervals Ji, ... Jr, we fix the
phase space My = U, 1 Ji X [=m/2, /2] on which the maps in class F are defined.
We use the notation O = ({O; }l T {Ji}{zl) to denote the configuration of scatterers

O1, ..., O; placed on the billiard table such that [00;| = |Ji|, i = 1,...,1. We
identify the endpoints of J; so that each J; can be identified with a circle and each
component of My is a cylinder. Since we have fixed Ji, ..., J;, My remains the same

for all configurations Q that we consider. For each such configuration, we define
Tmin(Q) = inf{r(x) : T(x) is defined for the configuration 0).

Similarly, we define Tpmax, as well as Kin (Q) and Kax (Q), which denote the minimum
and maximum curvatures respectlvely of the 0; in the configuration Q. The constant
mdx(Q) denotes the maximum C3 norm of the 9 O; in Q.
For each fixed v, Ky, Ex > 0, define Q; (74, K4, Ey) to be the collection of all
configurations Q such that:

T < Tnin(Q) < Tmax(Q) < 771, K < Kinin(Q) < Kmax(0) < K5', Emax(Q) < Ex.

Let F 1 (T4, Kk, Ey) be the corresponding set of billiard maps induced by the configura-
tions in Q1. The following lemma is proved in [16].

Lemma 1.4 ([16, Theorem 2.7]). Fix intervals Ji, ..., J; and let T, Ky, E« > 0. The
family F1(ty, Ky, Ey) satisfies (H1)—(HS) with uniform constants depending only on
Ty, Ky and E.

We fix an initial configuration of scatterers Qo € 9 (14, Ky, E4) and consider con-
figurations Q which alter each d0; in Q to a curve 3 0; having the same arclength as
d0;. We consider each d0; as a parametrized curve u; : J; — R? and each Béi as
parametrized by ;. Define

[

A(Q. Qo) = Y lui — ditl 2y, o)

i=1
The following is proved in [16] .

Lemma 1.5 ([16, Theorem 2.8]). Choose ¥y < min{t,/2, K4 /2} andlet]:"A(Qo, Ey; vo)
be the set of all billiard maps corresponding to configurations Q such that A(Q, Qo) <
90 and Emax(Q) < E.. Then F4(Qo. Ex: 90) C F1(14/2. K+/2, Ex) andd z(Fy, Fy) <

C|0o|'/3 for any Fi, Fs € Fa(Qo, Ex; D).

The importance of these results is that together, they will imply that the transfer
operators associated to maps in the neighborhood Fy,(7p) have a uniform spectral gap
if the transfer operator associated with T has a spectral gap. Moreover, small changes
in the configuration of scatterers are seen to generate small differences in the distance

dz (-, ).

Remark 1.6. The assumption in the discussion above and in Sect. 1.3 that the perturbed
scatterers 3 0; have the same arclength as the original 0 O; is made so that all maps in
F act on the same phase space My, and so all the associated transfer operators act on
the same Banach space. This can be relaxed slightly if all scatterers are scaled by the
same constant. Then we can reparametrize each d 0; (no longer according to arclength)
using the same interval J; as for d O;. This will change the derivative of the maps acting
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on this configuration of scatterers, but since the constants appearing in (H1)—(HS) have
some leeway built into the inequalities, for small reparametrizations the same properties
will continue to hold. ~

Unfortunately, to scale scatterers d O; by different constants as described in [16,
Remark 2.9], one would need to eliminate assumption (HS) since then the measure ji(
would not be preserved.

2. Main Results

In this_ section, we consider all 7, € ]:'190 (7_"0), for some ¥y > 0 small enough and a fixed
map Tp : My O.

2.1. Local limit theorem. Adapting the proof of [16, Corollary 2.4] (with the slight
difference that, here, the observable @ (x, ) we are interested in depends also on w),
we will prove the following central limit theorem.

Theorem 2.1 (Central limit theorem for the cell index). With respect to i, the covariance
matrix of (S, //h), converges to a non-negative symmetric function

2= [E; [cb(").cb(j)] +3 E; [cb<f>.<1><f) o Tk + &) M o T"] . (6)
kzl ij=12
where, for every j = 1,2, ®Y) is the j-th coordinate of ®, and using . to denote
multiplication.
Moreover (S, //n), converges in distribution to a centered Gaussian distribution
with covariance matrix 2.

The fact that X2 is positive if 9 is small enough will be proved in Lemma 3.18 (using
a continuity argument). In Sect. 3.2, we will define a Banach space B, containing a class
of distributions on M, and its dual B’. For a function g : M — R, define the functional
Hyg, by

Hy() :=Eglg.-1. (N
Remark 3.1 and Lemma 3.3 will give conditions on g that guarantee that H, € B.

Theorem 2.2 (Local limit theorem). For every f, g : M — R such that H, € B’ and
such that f € B,

e (—E5) 3
B [Fls—080 7] = — 2 L5 [ fIEalgl+ 0 (n 3 1715 1 Hellg )
ll«[f {S,=0}-8 ] 27‘[”\/@ alf1Ealg ( fB EB)

®)

Remark 2.3. Due to Lemma 3.3 and Remark A.1, it suffices for the conclusion of The-
orem 2.2 that f (-, ®) and g(-, w) be piecewise Holder continuous on My (with Holder
bounds that are uniform in w). For instance, the coordinates ®® of the displacement
function & satisfy these conditions, as well as the free flight function for the billiard
map Ty, T(-, w).
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2.2. Return time, visit to new obstacles and self intersections. We define Zo(x, @) :=1i
ifx e Ukzz M; ¢ as the index in {1, ..., I} of the obstacle on which the particle is at
time 0 and Z := Zp o T*. Since the quantity Zo(x, @) does not depend on w, we will
also write Zo(x) for this quantity. Note that Zy (x, @) does not depend on the index £ of
the cell containing x, this allows us to define also Z; on M (by projection).

Observe that the fact that the point particle is on the obstacle (7, £) at the k-th reflection
time (i.e. Tk (x, w) € M; ) can be rewritten:

(o + Sk (X, ), Tk (X, @) = (£, 1),

if x = (%, 49) € Mo x Z2. We are interested here in the study of the probability that a
point particle starting* from M x {0} does not come back to its original obstacle until
time n, that is in @ (B,,) with

By :=1{Vk=1,....n: Ty, S) # (Zo, (0,0)} C M.
We also study the probability that the obstacle visited at time n has not been visited
before, that is 1(B),) with
B :={Vk=0,....n—1: (Ti, Sx) # Tn, Su)} C M.
Observe that, because of the reversibility of our model, i(B,) = (B)).
Theorem 2.4. We have the following asymptotics

217+/det £2

+ 0 ((logn)_%) , as n— +0o.
logn

(By) = ji(B,) =
In Sect. 4.2, we give a proof of the above asymptotic estimates of ji(B,) and ft(B)) in
a more general context. This result will appear as an easy and direct consequence of the
local limit theorem, Theorem 2.2. We now consider the number of couples of times at
which the point particle hits the same obstacle:

n
Vn = Z Lis;=s;. 7,=7)-
i j=1

Theorem 2.5. ji-almost surely, we have:

V, 1 S 1004

lim = '
n—o0 nlogn n\/W(Z:g_lIaOM)Z

The proof of the previous result is delicate as it uses a precise estimate of the variance
of V,. As can be seen from the works by Bolthausen [5] and by Deligiannidis and Utev
[14], going from a rough to a precise estimate of the variance of the number of self
intersections requires important additional work. In Sect. 4.3, we give a proof of this
result under general spectral assumptions. Our argument provides, in the case of random
walks, an alternative argument to the one given by Deligiannidis and Utev in [14]. Let us
indicate that even if we use the general scheme of the previous unpublished paper [31]

4 Throughout the paper, we shall use the notation 0 = (0, 0) as an element of 72,
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(in which an analogous result is proved for a single billiard map), this general scheme
being just the natural decomposition already used by Bolthausen in [5] to get a non-
optimal estimate of the variance, the method we use in the present paper to establish our
crucial estimates is different from [31]. In particular our method enables us to get rid of
some assumptions (bounded cell change function, Banach spaces continuously injected
in some L7) that were satisfied and used in [31].

The two previous results (probability to visit a new site, precise asymptotics for the
number of self-intersections), in addition to being interesting in their own right, will
greatly help us to prove the result of the next section.

2.3. Billiard in random scenery. We consider the following billiard dynamics. We as-
sume that the phase space for the initial configuration of the particle is Mo, with initial
distribution j1( and that the particle will experiment random iterations of billiard maps
Ty » With (wp)k=>0 a sequence of i.i.d. random variables with common distribution 7,
idependently of the initial configuration. To each obstacle (i, £), we associate a random
variable &(; ¢y defined on some probability space (€2, P). We assume that these random
variables &(; ¢y are i.i.d., centered, and square integrable. We assume that, each time the
point particle hits the obstacle (i, £), it wins the value &; ). Let Z, be the total amount
won by the particle up to the n-th reflection. For every n, we consider the linearized
process (Z,(t));>o defined by

Z,(t) = Zipe) + (nt — [0t ) (Zns)+1 — Zlne)) -

Formally speaking Z,, and Z, are defined on the probability space (M x Q, i ® P).

Theorem 2.6. For every 7 > 0, the sequence of processes ((2,, ®)/~/nlogn)icro, 7)n
in C([0, T]) converges in distribution with respect to 1 @ P to (B;);c[0, 7], where B =
(Bt)r=0 is a Brownian motion such that

2 1 2
0, a0,
]E[Bl2] — & Za:l | lll

w+/det £2 (Zi:l |aob|)2'

If, moreover; there exists x > 0 such that E[|.§(1,o)|2(log+ 1Eq1,00D* )] < oo, then,
Sfor P-almost every realization of (§;,¢)i ¢, (Zn)n converges in distribution to the same
Brownian motion B.

Let us indicate that it should be possible to remove the additional assumption E[|£(1 o) |2
(log* 1£1.0))%1)] < oo by using our estimates, combined with the very recent preprint
[13] instead of [21].

Let us say a few words about the historical background of this result. Limit distribu-
tional theorems of analogous processes when S, is replaced by a random walk on Z¢
were first established at the end of the 70’s by Borodin in [6,7] and by Kesten and Spitzer
in [26], by Boltausen [5] in dimension 2 ten years later, and more recently by Deligian-
nidis and Utev in [14] and by Castell, Guillotin-Plantard and the second author in [10].
Let us also remark that when the random walk is the one dimensional simple symmetric
random walk on Z, the random walk in random scenery corresponds to an ergodic sum
of a dynamical system, the so-called T, 7 ~!-transformation. This dynamical system has
been introduced in a list of open problems by Weiss [39, problem 2, p. 682] in the early
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1970s. This dynamical system is a famous natural example of a K -transformation which
is not Bernoulli and even not loosely Bernoulli as has been shown by Kalikow in [24].

We prove Theorem 2.6 in a more general context in Sect. 4.4. As noticed by Deli-
giannidis and Utev in [14] in the context of random walks, the estimate provided by
Theorem 2.5 simplifies greatly the proof of Theorem 2.6 compared to [5,30] ([30] con-
tained a proof of this result for a single billiard map, with the use of the properties of
Young towers). Furthermore, we simplify also the tightness argument used by Bolthausen
in [5].

2.4. Limit theorems in infinite measure. The following results are consequences of our
perturbation result (Proposition 3.17), combined with the general results of [34] and of
[32].

Our next result deals with the asymptotic behavior of additive functionals of S,;, that
is of quantities of the form ZZ;(I) g(Sy), for summable functions g : Z> — R. This can

be seen as the ergodic sum ZZ;(I) G o Tk with G(x, £, w) := g(0).

Theorem 2.7 (Additive functionals of S,,). If g is summable (i.e. ), |g(£)| < 00),
then

Y 8(S) 1
lim = = g &,
n—oo  logn 2 +/det 22 ZEZZZ

where £ is an exponential random variable with expectation 1 and where the conver-
gence is in the sense of distribution with respect to any probability measure absolutely
continuous with respect to L.

If moreover ;.70 8(0) =0and ), 1£)°1g(£)| < oo, for some & > 0, then

n—1
S 1
lim k=0 8¢ k): lcrg\/g/\/',
n—oco  /logn V27 (det £2)7

where the convergence is again in distribution, £ is as above, N is a standard Gaussian
random variable independent of £ and

of =Y (@@)?+2) | D g@gE)io(Sk = —¢)

Lez? k>1 \¢,0ez?

For g : My — R, define Hg ¢y : B — R by H, ¢(h) = Egylg(-, £)h]. We also
obtain the decay rates of correlations for the process generated by our random systems
in infinite measure:

Theorem 2.8 (Mixing and decorrelation in infinite measure). Let K > 1. Let f, g :
My — R be two functions such that

S 1PK (IGO0l + 1 Heellg) < oo

Lez?

Then, there exist real numbers Co(f, g), ..., Cx(f, g) such that,
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N
Eylf.go T"] Z/ f-80 Ty, 00Ty dug d7l® ((wn)n)
Myx EN

_ i Cu(f. 8) +0(n_K_1)

+1
m=0 n
. _ 1 . o
with Co(f, g) = e fMo fduo fMo g dug and setting f(x, £, w) = f(x, £) and
a(x, £, ) == g(x, £) to be the extensions of f and g to Mg x EN.

3. Transfer Operators

In order to prove our main limit theorems, we will study the transfer operators associated
with the random maps 7 and T as perturbations of the transfer operator associated with
a fixed quotient billiard map Tp.

In this section, we fix a class of maps F satisfying (H1)—(HS) with uniform constants.
T denotes the quotient of the full random map 7', while 7,,, @ € E denotes a quotient
billiard map belonging to , following the notation defined in Sect. 1.2.

Using (H3), choose dg > 0 for which there exists 6 < 1 so that (3) gives,

sup  sup Z | Jv, Tyle <6. 9
TmEJ:ﬁO |VV€|W

We then define W* C W to be those stable curves in W* whose length is at most &p.
Following [15], for any T,, € F and n > 0, define 7,,"W* C W* to be the set

of homogeneous stable curves W € W?* whose images T;,W e Wifor0 <i < n.
For p € [0, 1] and letting C” (7, "W?*) denote those functions i which are p-Holder
continuous on elements of Tw_ "Ws, it follows from (H1) that v o T, € CP (T‘”_IWS ).
Thus if f € (CP(Tw_”_IWS))/ is an element of the dual of CP(Y_"Q)_”_IWS), then [’Tw :
(CP(T,; "W — (CP(T;"W?*))' is defined by

Ly fW)=fWoT,), Vi eCl(T,"W.
If in addition, f is a finite signed measure absolutely continuous with respect to i, then

we identify f with its density in L!(jig), which we shall also denote f,i.e. f(Y¥) =
fMo ¥ f djig. With this identification, we write L!(j1g) C (Cp(T "WYY for each

n € N. Then acting on L' (jio), Ly, has the following familiar expression,
E"Tf:fof’aj", for any n > 0.

For brevity, sometimes we will denote L7 by Ly,.
Let P be the transfer operator of T with respect to i := jig ® n®~. This operator is

given by
PF(y. (@)is0) = fE Loy £ @e1is0) () dn(@_1).

Let us write - for the usual scalar product on R%. We consider the family of operators
(Pu),er2 given by

Puf @00 = P (2 F) 00 @00 = [ Ly £ @iiz0)0) dno-n),
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where
Luorf = Lo P f).
Note that
Py f = P"("5f).

Using results of [16], we will see that if we restrict T,toa neighborhood ]:'190(7_”0)
according to (5), then P is a small (depending on ) perturbation of the transfer operator
Py of the product system (M, ji = jig X n®N Ty x o), where o is the shift over EN
(i.e. o ((@K)r=0) = (Wk+1)k=0) and where (T x 0)(x, @) := (To(x), o (®)).

3.1. Banach spaces B and B,,. We start by defining Banach spaces B C B,, of distribu-
tions on Mo, on which the transfer operators £,, associated to 7,, € F are well-behaved.

In order to define our norms, we first require a notion of distance dyys (-, -) between
stable curves as well as a distance d(-, -) defined among functions supported on these
curves.

Due to the transversality condition on the stable cones C*(x) given by (H1), each
W e W* can be viewed as the graph of a function ¢w () of the arc length parameter
r. For each W € W?, let Jy denote the interval on which ¢w is defined and set
Gw(r) = (r, pw(r)) to be its graph so that W = {Gw (r) : r € Jw}. We let my denote
the unnormalized arclength measure on W, defined using the Euclidean metric.

Let Wi, W2 € W' and let ow,, Gw, denote the corresponding functions defined
above, for i = 1, 2. Denote by £(Jw, AJw,) the length of the symmetric difference
between Jw, and Jyw,. If Wi and W, belong to the same homogeneity strip, we define
the distance between them to be

dyys (Wi, Wa) = L(Jw, AJw,) + 19wy — $wslet gy, 0oy,

otherwise, we set dyys (W1, W) = oo

For 0 < p < 1, let CP(W) denote the set of continuous complex-valued functions
on W with Holder exponent p, measured in the Euclidean metric. Denote by C? (W) the
closure of C*®°(W) in the C”-norm°:

Wlerowy = [¥leow + Cy (),

where C ‘(,{,) ) (¥) is the Holder constant of ¢ along W. It is remarkable to note that that
with this definition,

[Vi2lerowy < IWilerowyl¥2ler (w)-

cr (M) and CP (My) can be defined similarly.
Given two curves Wy, Wy € W* with dyys (Wi, Wa) < oo, and two test functions
Vi € CP(W;, C), the distance between 1, Y is defined® as:

d(Y1, ¥2) = [¥1 0 Gw, — V20 Gwyleoy, ny,)-
5 While CP (W) is smaller than CP (W), it does contain Cp/(W) forall p’ > p.

6 Note that d (1, ¥r2) is only a pseudo-metric while dyys (-, -) does not satisfy the triangle inequality, yet
they both serve as useful notions of distance when deriving the necessary Lasota-Yorke inequalities.
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We will define the relevant Banach spaces by closing C! (M) with respect to the follow-
ing set of norms. Fix 0 < p < % Given a function f € C 1(My), define the weak norm

of f by

Flai= swp sup [ fyam. (10)
wWeWs yeCP(W) JW
Wlcrwy=<1

Choose’ ¢, y, ¢ > Osuchthat ¢ < 1 —¢p, ¢ < p and y < min{c, p — ¢}. We define
the strong stable norm of f as

I flls := sup sup / fdmw (11)
weWws Yy eCl(W) w
Wlcaw)<IWI™¢

and the strong unstable norm as

1
£ llu := sup sup sup  —
e<eo Wi, WaeW'  yieCP(W;) €
dyys (Wi, W2)<e |Vilepw)<1
d(Y1,¥2)=0

fyrdmy — fl/fzdmw‘
Wi W

12)

where g9 > 0 is chosen less than &g, the maximum length of W € W which is
determined by (9). The strong norm of f is defined by

£ I8 = Iflls +coll fllu

where ¢ is a small constant chosen so that the uniform Lasota-Yorke inequalities in [16,
Theorem 2.2] hold.

We define B to be the completion of C!(My) in the strong norm® and 83,, to be the
completion of C!' (M) in the weak norm.

Remark 3.1. Due to [16, Lemma 3.4], we have for f € By,
FI= 1 lu(1le+ sup CP@)), forall y € CPOV),
wews
This permits us to extend Ej,[-] to a linear continuous form on B, (and so on B) since

Vel (M), Ealf] =/

fdpo= f).
Moy

We begin by recalling some properties of B and B,, proved in [15-17].

Lemma 3.2. a) [15, Lemma 3.7] B contains piecewise Holder continuous functions f
with exponent { > y /(1 — y) as described in Lemma 3.3 below.

b) [16, Lemma 3.5] (cos ¢)~! € B. Thus, Lebesgue measure m = (cos ¢) "' fig € B
and so is fm for any f as in item (a) above.

7 The restrictions on the constants are placed according to the dynamical properties summarized in (H1)-
(HS5). For example, p < 1/3 due to the distortion bounds in (H4), while ¢ < 1 — ¢g due to (H3), which is
relevant for the uniform Lasota-Yorke inequalities (Lemma 3.14).

8 Asameasure, fecC 1 (M) is identified with fd fio according to our earlier convention. As a consequence,
Lebesgue measure dm = (cos w)_ldﬂo is not automatically included in 3 since (cos (p)_l ¢ c! (Mo). Tt
follows from [16, Lemma 3.5] that in fact, m € B (and By,).
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c) [15, Lemma 2.1] L,, is well-defined as a continuous linear operator on both B and
By for any T,, € F. Moreover, there exists a sequence of continuous® inclusions
CE(My) — B < By, < (CP(My)), forall¢ > y /(1 — y).

d) [15, Lemma 3.10] The unit ball of (B, || - ||B) is compactly embedded in (B, | - |w).

The following lemma is crucial for describing the types of discontinuities allowed in
elements of 3 and for proving that the operator £, ,, is analytic in u.

Lemma 3.3. Let P be a (mod 0) countable partition of My into open, simply connected

sets such that: (1) for each k € N, there is an Ny < 0o such that at most Ny elements

Z € P intersect Hy; (2) there are constants K, Co > 0 such that for each Z € 3 and

W e W*, Z N W comprises at most K connected components and for any'® & > 0,

mwy (Ng(0Z) N W) < Coe.

a) [17,Lemma3.51Let¢ > y/(1—=y).If f € C5(Z)foreachZ € Pandsupzeqp | flee(z) <
oo, then f € Band || fllg < Csupzes | flce 2y, for some C > 0 independent of f.
In particular, C* (Mo) C B for each ¢ > y /(1 — y).

b) [17, Lemma 3.7] Suppose in addition that { > max{p, y /(1 — y)} and there is a
uniform bound on the Ny above. If g satisfies Supz e 18lce (7) < 00 and f € B, then

fg € Band | fglls = CllflBsupzesyp 18lce(z) for some C > 0 independent of f
and g.

3.2. Banach spaces B and B In this section, we introduce the associated Banach
spaces By and B on M on which P acts suitably. B will correspond to a set of Lipschitz
functions from E™ to B and B will correspond to the set of umformly bounded functions

from E Nto B,,. For convenience, we will identify elements of BE with distributions
f on Mg x EN such that f(-,w) € B forall € EN. Let L(13, B) denote the set of
bounded linear operators on 3 and let || - || (3.5) denote the norm on L (B, B) induced

by [ - B
Let sz > sup,cr | LollLs,8 = 1. Let us define

B:={feB : |fllg< oo},
with

G, 0 — fC,o)lB
d(w, o)

’

Ifllg = sup [[f(:, @5+ sup

weEN wFw
and with
d((@)r, (@) = 5~ MnECeFo),

It is immediate from this definition and the definition of 5, that B is the completion in
the || - ||z norm of the set of functions

(C' (M) E" = {f : My x EN > C : f(,w) € C'(Mo) Yo € EV}.

9 The first three of these are also injective. The fourth can be made injective by introducing a weight |W |~
for test functions ¥ in the weak norm (as appears in the definition of || - ||g) and requiring n > p (see, for
example, [17, Lemma 3.8]).

10 1n fact, Lemma 3.5 of [17] allows a nondegenerate tangency between 9°F3 and the stable cone:
my (Ne(3Z) N W) < Cpel0, for some #y > 0. But we will not need this weaker condition here so we
assume #y = | in order to simplify the proofs and also the definition of the norms (which otherwise would
depend on ().
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In particular, B is a Banach space.

Remark 3.4. 1t will be worthwhile to notice that, due to Lemma 3.3(a), for every w € E,
the coordinates of ®,, belong to B, so that the coordinates of ¢ are in B.

We also define
~ N
By :={fe®B,)" :|flz, <oo},

with | f|z B, ‘= SUPguefN | f(, @) - As with B, the space B can also be realized as the
completlon of (C (M()))E inthe | - |z 3, horm.

Remark 3.5. Using Remark 3.1, we extend Iz [ -] to a continuous linear form on gw (and
so on B) by setting

VfeB, Ealf]= /E B/ oldn™ @)

It follows from Lemma 3.3(a) that for any obstacle O,, 19, € B, and from
Lemma 3.3(b) that f (o) = 1o, f(-, ®) is a bounded linear operator on B for each
we ENand f € B. Thus f = 1o, f is a bounded linear operator on B as well.

We introduce the following notation for convenience.

Notation 3.6. For any positive integer m, any @,, € E™ andany w € E N we will write

(@, ) as the element of E N obtained by concatenation; i.e. such that the first m terms
correspond to those of @,, and that the term of order m + k corresponds to the term of
order k of w.

Lemma 3.7. (a) Let n be a positive integer. Denote the norm || - ||, for o € {w, s, u}. If
(fC, én))é,,eE" is a measurable (in @, ) family of elements of B, such that

sup [If (@)l < o0,

s n
o,k

then

fC @) dn®" (@,)
En

< fE BN dn®@,) < sup ¢l

o w,cE"

(b) If (Hy)wek is a measurable (in w) family of uniformly bounded operators on B (resp.
By), then H : f(x, w) fE H;(f (x, (0, ) dn(®) defines a continuous linear
operator on B (resp. By,) with operator norm dominated by sup,c g || Holl L(B.B)-

Proof. (a) is just the triangle inequality. Let us prove Item (b). Let f € Borin B, and
writing || - ||, for the associated norm, due to (a), for every w € EY, we have

IHf (. )lls < sup |Ha f(. (@, )|,

weE

< sup [ Hgllo IIf (- (&, @))llo < sup | Hallo sup I f (-, @)llo .
12} @ o

which proves (b) if f € Ew, If, in addition, f € g, then for all w, ' € EN,
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IHf( @) — Hf ()8
< sup [Hgllg sup £ (., (@, @) — f(, (@, @Dllo

weE
< supllHyl, sup 1L (@0 @ Do

x ld(a), (l)/) 5
/ /
w,0'€EN (_CL, @ )

where ® = (0, @) and @ = (v, @'). O

Remark 3.8. The previous lemma ensures in particular that P acts continuously on both
B and B,, since L, acts uniformly continuously on both B and B,,.

A key step in our proof is the study of the spectral properties on BB of P and of the family
of operators P, defined by

P, := P("®.).

The next lemma ensures, in particular, that P, is a linear operator on B. Denote by &
and ®® the components of the vector .

Lemma 3.9. For every u € R2, any positive integer m and_any iy, ...,i, € {1,2},
P(®U) . dUmei®)y i q linear operator on B and on B, with operator norms
uniformly in O (sup,e; [ ©]12).

Proof. This proof is a variation of the argument used in [16, Section 5.2]. Recall that
Pg(,w) = [ 8(T;' (). (0. ) dn(w), so that

P@W) . @lmei® £y (. w)

_ / (@00 @me ) o T Lo f (. (0, ) dn(@)
E

Let w € E. The singularity set for &, o Tw_ ! is contained in Sy U T,Sp, which
by assumption (H1) is comprised of finitely many smooth curves that are uniformly
transverse to C®(x). Let Z denote the (finite) partition of My\(Sp U T, Sp) into its
maximal connected components, and note that Z satisfies the hypotheses of Lemma 3.3.
In particular, Z N Hy consists of only a finite number of connected components, which
is bounded independently of k for |k| > ko. Note that &, o T, I is constant on each
element of Z. We use Lemma 3.3(b) to estimate, for every f € E,

Lo (@ID . lime™® £)(. w)|5
=G - ®u)" o T, (Lo f), 0B

< Csup [(@UV ... im e Py o TV o1 1)1 L0 f -, (0, @)IIB
ZeZ

< Cl@ollZl f ¢, (@, @)

13)

Analogously, for every f € By,
|Lo(@UD . @Um P £y (- )|y < CI PRI £, (@, @)l s

and we conclude by Item (b) of Lemma 3.7. 0O
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3.3. Py as a perturbation of a quasicompact operator. For the remainder of Sect. 3, we
fix a billiard map 7o, and for ¥9 > 0, define Fy, (7o) as in (5). Our main results in this
setting will be that for 9 sufficiently small, both P and P, are quasi-compact and have a
spectral gap in B . These statements are contained in Proposition 3.15 and Theorem 3.17.

Recall P, := P(e'*®.). Our next result states that P, is a small perturbation (as
g — 0) of Pu := P (! ®0.), where P is the transfer operator Py of the direct product
(M, M,TO —Toxa) ie.

PHG, (@)=0) = /E Lo f(C, (@e—D)(y) dn(w-1),

and
Pu()(y, (@K)=0) = / Lo f s (@e-1)K) () dn(w-1) .
E
Here, Lo = L7, and Ly 0 = L7, (el ®o.y,
Proposition 3.10. There exists C > 0 such that for every u € R* and every f € B,
Y
Puf = Puflg, < CIflgog -

Before proving this proposition, we state the following lemma.
Lemma 3.11. There exists C > 0 such that for all w € E and u € R?

\Luwf = Luoflw < Cllflpdp(To. To)?, V f €B.

Proof. This lemma for u = 0 is proved in [16, Theorem 2.3]. We must show that the
relevant estimates are independent of . For the convenience of the reader, we reproduce
the main points of the argument. _

Let ¢ = dg(Ty, To) and let W € W*, f € C'(My) and ¥ € C”(W) with
|1p|cp(W) < 1. Following [16, Sect. 5] (also [16, Sect. 4.3]) we decompose T "W and
Tw w 1nto matched and unmatched pieces on which Ty and 7, are continuous, respec-
tively, T0 'w = ; U;))U(Uk Vko) and Tw lw = (] U]‘.“)U(Uk Vk“’). The matched pieces
U]Q andU j‘” can be connected by a foliation of vertical line segments defined on acommon
r-interval /; as in [16, eq. (4.12)]. The unmatched pieces satisfy |T0 V/Q|, |Tw V;"l < Ce.

Thus following [16, eq. (5.2)] we write,

| ot = Luafrvdmu =Y
W 0k

2y

/z feiu'q)e Yo Tg Jvke Tg dmw
V,

s

fe”‘%l/for JUwT dmy — / fe’““’onoJUoTode

(14)

where £ € {0, w} in the first sum. We estimate the integrals over the unmatched pieces
using the strong stable norm,

fem ¢ Yo T VeTg dmwy
Vi
e - -
< WIS TVEIS 1€ 4 o Telg ey e Telenor

< CISIITe VI 1™ 4 o Telooyy My Telgogye,
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where we have used bounded distortion (H4) to bound
[ ye Telenvey < ClyeTeleogry and IVEITyeTeleoyey < CITeVE] -
Next, since e*"®¢ is constant on each V/, we have
|eiu'¢ew o TZ'C”(V[’) < |€iu'¢z|oo|w o T€|(jp(vkl) =y o TZ'C”(V[’) . (15)

Finally, since | o Tdcp(v,f) < Cl¥lcrqwy by (H1) (see [16, eq. (4.6)]), we complete
the estimate on unmatched pieces,

2
£,k

and the sum is uniformly bounded by (H3) since ¢ > &.
Next we perform the estimate on matched pieces in (14). Since matched pieces lie

iu-dy = = IS 7 1=¢
/Vk[fe Yo Ty JyTedmw| < C| fllse ;'JVZT@|CO(V;)’ (16)

in the same connected component of 1\_40\(81 U SITO), we have &, = ®g on such
components. Thus,

2

J

f Py oT, JU;)Y_"wde —/Ofei”'%wofo JU}JT()de
U Ut
J J

iu-dg
= 21" ooy,
j

/ fonwJUo_JdemW—f fyoToJyoTodmy| .
oy : u /

a7)

Since | ®0 lcooy = 1, this is precisely the same expression as in [16, eq. (5.4)]. Thus
J

combining [16, eq. (5.9)] with (16) proves the lemma, with constant independent of
ueR2 O

Proof of Proposition 3.10. This comes directly from Lemmas 3.11 and 3.7. Indeed, for
every f € B, we have

sup |(Py —Pu) f (. 0],

weEN
= Sllp / (Lu,a),l - Eu,o) f(v (w—lvg)) d?’](a)_l)
weEN IVE w
=< sup / |(Luswo_y = Luo0) (w—l»Q))|w dn(w-1)
weENJE

v 4
<C sup [|fC.Dlsdy =Clflgvy
o' eEN
since T, € }_'90(7_"0). O

Lemma 3.12. P is quasicompact, 1 is its only dominating eigenvalue and it is a simple
eigenvalue (with eigenspace C.jv). In particular, there exists C > 0 and & € (0, 1) such
that

VieB, |IP"f—Ealflyls<Calflg
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Proof. Due to [16, Theorem 2.2 and Corollary 2.4]) L is quasicompact, 1 is its only
dominating eigenvalue and it is a simple eigenvalue (with eigenspace C.1 #,)- In partic-

ular, there exists C > 0, ao € (0, 1) such that
VheB, ||Loh —Eglhllg g < Cagllhls.
Let f € B. Observe that
PG @00 = [ L @0V @02
and that
Eulfl1= /;w Egio[f (-, )1dn®N (@) .

First, setting @, = (w—, ..., w_1), we have, using Lemma 3.3(a),

sup [P" (/). @) — Bzl f1 1l

p /E (Lo f Gy (r—n)i) = EalfDdn(w-y) ...dn(w—y)

B

‘ /E LGS (@) = B [ (@enp)] din(oo) i)
fE (B [fC @n @]

- /E En (. @, g)))dn@N(g/)) dn®" (cbn)‘

< sup
[2)

B

+ 11,115 sup
[2)

< sup / |26f . @r-n)i) = By Lf ¢ (@)1 g dn(@-1) ... dn(w_p)

Hilg s sup [Egp [f( @) — [ o]

0,0 d(,0)<x™"
< Caf [ 1/ @y dntwon)..dne-)
1 IBIE [ls  swp  [fC0) = f @D
0.0 d@w)<x"

< (Cag +CisMIfllg,

since 1, is in B and Ej[] is in the dual of B by Remark 3.1.
Second, for every w and o’ in E N we have

IP" ()G @) =P )liB
H/ 0.f G @ny @) = LG f (-, (&, @) d77®"(c7)n)HB

< /E 28 (f ¢ @n @) = £ @ )] 5 A0 @n)
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< sup
o, 0@ :d(eD),0?)<d(w,w)x"

+Cafll f Il gd (w, @)z "

Egy [f(u o) = £, g(z))”

= Bz Ll 5 sup

o,0@ :d(eD,0®)<d@w)x™"
+Caf |l f Il gd (w, @) "
< | Eao L] g 1 £llgd(w, @)s " + Cagl £l gd (w, @) s " .

o) = feo®)]|

This proves the lemma with &@ = max{ag, >~'}. O

3.4. Doeblin—Fortet-Lasota—Yorke type inequality for P,. We nextestablish the spectral
properties of P and P, on B.

Proposition 3.13. There exist C>0and7 c (0, 1), such that for everyn > 1, f € g,
ueR?andn >0,

\Piflg, < CIfI5,,
172 flg = € (F1/15+1715,) - (1)

This result will follow directly from the next lemma.

Lemma 3.14. There exist C > Q0 and t € (0, 1), such for everyn > 1, w1, ..., w, € E,
fEB,ueRzananO,

|£u,w1 o 'Eu,a),lf|w =< C|f|w,
1L Luwn fIB < C ("I fIB+1S1w) - (19)

Proof. Here we denote L]} , == Ly, *** Luw,» and T = T, o -+ o T,,. The above
Lasota—Yorke inequalities are proved'! for L as long as each ka € F by [16, Propo-
sition 5.6], with @ = (wg)k>1. As in the pr0(7f of Lemma 3.11, we must show that the
constants appearing in the inequalities are independent of u € R?, and all w € EN. We

. . v Tw
will use the fact that S, @, is constant on elements of Mp\S,*

We perform the weak norm estimate first. For f € C1(Mg), W € W* and ¢ € CP(W)
with [{|cpw) < 1, we must estimate,

/ﬁ of Udmy = > /fe’”"“’ww s v o Ty dmy,,
. o

Wi G (W)

1" The estimates in [16, Proposition 5.6] include a factor n > 1, which comes from the Jacobian of 7y, with
respect to j1q. Since we have assumed that J;, T, = 1 in our simplified version of (HS), we have n = 1 in
the present setting. Also note that the density function g for the random perturbation in [16] is identically 1 in
our setting as well.
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where G,, (W) are the components of Tw_ "W, subdivided so that they each belong to W*.
Thus, o

/ Coof dmy <3 1 flule™ %2y o T2loiwy |l w, Toler o
W Wi €G, (W)
<Clflw Y. 1w Thlcogw, -

Wi€Gn (W)

iu-S, @y

where as in (15), we have used that e is constant on each W;, so that

le!#SnPay, o TQ"|C,;(W[) < le"S5n®e| 1y o T£|CP(W[) < |¥lerw) - (20)

The sum over the Jacobians is uniformly bounded by [16, Lemma 5.5]. Note that due to
(20), the bound is independent of u, and thus prescisely the same as in [16, eq. (5.21)].

For the strong stable norm estimate, the same observation holds, again since e'* "5 ®»
is constant on each W;. Thus by [16, eq. 5.22],

1L, flls < CO" + A=) flls + C| flw -

For the strong unstable norm estimate, we must compare values of test functions on
two stable curves W', W2 that lie close together. As in the proof of Lemma 3.11 (see
also [16, Sect. 4.3]), we decompose T, "W and T, "W? into matched and unmatched

pieces on which 7! is continuous, 7, nyt = ;U Z) U (Uyg Vk ), £ = 1, 2. The matched

pieces U; !and U; 2 can be connected b by a transverse fohatlon of unstable curves and are
defined over a common r-interval as in [16, eq. (4.3)].

. . L - olw .
Since for each j, U ]1 and U} lie in the same component of My\S,“, it follows that
Sy @, has the same constant value on both curves and so factors right out of the Lasota—

Yorke inequalities, precisely as in (17). Since |¢/*"S"®«| = 1, the estimate on unmatched
pieces can be performed as in (16). Thus by [16, eq. (5.23)],

1L flle < CAT I fllu + CTIf s -

Combining the inequalities for the stable and unstable components as in [16, Sect. 4]
then completes the proof of the Lasota—Yorke inequality for the strong norm. 0O

Proof of Proposition 3.13. Observe that
PINC = | Luw, Luw, [ @kn)iz0) ) dn®" (@—p, ..., 0-1).
En

Due to Lemma 3.7 and to the first inequality of Lemma 3.14, for any f € gw andn > 1,

P flg, = swp [(PYNHC @),

weEN

< sup / |£u,w,n Tt »Cu,wq f(v (wk—n)k20)|w d77®"(0)—n, e, 1)

weEN

<C swp [f(, )|, =CIflg, -

w'eEN



2304 M. F. Demers, F. Pene, H.-K. Zhang

Analogously, using again Lemma 3.7 and, this time, the second inequality of Lemma 3.14,
we obtain, for any f € Bandn > 1,

sup [P} ), w>||B<C< "sup | fC. @ _)||B+ sup fC. o), )
a)eE weE

Finally, using Lemma 3.7,

1P} fCw)— PG o)lB

w#o' d((L)’ Q/)
W I fgn Luwo = Luwy (fC (@, 0) = FC, (@,0)) dn®"(@)5
B Q#Z’ d(w, @)
< su fEn ”Eu,w,n e EM,G.L] (f(s (5)3 Q)) - f(s (J)s Q/))) ||Bd7l®n(5))
B g;&g d(@, o)
< / sup ”‘Cu,w,n ce Eu,w_l (f(s (0, ) — f(, (0, ))) I3 d7l®n(&))
E" w#a' d(@’ Q/)
< / sup ”Eu,w,n e Eu,w,l (f(v U)_()/) - f(v %)) ”B d7]®n (CZ))
En QO#Q(,) %nd@o, QO)
”‘Ca)n T [’a)| (h(7 Q) - h(7 CL)/))”B

< "C sup
w#w' d(ga (L)/)

- IhC, @) — h(, @)ls
< 57" sup Lol 3.y SUp
e WEelims 2P, d(w, @)

since > > sup,cr 1LollLB.B), We obtain that P, satisfies Doeblin—Fortet-Lasota—
Yorke conditions for (B and B,). 0O

3.5. Quasicompactness of P and of P,,.

Proposition 3.15. If v is small enough, P is quasicompact on B, lisits only dominating
eigenvalue and it is a simple eigenvalue (with eigenspace C.1y;). In particular, there

exist C > Oand & € (0, 1), such that
VfeB, |P"f- EalfMylg < éé"llfllg-

Proof. For vy sufficiently small, P satisfies the Lasota—Yorke inequalities of Proposi-
tion 3.13 uniformly in . Thus by Proposition 3.10 and the Keller—Liverani perturbation
theorem [25, Corollary 1], the spectra and spectral projectors of P and P on B are close
for ¥ small. Since the spectral gap for P on B is uniform in %9 by Lemma 3.12, it follows
that P has a spectral gap on 3 with a single and simple peripherical eigenvalue, provided
¥ is sufficiently small. Since P is the dual operator of f +— f o T, the spectral radius
of P is 1 and 1 is an eigenvalue of P. We conclude that 1 is the dominating eigenvalue
and that it is simple. O

Proposition 3.16. P,, as an operator acting on B, is an analytic perturbation of P.
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Proof. Observe that the n-th derivative of u — P, is the operator defined by
[ P (@0 e p).

Due to Lemma 3.9 and to classical results on analytic functions, we conclude that, in
L(B B) u — P, is analytic on R? and that

where A, f (1) is n-linear inu. O

n w, With -Anf(u) = P((iu- (D)”f) s

=|._

Our main results will follow from the following technical result.

Theorem 3.17. The function 1; is in B and Ezl-1is a continuous linear form on B and
B,

If Vg is small enough, there exist B € (0, 7), C > 0and o € (0, 1) three analytic maps
u > Ay, from[—B, B> to C, u — N, and u — T, from [—B, B> to L(B, B) such that

a) o =1, o :=Ez[-11,

b) for every u € [—PB, B1? and every integer n > 1, P! = A, + N}, I,N, =
N, I, =0, 1'[3 = I1,, and ”N:ZHL(E,E) < Ca".
Moreover, for every integer k > 0, ||(N,’})(k)||L(g’g) = O (a™), where (N,’])(k) means
the k-th derivative of N|.

¢) for every u € [—m, t1’\[—B, B1? and every integer n > 1, we have ||P;||L(§,E) <
Ca”.

d) The positive symmetric matrix % given by (6) satisfies A, = 1——(2214 ) +0(JulP).

Proof of Theorem 3.17. The fact that 1,; is in B comes from the fact that 1 M, 18I0 B.

As seen in Remark 3.5, Ez[-] is a continuous form on B. The proof of the remaining
part of the theorem relies on Propositions 3.10, 3.13, 3.15 and 3.16.

Propositions 3.13, 3.15 and 3.16 immediately imply the existence of a spectral gap
for P, for |u| sufficiently small, using standard perturbation theory [19, VII.6 Theorem
9]. This yields the analyticity and items (a) and (b) of the proposition with 8 depending
on Yy and the uniform constants depending on the family Fy,, but not on the probability
measure 7.

For item (c), due to [1, Lemma 4.3], it is enough to prove that, if 9y is small enough,
then for every u € [—m, n]z\[—ﬁ, ,8]2, P, admits no eigenvalue of modulus 1. Assume
the contrary. There would exist a sequence of operators (bef) )k corresponding to a
sequence of vanishing neighbourhoods (E)x of Ty in F and with B < |ux| < m and
,o(Pu(l,f)) = 1, where p(-) denotes the spectral radius. Up to extracting a subsequence,

we also have limg_ 100 Ux = Uso. But, due to Proposition 3.10 and since u — L, ¢ is
continuous from R? to L (B, B), we would deduce that

lim ||P® — =0.
Jm 1Py = Pus lL(B.B.,)

Combining this with Proposition 3.13 and with the perturbation theorem of [25], this
would imply that p(P,, ) = 1, which would contradict Proposition C.2. We conclude
that, as soon as ¥y is sufficiently small, supg |, <, 0(Py) < 1 as claimed.
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It remains to prove item (d). Due to [16, Corollary 2.4], for any initial probability
measure v € B, (S, /+/n), converges in distribution to a (possibly generalized) centered
Gaussian random variable with variance 2. As in [15, Proof of Theorem 2.6], %2 s
the variance of (S, //n),, asn — oo. Thus_Z2 is given by the Green-Kubo formula (6)
as long as the correlations Ez[®®.®) o T*] are summable. Indeed, the spectral gap
for P (Proposition 3.15) implies that the correlations decay exponentially in k since P
is the transfer operator for 7 with respect to the measure [i.

Moreover, due to item (b) of the present theorem,

sup  [Ez[e’S'] — MME[TT, (D] = O (")
re[—B,B1?

and so

152
. no_ 5P
nEToo)Lf/ﬁ ¢

with uniform convergence on any compact set of R?. This implies that
. 1 5
ngllloonlog () = _E(E t-1).
On the other hand, log(kt/ﬁ) ~ ()\z/ﬁ — 1) asn — +00. Hence
. 1
ngl}rloon()»t/ﬁ -1 = _E(E t-t).
Setting u = t//n, we can then deduce the stated Taylor expansion since u — A, is
analytic. The positivity of £? follows from the next lemma. O

Lemma 3.18. If ¥ is small enough, £ is positive.

Proof. Recall that £2 has been defined in (6). We consider Zg being defined by

3= | Ba [0 .0 | + Y Eg [0f 0f o T + 0f.0f o T
k>1 L
i,j=1.2
ey

It is enough to prove that £2 converges to 23 as ¥ goes to 0. We use (6) together with
the fact that 2(2) satisfies an analogous formula (with @ (x, ) replaced by ®¢(x) and
with T (x, w) replaced by To(x)). Therefore

255 =A0+2)  Ax.
k>1

with Ay := Ej [@.® o T*] — B, [d.Pg o T | . Extending the definition of ® on M
by setting ®g(x, @) := Po(x), we obtain

A = [cb.cp o Th — ®y.0 o (T(;)"]
= E; [PkCD.CD - PkCDO.CDO]

= By [(@ = o). P*0 |+ By [@0. PH(® — )| + Bz [@0.(PEdg — Prb)]
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The two first terms of the right hand side of this formula are less than

4|12, sup jig(P, — o # 0),

weE
which goes to 0 as 99 — 0. The third term is dominated by

k—1
k max (IIPIIL(g,g), IIPIIL(gw,gw)) 1P =Pllz5 5, PollzIEIPo-1l 5, -

We deduce that this quantity goes to 0 using Remark 3.4, Lemma 3.9, and Proposi-
tion 3.10, and since E;[®g-] = E;[P(Po-)] (applying Lemma 3.9 with E = {0}).
We conclude with the use of the dominated convergence theorem, since

B [0.0 0T = |Bq [Pro.0]|
< |01 5CF B[P 15 = 1P 5CF IELIP ()]l ,

where we used Proposition 3.15 since E;[®] = 0, and a similar bound holds for
Ejio[®0.®0 0 T¢]. O

4. Limit Theorems Under General Assumptions and Proofs of Our Results for
Billiards

We start with the proof of our results which are direct consequences of Theorem 3.17
and of general results existing in the literature.

Proofs of Theorems 2.1, 2.7 and 2.8. The convergence in distribution of Theorem 2.1
is a direct corollary of Theorem 3.17 by Lévy’s continuity theorem (as in [22,23,27])
since, for every u € R?, Ej [elﬁ's"] =E; [P:/ﬁlﬂ] ~ M i
goes to infinity. Theorem 3.17 provides the announced expression for X2 B B

Theorem 3.17 gives exactly [34, Hypothesis 3.1] (with (A, u, T) = (M, @1, T),
F=0,U=[-B,p2,B=B,M=1,d=2,R,=N,,r=caand L = 1). Therefore
applying [34, Theorem 2.4] (with (A, &, T) = (M, un,T), (A, u, T) = (M, i1, T),
F=®,a, =.n a=2,d=2), we obtain Theorem 2.7.

Observe now that Theorem 3.17 implies that (Py), satisfies Condition (H>) of [32,
Definition 3.1] with respect to (B, oo, 00, 3, »2) (using Condition (Hp) of [32, Def-
inition 2.1]). Thus, applying [32, Theorem 3.2] and using the formulas given in [32,
Remark 3.3], we get Theorem 2.8. O

_1ly2,.
~ 2T g9 p

We will prove the other results in a general context. About these results, let us mention
that Theorem 2.4 and the first part of Theorem 2.6 have been proved in [18,29] and
in [30] for a single billiard map. We give here the proof in a more general context
with a significant simplification in the proof of Theorem 2.6 due to the better estimate
of the variance of the auto-intersection and to some simplification in the Bolthausen
tightness argument. The second part of Theorem 2.6 uses a general argument from [21].
Theorem 2.5 exists for a single billiard map, but only in an unpublished paper by the
second author [31]. Let us indicate that the generality of the proof we give in the present
paper is possible due to important modifications of the proof. Indeed we state general
results enabling the study of Z’-extension with unbounded (square integrable) step
function and we do not use the fact that the Banach space we consider is continuously
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injected in L7 for a suitable p > 1 (this property was true for Young Banach spaces on
towers constructed in [38] for a single billiard map but not for the spaces we consider
here); both of these conditions were used in the proof of [31].

We will prove the limit theorems we are interested in under the following general
hypothesis.

Assumption 4.1. Let (M, ., T) be a Z?-extension of a probability preserving dynamical
system (M, 1, T) by a function ® : M — C. Let P be the transfer operator associated
with 7" with respect to & and let (Pu = P(e/"®.) ueR2: We assume that these operators
act on two Banach spaces B, 1 and Bg such that 14}’1 e B | = 82 (continuous inclusion)
and that [E;[-] is a continuous linear form!2 on B,.

Assume that there exist 8 € (0,7), C > 0 and a € (0, 1), three continuous maps
u — Ay, from [—B, B1? to C, u — N, and u > TII, from [—8, ﬁ]ztoL(Bl Bz) such
that

(A1) for every u € [—pB, B1* and every integer n > 1,

P’ ="M, +N", TI,N,=N,I,=0, I2=T,

u
and ||N”||L(B1 By = Ca”.
(A2) foreveryu € [—m, 1*\[—B, B]* and every integern > 1,wehave | P/l 7 5, <
Ca".
(A3) u — TII,, seen as a L(B;, By)-valued function, is differentiable at O and Iy :=
Ezl-11,
(A4) There exists a positive symmetric matrix »2suchthati, = 1—3 (Ezu w)+0(|u)?).
In this general context, we will also use the following notation and considerations.
We write S, for the ergodic sum S, := ZZ;(I) ® o Tk. Tt will be crucial to notice that
P,f — Pn(eiu'Sn.).
We consider a partition of M in I subsets O, ..., Oy of i positive measure (corre-
sponding to (3 0; X S1 x EN in our example). We con51der the function Zy which, at
every x € M, associates the index Zy(x) of the atom OIO (x) of the partition containing

x. We also define 7y := oo TX. B o
We remark that our random map 7" with T;,, € Fy,(Tp) for all w € E satisfies all the
items of Assumption 4.1 due to Theorem 3.17.

4.1. Local limit theorem: general result and proof of Theorem 2.2. For every n € N*,
¢ e7%and h € By, we set:

Henh = P" (l{sn:g}h) . (22)
Recall that

1 .
1 _ — l(k—Z)M 2
(k=) (271)2,/ Mlze du (23)

where du is understood as duduy for u = (uy, up) € R2 (integral with respect to the
Lebesgue measure), which leads us to the following formula

1 .
h=—— —itupnp gy 24
Heah = o3 /_mze " du (24)

12 Up to extending by continuity the definition of Eg[-].
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Theorem 4.2. Assume general Assumption 4.1. Then

e E L

S —
2 n+/det X2

Moreover, there exists Ko > 1 such that for every integer n > 0 and every € 72,

3
=0(n"2).
L(B1,5)

sup
teZ?

Hé,n -

1 Ko
Heall 6 61) = s /[ IR = 25)

Proof. Up to a change of §, there exists a > 0 such that, for every u € [—8, ,3]2,
|Au] < exp(—alu ). Hence, using Assumption 4.1, we have the following equalities in
L(By, By):
1
2m)? Ji—n.ap
1
T @en?
1
~@en?
1
- @n?

Thus

‘ 1 ‘
eile.upzf du = W / , eile'uP,;1 du+ 0"
[-8.8]

f e CUAMTT, du + O (a")
[~B.67
/[ . e (TT + O () du + O (™)

. n
/ it (e—%@z”-") + 0(|u|3)) Mo + O (e P [ul) du + O (o).
B.AP

1
(2n)? [—7m,7]?
__! /

@r)*n Jiopnpynr

e~ U pn gy

—if- 1 2
e i Jiem 1o

n2

Wi Jvl3 v
+0 <ne_“("_l)n% + e_”|”|2ﬁ> dv+ O0@")

1
© @n)n /[—ﬂﬁ,ﬂﬁlz

i _1.y2
e il ﬁe_f(): v.v)l—lo

3
+0 <e_g”|2% + e—“'v'Z%) dv+ 0"

|

- @) /[—ﬂﬁ,ﬂﬁlz
1

= 2n)n

e~ E e

" 2rn/det 22

where we have changed variables, v = u\/n, and the O are in L(gl, gg) with uniform
bound. This bound is in L(B, B) and not in L(/31, B) because according to Assump-
tion (A3), the map u > I1, is differentiable from [, 8] to L(B;, B2) and a priori not
from [—8, B8] to L(By, By).

gL

v 1 3
e ﬁe_f(zzv'”)l'lodv+ O 2)
_i L. 1 3
/ e 'Vn Ueff(zzv'v)l'lodv+ O(n™2)
R2

Mo+ O0(n~?),
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For the second estimate, we write

1 n
(271')2 /[\—JT ]2 ”P“ ”L(El’g‘) du

1
- e /{ﬂ Tl g, 5 e 0@

1 f 2
< e~ sup Myl f5 7 du + O (™)
Q2m)? Ji—p.pp wel-ppy - CEED

<0@m™h,
using again the change of variable v = u./n. 0O
Due to Theorem 3.17, Theorem 2.2 is a direct consequence of the following result.

Corollary 4.3. Assume general Assumption 4.1. Let f, g : M — R such that Hy(v) :=
E;lg-] € B, and such that f € By. Then

DRI
exp (_ 2n )

Eg [ fls,=0.g 0 T"] =
" [ =0 ] 2mna/det X2

_3
EalfTEzlgl+ 0 (21115, 1 Hellg,) -
(26)
Proof. Observe that we have

i [fLis,=0-8 0 T"] = Ea [P"(flis,=¢)-8] = He (P" Nis,=0y )

recalling (7). We conclude due to Theorem 4.2. O

4.2. Returntime to the original obstacle: general result and proof of Theorem 2.4. Recall
that 7y (x) corresponds to the index of the atom OIk (x) containing T*x and that S, (x)

corresponds to the label of the copy of M in M containing Tk(x 0). We also define
1y on M by canonical projection. We consider the set B, of x € M such that the orbit
(T"(x, 0)),>0 won’t return to the initial atom Oz, x {0} until time 7:

By :={Yk=1,....,n: (I, Sx) # (Zy, (0,0)} C M .

Analogously we define Bj, the set of points x € M for which the atom visited at time n
has not been visited before:

—(Vk=0,....n—1: (Tp, ) % Tp, Su)} C M. 7)

We set By, (a) := 0, N B, and B (a) := T’”(O_a) N B,,. We prove the following result
on the probability of these sets.

Proposition 4.4. Assume general Assumption 4.1.
If15, € B\ and if f = Eilf1B, ()] are uniformly bounded (uniformly in k) in B,
then

2 +/det X2
v aet 2T +0((1ogn)*%) .

(B (a)) = logn

(28)
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If f = Eulfl,1isin B’ and if P 13 (a) are uniformly bounded (uniformly in k)
in Bl, then
27/ det 2

A @) = = ==+ 0 (togm~5) . (29)

Proof. Asin [29], we follow the idea of the proof of Dvoretzky and Erdos [20] and adapt
it to our context. Considering the last visit time to O, x {0} of (T*(x, 0)) until time n,
we write

(02 = Y it (0a N (Sc = 0N T~ (Byi(0))) (30)

k=0

and, analogously,

1(0q) = 1 (T7"04) Z ((T7"0a) N {Su = Sp—k =0} N B, (@) (1)

considering the first visit time to 0, x {S,} before time 1. Moreover, due to Corollary 4.3
and to our assumptions on O, and on B, (a), there exists C" > 0 such that

A(0a)L(Byr(@)| _C"
2kndets? | T k2

Vk € N*, ‘;1 (o'a N{S; =0} N T*k(Bn_k(a))) -

(32)
Since 1 ((F0,) N (S, ~ S,c = 01N B, @) = Ex[15,P* (g0 P
13/4{( ))] and using Theorem 4.2, we also have
o 1(0a)iL(B),_; (@) c"
Vk e N*, |a((T7"0)N{Sy —Sy_x =0NB _ (a) - ——2L | <.
( ‘ oo nk(@) 2k v/ det ©2 %
(33)

We will prove (28) using (30) and (32). The proof of (29) using (31) and (33) follows
the same scheme, and we omit it.

n—1

_ - 1 (0a)i(By—1— K@) C"
04) >
() kzz[:mﬂ 2km+/det 22 Z =l

0 c"
> (Bu(@)) (log(n) — log(m,)) — 22 _ =
27 detZ g k2
_ log(mn)> i(0,) 1
1 B, 1— Oo(m, °),
> log(n) ji( (a))( oen ) oo Jaass O

with m,, = [(logn)?], which leads to

(34)

log(n) fi(B (@) < 27V/det 22+ 0 (l°g 1°g") _

logn
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Moreover
m,,—1 [nlognl—n -, = | -
- = _ M(Oa)M(BFnlogn]fk(a))
m(0y) < (Bulogn]—k(@)) +
‘ ,; frloen] k; 2k /det 52
1 o= 1
. “Zf’” OB @) "SR €
2k /det £2 s

k=[nlogn]—n+1 k=m

n

< m—;’ + (B, (a)) ((log(n logn —n+1) —log(m), — 1)) M)
~ logn ! " 27+/det 32
+10g(n logn) —log(nlogn — n) N C"(mjl)_% ’

2r+/det X2

where we used the facts that 1 (Bp1ogn)—k(@)) < 1(Bp(a)) = O((log n)~ 1 for every
k < [nlogn] — n and that (B, (a)) < 1 for k > [nlogn] — n. This leads us to

_ = w(0y) loglogn + logm),
0, <1 —————— (B 1+0| ——
:U“( Ll) —_ Ognznmﬂ( n(a))< + ( logn

vo (4 oyt
logn " ’
w(04) < (10g10gn>>
<logn—"2Y By (1+0 (2221
2rdet 2 logn
+0 ((1ogn)—%) ,

by taking m/, := [ (log n)%J and so
log(n) i(Bu(a)) > 2xvdet 52+ O ((1ogn)*%). (35)

The proposition follows from (34) and (35). O

In view of applying Proposition 4.4 in our context of random iterations of billiards,
we will use the following result.

Lemma 4.5 (Estimate for random iterations of billiard maps). Assume we are in the
particular case of billiards, with assumptions and notations of Sects. 1-3. There exists
K1 > 0 such that, for every positive integer {, for every (w1, ..., w¢) € EY, for every
uniformly bounded function g : My — R which is uniformly p-Hélder continuous on
connected components of Mo\ (Uf;:l T 1o 0 Tw’k1 (So,H)), and for all f € By,

w]

Biolf gll < Kil flu (Iglo+  sup  Cy ) - (36)
CeCyy,...op
Moreover, for every f € B,

I Lucoy - - Luen €N B < K1l f 118 (|g|oo +  sup Cé{?) : (37)

CeCy,...0
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where Cy, ... v, IS the set of connected components ofMo\ (Uﬁz1 Tw_.l 0---0 7_"0;(1 (So,H))

.....

and where C é.fc) is the Holder constant of g restricted to C.
The proof of Lemma 4.5 can be found in “Appendix A”.

Remark 4.6. The purpose of Lemma 4.5 in our billiard context is to show that K| can be
chosen independently of £. If one wishes similar bounds on piecewise Holder continuous
functions on M withrespect to a fixed partition, then Remark 3.1 and Lemma 3.3 provide
such estimates under general conditions on the boundaries of partition elements.

Indeed, we will apply the lemma to the function g = 13, (4), Where B, (a) is defined
in Sect. 2.2 (see also Sect. 4.2).

Next we are ready to prove the main Theorem 2.4.

Proof of Theorem2.4. Assumption 4.1 follows from Theorem 3.17. The other assump-
tions of Proposition 4.4 follow from Lemma 4.5 since 1p, (4) satisfies the assumptions
on g in that lemma (uniformly in n). O

4.3. Number of self-intersections: general result and Proof of Theorem 2.5. We consider
the number of self-intersections V, of the process (Zx, Sk )i defined by

n
Vo= Y Lo, 7-1)- (38)
k=1

Theorem 4.7. Assume general Assumption 4.1 with Ez =B 1. Assume moreover:

(AS5) the operator [ +—> fléa is a linear operator on 51 foreverya e {1,...,1}.
- 1 1 - — N2
Then (V,/(nlogn)), converges [i-almost surely to it D oaei (Zo = a)=.

The proof of Theorem 2.5 will follow from the following lemmas. Recalling (38), let us
write E ¢ := {Sk = S¢, Zx = Z¢} and Ey := Ep 4.

Lemma 4.8. Assume general assumptions of Theorem 4.7. For £ > k, we have
= \2
(2(0a))

3
ot —k)2),
2nx/det22(€—k)+ (€=

Q <Ek,l n T_kéa) =
and so

- (4]
w(Exe) =

l—k
with ¢ := #«/ﬁ Z;:l n(Zy = (1)2.

+O0((C—k)72) and Ez[V,]=2cinlogn+0(n),

Proof. Since ji is T-invariant, for k < ¢, recalling (22) we have

I (Ek,e N T_kO_a) = (E—kN04) =Ty =a, Se— =0,T—x = a)
=Ez [laaHo,efk(laa)]
(0,)?

= Ot —k)~3),
a2 — by (=0
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due to Theorem 4.2 since 15, € B; and since Eallg, 1€ B~’1 Hence

i(E )‘XI:'(E OT"‘0'>— L1 ((00)) +O(U—k)7)
PR T T e e — 1) |

and

n

ExlVal = Y a(Ex) =n+2 Y @(Eey)

k=1 I<k<t<n
n—1

=n+2 Z(n —m)(Ep) = O(n) +2cinlogn .
m=1

O

Lemma 4.9. Assume general assumptions of Theorem 4.7. There exists C1 > 0 such
that for all non-negative integers n, m, k, for all i, j,i’, j’ € {1,...,1}, and for all
Ny, N» € 72, we have

Cia™

|COVﬂ(I{I():iaSn=N1,Inzi/}’ l{In+m=j,Sn+m+k_Sn+m=N2sIn+m+k=i/})| S (I’l + 1)(k + 1) °

In particular

I12Cia™

Cov;(1g,,,1 < -
| OVM( EO,n En+m,n+m+k)| — (n + 1)(k+ 1)

Proof. The covariance we are interested in can be rewritten
COV@ (léil{Sn=N1}IO_i/ ] Tn’ (10_j1{5k=N2}10_j/ o Tk) o Tn+m)
= Eg [P (16, s,=mlo, © T = Ballg Lis,=v1g, o 71)
b =
(10_,-1{Sk=N2}10j, oT")o T"+m>] .

Moreover, using several times P (f go ") = g P™(f) and the definition of Hy ,,, we
obtain that this quantity is equal to

Ez I:léj’ H N,k (10’./,(Pm —En) (léi/Hle" (10’,)) )]
and so is bounded by

ar ”HNZ’k”L(glvEl) tdj - ”Pm - Eﬁ"L(gl,gl) ~aj ||HN1,n||L(l§1,l§1)”10_,- ”El
Kg
m . . - ~
< max ajrajaillls, g, -
due to (25) and assumption (A5) of Theorem 4.7, together with (A1) of Assumptions 4.1
applied tou = 0. Here a; = ||10_,- X '||L(El,l§1).
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This gives the first estimate of the lemma. To get the second one from the first one,
we just observe that

o ) _ .k
1g, = Z loim{sz_k:omT*(@*k)o,- oT".
i=1

O

We will use the notation A, ~ B, for two positive quantities whenever

1imy— 0o ;;_ =1.

Lemma 4.10. Assume general assumptions of Theorem 4.1. We have V arp (V) ~ cn?,

with

det X2 72 6

I—y1—y—y3
J 1=/ dyidy,dys.
V1,y2,y3>0:y1+y2+y3 <1 Y12 +y2y3 + Y13

(Zézl(ﬁ(éa))z)z <1+2J 1)
C = -~ 1>

The proof of Lemma 4.10 is rather technical and involved, so we move it to the “Appendix
B”.

Proof of Theorem 4.7. Set ny := exp(~/k log k). For every ¢ > 0, due to the Bienaymé-
Chebychev inequality and using Lemmas 4.8 and 4.10,

Varg(Vy,)
DA (Vi = BalVull > eBlVy]) < 3 ot
= = 2 (BalVn, )2

= Z O((logny)™2) = Z Ok '(logk)™?) < oo.

k>1 k>1

Hence (Vy, /Ej[Vn, Dk converges fi-almost surely to 1. Due to Lemma 4.8, (Vy,/
(ny log ng))x converges almost surely to 2¢;. Since ng log ny ~ ny4+1 logngs and since
(Vn)n is increasing, if n € {ny, ..., ng41}, then

Vi / (ks lognger) < Vy/(mlogn) < Vy,,, /(ng logng),
and so (V,,/(nlogn)), converges ji-almost surely to 2¢y. O

Proof of Theorem 2.5. Due to Remark 3.5, Theorem 3.17 and to Lemma 4.5, the as-
sumptions of Theorem 4.7 are satisfied. Therefore (), /(nlogn)), converges ji-almost
surely to

(Zo = a)?

219 04|
+/det X2 Z(ZZb l|80;,|)

1 30,

m+/det ¥2 (Z£:1 |30b|)2

7/ det X2 ZH
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4.4. Random scenery: general result and proof of Theorem 2.6. Assume that to each
atom O; x {¢} is associated arandom variable §; ¢, independent and identically distributed
acrossi € [1,...I]and £ € 72, centered with variance %2 and defined on a common

probability space (2, F, P). We define the random variable (defined on M x Q):

n—1
Zl’l = ZEI](,S]( .
k=0

We also define a linearly interpolated version of Z,, by,

Zn([) = Zl_ntj + (l’lt - LntJ)E(ILn;JH,SLmJH)'

Theorem 4.11 (Annealed and &-quenched CLT for Z). Assume general Assumption 4.1
and that,

i) foreverya € {1,.... 1}, f — 15 [ is a continuous linear operator on El ;
i) and sup, || P¥1 8@, < oo (recalling (27));
iii) there exists ¢’ > 0 such that E3[|S, 121 ~ ¢n.
Then, (g = (gn (t)//nlogn)i=o), converges in distribution, with respect to i @ P
(and to the uniform norm on C([0, T)) for every T > 0), to a Brownian motion B =
2
2 ‘; I = 2

(B1)i=0 such that E[B{] = m/ditﬁ Y1 LTy = a)”.

If, moreover, there exists x > 0 such thatIE[|E(1,o)|2(log+ 1€1,0)D* )] < oo, then, for

P-a.e. realization of (§; ¢)i.¢, (Zn)n converges also in distribution, with respect to [i, to
the same Brownian motion B.

As said before, it should be possible to remove the additional assumption E[|£ 1 ) |2 (log™*
1€1,0)D* )] < oo by using our estimates, combined with the very recent preprint [13]
instead of [21].

Proof of Theorem 2.6. Using Theorem 4.11, we prove Theorem 2.6. Assumption 4.1
holds in the setting of Theorem 2.6 due to Theorem 3.17. Moreover, assumption (i) of
Theorem 4.11 follows from Remark 3.5, while assumption (ii) follows from Lemma 4.5
and (iii) comes from Theorem 2.1. With the hypotheses of Theorem 4.11 verified, The-
orem 2.6 follows using the same calculation as in (39). O

We proceed to prove Theorem 4.11.

For the annealed central limit theorem, we mostly follow the proof by Bolthausen for
random walks in random scenery in dimension 2 [5]. In comparison with [30], the fact
that the almost sure convergence of V,, has been proved greatly simplifies the proof.

Lemma 4.12. Assume the general assumptions of Theorem 4.11. Fix v > 0. For i-
almost every x € M, sup, > }_; 1i5,=¢) = o(n”).

Proof. For every ¢ € Z?* and every N € N*,

" N
Eg (Z 1{Sk=e}> =N Y a(Su=Se= =8 =)
k=1

l<ki=<--<ky=n

= N! Z Eji [Hosky—kn-1 -+ Hoko—ks Hety (D]

I<ki<--<ky<n
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(Ko)V

< N!
(k1 + 1)k —ky +1) -+ (ky —ky_1+1)

I<kj<--<ky=n

= O(K) N!(logm)"), (40)

due to Theorem 4.2. Moreover, due to (iii) combined with a result by Billingsley (see
[4] and [36])

E; [ max |Sk|21| = O(n(logn)?)
k=1,...,n

and so due to the Markov inequality, for every s > 0, it (maxg=1,... |Sk| > n'*") <

Ep[maxio . IS¢7] O(n~1=%) . Now fix & > 0. Then

=i

n
(sup Z 1{5,(:@} > nﬁ>

=1

n
< max |Sy| > 1+ ) - su Ligop > 5
_'LL(k:l,‘..,nl Kl > s p Z {Si=t} > 1

[e]<nl+?

n
<o "N+ +1)? sup 7 (Z 1is,=0) > n0>

le|<n!+? k=1

S O(n—l—ﬂ + (logn)Nn2+279—79N) ,

where we used the inequality E[X > n?] < E[XN = for any N € N* combined
with (40). Now choosing N > (3 + 3¢) /9, we conclude the proof of the lemma by the
Borel-Cantelli lemma. O

Recall that, for x € M, the random variable Z, (x) can be rewritten: Z,, (x) = ZZ: 18T0.8,
S S e &Ny G, ) (x), where N (i, €)(x) := Y1 1s,—¢.7,—) (x) is the num-
ber of visits to the obstacle of index (i, £) up to time n and where (&; ¢); ¢ is a sequence
of i.i.d. centered square integrable random variables defined on some probability space
(Q 9 f? ]P)) .

Note that the variance of Z, (x) (with respect to P) is ogvn (x), where 052 = IE[S(Z1 0h
since, under IP, Z, (x) is a sum of independent random variables of respective variances

0F (Na (i, 0)(x))*.

Lemma 4.13 (Convergence of finite-dimensional distributions). Assume the assump-
tions of Theorem 4.11. For everym > 1, every 0 < t] < th < --- < t, For [-
almost every x € M, (Z;’-’Zl aj (Zin;) — Zinij_1)) (x)/\/m)n converges in dis-
tribution (with respect to P) to a centered Gaussian random variable with variance
2cla§ 27:1 ajz.(tj —tj_1).
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Proof. We fix x € M. The variance of Yiiiaj (Z1t;) = Zntj_y)) () (with respect to
P) is equal to, recalling (38),

2
m
o) a; (Nt 1 G ©00) = N,y (s @)
i=1¢ez?2 \Jj=1
1 m Lnt;] lnt ]
= ‘752 Z Z ajaj Z Z V5=t To=i. 8 =0.7, =i} (%)
i=1¢ez? j,j'=1 k=|ntj—1]+1 k’:Lntj/71j+l
m LnljJ Lntj/J
2
=0¢ Z ajaj Z Z Vs5i=s, T, =7,y (X)
J.J'=1 k=[ntj_J+1k'=[nty_;]+1
(41)
m
= 052 Zaiant_,-J—l_ntj_lJ o Tlj-1]
j=1
+ Z ajaj ((VUU]'/J—U”J'—IJ — VL”[j/—lJ—L"quJ) o f‘LntjflJ
1<j<j'<m

+ (Vlmj/,lJ—LnljJ — thlj/J—LnljJ) o TLnth))

m
~ 2c1cr$2 Za?(tj —tj_1)nlogn,
j=1

for jt-a.e. x € M, due to the proof of Theorem 4.7 (since (V,/(nlogn)), converges
[-almost surely to 2c¢q, as well as any sequence of random variables with the same
marginal distributions).

Note that, with respect to P, 37 a; (Z{ns;) — Z|u;_,y) (x) is a sum of independent
centered random variables with variances

2

op 0 (0) =07 [ D" ajNing, i () = Nipry_y 1, £ (x))
j=1
il

Hence, due to Lemma 4.12 and to the Lindeberg Theorem, for ji-almost every x € M,
the sequence of random variables

( 214 (2111 = 21y 1)) ) )

Var (3 i_yaj(Zing) — 2 ) (X))

converges in distribution (with respect to PP) to a standard Gaussian random variable.
The conclusion then follows from (41). O

Lemma 4.14. Under the assumptions of Theorem 4.11, the sequence of random vari-
ables (Zn (t)/+/nlog n)n is tight (with respect to i ® P) in C([0, T]) for every T > 0.
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Proof. Due to Theorem 4.7, it is enough to prove the tightness of (gn )/
Due to [4, Lemma p. 88], it is enough to prove that

lim hmsupk (n ®P) < Irllax | Zk| > )»ag\/Vn> =0. 42)
JOY )

A—>+00 p—s400

We modify the proof of tightness of Bolthausen in [5]. For completeness, we explain
the adaptations to make. Following [5] (see also [30, bottom of page 824], using the fact
that (Z,), has positively associated increments knowing (S, ),, we obtain that, for any

A > V2,
(ﬁ®®<%gﬁﬂzk%Jw)sﬂﬁ®MO&J>Q—¢5%/W).

Now we simplify the conclusion of [5]. Since we know that (Z,,/+/V,), converges in
distribution to a Gaussian random variable Y, so

n—+oo

lim sup(u ® IP) (max 2] = Aag/?n) <2P (|Y| > (A — x/_)ag)

and P (Y| > x) = O(e_"sz) for some cy > 0, which proves (42) and so the tightness.
O

Proof of Theorem 4.11. The first result of Theorem 4.11 is a direct consequence of
Lemmas 4.13 and 4.14.

Now let us prove the last point. For this, we use the general argument developed by
Guillotin-Plantard, Dos Santos and Poisat in [21]. Indeed the proof of [21] only uses the
following assumptions:

e [ is a denumerable set,

e §:= (Sy)n>0 is a sequence of I'-valued random variables,

o & := (§)yer is a sequence of independent identically distributed real valued random
variables, which are centered and such that E[|$y|2(logJr |E,DXD] < oo for some
x >0,

e the sequences of random variables £ and S are independent,

Lnt]—1 e
(W(Z n &3, + (nt — Ln”)gst"”))te[o,l] converges in distributionin C (0, T')
to the Brownian motion B,
° supyerE[N (y)] = O(logn) with N ) =#k=0,....n—1: 8§ =y} =
Zz(l) 15— W  being the local time of S.
o Zyer(IE[(N (y)? = O(n), with the same notation.

o P(S, & (S0, .-, Su—1)) = O(logn)™h).

We apply this to I' = {1,...,1} x Z* and §n = (Z,, Sp). For the antepenultimate
condition, observe that, due to Corollary 4.3,

n—1 n—1
E[Na(a 01 = 3 E; [1{Sk:g}.100 ° T] =Y Ex [1@aHg,k(1)] — O(logn) .
k=0

k=0



2320 M. F. Demers, F. Pene, H.-K. Zhang

For the penultimate condition,

n—1 n—1
v 2
DENa D =37 Y Biallg g o] = D Epallz s .

yel' yel k,j=0 i,j=0

considering an independent copy S = (§,’1 = (7, S))), of S. Now, using again (23)
combined with Assumption 4.1 with 8 and @ > 0 as in the proof of Theorem 4.2, we
obtain

- /[ LEe [ Pia]Eg [P2,1] du

< / e~ kP B, [11,1]] e~ By [T1,1]] du + O (@)
(5,51

< | e WP B, [T 10| e By [T,10] du + O (@)

RZ
=0(l+k+jIh.
Therefore
- 1
E N 2: —_— = .
> ELN.ND* = 0 ‘Z ke | = o®
yel 0<j,k<n—1

The last condition comes from the second part of Proposition 4.4. Note that in order
to invoke Proposition 4.4, we need that the operator f + E;[f 15 ] is continuous on

Eé This follows from the fact that we have assumed (i) in the statement of the theorem,
that f +— f1g, is a continuous operator on 51, and that by Assumption 4.1, E;[-] acts

continuously on B5. The second condition needed to conclude (29) from Proposition 4.4
is precisely assumption (ii) in the statement of the theorem. O
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Appendix A. Proof of Lemma 4.5

Here we prove the Lemma 4.5, which was used in Sect. 4.2, especially used in the proof
of Theorem 2.4.

Let us prove that (36) holds true. By density, it suffices to perform the estimate for
f € CY(My). In the proof below, we use the fact that the invariant measure jiq is
absolutely continuous with respect to the Lebesgure measure.

Choose £ > 1 and fix w _45 = (w1, ...,we). Let g be as in the statement of the lemma.
For brevity, denote by T = ka ---0 Twl the composition of random maps and by

4 J4 _ (p)
ﬁQz its @somated transfer operator. Also, set H; (g) = [gloo + SUPCEC,, ., C gl - We
must estimate

_ - £ 0 N—1 5~
Eﬁo[fg]—/Mofgduo—/%ﬁ%f'go(@[) diio.

To do this, we decompose 1\_40 into a countable collection of local rectangles, each
foliated by a smooth collection of stable curves on which we may apply our norms. This
technique follows closely the decomposition used in [16, Lemma 3.4].

We partition each connected component of M, 0\ (Ujk|>koH), into finitely many boxes B
whose boundary curves are elements of WW* and W*, as well as the horizontal boundaries
of Hiko We construct the boxes B; so that each has diameter in (§/2, ), for some § > 0,

and is foliated by a smooth follatlon of stable curves {W¢}zez;, such that each curve
We is stretched completely between the two unstable boundanes of Bj. Indeed, due to
the continuity of the cones C*(x) from (H1), we can choose § sufﬁciently small that the
family {We}eez; is a family of parallel line segments.

We disintegrate the measure 1o on B; into a family of conditional probability measures
dpg = cg cospdmy,, & € Ej, where ¢¢ is anormalizing constant, and a factor measure
Aj(&) on the index set &;. Since g is absolutely continuous with respect to Lebesgue
measure on Mo, we have A ;(E;) = 1o(B;) = O(8?).

Similarly, on each homogeneity strip H;, ¢+ > ko, we choose a smooth foliation of
parallel line segments {W¢}secz, C H, which completely cross H;. Due to the uniform
transversality of the stable cone with dH];, we may choose a single index set E; for each
homogeneity strip. We again disintegrate jip into a family of conditional probability
measures dug = cg cosp dmy,, § € &, and a transverse measure A, (§) on the index
set &;. This implies that 1, (E;) = fto(H;) = (’)(|t|’5) for each |t| > kg.

Notice that on each homogeneity strip Hy, the function cos ¢ satisfies,

| log cos ¢ (x) — logcos p(y)| < Cd(x, y)'/? (43)

for some uniform constant C > O (uniform in k).

We are ready to estimate the required integral. Let G,(Wg) denote the components of
(TéZ )~ ! We, with long pieces subdivided to have length between 89/2 and do, as in the
proof of Lemma 3.14.
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/z:;f-go (T diio
=% [ b rese @y ins 3o [ £l fego () i
J J [t]>ko ©

=Zﬁ Wﬁ@f-go%)*‘dugdx,-(&)
jUEienE

* Zﬁ /Wfigf'gO(Ta’fz)‘ldugdxt(g)

lt|=ko™ =1
=Zﬁ > fgcecospoTh I, Ty, dmw, ;)
J U WeeGu(wey Ve
4y / 3 fgcecosgoTL e, L dm,,di(®).

lt1=ko ¥ Bt We Gy (We) ¥ Ve

Next we use the assumption that g is Holder continuous on connected componts of
Mo\(Uﬁz 1 Tajll 0---0 TJkI (So,1))- Since elements of G (W) are also subdivided accord-
ing to these singularity sets, we have that g is Holder continuous on each We ; € Go(We).
Thus,

"y fgcecospo Té{ JWMTQE{ dmyy, ,
&

< |flwlglerwe Hcelcosg o Té|CP(W5.i)|JW5,i T£(|Cp(wé.i)
- C
¢
< |f|ngp(g)|JW£,,vTQ£|c0(wg,,~) Wil

where we used (43) in the last estimate, as well as the fact that the normalizing constant
cg is proportional to |Wg|’1. This implies that

Eolf 81 = CUAHI@O(D [ 20 1w Tl leoqwe Wl ™" di6)
JoUE We i €Go(We)

+ Z / Z |JWEJTQ£(|CO(W5,,')|W$|_] dkl(g))

[t1=ko ¥ = W €Go(We)

Now ZWE,I- eGe(we) e Té{ lcow ;) 1s bounded by a uniform constant independent of §
and w, by [16, Lemma 5.5(b)]. Moreover, fa, |We |"d)»j($) < Cé for some constant
C > 0 since we chose our foliation to be comprised of long cone-stable curves. We
conclude that the first term to the right hand side of the last inequality is uniformly
bounded by C; |f|wa (g) since the sum over j is finite.

For the second term on the right hand side of the last inequality, we again use [16,
Lemma 5.5(b)] as well as the fact that |Wg|_l = O(3) for & € &, while 1,(E;) =

O(t7). Thus

> /ﬁ [Wel™lda &) < Y Cr7% < Chy

ltl=ko © = |7]=ko
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‘We conclude that
|Eaolf 81| < Kil flwH] (8).

for some uniform constant K| depending on .7:'190, but not on f, £ or w,. This completes
the proof of (36). ~

To prove (37), we follow the proof of Lemma 3.14. Note that for f € c! (My), W e WS,
and a test function v, we have

[ Lvoe Lu(Gorwamy =3 [ goen Sty o T s T, dm.
w Wi Wi B

where the sum is taken over W; € G,(W), the components of (Té Y~1W, subdivided as

before. This is the same type of expression as in [16, eq. (5.24)] or [16, eq. (4.4)], but
now the test function is
ge”"sf Yo Téz Jw. Tt

ilw,

rather than simply ¥ o Ta‘fe Jw, 7_"@@[. Since Sy is constant on each W; € G¢(W), and we
have assumed that g is (uniformly in £) Holder continuous on each W; € G,(W), the
proof of the Lasota—Yorke inequalities follows as in the proof of [16, Proposition 5.6].
The bound (37) then follows as in the proof of Lemma 3.14.

Remark A.1. As a consequence of this lemma, if g : M — R is a bounded measur-
able function such that, for every @ = (wp)r=0 € E, there exists positive integer
£y such that g(-, @) is p-Holder on every connected component (uniformly on w) of

MO\ (Uii;lT Lo oo ! (S(),H)>. Then, for every f € BNw, we have

o Op(p)—1

Ealgfl| = ‘/EEﬂo[g(-,@f(x,g)]dn@)‘
=K ~ (p)
= 1||f||13w llglloo + sup sup C(g(.,w))c) ’
QEEN Cecaq AAAAA wy (w) o

with the same notations as in the previous lemma. Therefore, Ez[g-] is in B’ZH

Appendix B. Proof of Lemma 4.10
Note that V, =n+23 o<, 1{s,=5,.7,=7;)- Hence
Varp(V,) =4 Z Z Diy e k2,025
I<kj<€1<n 1<ka<fr<n
with Dk, ¢ k.65 = W(Ek; ey N Eky o) — L(Egy,0,) L (Eky,e,)- It follows that
[Varp(Va) — 8(Az + A3)| < 8(A; + Ag), (44)
with

Ap = > |Diyty kot ] s A2 = > Dt .2 5

1<ki<tli<kp<lr<n 1<ky<ky<li<lr<n




2324 M. F. Demers, F. Pene, H.-K. Zhang

Az = Z Dy, ey kaitr Asd = Z |Dk|,81,k2,lz ’
I<ki<ky<lr<l1<n (k1,k2,1,62)€ EnUFy

with

E, = {(k1, k2, £1,€2) € {l,...,n} : k1 =k < min({y, £»)},
Fyi= (1o, €1, €2) € (1. ..., n) + max(ky. ky) < £1 = £a).

We will start with the two easiest estimates: the estimates of the error terms A and Ag4.
The method we will use to estimate the main terms Aj and Az differs from [31].
Due to Lemma 4.9,

2 Crah2h _ 0 9
A <1 Z ST 0 (n(logn)?) = o(n?).

1<ki<li<ky<tlr<n

Let us now prove that A4 = o(n?) by writing

Z | Dk 1 ot |

(k1,k2,81,82)€E,

<2 Y (A(Eke N Ee) + AEe)i(Ex))

I<k<t;<l3<n

<2 > (i(Sy = Se, = S0+ iA(Se, = S(Se, = Si))

1<k<t;<l<n

=2 Z (Eﬁ [HO,Zz—ZlHO,Zl—k(l)] +Ez [HO,Zl—k(l)] Ez [Ho,ez_k(l)])

1<k<tl1<lr<n

/ 1 1
=K 2 ((31 G-+ G-k —k)>

1<k<t1<lr<n

for some K(’) > 0 due to Theorem 4.2, since E;[-] is a continuous linear operator on
By and since 1 € Bj. This leads t0 Y, 1 ¢, 1)<k, Dkl’gl’kz’gzy = O(n(logn)?).
= O(n(logn)?). Hence A4 =

Analogously, we obtain Z(kl,kz,il,ﬁz)an |Dk1,€1,kz,£z

2
o(n°).
For A,, we study separately the terms (t(Ek, ¢, N Ek, ¢,) and the terms f(Ex, ¢,) i
(Ek,,¢,). First by Lemma 4.8,

Yo BB

1<ki<ky<li<lr<n

=d Y (@-kT o -k
1<ki<ka<tli<lr<n
(2= k)™ + 02 = k) /)

1
=omn’) +c Z ) —k))Us — k)’ )

1<ki<ky<li<lr<n
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where we used the fact that

2

1<ki<ky<li<lr<n

- X”: 1 1

3
my+m 3
mymy.mzma=1"""2 3 (m3 +myq)2

1 1
b=k (6 — k)

n

n n 1 1
EHZ Z my +ms3 Z

3
m3=1my=1 mg=1 (m3 +m4)2

- _1
=0|n Z lognmy *

m3=1
= O(n% logn) = o(nz) .

Therefore, due to the Lebesgue dominated convergence theorem, we obtain

Y BB

1<ki<ka<li<lr<n

dxdydzdt
=0(n2)+c%n2/ raydz
1 lnx] _lny] _[nz] _ [ne] o4 ([nﬂ _ \_nxj) ((nt] _ Lnyj)
n— n n n n — n n n n
dxdydzdt
~cfn2/ yaz
O<x<y<z<t<l (z—=2x)(—y)
2
2 2 !
2T 2 n - 2
T T 18derx? (;“( 0=a) ) (46)

The rest of the estimate of A, is new (it is different from [31]). Fix for the moment
1 <ki <k < €1 < ¥ <n.Note that

W(Exy 0y N Egye,)
I
— (T k T —k2 7 410
= Z (T 0,NnT ™ 0,NnT~ (0,
a,b=1

AT =205 N {Sk, — Sk, = —(St, — Sky) = St, — Sgl}> .
Using now (23) as for (24), we observe that 15, s, ——(s,, —Si,)=5¢, -5, } 1S equal to the
following quantity
1
@n)* ((—m.7)?)?
which is also equal to
1
@n)* ([~ ]2)2

- (21)4/ o -Skg—ky oTM1 i (uv)-Se) iy oT*2 Jiv-Sey ey TV ) 11
)7 J(=mm?)?

117(Siy =Sk (St =Sk ) iV (St =St 450, =510)) gy iy |

1Sy =Sk)) i (W0)-(Se; =Sky) i V(S =Se1) g1y d
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Now using the P-invariance and T-invariance of 0 and several times the formula
P"(f.goT™) =gP"(f), we obtain

W(Eg e, N Eg, 0,)
I

L - L1~k ko—k
= Z (27[)4 ( Py ]E,ll I:l(ijfZ a1 (1011 Pu-il—v 2 (IO-bPMZ 1(10_,,))>] dudv .
a,b=1 -,

Due to our spectral assumptions, we observe that

P’ =\'TL, + O(a")

up to defining A, = e~ ZM0U for y outside [—B, B]? and so, proceding as in the proof

of Theorem 4.2, we obtain that, for every n > 2 and every u, v € [, 713,

Pl = e AR L+ 0 (@) + (e M (ul + nlul))

_ o EEE 14 0 )

2 2 _nzly2,

and |A)| < e~ 2alul” for some a > 0 (such that e =24171” > a",max(kﬁ_l, e~ T Ty <
_ 2 . _ 2 _ 2 .

e~ 2anul”y gince n|u|?e~ 24Ul = O (e~"alI"). Therefore, we obtain

- —k -
Ez [10,,sz “ (10,,Pfiv ’ (10’,,1’52 k‘ﬂ@)))]
= (R(OD)(0p) e 2CEED 1 0 ((Jul + phe™C) | (47)
where we have set

O(u,v) i= (b — €D)|v* + (€1 — ko) |u + v]? + (ko — kp)|ul?
= (b — k) V> +2(¢) — k) - v + (€1 — kp)ul?
= (Ag(u,v)) - (Ag(u,v)) = |Ag(u, v)|?,

£ —ky 0 41—k O
with A7, := ’ E ks b akl ¢ g ks b Ekz which is symmetric with determinant

0 41—k 0 £r—k

det AG = (&) — k1)*(La — k2)* + (L1 — ko) — 2(01 — k2)* (€1 — k1) (€2 — ko)

= ((ka — k1) (1 — ko) + (ky — k1) (€2 — €1) + (£1 — ko) (€2 — €1))*.
(48)

Due to the form of A2Q, we observe that A2Q has eigenvectors of the forms (x, 0, *, 0) and
(0, %, 0, %), that it has two double eigenvalues of sum (without multiplicity) £ —k;+€2 —

ko and of product (without multiplicity) , /det AQQ. Therefore its dominating eigenvalue is

smaller than the sum and so is less than 4 max (kp — k1, £1 — k2, £2 —£1) and so (using the

fact that the product of the two eigenvalues is larger than the maximum times the median

of these three values) the smallest eigenvalue of A2Q cannot be smaller than a quarter of
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the median of ko — ki, €1 — ko, €2 — £, that we denote by med (ko — ki1, £1 —ka, €2 —£1).
So

/ e eIV gy dy = (det 2)72/ e "CWY) gudy
(7, 712)? (El-m,71%)?
- (detAQ)*l(detZ)*Zf eI g gy
Ag(Z([—m.w]?)?)

IR gy + O(e—almedacz—kl,zl—kz,h—zl)z))

= (det Ap)~!(det )72 (/
@22
= @m)2(det Ag)~ (et )72 (1 + O(emvmedtbahrtizhoamti?y )

for some a; > 0. Moreover

/ [(u, v)]|e LWV qudy = (detAQ)—lf 1A, v) eI gxdy
(R2)? @y 2

—0 ((detAQ)_l med(ky — ki, €y — ka, €2 — el)—%) .
Therefore

ll(Ekl,Zl N Ekz,fz)

(Xl a00?)

T (@n)? detAg det 32

(1 +0 (med(kg — ki, by — ko, €y — zl)—%)) . (49)

But using (48),

> (det Ap)~!

1<k <ka<tli<lr<n

> 1
| <ky <komty<tyn (k2 —k1)(€1 — k) + (ko —k1)(£2 — £1) + (€1 — k2)(£2 — £1)
- > 1
mi,my,m3,m4>1: my+mo+mz+mq<n mam3 + mams + msms
=n . —dy1dy,dy3 dy,
(0.4+00)4 fnzﬂ Fnrylﬂ + fn;:ﬂ (nrylﬂ + fnrylﬂ (nr)l'ﬂ
1 ,
N n2/ {y1+ya+ys+ya<1} dy dy> dy; dys,
(0,400)% Y2Y3 + Y2y4 + y3y4

due to the dominated convergence theorem. Therefore

> (det Ag)~! ~ n?

1<ki<ka<li<lr<n

-y —y3—yal :
/ (I =y2 = y3 = ) oaysep=<1) dy>dysdys = n*J . (50)
(0,+00)3 Y2y3 + y2y4+ y3ya
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Analogously

3 (det Ag) ™" (med(ky — ki, €4 — ko, £ — £1)) "2

1<ki<ko<tli<lr<n

_ 3 !

1
ml,m2,m3,m4zl M m1+m2+m3+m4§n (m2m3 + m2m4 + m3m4) med(st m3s m4)2

<n Y 1 1

I<my<mz<mas<n (Mym3 + momyq + m3my) m37 D

1 n n 3
<n Z 3 §n10gnz Zm32

1<my<m3z<ma<n mymgy moy=1m3=m3

" _1
<nlogn Z O@m,?*) = O(n% logn) = o(n?).

mpy=1

Equations (49), (50) and (51) lead to

(Xhoy a00?)

2
(@o)rdersy) @ Hon):

Z :a(Ekl,fl N Ekz,[z) =

1<ki<ky<li<lr<n

Combining this with (46), we conclude that

2 ! R
z(Zﬁ(Io=a)2> (E*H)‘ (52)
a=1

The study of A3 is the most delicate. We can observe thatboth sums Y 1, _t, <¢, <4, <n
A(Ex, ¢, N Ek, ¢,) and Zl§k1<k2<€2<£15n A (Ek, e,)t(Eg, ¢,) are in 0 (n? logn). How-
ever, we will see that their difference is in n>. Once again our proof differs from

the one in [31] and is based on the same idea as the one used to prove A;. We set
Ei.¢(b) := Ex ¢ N {Z; = b}. Due to the first part of Lemma 4.8,

Ay = > [(Egy 6, N Egy 0,) — (Egy ) A(Ery 0)

1<ki<ky<ly<li<n

= 0(}12) + Z Z (_Ikl,kl,ll,lz + ll(Ok],kz,ll,lz N Skl,kzgll,lz))

1<ky<ky<lr<li<na,b=1

=o(n’) + > Z iy oy 11,0 (53)

l<k1<k2<£2<£1<n a,b=1

+ E; [1 5 phi—t (1 5. Ho.t,—k
Z Z ((27_[) \/[7-[’7-[]2 13 Oqg" u Op 542 2

1<ky<ky<tp<li<na,b=1

(10,754 (1)) a0
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where

(i1(0a))* i Epy .0, (b))

2r/det 22(¢) — ky) |

Ok do iy = 0, N T*(szkl)o_b n T*(eszl)o'b N f*(ﬁlfkl)o'a’
Sk],kz,ll,lz = {Sﬁz—kz o Tkz_kl = 0} N {SZI—ZQ o T@z—k} = _Skz—k1}~

Ii(ky, ki, b, ) =

Now, as we did for (47) (and using Theorem 4.2), we get that

1o (a7 2 )]
s =gk g 0 lul e
_ (M(Oa))ze ) [Zul Ez I:lébHo,ngkzlo‘b:I + 0 <me nalu| ) .

Therefore

ﬁ /(_M)z E; [léa pi—t (10—bHo,22—k2 (101, plh (1@a)))] du

- = 2_
_ @0 (Ers®) 0( ! z) 55
27(0) — € + ko — kp)Vdet 52 (br — k) (€1 — €2 +ky — k)2

We will now prove that the term in O in this last formula is negligable. Indeed its sum
over {1 <k <ky <> <¥¢; <n}isin O of the following quantity:

Z (%) <nlogn Z Z (m4+m2)_%

mi+mo+m3z+ms<n m3(mg +my)? my=1mg=1

n
<0 [nlogn 3" my? | = 03 logn) = on?).

mo=1

This combined with (54) and (55) leads to

L (1(0))? it (Ery.ey (b
Az = o(n?) + Z Z (( 22 ,udit ;2,252( )

1<ki<ko<y<li<na,b=1

1 1
El—€2+k2—k1 El—kl ’

i.e.

Az = o(n?) +

STy = a))? ¢l -3
27 +/det ©.2 Z (’71_3-+-()(m3 2)>

m3

mi+mo+ms+myag<n

(ma + mg)(ma +m3 +my)

= o(n2) +C% Z !

1yt <n (ma + my)(ma +m3 +my)
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since

1
> T
my+mytmz+ma=n m3 (my + mg) (ma +m3 + my)

" _1
=0|n Z msy* (mams)~' | = o(n?).

mo,m3,mq=1

Therefore, due to the Lebesgue dominated convergence theorem,

2
Az ~n C%/ 1 dyidyrdysdys ~ Ln?.
V1,Y2,Y3,94>0:y1+y2+y3+y4 <1 (2 +y4)(y2 +y3 +y4) 2

To conclude the proof of the lemma, we use the estimate for Az together with (44)

and (52) to obtain,
2
X]: (0 )2 __l + i
L 48 " 4n2

2 ! “rarel 1
n _ = +
= 0 — .
det X2 (a:l #(0a) ) |: 72 6:|

This finished the proof.

8n?
det X2

8Ay +8A3 = 4cin® +

Appendix C. Spectrum of P,

In this appendix, we are interested in the spectrum of the family of operators P,. We
start by stating a result for the unperturbed operators L, o.

Lemma C.1. Let u € R2, h € B and ) € C be such that Ly oh =AhinBand |A] > 1.
Then either h = 0 oru € 272 A = 1l and h is [Lo-almost surely constant.

Proof. Recall that for ¥ € CP(My), we have ¥ o Y_‘O” € CP(T"W?*). Note that
Luoh(p) = h(e" 0y o Tp).
Thus forn > 1,
Ly oh(¥) = h(e" 50y o Tgh),

where S, &g = Po+PooTp+- - -+<I>()07_‘6'_1 denotes the partial sum. By [16, Lemma 3.4],
using the invariance of 4,
()| = (A" (™S P00 T

< CI" 1l (1509 0 T loo + €2, (€752 -y 0 Tg), - (56)
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()

Ty "W
of T,"W?. Since let#Sn®o| = | and S, Py is constant on each element of T, "W*, we
have

where C (-) denotes the Holder constant of exponent p measured along elements

(p) iu-S,®g | T
e voly)

< 1S CP (g o T 4 1 0 T o C (S
< oo C oy W 0 T) + 1 0 T loo 10 € )
<CA O ().

Using this estimate in (56) and taking the limit as n — oo yields |z ()| = 0if |A] > 1
and |h(Y)| < Clhly|¥|so forall ¥y € CP(OV9) if |A| = 1. From this we conclude that
the spectrum of £, ¢ is always contained in the unit disk. Furthermore, when |A| = 1,
then £ is a signed measure. For the remainder of the proof, we assume |A| = 1.

Let V, o be the eigenspace of L, o corresponding to eigenvalue A, o, and IT, o the
eigenprojection operator. Since we are assuming V', ¢ is non-empty, Lemma 3.14 implies
that £, o is quasi-compact with essential spectral radius bounded by t < 1. Moreover,
Lemma 3.14 implies that ”LZ,OHL(KB) remains bounded for all # > 0, so using [15,
Lemma 5.1], we conclude that £, ¢ has no Jordan blocks corresponding to its peripheral
spectrum.

Using these facts, I1, o has the representation

I~ i
; —ipl _—
Jim s 20 g = o,
j=1

In addition, for f € C'(My), ¥ € CP(W*),
. 1 - —j iu-S: =]
Mo f )| = | lim = > 277 £ 5%y o Ty)| < | flool¥loo-
n—oo pn 4 ]
i

Since nu,ocl(Mo) is dense in the finite dimensional space }'I,LOB, therefore l'[u,()Cl
(M) =11, 08B = VL,,()._SO forh € V, o, there exists f € C1(My) such that yof =h.
Now for each ¢ € CP (M),

Ih(Y)| = [Tu0 f (Y] = [flooTIo 11 D) = [ flooito (1 ]).

Thus £ is absolutely continuous with respect to f1o. For simplicity, we identify & and its
density with respect to fig; then i € L°°(My, j19). Now for any ¥ € C” (WV*), we have

w [ hdio = [ o ) - v dio
My My

= | (" ®h)oTy" - ydpo.
My

Accordingly, > h = (e ®h)oT, !, fig-a.e. Orequivalently, we have A ho Ty = /" ®0h.
Hence " h o T = e'*S5n®0p,

Let G, be the closed multiplicative group generated by A and let m, be the normalized
Haar measure on G,.. (G, is finite if A is aroot of unity;itis {z € C : |z| = 1} otherwise.)
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The dynamical system (G, m;, T;) is ergodic, where T; denotes multiplication by A in
G).. Due to [28], the dynamical system (Mg x Gy, o ® my,, To x T;.) in infinite measure
is conservative and ergodic. But the function H : My x G, — C defined as follows is
(To x Ty)-invariant:

V(x, £, y) € My x 72 x G,, Hx+¢,y):= yh(i)e_"""f_
Indeed, for o ® my-ae. (x +£,y) € My x Gy,
H((Ty x T3)(X +£,¥) = H(To(X) + £ + Po(X), Ay) = Ayh(To(x))e "ot

= ye " h(To())e W)
= ye "h(3),

due to our assumption on /. We conclude that H is a.e. equal to a constant, which implies
thatu € 2772, . = 1,and h is [Lo-a.s. constant. [0

Proposition C.2. Given 8 > 0, there exists C > 1 and o € (0, 1) such that

vne N,  sup P/l 55 < Ca"

B=lul<m

Proof. Fix § > 0.Dueto [1, Lemma 4.3], Lemma C.1, and the continuity in « provided
by [17, Lemma 5.4] (see also Lemma 3.16 applied to £, o rather than P,), we know that
there exists C > 1 and o € (0, 1) such that

Vn € N¥, sup ”LZ‘O”L(B,B) < Ca".

B=lul<m
Therefore, for every f € g, we have

sup [Py f(x. o)

weEN
= sup Ly of (s (@, Q))dfl@n(d))n
QGEN E" B
< sup f | L0 f G (@, @) 5 dn®" (@)
weEN
< sup Co" sup||f( w)HB
weEN

where we used Lemma 3.7 to obtain the second line. Analogously,

[P f(x, @) = Pl f(x, )] 5

Q;IZ d(w, )
. o €00 (70 @ 0) = £ @.00) dnP @)
_Q?éi d(w, )
lero(re@on - s @en)|,
<20 ) @ o
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< Caror sup 1D = SC D
vt d(@, o)

We conclude by putting these two estimates together. O
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