
Safe, Fast Sharing of memcached as a Protected Library
Chris Kjellqvist

ckjellqv@u.rochester.edu
Department of Computer Science

University of Rochester

Mohammad Hedayati
hedayati@cs.rochester.edu

Department of Computer Science
University of Rochester

Michael L. Scott
scott@cs.rochester.edu

Department of Computer Science
University of Rochester

ABSTRACT
Memcached is a widely used key-value store. It is structured as a
multithreaded user-level server, accessed over socket connections
by a potentially distributed collection of clients. Because socket
communication is so much more expensive than a single operation
on a K-V store, much of the client library is devoted to batching of
requests. Batching is not always feasible, however, and the cost of
communication seems particularly unfortunate when—as is often
the case—clients are co-located on a single machine with the server,
and have access to the same physical memory.

Fortunately, recent work on protected libraries has shown that
it is possible, on current Intel processors, to amplify access rights
quickly when calling into a specially configured user-level library.
Library instances in separate processes can then share data safely,
even in the face of independent process failures. We have used
protected libraries to implement a new version of memcached in
which client threads execute the code of the server themselves,
without the need to send messages. Compared to the original, our
new version is both significantly simpler, containing 24% less code,
and dramatically faster, with a 11–56× reduction in latency and a
roughly 2× increase in throughput.

CCS CONCEPTS
• Information systems → Key-value stores; • Software and its
engineering → Access protection; Client-server architectures.

KEYWORDS
key-value store, protected library, cross-application sharing, mem-
ory protection keys

ACM Reference Format:
Chris Kjellqvist, Mohammad Hedayati, and Michael L. Scott. 2020. Safe, Fast
Sharing of memcached as a Protected Library. In 49th International Confer-
ence on Parallel Processing - ICPP (ICPP ’20), August 17–20, 2020, Edmonton,
AB, Canada. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/
3404397.3404443

1 INTRODUCTION
The ubiquitous client-server model distinguishes strongly between
client processes, which request a service, and server processes,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8816-0/20/08. . . $15.00
https://doi.org/10.1145/3404397.3404443

which provide it. Any resource on which the server depends for
its correct operation is generally mapped into the server’s address
space only; to access the resource, clients must make structured
requests to the servers, typically via socket communication. Server
threads listen on those sockets; receive, unpack, and validate re-
quests; perform requested operations; and return results, again via
socket communication. Because the server and client are isolated
from one another, a correctly functioning server can enforce access
rights, check the consistency of arguments, and ensure that every
operation preserves resource invariants and executes atomically,
even in the face of client crashes.

Unfortunately, socket communication can add substantial over-
head to simple services, evenwhen no physical network is traversed.
On a recent Intel box in our lab, datagram messaging over Unix
domain sockets incurs a minimum round-trip latency of 3.3—9.6 µs,
depending on which cores or hyperthreads are running the com-
municating threads.

Key-value stores are a case in point. The widely used mem-
cached [21] is organized as a process containing an adjustable num-
ber of server threads that communicate with clients over sockets.
Socket communication allows the server to be used in a data center,
where it runs on a different machine from most of its clients. Mem-
cached is also widely used, however, in more local environments,
where it shares a single multicore machine with its clients. In such
an environment, the latency of socket communication overwhelms
that of the actual service, which is essentially a hash table lookup.
Moreover much of the complexity of the memcached code base—
roughly a fifth—is devoted to communication management. This,
too, seems like a waste in the local case.

Concerns over the cost of accessing services are not new. They
contributed heavily to the debate over microkernels almost 30 years
ago [31]. Researchers sought to increase modularity, reliability,
security, and maintainability by moving significant functionality
out of the operating system kernel and into user-space servers.
Communication with those servers was still mediated by the kernel,
however, making the baseline overhead of calls reflected to a server
roughly double that of a call that was handled in the kernel.Whether
this overhead was significant, and whether it was overshadowed by
other issues was hotly debated, but developers largely voted with
their feet, and monolithic kernels still dominate today.

Several recent systems have sought to achieve the modularity
benefits of microkernels at lower cost. Dune [1] uses hardware
virtualization to run each user process in a separate virtual machine,
giving it direct access to protected hardware features under control
of the hypervisor. Arrakis [27], inspired in part by Dune, separates
“control plane” and “data plane” operations in the I/O system, and
leverages single-root I/O virtualization (SR-IOV) [15] hardware
to allow applications to interact directly with memory-mapped
devices. Similar functionality is provided by a variety of other recent

https://doi.org/10.1145/3404397.3404443
https://doi.org/10.1145/3404397.3404443
https://doi.org/10.1145/3404397.3404443

ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada Chris Kjellqvist, Mohammad Hedayati, and Michael L. Scott

systems [13, 14, 18, 23]. IX [2] and ZygOS [29] build upon Dune to
provide this same direct-to-device functionality while maintaining
a protection boundary between the application and the I/O library.
Snap [24] achieves similar protection without virtualization by
dedicating one or more cores to actively spinning server threads,
which scan shared in-memory queues for client requests.

Most of these recent systems have focused on performance for
individual applications, with limited attention to cross-application
sharing or system-wide resource management (e.g., to enforce qual-
ity of service guarantees). IX and Zygos could potentially accom-
modate sharing, and Snap already addresses QoS, but each has
limitations (its dependence on virtualization or on dedicated cores),
and the other systems would be hampered by their lack of a protec-
tion boundary between the library and the application.

More recently, our work on the Hodor project [12] has shown
how to leverage protection key hardware on recent Intel processors
to implement low-overhead protected libraries without the need for
virtualization. We noted that such libraries can be used for safe,
cross-process sharing; we used this capability to implement shared
access to the Silo library database [32] and to Intel’s DPDK network-
ing library [13]. Similar functionality is provided (in a similar way)
in the concurrently developed ERIM project [34], though the au-
thors focus on applications to intra-process sandboxing for security.
Protection between the library and the application might also be
provided by a trusted compiler [20, 37] or through source or binary
rewriting [33, 36], but these impose significant instrumentation
costs throughout a program’s execution.

We observe that any mechanism that allows a library database or
network stack to share data safely across applications can be used
to convert a server like memcached to provide safe, direct, function-
call access to clients rather than requiring them to communicate
over sockets. We have performed this conversion on memcached.
The conversion eliminates not only the cost of message packing,
transmission, and unpacking, but also the cost of context switches:
application threads perform operations on the K-V store themselves.

After a review of Hodor in Section 2, we describe our variant
of memcached in Section 3, including its approach to memory
management and position independence, the interface provided
to applications, the integration with Hodor, and fault tolerance.
Section 4 then presents experimental results. For the Yahoo! Cloud
Service Benchmark (YCSB) [7], we measure a reduction in latency
of 11–56× and a roughly 2× increase in throughput. When use is
confined to a single multicore machine, we were also able to elimi-
nate about 26% of the code base, while adding about 2% new code.
After returning briefly to related work in Section 5, we summarize
conclusions in Section 6, and consider future work, including hy-
brid (sharing + communication) models and the use of persistent
memory.

2 HODOR
Full details on the Hodor system can be found in a previous pa-
per [12]; code is available at http://github.com/hedayati/hodor. We
review essential concepts here (see Figure 1).

The key idea in Hodor is to control access to a memory-mapped
resource by making it accessible only while executing trusted li-
brary code. An application gains access to the resource when it calls

into a Hodor library; it loses access when it returns. Threads that
are executing outside the library are unable to access the resource
even when other threads are executing inside the library. Moreover
the operating system arranges for each library call to complete
(with certain limits on execution time) even if the process to which
its thread belongs crashes due to activity in another thread; this
allows the library to ensure integrity in the face of independent
client failures. (A crash that occurs inside library code is considered
unrecoverable.)

The Hodor paper explored three ways to build protected li-
braries. Our experiments here use the preferred implementation,
which is based on the memory protection keys (Protection Keys
for Userspace—PKU) of recent Intel processors. PKU harvests four
previously unused bits in each page table entry to associate one of
16 “key” values with the page. A new 32-bit pkru register, writable
in user space, associates two bits with each key. These bits allow
the running thread to reduce permissions for pages marked with
that key: (0,0) allows whatever access is otherwise permitted to the
page; (0,1) eliminates write access; (1,∗) eliminates all access.

PKU appears to have been designed as a safety feature: it allows
an application to minimize the impact of stray pointer or array
subscripting bugs by turning off access to critical data structures
when they are not being actively used. Hodor arranges for real
protection by controlling the circumstances under which the pkru
register can be written. Specifically, a modified version of the OS’s
(trusted) loader scans the binary of an about-to-be-executed pro-
gram. It dynamically links the code of any specified Hodor libraries
for which the application has access rights. For each library en-
try point, it installs a trampoline that changes stacks and uses the
wrpkru instruction to change access rights—dropping restrictions
on the protected resource on the way in and re-enabling them on
the way out. It also installs an initialization routine, called before
main, that enables restrictions at startup.

If the wrpkru opcode appears anywhere in the binary other
than a trampoline, the loader places a hardware breakpoint at that
address, to prevent its execution. Extensive scans of existing bina-
ries confirm that stray instances are extremely rare. They can be
avoided entirely with minor compiler changes. If more than four
(the number of breakpoint registers) appear in any one program,
they can also be accommodated (at some cost) by changing page
permissions.

In addition to changing stacks and the value of the pkru, tram-
polines can optionally copy arguments and return values into and
out of the library, rather than leaving them in the application’s
main protection domain (where they could potentially be modified
by non-library threads while the library is using them). We do not
enable this option by default in our experiments; rather we copy,
manually, only those arguments that are security-sensitive; more
on this in Sections 3.3 and 3.4.

An empty call into a Hodor library takes about 40 ns on the
machine in our lab, round trip—about two orders of magnitude
faster than an empty messaging round trip on Unix domain sockets.

3 IMPLEMENTATION
In converting memcached from a socket-based application to a
Hodor protected library, there is actually much more code removal

http://github.com/hedayati/hodor

Safe, Fast Sharing of memcached as a Protected Library ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

Figure 1: Protected libraries using Hodor

than there is code addition. Standard memcached is a large program
(approx. 26 KLoC) in part because of its customizability and flexi-
bility. Clients can issue requests, for example, in either an ASCII
based, readable format or a compact, binary format: one offers supe-
rior debugability, the other better performance. Without a network
interface, the ASCII format loses its attraction. Call parameters will
never need to be viewed in a text editor (as they might when de-
bugging the distributed version): they will be viewed in a symbolic
debugger, where binary format is perfectly acceptable.

3.1 Interface
We implemented a modified version of the libmemcached API.
Each call takes as an argument a memcached_st, which includes
server information, protocol details, and the state of the current op-
eration, none of which are required for direct-through-Hodor calls.
We therefore provide two separate APIs—one that is identical to
memcached’s and one that omits the memcached_st argument.
Preservation of the original interface allows us to use our modi-
fied memcached as a drop-in replacement in existing applications;
provision of the newer API allows a modified application to avoid
unnecessary overhead. Calls designed, in the original interface, to
change the network protocol configuration are now treated as no-
ops by default; alternatively, they can be flagged as errors in order
to facilitate migration to the newer interface.

Memcached also provides an asynchronous API designed to hide
the latency of socket-based communication. A programmer can
issue a query with a callback function that will be invoked when
data is returned. While callbacks could, in principle, be added to a
system like Hodor, they are not supported at present, and it would
not be trivial to add them. Fortunately, they are not needed for
memcached: since all calls complete immediately, our version of
libmemcached can call into Hodor for service and invoke the
callback immediately after the trampoline returns.

3.2 Memory Management
Hodor manages the protection boundary between an application
and its shared libraries, but it does not automatically arrange to
share space among library instances in separate applications. For
that we need to address a variety of challenges, including set-up
and clean-up; cross-process synchronization; static and dynamic
memory allocation; and background, bookkeeping tasks. For several
of these challenges we rely on the Ralloc memory allocator of Cai
et al. [3] (code available at http://github.com/qtcwt/ralloc).

Ralloc provides a shared heap abstraction on top of a shared,
memory-mapped file. To create a key-value store (an instance of
memcached), we launch a bookkeeping process that uses Ralloc to
create a shared heap, or to map it into memory if its file already
exists. (Ralloc supports the ability to havemultiple shared heaps, but
we only need one for our experiments.) The bookkeeping process
remains alive as long as its K-V store is in use. During operation, it
is responsible for intermittent “cleaning” of the store—eviction of
less-needed items when space runs low. On shutdown, it flushes
all updates back to the underlying file. This convention allows us
to restart a store with its contents already intact. (Enhancements
to allow the store to survive full-system crashes are a subject of
future work; see Section 6.)

Eachmemcached client, on startup, uses Ralloc to map the shared
heap into its own address space. While we might hope to map the
heap to the same address in every client process, it is difficult to do
so in practice, given the possibility that any given address range
might be needed by some client for other purposes. Fortunately,
Ralloc provides a persistent pointer (pptr) abstraction that enables
the creation of position-independent data. In C++, the pptr type
is implemented as a templated smart pointer that holds the signed
distance between its own location and that of its target [5, 6]. So
long as the target resides in the same shared heap, a pptr<T> can
be loaded into or stored from a T*, quickly and correctly, in any
address space.

We use Ralloc for all dynamic allocation of buckets, keys, and
values. Internally, Ralloc uses pptrs for all its metadata; we con-
verted memcached to use them for all pointers in the K-V store as
well.

Because threads in multiple address spaces now access the K-V
store directly, synchronization must work across process bound-
aries. We therefore updated the initialization options on all locks
in the memcached code base to specify the PTHREAD_PROCESS_
SHARED attribute. Locks used to protect metadata in a conven-
tional allocator would also need to be shared, but Ralloc, it turns
out, is entirely nonblocking. It also scales extremely well, due in
large part to the extensive use of per-thread caches, and it partitions
blocks of different sizes into separate superblocks, leading to low
internal fragmentation and no external fragmentation for the block
sizes used in memcached. This efficient space management obviates
the need for memcached’s own “slab-based” allocator, which we
deleted.

As a starting point for data structure access (in our case, for
access to the K-V store), Ralloc supports the notion of persistent
roots. They are statically allocated near the beginning of the shared
heap, and contain pptrs to internal structures. Each is identified
by a symbolic ID.

http://github.com/qtcwt/ralloc

ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada Chris Kjellqvist, Mohammad Hedayati, and Michael L. Scott

// in global scope
// doesn't need extra indirection
// pthread_mutex_t lru_locks[POWER_LARGEST];
pthread_mutex_t* lru_locks;
...
// on initialization of file
lru_locks =

(pthread_mutex_t*)pm_calloc(POWER_LARGEST,
sizeof(pthread_mutex_t));

pm_set_root(lru_locks, RPMRoot::LRULocks);
...
// on restart
lru_locks = pm_get_root<pthread_mutex_t>

(RPMRoot::LRULocks);

Figure 2: Sharing objects with a fixed location

Figure 2 illustrates the use of persistent roots for data struc-
tures that are statically allocated in the Ralloc heap. Memcached’s
lru_locks, originally a static array of pthread_mutex_t ob-
jects, is now, in our version of the code, a pointer to an array of
such objects. When the memcached bookkeeping process starts
up, it allocates this array in the Ralloc heap using pm_calloc
and sets a persistent root to point at it. When a memcached client
process starts, it uses pm_get_root to obtain (an address-space-
appropriate version of) the pointer stored in the persistent root.

The lru_locks are used to protect least-recently-used lists
that allow the background process to choose victims to evict from
the hash table when space runs low. The original version of mem-
cached places items into an LRU list based on the size class to which
they belong in the server’s custom allocator. Because we now use
a separate allocator, we chose to decouple the LRU functionality
from the allocator internals. We tried putting all items into a single
list, but this caused unacceptable lock contention at high thread
counts. We currently use a set of lists, and choose among them (and
their locks) based on the hash of an entry’s key.

We encountered similar trouble with contention on the lock
used to protect statistics on client requests. We therefore chose
to scatter these statistics across the slots of a shared array. Most
updates are now made to a slot that is not being used concurrently.
Statistics-retrieving calls must scan the whole array. Neither the
lru_locks nor the statistics lock is a bottleneck in the original
memcached code, where requests are serviced less frequently and
where the maximum number of active threads is smaller.

To access data structures that may be reallocated during execu-
tion, persistent roots can be used with an extra level of indirection.
Figure 3 illustrates this idiom for the root of the primary hashtable,
whose location may change due to occasional table resizing.

In practice, not all data need to be shared between processes.
The threads of the bookkeeping process, for example, maintain
information that is not needed by clients during library calls. Mem-
cached also makes use of some temporary buffers during individual
calls. These can be local to a single client, so long as they reside
in the libmemcached protection domain in Hodor, to prevent
concurrent access by threads executing in the main code of the
client application.

// item **hashtable = 0;
pptr<pptr<item>> *hashtable_storage = 0;
...
// on initialization, allocate storage,
// and store hashtable there
hashtable_storage =

pm_malloc(sizeof(pptr<pptr<item>>));

hashtable_storage = (pptr<item>)
pm_calloc(hashsize(hashpower),
sizeof(pptr<item>));

pm_set_root(hashtable_storage,
RPMRoot::PrimaryHT);

...
// on restart, the table already exists;
// fetch it
hashtable_storage = (pptr<pptr<item>>*)

pm_get_root<pptr<pptr<item>>>
(RPMRoot::PrimaryHT);

Figure 3: Sharing objects whose location may change

3.3 Integration with Hodor
To integrate our API with Hodor, we identified the internal func-
tions associated with each API call and wrapped them with Hodor
trampolines; these in turn are tagged with special macros in the
source code.

Figure 4 shows our implementation of memcached_get. Mem-
cached incorporates significant machinery to parse and execute
commands. These two tasks are deeply interwoven—a fact that
made it difficult for us to understand, “unpackage,” and replicate
the API. The task would presumably have been easier if writing a
Hodor application from scratch, because commands would never
have been marshalled into network packets.

At the same time, the use of Hodor introduces certain secu-
rity concerns. Specifically: no privileged information in the library
should be leaked into client code, and no data created by the client
should be trusted by the library. If arguments to library calls have
internal consistency requirements, they should be copied to space
that is not writable by the client before performing consistency
checks, to prevent concurrent corruption by other client threads.
This idiom can be seen in Figure 4, where we copy the client’s
key into a buffer (key_prot) that we have created inside the li-
brary. By contrast, the return value buffer is allocated using the
standard malloc, so it will be visible after returning to the client.

Hodor relies on file system permissions to control the mapping
of shared libraries. In our case, it executes the libmemcached
initialization routine with the effective user ID of the memcached
bookkeeping process, allowing it to open and map the file con-
taining the K-V store. Once initialization is complete, it reverts the
effective ID to that of the client process. These conventions allow
us to share data across protected library instances without leaking
the contents of the actual K-V store file.

3.4 Fault Tolerance
Our code must take care to ensure that faults experienced in one
process do not affect the integrity of the library or of other processes.

Safe, Fast Sharing of memcached as a Protected Library ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

HODOR_FUNC_ATTR
char *
memcached_get_internal
(const char * key, size_t key_length, size_t

*value_length, uint32_t *flags,
memcached_return_t *error){
assert(run_once && "You must run memcached_init

before calling memcached_functions");
char* buff = NULL;

// Can't use user pointers inside
// protected function. Copy to private
// buffer before resources are acquired
char * key_prot = (char*)RP_malloc(nkey);
memcpy(key_prot, key, nkey);

// Get the item using the protected key
item* it = item_get(key_prot, nkey, 1);

// We don't need the key anymore
RP_free(key_prot);
if (it == NULL){

*error = MEMCACHED_NOTFOUND;
} else {

// We found the item. Need place to
// copy its data to protected buffers
// while important resources are held
// (ie ref counts)

char * dat_prot = (char*)RP_malloc(it->nbytes);
memcpy(dat_prot, ITEM_data(it), it->nbytes);
size_t flag_prot = it->it_flags;
size_t buffLen_prot = it->nbytes;

// release our resources
item_remove(it);

// allocate output buffer
buffer = (char*)malloc(buffLen_prot);

// copy protected data to
// user-accessible locations

*buffLen = buffLen_prot;

*flags = flag_prot;
memcpy(buffer, dat_prot, *buffLen);

// free data buffer
RP_free(dat_prot);

*error = MEMCACHED_SUCCESS;
}
return buff;

}
HODOR_FUNC_EXPORT(memcached_get_internal, 5);

Figure 4: memcached_get using Hodor

The original memcached uses locks to ensure that server threads
perform their operations atomically. In our version the same code is
executed by client threads. Each operation—assuming it completes—
completes atomically. The only new issue is the potential for failure
in the middle of an operation.

If the process of a Hodor thread is terminated by action outside
the library—a SIGKILL signal, for example, or a segmentation
fault in a concurrent thread in the client’s regular code—Hodor
allows the thread in the library to continue running until it has
completed its call or a generous timeout has expired.

If a Hodor thread encounters an error of its own—a segfault
for example—it will indeed terminate abruptly. Protected libraries,
like system call handlers, must be carefully written to avoid this
possibility, or to ensure that termination happens only when no
locks are held and all invariants still hold. Pointers received from
the client are the most common source of potential problems. They
cannot safely be dereferenced while locks are held. (Even if they
could be verified before use, it would always be possible for a
concurrent thread to unmap the target memory while the library
was active.) As a standard practice, we therefore copy the targets
of all pointers into memory located in a Hodor protected region
before acquiring locks or performing other changes to shared state.
In Figure 4, key_prot is used for precisely this purpose. For our
final allocation, buffer, which we return to the client program,
we use ordinary malloc, but only after releasing all resources that
we acquired.

4 EXPERIMENTAL RESULTS
We used the Yahoo! Cloud Service Benchmark (YCSB) [7], a work-
load generator for databases, to test the performance of our pro-
tected library implementation against the original version of mem-
cached. YCSB allows users to select from default workloads or to
generate their own with specific chosen properties. We created a
set of workloads that test the performance of our key-value store
on value sizes of 128 bytes and 5 kilobytes, with read/write distribu-
tions of 50/50 and 95/5. Our results were collected on a single-socket
Dell machine with a 10-core (20-hyperthread) Intel Xeon Gold 5215
processor equipped with 192GB of DRAM and running at 2.5 GHz.

Since writes are uncommon compared to reads in production
environments, we consider a 50/50 split between reads and writes
to be a “write heavy” workload; the 95/5 case is considered “read
heavy.” For workloads with values of size 128 B, we store 4 × 107
key-value pairs and perform 106 operations on those pairs. For
workloads with values of size 5 KB, we store 106 key-value pairs so
that the total memory consumption of the application remains about
the same. Operations were performed with a Zipfian distribution
over the keys. Latency is reported in µs for operations in a single
thread. Throughput is reported in thousands of transactions per
second (KTPS), so higher numbers are better.

For the original memcached, we set the maximum data size to
60GB; we provide the same limit to Ralloc in our modified version.
In the original version, the hash table starts with 216 buckets and
resizes several times. In our modified version, we report results for
a fixed size of 225 buckets (our resizing code in the background
process is not yet working correctly). If anything, this decision
penalizes our code: in the small-key experiments, our table ends
up with a load factor of about 1.2.

4.1 Latency and Bandwidth
Once a request is received, the original memcached and our modi-
fied version perform the same internal operations. The main differ-
ence is that in the absence of socket communication, the overhead
of initiating a call in our version is much lower. As shown in Fig-
ure 5, calls in the original memcached vary from 13–54 µs; in our
version they never take more than 1.5 µs. These numbers represent
speedups of 11–56×.

ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada Chris Kjellqvist, Mohammad Hedayati, and Michael L. Scott

Memcached Plib, w/Hodor Plib, No Hodor
Get 128 B 13 µs 0.67 µs (19×) 0.64 µs (20×)
Get 5 KB 13 µs 0.67 µs (20×) 0.64 µs (21×)
Set 128 B 13 µs 1.2 µs (11×) 1.2 µs (11×)
Set 5 KB 17 µs 1.5 µs (11×) 1.5 µs (11×)
Delete 10 µs 0.21 µs (48×) 0.18 µs (56×)

Increment 54 µs 1.6 µs (34×) 1.5 µs (36×)

Figure 5: Operation latency and speedup

When measuring throughput scalability, there is a fundamen-
tal mismatch between the original and shared-library versions of
memcached: since server and client threads are distinct in the origi-
nal, their numbers can vary independently; in our version they are
always the same. In an attempt at a fair comparison, we vary the
number of client threads on the X axis in Figures 6–9, and show
two curves for the original memcached: one with 4 server threads
and one with 8.

With 4 server threads, the original memcached scales linearly
to 10 clients—the number of cores on the machine. The addition of
hyperthreads has no significant impact, suggesting that the server
threads may be a bottleneck. To test this hypothesis, we ran the
experiment again with 8 server threads. Performance for client
counts up to 10 is virtually identical to the 4-server-thread case, but
it continues to scale, at a slower rate, all the way out to the tested
limit of 40 clients—2 for every hyperthread on the machine.

The explanation, we believe, lies in an understanding of the criti-
cal path of the microbenchmark. When a server thread completes a
request in the original code, it calls into the operating system kernel
to perform a write on a socket. It then immediately performs a
select syscall to obtain another request. Whether that call re-
turns immediately or waits (incurring a context switch to another
process) depends on whether another client has already performed
its matching write. As the number of client threads increases, the
odds that one of them has performed a write on a socket in the
select set gradually increases, increasing the probability that the
kernel can simply return into the server, rather than switching to a
client context.

In our new, protected-library version of memcached, by contrast,
client threads perform their own requests. There are no system
calls on the critical path, and the overall system bottleneck be-
comes the synchronization employed in hash table critical sections.
In the read-heavy workload, throughput peaks at 6–8 threads. In
the write-heavy workload, where the average operation takes a
little longer, throughput peaks at slightly fewer transactions per
second, and takes a few more active threads to get there. In all cases
(large and small values, read- and write-heavy workload), band-
width degrades slightly as contention increases, out to the number
of hyperthreads on the machine (i.e., 20), but remains essentially flat
thereafter, at roughly 2× the throughput of the original memcached.
At peak throughput, the protected library reaches 3× the through-
put of the original memcached. To assess the marginal overhead
of the protected library mechanism, we have shown results both
with and without Hodor protection. The version without improves
throughput by roughly 5%, but of course it is not safe.

4.2 Code Complexity
As noted in Section 3, our updates to memcached deleted more
code than they added. Specifically, on an original base of ∼26K
lines of code, we removed ∼6800 lines and added ∼600, for a net
reduction of ∼24%. Of the deleted lines, ∼5200 were devoted to
socket communication and to packing and unpacking of message
buffers; ∼1600 were devoted to slab-based memory management
(Section 3.2).

With regard to conceptual complexity, our subjective impression
is that the removed code was more complex than the added code.
With Hodor, a thread performs its own request, and the flow of
control is very clear. In a separate server, threads must keep track
of multiple client connections, select from among their sockets,
unpack request buffers, and pack reply buffers for return.

On the other hand, protected libraries in Hodor are significantly
more subtle than “ordinary” libraries—particularly when they share
data with instances in other processes. As noted in Section 3.4, a
Hodor library routine is more akin to a kernel-level syscall handler
than it is to an ordinary function: it must check its arguments for
consistency, manage its space separately from that of the caller,
and ensure that faults (e.g., due to incorrect pointers to client data)
never occur while holding locks on shared data. After modifying
the first few library routines, we settled on an idiom that copies
client data into Hodor-allocated buffers before acquiring any locks.

5 RELATEDWORK
Over the past decade, extensive research has aimed to limit the
operating system’s involvement in resource management to what
is required for set-up and access control (i.e., the control plane), and
to avoid OS intervention on individual operations (i.e., the data
plane) once that access has been granted. Specialized I/O stacks
(e.g., DPDK [13], SPDK [14], and mTCP [18]) have been designed
to bypass the OS and avoid the overhead of the general-purpose
system-call path on data transfers. Similarly, our work relies on the
OS to set up page table permissions for protected libraries, while
avoiding per-op OS interventions when querying memcached.

Unlike our work, most previous efforts at avoiding OS inter-
vention have not considered the possibility of sharing resources
across distrusting domains. Our work allows for safe sharing of
memcached among independently developed local processes with
independent failure modes.

While intra-address space isolation [33, 34, 36] has been used to
protect secrets (e.g., encryption keys) or security critical regions
(e.g., shadow stacks) in a single application, researchers have only re-
cently begun to consider isolation for libraries. Hodor [12] protects
user-space libraries for kernel-bypass I/O and in-memory databases.
Treasury [8] uses Intel PKU to protect a user-space non-volatile
memory file system called ZoFS. Our work transforms memcached
from a client/server model to a protected library and uses Hodor to
provide both protection and sharing.

Exokernel [10] was one of the first projects to compile OS com-
ponents as libraries and link them to applications as a Library OS.
Other such systems include Drawbridge [28] and EbbRT [30]. Sep-
aration of components from the kernel offers the prospect of better
system security and more rapid evolution of the code base. Unfor-
tunately, library OSes provide no easy way to share the same set

Safe, Fast Sharing of memcached as a Protected Library ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

 0

 500

 1000

 1500

 2000

 0 5 10 15 20 25 30 35 40

T
h
o
u
s
a
n
d

 T
ra
n
s
a
c
tio
n
s
 /
 s

Threads

Memcached 8 Threads
Memcached 4 Threads

Modifed Memcached, No Hodor
Modifed Memcached, with Hodor

Figure 6: Field length 128B – Write Heavy

 0

 500

 1000

 1500

 2000

 0 5 10 15 20 25 30 35 40

T
h
o
u
s
a
n
d

 T
ra
n
s
a
c
tio
n
s
 /
 s

Threads

Memcached 8 Threads
Memcached 4 Threads

Modifed Memcached, No Hodor
Modifed Memcached, with Hodor

Figure 7: Field Length 5KB – Write Heavy

 0

 500

 1000

 1500

 2000

 0 5 10 15 20 25 30 35 40

T
h
o
u
s
a
n
d

 T
ra
n
s
a
c
tio
n
s
 /
 s

Threads

Memcached 8 Threads
Memcached 4 Threads

Modifed Memcached, No Hodor
Modifed Memcached, with Hodor

Figure 8: Field length 128B – Read Heavy

 0

 500

 1000

 1500

 2000

 0 5 10 15 20 25 30 35 40

T
h
o
u
s
a
n
d

 T
ra
n
s
a
c
tio
n
s
 /
 s

Threads

Memcached 8 Threads
Memcached 4 Threads

Modifed Memcached, No Hodor
Modifed Memcached, with Hodor

Figure 9: Field length 5KB – Read Heavy

of resources across multiple instances of the exported components.
Microkernels [9, 19], several of which pre-date Exokernel, avoid
this problem by separating address spaces and following a client/
server model in which each resource is handled by a user-level
server. The main drawback of microkernel design has long been
the overhead of communication [25]. While at a higher abstraction
level than a traditional OS service, current memcached deployments
follow the microkernel pattern. We see recent work on protected
libraries, including ours, as a means of combining the isolation and
sharing benefits of microkernels with the performance gains of
exokernels.

6 CONCLUSIONS AND FUTURE WORK
We have presented a new, shared-memory version of the ubiqui-
tous memcached key-value store. Our code is based on the Hodor
protected library system [12] and the Ralloc memory allocator[3].
For clients running on the same machine as the server, we achieve
an 11–56× improvement in latency and a roughly 2× improvement
in throughput compared to communicating with the standard ver-
sion of the server over Unix domain sockets. In addition to offering
better performance, our version is significantly simpler, suggesting

that similar servers, written from scratch, would be easier to build
using Hodor as a base.

Because our modified memcached only can interact with pro-
cesses on the same node, it is no longer a distributed key-value store.
There is no reason, however (other than code complexity), not to al-
low the memcached background process to provide a socket-based
interface for remote clients while still permitting local clients to use
the Hodor interface. We intend to support this option in a future
release of the code.

More ambitiously, we are experimenting with the possibility
of making memcached resilient to system crashes. As noted in
Section 3.2, our Hodor memcached flushes its K-V store contents to
the backing file when the bookkeeping process shuts down. Because
the data in this file is position independent, it can be loaded back
into memory and reused when the bookkeeping process is restarted.
Significantly, this reload and reuse adds no extra code to the system.
It may be particularly appealing when memcached is used not as a
cache for off-line data but as a stand-alone in-memory store.

Whenmemcached is used as a cache, and when the backing file is
located on a magnetic or flash device, reloading may be only slightly
faster than rebuilding—it saves the hash table update time, but not
the I/O time. On the other hand, if the file is located in nonvolatile,

ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada Chris Kjellqvist, Mohammad Hedayati, and Michael L. Scott

direct-access (DAX) memory—e.g., on a machine with Intel Optane
DIMMs [17]—then a reload can be almost instantaneous: it will
consist only of page table updates.

The challenge, of course, is to support stand-alone use in the face
of possible crashes, when rebuilding is not an option. In such an
environment, operations must be not only isolated and consistent
(in traditional database terminology [11]), but also failure-atomic
and durable. Various groups are currently exploring mechanisms
to provide failure atomicity for lock-based critical sections or trans-
actions [4, 6, 16, 22, 26, 35]; we look forward to leveraging this
work.

REFERENCES
[1] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei, David Mazières, and

Christos Kozyrakis. 2012. Dune: Safe User-level Access to Privileged CPU Fea-
tures. In 10th USENIX Symp. on Operating Systems Design and Implementation
(OSDI). Hollywood, CA, 335–348.

[2] AdamBelay, George Prekas, Ana Klimovic, Samuel Grossman, Christos Kozyrakis,
and Edouard Bugnion. 2014. IX: A Protected Dataplane Operating System for
High Throughput and Low Latency. In 11th USENIX Symp. on Operating Systems
Design and Implementation (OSDI). Broomfield, CO, 49–65.

[3] Wentao Cai, Haosen Wen, H. Alan Beadle, Chris Kjellqvist, Mohammad Hedayati,
and Michael L. Scott. 2020. Understanding and Optimizing Persistent Memory
Allocation. In 19th Intl. Symp. on Memory Management. Earlier version pub-
lished as arXiv:2003.06718 [cs.DC] and TR 1008, Computer Science Dept, Univ.
of Rochester, March 2020. Extended abstract presented at PPoPP 2020.

[4] Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud Bhandari. 2014. Atlas:
Leveraging Locks for Non-volatile Memory Consistency. In ACM Intl. Conf.
on Object Oriented Programming Systems Languages & Applications (OOPSLA).
Portland, OR, 433–452. https://doi.org/10.1145/2660193.2660224

[5] Guoyang Chen, Lei Zhang, Richa Budhiraja, Xipeng Shen, and Youfeng Wu. 2017.
Efficient Support of Position Independence on Non-volatile Memory. In 50th
IEEE/ACM Intl. Symp. on Microarchitecture (MICRO). Cambridge, MA, 191–203.
https://doi.org/10.1145/3123939.3124543

[6] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K. Gupta,
Ranjit Jhala, and Steven Swanson. 2011. NV-Heaps: Making Persistent Objects
Fast and Safe with Next-generation, Non-volatile Memories. In 16th Intl. Conf.
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS). Newport Beach, CA, 105–118. https://doi.org/10.1145/1950365.1950380

[7] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking Cloud Serving Systems with YCSB. In 1st ACM Symp.
on Cloud Computing (SoCC). Indianapolis, IN, 143–154. https://doi.org/10.1145/
1807128.1807152

[8] Mingkai Dong, Heng Bu, Jifei Yi, Benchao Dong, and Haibo Chen. 2019. Per-
formance and Protection in the ZoFS User-Space NVM File System. In 27th
ACM Symp. on Operating Systems Principles (SOSP). Huntsville, Ontario, Canada,
478–493. https://doi.org/10.1145/3341301.3359637

[9] Kevin Elphinstone, Amirreza Zarrabi, Kent Mcleod, and Gernot Heiser. 2017. A
Performance Evaluation of Rump Kernels as a Multi-Server OS Building Block on
SeL4. In 8th Asia-Pacific Workshop on Systems (APSys ’17). Mumbai, India, Article
11, 8 pages. https://doi.org/10.1145/3124680.3124727

[10] D. R. Engler, M. F. Kaashoek, and J. O’Toole. 1995. Exokernel: An Operating
System Architecture for Application-Level Resource Management. SIGOPS Oper.
Syst. Rev. 29, 5 (Dec. 1995), 251–266. https://doi.org/10.1145/224057.224076

[11] Jim Gray. 1981. The Transaction Concept: Virtues and Limitations (Invited Paper).
In 7th Intl. Conf. Very Large Data Bases (VLDB). Cannes, France, 144–154.

[12] Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson, John Criswell,
Michael L. Scott, Kai Shen, and Mike Marty. 2019. Hodor: Intra-Process Isolation
for High-Throughput Data Plane Libraries. In 2019 USENIX Annual Technical
Conf. (ATC). Renton, WA, 489–504.

[13] Intel Corp. 2018. Intel DPDK: Data Plane Development Kit. http://www.dpdk.org.
[14] Intel Corp. 2018. Intel SPDK: Storage Performance Development Kit. http:

//www.spdk.io.
[15] Intel Corp. 2018. PCI-SIG SR-IOV Primer: An Introduction to SR-IOV Tech-

nology. http://www.intel.sg/content/dam/doc/application-note/pci-sig-sr-iov-
primer-sr-iov-technology-paper.pdf.

[16] Joseph Izraelevitz, Terence Kelly, and Aasheesh Kolli. 2016. Failure-Atomic Per-
sistent Memory Updates via JUSTDO Logging. In 21st Intl. Conf. on Architectural
Support for Programming Languages and Operating Systems (ASPLOS). Atlanta,
GA, 427–442. https://doi.org/10.1145/2872362.2872410

[17] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amirsaman
Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R. Dulloor, Jishen
Zhao, and Steven Swanson. 2019. Basic Performance Measurements of the

Intel Optane DC Persistent Memory Module. CoRR abs/1903.05714 (2019).
http://arxiv.org/abs/1903.05714

[18] Eun Young Jeong, Shinae Woo, Muhammad Jamshed, Haewon Jeong, Sunghwan
Ihm, Dongsu Han, and KyoungSoo Park. 2014. mTCP: A Highly Scalable User-
level TCP Stack for Multicore Systems. In 11th USENIX Conf. on Networked
Systems Design and Implementation (NSDI). Seattle, WA, 489–502.

[19] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,
Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael
Norrish, and et al. 2009. SeL4: Formal Verification of an OS Kernel. In 22nd
ACM Symp. on Operating Systems Principles (SOSP). Big Sky, MT, 207–220. https:
//doi.org/10.1145/1629575.1629596

[20] James Larus and Galen Hunt. 2010. The Singularity System. Commun. ACM 53,
8 (Aug. 2010), 72–79. https://doi.org/10.1145/1787234.1787253

[21] libMemcached.org. 2011. libMemcached. libmemcached.org/libMemcached.
html.

[22] Qingrui Liu, Joseph Izraelevitz, Se Kwon Lee, Michael L. Scott, Sam H. Noh, and
Changhee Jung. 2018. iDO: Compiler-Directed Failure Atomicity for Nonvolatile
Memory. In 51st IEEE/ACM Intl. Symp. on Microarchitecture (MICRO). Fukuoka,
Japan, 258–270. https://doi.org/10.1109/MICRO.2018.00029

[23] I. Marinos, R. N. M. Watson, and M. Handley. 2014. Network Stack Specialization
for Performance. In ACM SIGCOMM Conf. Chicago, IL, 175–186. https://doi.org/
10.1145/2619239.2626311

[24] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld, Sean Bauer,
Carlo Contavalli, Michael Dalton, Nandita Dukkipati, William C. Evans, Steve
Gribble, and et al. 2019. Snap: A Microkernel Approach to Host Networking. In
27th ACM Symp. on Operating Systems Principles (SOSP). Huntsville, ON, Canada,
399–413. https://doi.org/10.1145/3341301.3359657

[25] Zeyu Mi, Dingji Li, Zihan Yang, Xinran Wang, and Haibo Chen. 2019. SkyBridge:
Fast and Secure Inter-process Communication for Microkernels. In 14th ACM
SIGOPS European Conf. on Computer Systems (EuroSys). Dresden, Germany, Article
9, 15 pages. https://doi.org/10.1145/3302424.3303946

[26] Faisal Nawab, Joseph Izraelevitz, Terrence Kelly, Charles B. Morrey III, Dhruva R.
Chakrabarti, and Michael L. Scott. 2017. Dalí: A Periodically Persistent Hash
Map. In 31st Intl. Symp. on Distributed Computing (DISC). Vienna, Austria, Article
37, 16 pages.

[27] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos, Arvind Krishna-
murthy, Thomas Anderson, and Timothy Roscoe. 2014. Arrakis: The Operating
System is the Control Plane. In 11th USENIX Symp. on Operating Systems Design
and Implementation (OSDI). Broomfield, CO, 1–16.

[28] Donald E. Porter, Silas Boyd-Wickizer, Jon Howell, Reuben Olinsky, and Galen C.
Hunt. 2011. Rethinking the Library OS from the Top Down. SIGPLAN Not. 46, 3
(March 2011), 291–304. https://doi.org/10.1145/1961296.1950399

[29] George Prekas, Marios Kogias, and Edouard Bugnion. 2017. ZygOS: Achieving
Low Tail Latency for Microsecond-scale Networked Tasks. In 26th Symp. on
Operating Systems Principles (SOSP). Shanghai, China, 325–341. https://doi.org/
10.1145/3132747.3132780

[30] Dan Schatzberg, James Cadden, Han Dong, Orran Krieger, and Jonathan Appavoo.
2016. EbbRT: A Framework for Building per-Application Library Operating
Systems. In 12th USENIX Conf. on Operating Systems Design and Implementation
(OSDI). Savannah, GA, 671–688.

[31] Andrew S. Tanenbaum and Linus Torvalds. 1999. The Tanenbaum-Torvalds
Debate. In Open Sources: Voices from the Open Source Revolution, Chris DiBona,
Sam Ockman, and Mark Stone (Eds.). O’Reilly & Associates. Appendix A.
https://www.oreilly.com/openbook/opensources/book/appa.html.

[32] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.
2013. Speedy Transactions in Multicore In-memory Databases. In 24th ACM
Symp. on Operating Systems Principles (SOSP). Farmington, PA, 18–32. https:
//doi.org/10.1145/2517349.2522713

[33] Úlfar Erlingsson, Martín Abadi, Michael Vrable, Mihai Budiu, and George C.
Necula. 2006. XFI: Software Guards for System Address Spaces. In 7th USENIX
Symp. on Operating Systems Design and Implementation (OSDI). Seattle, WA,
75–88.

[34] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O. Duarte, Michael Sammler,
Peter Druschel, and Deepak Garg. 2019. ERIM: Secure, Efficient in-Process
Isolation with Protection Keys (MPK). In 28th USENIX Security Symp. (SEC). Santa
Clara, CA, 1221–1238.

[35] Haris Volos, Andres Jaan Tack, and Michael M. Swift. 2011. Mnemosyne: Light-
weight Persistent Memory. In 16th Intl. Conf. on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS). Newport Beach, CA, 91–104.
https://doi.org/10.1145/1950365.1950379

[36] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. 1993.
Efficient Software-based Fault Isolation. In 14th ACM Symp. on Operating Systems
Principles (SOSP). Asheville, NC, 203–216. https://doi.org/10.1145/168619.168635

[37] Jean Yang and Chris Hawblitzel. 2010. Safe to the Last Instruction: Automated
Verification of a Type-Safe Operating System. In ACM SIGPLAN Conf. on Pro-
gramming Language Design and Implementation (PLDI). Toronto, ON, Canada,
99–110. https://doi.org/10.1145/1806596.1806610

https://doi.org/10.1145/2660193.2660224
https://doi.org/10.1145/3123939.3124543
https://doi.org/10.1145/1950365.1950380
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/3341301.3359637
https://doi.org/10.1145/3124680.3124727
https://doi.org/10.1145/224057.224076
http://www.dpdk.org
http://www.spdk.io
http://www.spdk.io
http://www.intel.sg/content/dam/doc/application-note/pci-sig-sr-iov-primer-sr-iov-technology-paper.pdf
http://www.intel.sg/content/dam/doc/application-note/pci-sig-sr-iov-primer-sr-iov-technology-paper.pdf
https://doi.org/10.1145/2872362.2872410
http://arxiv.org/abs/1903.05714
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/1787234.1787253
libmemcached.org/libMemcached.html
libmemcached.org/libMemcached.html
https://doi.org/10.1109/MICRO.2018.00029
https://doi.org/10.1145/2619239.2626311
https://doi.org/10.1145/2619239.2626311
https://doi.org/10.1145/3341301.3359657
https://doi.org/10.1145/3302424.3303946
https://doi.org/10.1145/1961296.1950399
https://doi.org/10.1145/3132747.3132780
https://doi.org/10.1145/3132747.3132780
https://www.oreilly.com/openbook/opensources/book/appa.html
https://doi.org/10.1145/2517349.2522713
https://doi.org/10.1145/2517349.2522713
https://doi.org/10.1145/1950365.1950379
https://doi.org/10.1145/168619.168635
https://doi.org/10.1145/1806596.1806610

	Abstract
	1 Introduction
	2 Hodor
	3 Implementation
	3.1 Interface
	3.2 Memory Management
	3.3 Integration with Hodor
	3.4 Fault Tolerance

	4 Experimental Results
	4.1 Latency and Bandwidth
	4.2 Code Complexity

	5 Related Work
	6 Conclusions and Future Work
	References

