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ON THE MEASURE OF MAXIMAL ENTROPY FOR FINITE

HORIZON SINAI BILLIARD MAPS

VIVIANE BALADI AND MARK F. DEMERS

The Sinai billiard map T on the two-torus, i.e., the periodic Lorentz gas, is
a discontinuous map. Assuming finite horizon, we propose a definition h∗ for the
topological entropy of T . We prove that h∗ is not smaller than the value given by the
variational principle, and that it is equal to the definitions of Bowen using spanning
or separating sets. Under a mild condition of sparse recurrence to the singularities,
we get more: First, using a transfer operator acting on a space of anisotropic
distributions, we construct an invariant probability measure μ∗ of maximal entropy
for T (i.e., hμ∗(T ) = h∗), we show that μ∗ has full support and is Bernoulli, and
we prove that μ∗ is the unique measure of maximal entropy and that it is different
from the smooth invariant measure except if all nongrazing periodic orbits have
multiplier equal to h∗. Second, h∗ is equal to the Bowen–Pesin–Pitskel topological
entropy of the restriction of T to a noncompact domain of continuity. Last, applying
results of Lima and Matheus, as upgraded by Buzzi, the map T has at least Cenh∗

periodic points of period n for all n ∈ N.

1. Introduction

1.1. Bowen–Margulis measures and measures of maximal entropy. Half
a century ago,1 Margulis [Ma1] proved in his dissertation the following analogue
of the prime number theorem for the closed geodesics Γ of a compact manifold of
strictly negative (not necessarily constant) curvature: Let h > 0 be the topological
entropy of the geodesic flow; then,

(1.1) #{Γ such that |Γ| ≤ L} ∼L→∞
ehL

hL
.

(I.e., limL→∞(hLe−hL#{Γ such that |Γ| ≤ L}) = 1.) The main ingredient in the
proof is an invariant probability measure for the flow, the Margulis (or Bowen–
Margulis [Bo3]) measure μtop. This measure—which coincides with volume in con-
stant curvature, but not in general—is mixing (thus ergodic), and it can be written
as a local product of its stable and unstable conditionals, where these conditional
measures scale by e±ht under the action of the flow. These properties were essential
to establish (1.1). The measure μtop enjoys other remarkable properties, such as
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equidistribution of closed geodesics. Finally, the measure μtop is the unique mea-
sure of maximal entropy of the flow, that is, the unique invariant measure with
Kolmogorov entropy equal to the topological entropy of the flow.

These results were extended to more general smooth uniformly hyperbolic flows
and diffeomorphisms, using the thermodynamic formalism of Bowen, Ruelle, and
Sinai. In particular Parry–Pollicott [PaP] obtained a different proof of (1.1) us-
ing a dynamical zeta function. Later, based on Dolgopyat’s [Do1] groundbreaking
thesis (proving exponential mixing for the measure and giving a pole-free verti-
cal strip for a zeta function), exponential error terms were obtained [PS1] for the
counting asymptotics (1.1) in the case of surfaces or 1/4-pinched manifolds. Using
[Do1,PS1], Stoyanov [St2] obtained exponential error terms for the closed orbits of
a class of open planar convex billiards, which are smooth hyperbolic flows on their
nonwandering set, a compact (fractal) invariant set. We refer to Sharp’s survey in
[Ma2] for more counting results in uniformly hyperbolic dynamics. We just mention
here that, for some Axiom A flows with slower (nonexponential) mixing rates, it

is possible [PS2] to get (weaker) error terms, of the form ehL

hL (1 +O(L−δ)), for the
asymptotics (1.1), by exploiting relevant operator bounds from [Do2] (correspond-
ing to a resonance free domain for the transfer operator). This may be relevant
for the Sinai billiards considered in the present work, as we do not expect them
to mix exponentially fast for the measure of maximal entropy without additional
assumptions.

Entropy is a fundamental invariant in dynamics and the study of measures of
maximal entropy is a topic in its own right [Ka2]. Let us just mention here the
discrete-time analogue of the counting theorem (1.1) which has been established in
several situations (see also [Ka1] for more general results): Let h > 0 be the topo-
logical entropy of uniformly hyperbolic (Axiom A) diffeomorphism T , set FixTm =
{x : Tm(x) = x}; then Bowen showed [Bo1] that limm→∞

1
m log#FixTm = h. In

fact [Bo4], there is a constant C > 0 so that

(1.2) Cehm ≤ #FixTm ≤ C−1ehm ∀m ≥ 1 .

Uniqueness of the measure of maximal entropy has been extended to some geo-
desic flows in nonpositive curvature (i.e., weakening the hyperbolicity requirement).
The breakthrough result of Knieper [Kn] for compact rank 1 manifolds has been
recently given a new dynamical proof [B-T] (using Bowen’s ideas as revisited by
Climenhaga and Thompson). This is currently a very active topic; see, e.g., [CKW].

The present paper is devoted to the study of the measure of maximal entropy in a
situation where uniform hyperbolicity holds, but the dynamics is not smooth: The
singular set S±1, i.e., those points where the map T (or the flow Φ) or its inverse
are not C1, is not empty. In this setting, the following integrability condition is
crucial:

(1.3)

∫
| log d(x,S±1)| dμtop < ∞ .

Following Lima–Matheus [LM], we shall say that a measure μ satisfying the above
integrability condition for a map T is T -adapted.

Condition (1.3) is prevalent in the rich literature about measures of maximal
entropy for meromorphic maps of a compact Kähler manifold (see the survey [Fr],
and, e.g., [DDG2] and the references therein) such as birational mappings. In this
work, we are concerned with a different class of dynamics with singularities: the
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dispersing billiards introduced by Sinai [S] on the two-torus. A Sinai billiard on the
torus is the periodic case of the planar Lorentz gas (1905) model for the motion of
a single dilute electron in a metal. The scatterers (corresponding to the atoms of
the metal) are assumed to be strictly convex, but they are not necessarily perfect
discs. Such billiards have become foundational models in mathematical physics.

The Sinai billiard flow is continuous, but2 not differentiable: the “grazing” orbits
(those which are tangent to a scatterer) lead to singularities. Nevertheless, exis-
tence of a measure of maximal entropy for the billiard flow is granted, thanks to
hyperbolicity. The topological entropy has been studied for the billiard flow [BFK].
However, uniqueness of the measure of maximal entropy, as well as mixing and
the adapted condition (1.3) are not known. Since the transfer operator techniques
we use are simpler to implement in the discrete-time case, we study in this paper
the Sinai billiard map, which is the return map of the single point particle to the
scatterers.

Sinai billiard maps preserve a smooth invariant measure μSRB which has been
studied extensively: With respect to μSRB, the billiard is uniformly hyperbolic,
ergodic, K-mixing, and Bernoulli [S,GO,SC,ChH]. The measure μSRB is T -adapted
[KS]. Moreover, this measure enjoys exponential decay of correlations [Y] and a
host of other limit theorems (see, e.g., [CM, Chapter 7] or [DZ1]). The billiard
has many periodic orbits and thus many other ergodic invariant measures μ, but
there are very few results regarding other invariant measures and they apply only
to perturbations of μSRB [CWZ,DRZ]. Since the billiard map is discontinuous, the
standard results [W] guaranteeing that the supremum of Kolmogorov entropy is
attained and coincides with the topological entropy do not hold. It is natural to
ask whether a measure of maximal entropy exists, and, in the affirmative, whether
it is unique, ergodic, and mixing.

Another natural goal is to establish (1.2). Chernov asked (see [Gu, Problems 5
and 6]) whether a slightly weaker property than (1.2), namely

lim
m→∞

1

m
log#FixTm = htop ,

holds. (Chernov [Ch1] showed that lim infm→∞
1
m log#FixTm ≥ hμSRB

. For a
related class of billiards, Stoyanov [St1] found finite constants C and H so that
#FixTm ≤ CeHm for all m ≥ 1.)

A detailed knowledge of the measure of maximal entropy, and the techniques
developed to obtain this information, could potentially allow us not only to establish
(1.2) for the billiard map, but also eventually to prove a prime number asymptotic of
the form (1.1) for the billiard flow. Although lifting a measure of maximal entropy
for the map should not directly give a measure of maximal entropy for the flow, we
believe that the techniques and results of the present paper will be instrumental in
understanding the measure of maximal entropy of the billiard flow.

We list our results in Section 1.2. In a nutshell, for all finite horizon planar Sinai
billiards T satisfying a (mild) condition of “sparse recurrence” to the singular set,
we construct a measure of maximal entropy, we show that it is unique, mixing (even
Bernoulli), that it has full support, and that it is T -adapted. Our results combined
with those of Lima–Matheus [LM] and a very recent preprint of Buzzi [Bu] give
C > 0 such that the lower bound in (1.2) holds.

2In contrast, open billiards in the plane which satisfy a noneclipsing condition do not have any
singularities on their nonwandering set, so that they fit in the Axiom A category [St2].
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Finally, we mention that our technique for constructing and studying the invari-
ant measure, which uses transfer operators but avoids coding, is reminiscent both
of the construction of Margulis [Ma2] and the techniques of “laminar currents”
introduced by Dujardin for birational mappings [Du] (see also [DDG2]).

1.2. Summary of main results. A Sinai billiard table Q on the two-torus T2 is

a set Q = T2 \ B, with B =
⋃D

i=1 Bi for some finite number D ≥ 1 of pairwise
disjoint closed domains Bi with C3 boundaries having strictly positive curvature
(in particular, the domains are strictly convex). The sets Bi are called scatterers;
see Figure 2 for some common examples. The billiard flow is the motion of a
point particle traveling in Q at unit speed and undergoing elastic (i.e., specular)
reflections at the boundary of the scatterers. (By definition, at a tangential—
also called grazing—collision, the reflection does not change the direction of the
particle.) This is also called a periodic Lorentz gas. As mentioned above, a key
feature is that, although the billiard flow is continuous if one identifies outgoing and
incoming angles, the tangential collisions give rise to singularities in the derivative
[CM].

We shall be concerned with the associated billiard map T , defined to be the first
collision map on the boundary of Q. Grazing collisions cause discontinuities in the
billiard map T : M → M . We assume, as in [Y], that the billiard table Q has
finite horizon in the sense that the billiard flow on Q does not have any trajectories
making only tangential collisions.

The first step is to find a suitable notion of topological entropy h∗ for the dis-
continuous map T .

Let M ′ ⊂ M be the (T -invariant but not compact) set of points whose future
and past orbits are never grazing. By definition, T is continuous on M ′. The
(Bowen–Pesin–Pitskel) topological entropy htop(F |Z) can be defined for a map F
on a noncompact set of continuity Z (see, e.g., [Bo2] and [Pes, §11 and App. II]).
Chernov [Ch1] studied the topological entropy for a class of billiard maps includ-
ing those of the present paper. In particular, he gave [Ch1, Thm 2.2] a countable
symbolic dynamics description of two T -invariant subsets of M ′ of full Lebesgue
measure in M ′, expressing their topological entropy in terms of those of the as-
sociated Markov chains. The entropies found there are both bounded above by
htop(T |M ′), although Chernov does not prove their equality.

These existing results are not convenient for our purposes, however, since we
have no control a priori on the measure of M \ M ′. This is why we introduce
(Definition 2.1) an ad hoc definition h∗ of the topological entropy for the billiard
map T on the compact set M .

Our first main result (Theorem 2.3) says that the topological entropies of T
defined by spanning sets and separating sets coincide with the topological entropy
h∗, that h∗ can also be obtained by using the refinements of partitions of M into
maximal connected components on which T and T−1 are continuous, and that
h∗ ≥ sup{hμ(T ) : μ is a T -invariant Borel probability measure on M}.

To state our other main results, we need to quantify the recurrence to the singular
set: Fix an angle ϕ0 close to π/2 and n0 ∈ N. We say that a collision is ϕ0-grazing
if its angle with the normal is larger than ϕ0 in absolute value. Let s0 ∈ (0, 1] be
the smallest number such that

any orbit of length n0 has at most s0n0 collisions which are ϕ0-grazing.(1.4)
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Our sparse recurrence condition is

(1.5) there exist n0 and ϕ0 such that h∗ > s0 log 2 .

(Due to the finite horizon condition, we can choose ϕ0 and n0 such that s0 < 1.
We refer to Section 2.4 for further discussion of the condition.)

Assuming (1.5), our second main result (Theorem 2.4) is that T admits a unique
invariant Borel probability measure μ∗ of maximal entropy h∗ = hμ∗(T ). In ad-
dition, μ∗(O) > 0 for any open set and μ∗ is3 Bernoulli. Finally, the absolutely
continuous invariant measure μSRB may coincide with μ∗ only if all nongrazing peri-
odic orbits have the same Lyapunov exponent, equal to h∗. (No dispersing billiards
which satisfy this condition are known. See also Remark 1.2.)

Our third result is (Theorem 2.5) that h∗ coincides with the Bowen–Pesin–Pitskel
entropy htop(T |M ′) (still assuming (1.5)).

Next, Theorem 2.6 contains a key technical4 estimate on the measures of neigh-
bourhoods of singularity sets, (2.2), used to prove Theorems 2.4 and 2.5 under
the assumption (1.5). Theorem 2.6 also states that μ∗ has no atoms, that it gives
zero mass to any stable or unstable manifold and any singularity set, that μ∗ is
T -adapted (in the sense of (1.3)), and that μ∗-almost every x ∈ M has stable and
unstable manifolds of positive length.

Finally, we obtain a lower bound #FixTm ≥ Ceh∗m on the cardinality of the
set of periodic orbits (Corollary 2.7 and the comments thereafter) whenever (1.5)
holds.

1.3. The transfer operator—organisation of the paper. Our tool to con-
struct the measure of maximal entropy is a transfer operator L = Ltop with

Lf = f◦T−1

JsT◦T−1 analogous to the transfer operator LSRBf = (f/|DetDT |) ◦ T−1

which has proved very successful [DZ1] to study the measure μSRB. An important
difference is that our transfer operator, Lf , is weighted by an unbounded5 func-
tion (1/JsT , where the stable Jacobian JsT may tend to zero near grazing orbits).
Using “exact” stable leaves instead of admissible approximate stable leaves will
allow us to get rid of the Jacobian after a leafwise change of variables—the same
change of variables in [DZ1] for the transfer operator LSRB associated with μSRB

left them with JsT , allowing countable sums over homogeneity layers to control
distortion, and thus working with a Banach space giving a spectral gap and expo-
nential mixing. In the present work, we relinquish the homogeneity layers to avoid
unbounded sums (see, e.g., the logarithm needed to obtain the growth Lemma 5.1)
and obtain a bounded operator, with spectral radius eh∗ . The price to pay is that
we do not have the distortion control needed for Hölder-type moduli of continuity
in the Banach norms of our weak and strong spaces B ⊂ Bw. The weaker modulus
of continuity than in [DZ1] does not yield a spectral gap. We thus do not claim
exponential mixing properties for the measure of maximal entropy μ∗ constructed
(in the spirit of the work of Gouëzel–Liverani [GL] for Axiom A diffeomorphisms)
by combining right and left maximal eigenvectors Lν = eh∗ν and L∗ν̃ = eh∗ ν̃ of
the transfer operator.

3Recall that Bernoulli implies K-mixing, which implies strong mixing, which implies ergodic.
In practice, we first show K-mixing and then bootstrap to Bernoulli.

4This estimate implies that almost every point approaches the singularity sets more slowly
than any exponential rate (7.9); see, e.g., [LM] for an application of such rates of approach.

5The naive idea to introduce a bounded cutoff in the weight does not seem to work.
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The paper is organised as follows: In Section 2, we give formal statements of our
main results. Section 3 contains the proof of Theorem 2.3 about equivalent formu-
lations of h∗. In Section 4, we define our Banach spaces B and Bw of anisotropic
distributions, and we state the “Lasota–Yorke”-type estimates on our transfer oper-
ator L. Section 5 contains key combinatorial growth lemmas, controlling the growth
in complexity of the iterates of a stable curve. It also contains the definition of Can-
tor rectangles (Section 5.3). We next prove the “Lasota–Yorke” Proposition 4.7,
the compact embedding of B in Bw, and show that the spectral radius of L is
equal to eh∗ in Section 6. The invariant probability measure μ∗ is constructed in
Section 7.1 by combining a right and left eigenvector (ν and ν̃) of L. Section 7.1
contains the proof of Theorem 2.6 about the measure of singular sets. Section 7.3
contains a key result of absolute continuity of the unstable foliation with respect
to μ∗ as well as the proof that μ∗ has full support, exploiting ν-almost everywhere
positive length of unstable manifolds from Section 7.2. We establish upper and
lower bounds on the μ∗-measure of dynamical Bowen balls in Section 7.4, deducing
from them a necessary condition for μSRB and μ∗ to coincide. Using the absolute
continuity from Section 7.3, we show in Section 7.5 that μ∗ is K-mixing. In this
section we also use the upper bounds on Bowen balls to see that μ∗ is a measure
of maximal entropy and prove the Bowen–Pesin–Pitskel Theorem 2.5. We deduce
the Bernoulli property from K-mixing and hyperbolicity in Section 7.6, adapting6

[ChH]. Finally, we show uniqueness in Section 7.7.
Our Hopf-argument proof of K-mixing requires showing absolute continuity of

the unstable foliation for μ∗, a new result of independent interest, which is the
content of Corollary 7.9. The “fragmentation” lemmas from Section 5, needed to
get the lower bound on the spectral radius of the transfer operator, are also new.
They imply, in particular, that the length |T−nW | of every local stable manifold
W grows at the same exponential rate enh∗ (Corollary 5.10).

We conclude this introduction with two remarks on the finite horizon condition.

Remark 1.1 (Finite horizon and collision time τ ). For x ∈ M , let τ (x) denote the
distance from x to T (x). If τ is unbounded, i.e., if there is a collision-free trajectory
for the flow, then there must be a flow trajectory making only tangential collisions.
The reverse implication, however, is not true. Our7 finite horizon assumption there-
fore implies that τ is bounded on M . Assuming only that τ is bounded is sometimes
also called finite horizon [CM]. (If the scatterers Bi are viewed as open, then tan-
gential collisions simply do not occur and the two definitions of finite horizon are
reconciled.)

Remark 1.2 (Billiard with infinite horizon). Chernov [Ch1, §3.4] proved that the
topological entropy of the Sinai billiard map T restricted to the noncompact set
M ′ is infinite if the horizon is not finite, and together with Troubetskoy [CT] con-
structed invariant measures with infinite metric entropy for this map. Since the
entropy of the smooth measure μSRB is finite, the measure μSRB does not maximise
entropy for infinite horizon billiards. Chernov conjectured [Ch1, Remark 3.3] that
this property holds for more general billiards, in particular for Sinai billiards with
finite horizon.

6As pointed out to us by Y. Lima, we could instead apply [Sa1, Thm 3.1] to the lift of μ∗ to
the symbolic space constructed in [LM].

7We shall need the slightly stronger version, e.g., in Lemmas 3.4 and 3.5.
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2. Full statement of main results

In this section, we formulate definitions of topological entropy for the billiard
map that we shall prove are equivalent before stating formally all main results of
this paper.

2.1. Definitions of topological entropy h∗ of T on M . We first introduce
notation: Adopting the standard coordinates x = (r, ϕ), for T , where r denotes
arclength along ∂Bi and ϕ is the angle the post-collision trajectory makes with the
normal to ∂Bi, the phase space of the map is the compact metric space M given
by the disjoint union of cylinders,

M := ∂Q×
[
−π

2
,
π

2

]
=

D⋃
i=1

∂Bi ×
[
−π

2
,
π

2

]
.

We denote each connected component of M by Mi = ∂Bi × [−π
2 ,

π
2 ]. In the co-

ordinates (r, ϕ), the billiard map T : M → M preserves [CM, §2.12] the smooth
invariant measure8 defined by μSRB = (2|∂Q|)−1 cosϕdrdϕ.

We discuss next the discontinuity set of T : Letting S0 = {(r, ϕ) ∈ M : ϕ =
±π/2} denote the set of tangential collisions, then for each nonzero n ∈ N, the set

S±n =

n⋃
i=0

T∓iS0

is the singularity set for T±n. In this notation, the T -invariant (noncompact) set
M ′ of continuity of T is M ′ = M \

⋃
n∈Z

Sn.
For k, n ≥ 0, let Mn

−k denote the partition of M \ (S−k ∪ Sn) into its maximal
connected components. Note that all elements of Mn

−k are open sets. The cardi-
nality of the sets Mn

0 will play a key role in the estimates on the transfer operator
in Section 4. We formulate the following definition with the idea that the growth
rate of elements in Mn

−k should define the topological entropy of T , by analogy
with the definition using a generating open cover (for continuous maps on compact
spaces).

Definition 2.1. h∗ = h∗(T ) := lim supn→∞
1
n log#Mn

0 .

The fact that the limsup defining h∗ is a limit, as well as several equivalent char-
acterizations involving the cardinality of related dynamical partitions or a varia-
tional principle, are proved in Theorem 2.3 (see Lemma 3.3).

Remark 2.2 (h∗(T ) = h∗(T
−1)). If A ∈ Mn

0 , then TnA ∈ M0
−n since TnSn = S−n.

Thus #Mn
0 = #M0

−n, and so h∗(T ) = h∗(T
−1).

It will be convenient to express h∗ in terms of the rate of growth of the car-
dinality of the refinements of a fixed partition, i.e.,

∨n
0 T

−iP, for some fixed P.
Although Mn

0 is not immediately of this form, we will show that in fact h∗ can
be expressed in this fashion, obtaining along the way subadditivity of log#Mn

0 .
For this, we introduce two sequences of partitions. Let P denote the partition
of M into maximal connected sets on which T and T−1 are continuous. Define
Pn
−k =

∨n
i=−k T

−iP. Then, n �→ log#Pn
−k is subadditive for any fixed k, in partic-

ular the limit limn→∞
1
n log#Pn

0 exists.

8All measures in this work are finite Borel measures.
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(a) (b)

Figure 1. (a) The billiard trajectory corresponding to the dotted line
has symbolic itinerary 123, but is an isolated point in P1

0 . Any open
set with symbolic itinerary 12 cannot land on scatterer 3 (unless it first
wraps around the torus). (b) The billiard trajectory corresponding to
the dotted line and having symbolic trajectory 1234 is not isolated since
it belongs to the boundary of an open set with the same symbolic se-
quence; however, the addition of scatterer 0 on the common tangency
forces the point with symbolic trajectory 01234 to be isolated.

The interior of each element of P corresponds to precisely one element of M1
−1;

however, its refinements Pn
−k may also contain some isolated points if three or

more scatterers have a common tangential trajectory. Figure 1 displays two such
examples (the pictures are local: we have not represented all discs needed to ensure
finite horizon).

Let now P̊n
−k denote the collection of interiors of elements of Pn

−k. Then Pn
−k

forms a finite partition of M , while P̊n
−k forms a partition of M \ (S−k−1 ∪ Sn+1)

into open, connected sets. (We will show in Lemma 3.3 that P̊n
−k = Mn+1

−k−1.)
Finally, we recall the classical Bowen [W] definitions of topological entropy for

continuous maps using ε-separated and ε-spanning sets. Define the dynamical dis-
tance

(2.1) dn(x, y) := max
0≤i≤n

d(T ix, T iy) ,

where d(x, y) is the Euclidean metric on eachMi, and d(x, y) = 10D·maxi diam(Mi)
if x and y belong to different Mi (this definition ensures we get a compact set),
where D is the number of scatterers.

As usual, given ε > 0, n ∈ N, we call E an (n, ε)-separated set if for all x, y ∈ E
such that x = y, we have dn(x, y) > ε. We call F an (n, ε)-spanning set if for all
x ∈ M , there exists y ∈ F such that dn(x, y) ≤ ε.

Let rn(ε) denote the maximal cardinality of any (n, ε)-separated set, and let
sn(ε) denote the minimal cardinality of any (n, ε)-spanning set. We recall two
related quantities:

hsep = lim
ε→0

lim sup
n→∞

1

n
log rn(ε) , hspan = lim

ε→0
lim sup
n→∞

1

n
log sn(ε) .

Although limn→∞
1
n log#Pn

0 , hsep, and hspan are typically used for continuous
maps, our first main result is that these naively defined quantities for the discon-
tinuous billiard map T all agree with h∗, and they give an upper bound for the
Kolmogorov entropy as follows.

Theorem 2.3 (Topological entropy of the billiard). The lim sup in Definition 2.1
is a limit, and in fact the sequence log#Mn

0 is subadditive. In addition, we have:

(1) h∗ = limn→∞
1
n log#Pn

0 ;
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(2) the sequence 1
n log#P̊n

0 also converges to h∗ as n → ∞;
(3) h∗ = hsep and h∗ = hspan;
(4) h∗ ≥ sup{hμ(T ) : μ is a T -invariant Borel probability measure on M}.

The above theorem will follow from Lemmas 3.3, 3.4, 3.5, and 3.6.
(We shall obtain in Lemma 5.6 a superadditive property for log#Mn

0 .)

2.2. The measure μ∗ of maximal entropy. Our next main result, existence and
the Bernoulli property of a unique measure of maximal entropy, will be proved in
Section 7, using the transfer operator L studied in Section 4.

Theorem 2.4 (Measure of maximal entropy for the billiard). If h∗ > s0 log 2, then

h∗ = max{hμ(T ) : μ is a T -invariant Borel probability measure on M} .
Moreover, there exists a unique T -invariant Borel probability measure μ∗ such that
h∗ = hμ∗(T ). In addition, μ∗ is Bernoulli and μ∗(O) > 0 for all open sets
O. Finally, if there exists a nongrazing periodic point x of period p such that
1
p log | det(DT−p|Es(x))| = h∗ then μ∗ = μSRB.

The above theorem follows from Propositions 7.11, 7.13, and 7.19, Corollary 7.17,
and Proposition 7.21. (J. De Simoi has told us that [DKL, §4.4] the (possibly empty)
set of planar billiard tables satisfying a noneclipsing condition (i.e., open billiards)
for which 1

p log | det(DT−p|Es(x))| = h∗ for all p and all nongrazing p-periodic

points x has infinite codimension.)
The existence of μ∗ with hμ∗(T ) = h∗, together with item (1) of Theorem 2.3 ex-

pressing h∗ as a limit involving the refinements of a single partition, will allow us to
interpret h∗ as the Bowen–Pesin–Pitskel topological entropy of T |M ′ in Section 7.5:

Theorem 2.5 (h∗ and Bowen–Pesin–Pitskel entropy). If h∗ > s0 log 2, then h∗ =
htop(T |M ′).

2.3. A key estimate on neighbourhood of singularities. We call a smooth
curve in M a stable curve if its tangent vector at each point lies in the stable cone,
and define an unstable curve similarly. As mentioned in Section 1, the sets Sn are
the singularity sets for Tn, n ∈ Z \ {0}. The set Sn \ S0 comprises [CM] a finite
union of stable curves for n > 0 and a finite union of unstable curves for n < 0.
For any ε > 0 and any set A ⊂ M , we denote by Nε(A) = {x ∈ M | d(x,A) < ε}
the ε-neighbourhood of A.

The following key result gives information on the measure of neighbourhoods
of the singularity sets (it is used in the proofs of Theorem 2.4 and, indirectly,
Theorem 2.5).

Theorem 2.6 (Measure of neighbourhoods of singularity sets). Assume that h∗ >
s0 log 2 and let μ∗ be the ergodic measure of maximal entropy constructed in (7.1).
The measure μ∗ has no atoms, and for any local stable or unstable manifold W we
have μ∗(W ) = 0. In addition, μ∗(Sn) = 0 for any n ∈ Z.

More precisely, for any γ > 0 so that 2s0γ < eh∗ and n ∈ Z, there exist C and
Ĉn < ∞ such that for all ε > 0 and any smooth curve S uniformly transverse to
the stable cone,

(2.2) μ∗(Nε(S)) <
C

| log ε|γ , μ∗(Nε(Sn)) <
Ĉn

| log ε|γ .
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Since h∗ > s0 log 2 we may take γ > 1, and we have∫
| log d(x,S±1)| dμ∗ < ∞ ,

(i.e., μ∗ is T -adapted [LM]), and μ∗-almost every x ∈ M has stable and unstable
manifolds of positive length.

Theorem 2.6 follows from Lemma 7.3 and Corollary 7.4.
This theorem is especially of interest for γ > 1, since in this case it implies

that μ∗-almost every point does not approach the singularity sets faster than some
exponential; see (7.9). In addition, it allows us to give a lower bound on the number
of periodic orbits: For m ≥ 1, let FixTm denote the set {x ∈ M | Tm(x) = x}.
By [BSC] and [Ch1, Cor 2.4], there exist hC ≥ hμSRB

(T ) > 0 and C > 0 with
#FixTm ≥ CehCm for all m. Our result is that (possibly up to a period p) we can
take hC = h∗ if h∗ > s0 log 2.

Corollary 2.7 (Counting periodic orbits). If h∗ > s0 log 2, then there exist C > 0
and p ≥ 1 such that #FixT pm ≥ Ceh∗pm for all m ≥ 1.

Proof. The corollary follows from the work of Lima–Matheus [LM], which in turn
relies on work of Gurevič [G1,G2] (see the proof of [Sa2, Thm 1.1]). We recall briefly
the setup of [LM, Theorem 1.3]: Under assumptions (A1)-(A6), the authors con-
struct for any T -adapted measure μ with positive Lyapunov exponent, a countable
Markov partition that allows them to code a full μ-measure set of points. Once this
partition has been constructed, [LM, Corollary 1.2] implies the above lower bound
on periodic orbits for T with rate given by hμ(T ).

[LM, Theorem 1.3] applies to our measure of maximal entropy μ∗ since it is
T -adapted with positive Lyapunov exponent. In addition, conditions (A1)-(A4) of
[LM] are requirements on the smoothness of the exponential map on the manifold,
which are trivially satisfied in our setting since M is a finite union of cylinders and
S±1 is a finite union of curves. Finally, conditions (A5) and (A6) are requirements
on the rate at which ‖DT‖ and ‖D2T‖ grow as one approaches S1. These are
standard estimates for billiards and in the notation of [LM], if we choose a = 2,
then conditions (A5) and (A6) hold, choosing there β = 1/4 and any b > 1. �

After the first version of our paper was submitted, J. Buzzi [Bu, v2] obtained
results allowing one to bootstrap from Corollary 2.7 by exploiting the fact that T
is topologically mixing, to show that if h∗ > s0 log 2, then there exists C > 0 so
that #Fix Tm ≥ Ceh∗m for all m ≥ 1 [Bu, Theorem 1.5].

2.4. On condition (1.5) of sparse recurrence to singularities. We are not
aware of any dispersing billiard on the torus for which the bound h∗ > s0 log 2
from (1.5) fails. Let us start by mentioning that if there are no triple tangencies on
the table—a generic condition—then s0 ≤ 2/3. To discuss this condition further,
our starting point is claim (4) of Theorem 2.3, which implies by the Pesin entropy
formula [KS],

(2.3) h∗ ≥ hμSRB
(T ) =

∫
log JuT dμSRB .

Thus it suffices to check χ+
μSRB

> s0 log 2 in order to verify (1.5), where χ+
μSRB

=∫
log JuT dμSRB is the positive Lyapunov exponent of μSRB.
First, we mention two numerical case studies from the literature.
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(a)

ρ

R

(b)

Figure 2. (a) The Sinai billiard on a triangular lattice studied in
[BG] with angle π/3, scatterer of radius 1, and distance d between
the centers of adjacent scatterers. (b) The Sinai billiard on a square
lattice with scatterers of radii ρ < R studied in [Ga]. The boundary
of a single cell is indicated by dashed lines in both tables.

Baras and Gaspard [BG] studied the Sinai billiard corresponding to the periodic
Lorentz gas with discs of radius 1 centered in a triangular lattice (Figure 2(a)). The
distance d between points on the lattice is varied from d = 2 (when the scatterers

touch) to d = 4/
√
3 (when the horizon becomes infinite). All computed values of the

Lyapunov exponent9 are greater than 2
3 log 2 [BG, Table 1]. (Notably χ+

μSRB
does

not decay as the minimum free flight-time τmin tends to zero.) For these billiard
tables, since every segment with a double tangency is followed by two nontangential
collisions, one can choose ϕ0 and n0 so that (1.4) is satisfied with s0 = 1/2. Thus
(1.5) holds for all computed values in this family of tables.

Garrido [Ga] studied the Sinai billiard corresponding to the periodic Lorentz
gas with two scatterers of radii ρ < R on the unit square lattice (Figure 2(b)).
Setting R = 0.4, [Ga, Figure 6] computed χ+

μSRB
numerically for about 20 values

of ρ ranging from ρ = 0.1 (when the scatterers touch) to ρ =
√
2
2 − 0.4 (when the

horizon becomes infinite). All computed values of χ+
μSRB

are greater than 0.8 > log 2
so that (1.5) holds for all such tables. (For these tables as well, one can in fact
choose s0 = 1/2.)

Secondly, for the family of tables studied by Garrido, we obtain an open set of
pairs of parameters (ρ,R) satisfying (1.5) as follows. To ensure finite horizon and
disjoint scatterers, the constraints are

1

2
< ρ+R <

√
2

2
, ρ < R <

1

2
, and R >

√
2

4
.

Since μSRB is a probability measure, denoting by Kmin > 0 the minimum curva-
ture and using a well-known [CM, eqs. (4.10) and (4.15)] bound for the unstable
hyperbolicity exponent (see also [CM, Remark 3.47]) for the relation to entropy),
we have,

χ+
μSRB

≥ log(1 + 2τminKmin) .

9The reported values in [BG] are for the billiard flow. These can be converted to Lyapunov

exponents for the map via the well-known formula χ+
map = τ̄χ+

flow, where τ̄ is the average free

flight-time. For this billiard table, τ̄ = d2
√

3
4

− π
2
, using [CM, eq. (2.32)].
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We find that this is greater than (1/2) log 2 whenever τminKmin >
√
2−1
2 . If R >

1 −
√
2
2 + ρ, then τmin = 1 − 2R, and Kmin = R−1, so that τminKmin = R−1 − 2.

Thus if R < 2
3+

√
2
, then (1.5) holds. On the other hand if R < 1 −

√
2
2 + ρ, then

τmin =
√
2
2 − R − ρ so that τminKmin =

√
2

2R − 1 − ρ
R . Thus (1.5) holds whenever

R <
√
2−2ρ

1+
√
2
. The union of these two sets is defined by the inequalities

√
2

4
< R <

2

3 +
√
2
, R <

√
2− 2ρ

1 +
√
2
, and ρ+R >

1

2
.

We remark that this region intersects the line R+
√
2ρ =

√
2
2 . This line corresponds

to the set of tables which admit a period 8 orbit making 4 grazing collisions around
the disc of radius ρ and 4 collisions at angle π/4 with the disc of radius R. For
these tables, s0 = 1/2, and we see that (1.5) admits tables with grazing periodic
orbits.

Thirdly, it seems true that if there are no periodic orbits making at least one
grazing collision, then for any ε > 0 the constants n0 and ϕ0 can be chosen to ensure
s0 < ε. This has led P.-A. Guihéneuf to conjecture that there exists a natural
topology10 on the set of billiard tables so that for any ε > 0 the set of tables for
which s0 < ε is generic (that is, open and dense). This would immediately imply
that our condition (1.5) is generically satisfied.

Finally, we mention that Diller, Dujardin, and Guedj [DDG1, Example 4.6] con-
struct a birational map F having a measure of maximal entropy which is mixing
but not F -adapted, by showing that F violates the Bedford–Diller [BD] recurrence
condition. The Bedford–Diller condition does not have a natural analogue in our
setting since double tangencies always occur. One could interpret our sparse re-
currence condition h∗ > s0 log 2 as its replacement. It would be interesting to
find billiards for which h∗ ≤ s0 log 2 and which admit a non-T -adapted measure of
maximal entropy.

3. Proof of Theorem 2.3 (equivalent formulations of h∗)

In this section, we shall prove Theorem 2.3 through Lemmas 3.3, 3.4, 3.5, and 3.6.
We first recall some facts about the uniform hyperbolicity of T to introduce

notation which will be used throughout. It is well known [CM] that T is uniformly
hyperbolic in the following sense: First, the cones Cu = {(dr, dϕ) ∈ R

2 : Kmin ≤
dϕ/dr ≤ Kmax + 1/τmin} and Cs = {(dr, dϕ) ∈ R2 : −Kmin ≥ dϕ/dr ≥ −Kmax −
1/τmin}, are strictly invariant under DT and DT−1, respectively, whenever these
derivatives exist. Here, Kmax represent the maximum curvature of the scatterer
boundaries and τmax < ∞ is the largest free flight-time between collisions. Second,
recalling that Kmin > 0, τmin > 0 denote the minimum curvature and the minimum
free flight-time, and setting

Λ := 1 + 2Kminτmin ,

there exists C1 > 0 such that for all n ≥ 0,

(3.1) ‖DTn(x)v‖ ≥ C1Λ
n‖v‖ ∀v ∈ Cu , ‖DT−n(x)v‖ ≥ C1Λ

n‖v‖ ∀v ∈ Cs

10For a fixed number of scatterers, a candidate is given by the distance defined in [DZ2, §2.2,
§3.4, Remark 2.9(b)].
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for all x for which DTn(x), or, respectively, DT−n(x), is defined, so that Λ is a
lower bound11 on the hyperbolicity constant of the map T .

3.1. Preliminaries. The following lemma provides important information regard-
ing the structure of the partitions Pn

−k, which we will use to make an explicit

connection between Mn
−k and P̊n

−k in Lemma 3.3.

Lemma 3.1. The elements of Pn
−k are connected sets for all k ≥ 0 and n ≥ 0.

Proof. The statement is true by definition for P = P0
0 . We will prove the general

statement by induction on k and n using the fact that Pn+1
−k = Pn

−k

∨
T−1Pn

−k, and
Pn
−k−1 = Pn

−k

∨
TPn

−k.
Fix k, n ≥ 0, and assume the elements of Pn

−k are connected sets. Let A1, A2 ∈
Pn
−k. If T−1A1 ∩ A2 is empty or is an isolated point, then it is connected. So

suppose T−1A1 ∩ A2 has nonempty interior.
Clearly, T−1A1 is connected since T−1 is continuous on elements of Pn

−k for all
k, n ≥ 0. Notice that the boundary of A1 is comprised of finitely many smooth
stable and unstable curves in S−k ∪ Sn, as well as possibly a subset of S0 ([CM,
Prop 4.45 and Exercise 4.46]; see also [CM, Fig 4.17]). We shall refer to these as
the stable and unstable parts of the boundary of A1. Similar facts apply to the
boundaries of A2 and TA1.

We consider whether a stable part of the boundary of T−1A1 can cross a stable
part of the boundary of A2, and create two or more connected components of
T−1A1 ∩A2. Call these two boundary components γ1 and γ2 and notice that such
an occurrence would force γ1 and γ2 to intersect in at least two points.

We claim the following fact: If a stable curve Si ⊂ T−iS0 intersects Sj ⊂ T−jS0

for i < j, then Sj must terminate on Si. This is because T iSi ⊂ S0, while T iSj ⊂
T i−jS0 is still a stable curve, terminating on S0. A similar property holds for
unstable curves in S−i. and S−j .

The claim implies that γ1 and γ2 both belong to T−jS0 for some 1 ≤ j ≤ n.
But when such curves intersect, again, one must terminate on the other (crossing
would violate injectivity of T−1).

A similar argument precludes the possibility that unstable parts of the bound-
ary cross one another multiple times. It follows that the only intersections al-
lowed are stable/unstable boundaries of T−1A1 terminating on corresponding sta-
ble/unstable boundaries of A2, or transverse intersections between stable compo-
nents of ∂(T−1A1) and unstable components of ∂A2, and vice versa. This last type
of intersection cannot produce multiple connected components due to the contin-
uation of singularities, which states that every stable curve in S−n \ S0 is part of
a monotonic and piecewise smooth decreasing curve which terminates on S0 (see
[CM, Prop 4.47]). A similar fact holds for unstable curves in Sn \ S0. This implies
that T−1A1∩A2 is a connected set, and since A1 and A2 were arbitrary, that Pn+1

−k

is comprised entirely of connected sets.
Similarly, considering TA1∩A2 proves that all elements of Pn

−k−1 are connected.
�

11Therefore, hμSRB (T ) =
∫
log JuT dμSRB > log Λ and the bound log(1 + 2Kminτmin) >

s0 log 2 implies (1.5), as in Section 2.4.
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From the proof of Lemma 3.1, we can see that, aside from isolated points, el-
ements of Pn

−k consist of connected cells which are roughly “convex” and have
boundaries comprised of stable and unstable curves.

Lemma 3.2. There exists C > 0, depending on the table Q, such that for any
k, n ∈ N, #P̊n

−k ≤ #Pn
−k ≤ #P̊n

−k + C(n+ k + 1).

Proof. It is clear from the definition of P̊n
−k and Pn

−k that

#Pn
−k = #P̊n

−k +#{isolated points} ,

where the isolated points in Pn
k can be created by multiple tangencies aligning in

a particular manner, as described above (see Figure 1). Thus the first inequality is
trivial.

The set of isolated points created at each forward iterate is contained in S0 ∩
T−1S0, while the set of isolated points created at each backward iterate is contained
in S0 ∩ TS0. We proceed to estimate the cardinality of these sets.

Let r0 be sufficiently small such that for any segment S ⊂ S0 of length r0,
the image TS comprises at most τmax/τmin connected curves on which T−1 is
smooth [CM, Sect. 5.10]. For each i, the number of points in ∂Bi ∩ S0 ∩ T−1S0

is thus bounded by 2|∂Bi|τmax/(τminr0), where the factor 2 comes from the top
and bottom boundary of the cylinder. Summing over i, we have #(S0 ∩ T−1S0) ≤
2|∂Q|τmax/(τminr0). Due to reversibility, a similar estimate holds for #(S0 ∩ TS0).
Since this bound holds at each iterate, the second inequality holds with C =
2|∂Q|τmax

τminr0
. �

3.2. Formulations of h∗ involving P and P̊. The following lemma gives claims
(1) and (2) of Theorem 2.3.

Lemma 3.3. The following holds for every k ≥ 0. We have P̊n
−k = Mn+1

−k−1 for
every n ≥ 0. Moreover, the following limits exist and are equal to h∗:

h∗ = lim
n→∞

1

n
log#Mn

−k = lim
n→∞

1

n
log#P̊n

−k = lim
n→∞

1

n
log#Pn

−k .

Finally, the sequence n �→ log#Mn
−k is subadditive.

Proof. First notice that by Lemma 3.1, the elements of P̊n
−k are open, connected

sets whose boundaries are curves in S−k−1 ∪ Sn+1. Since the elements of Mn+1
−k−1

are the maximal open, connected sets with this property, it must be that P̊n
−k is a

refinement of Mn+1
−k−1. Now suppose that the union of O1, O2 ∈ P̊n

−k is contained in

a single element A ∈ Mn+1
−k−1. This is impossible since ∂O1, ∂O2 ⊂ S−k−1 ∪ Sn+1,

and at least part of these boundaries must lie inside A, contradicting the definition
of A. So in fact, P̊n

−k = Mn+1
−k−1.

We next show that the limit in terms of #Pn
−k exists and is independent of k.

It will follow that the limits in terms of #Mn
−k and #P̊n

−k exist and coincide using

the relation P̊n
−k = Mn+1

−k−1 and Lemma 3.2.

Note that #Pn
−j ≤ #Pn

−k whenever 0 ≤ j ≤ k. For fixed k, we have #Pn+m
−k ≤

#Pn
−k ·#

(∨m
i=1 T

−n−iP
)
, and since #(

∨m
i=1 T

−n−iP) = #(
∨m

i=1 T
−iP) because T

is invertible, it follows that #Pn+m
−k ≤ #Pn

−k ·#Pm
−k. Thus log#Pn

−k is subadditive
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as a function of n, and the limit in n converges for each k. Applying this to k = 0
implies that the limit defining h∗ in Definition 2.1 exists.

Similar considerations show that #Pn
−k ≤ #P0

−k ·#Pn
0 , and so

h∗ = lim
n→∞

1

n
log#Pn

0 ≤ lim
n→∞

1

n
log#Pn

−k ≤ lim
n→∞

1

n
(log#P0

−k + log#Pn
0 ) = h∗ ,

so that the limit exists and is independent of k.
For the final claim, we shall see that log#P̊n

−k is subadditive for essentially the

same reason as log#Pn
−k: Take a (nonempty) element P of P̊n+m

1 . It is the interior

of an intersection of elements of the form T−jAj for some Aj in P, for j = 1 to
n+m. This is equal to the intersection of the interiors of T−jAj . But, since P is
nonempty, none of the T−jAj can have empty interior and so none of the Aj can

have empty interior. Thus the interiors of Aj are in P̊ as well. Now, splitting the
intersection of the first n sets from the last m, we see that the intersection of the
first n sets form an element of P̊n

1 . For the last m sets, we can factor out T−n at
the price of making the set a bit bigger:

int (T−n−j(A−n−j)) ⊆ T−n(int (T−j(A−n−j))) ,

where int(·) denotes the interior of a set. Doing this for j = 1 to m, we see

that this intersection is contained in T−n of an element of P̊m
1 . It follows that

#P̊n+m
1 ≤ #P̊n

1 ·#P̊m
1 , so taking logs, the sequence is subadditive. And then so is

the sequence with Mn
0 in place of P̊n−1

1 . �

3.3. Comparing h∗ with the Bowen definitions. We set diams(Mn
−k) equal

to the maximum length of a stable curve in any element of Mn
−k. Similarly,

diamu(Mn
−k) denotes the maximum length of an unstable curve in any element

of Mn
−k while diam(Mn

−k) denotes the maximum diameter of any element of Mn
−k.

The following lemma gives the first claim of (3) in Theorem 2.3.

Lemma 3.4. h∗ = hsep.

Proof. Fix ε > 0. Let Λ = 1 + 2Kminτmin denote the lower bound on the hyper-
bolicity constant for T as in (3.1). Choose kε large enough that diams(M0

−kε−1) ≤
C−1

1 Λ−kε < c1ε, for some c1 > 0 to be chosen below. It follows that

diamu(Mn+1
−kε−1) ≤ C−1

1 Λ−n < c1ε

for each n ≥ kε. Using the uniform transversality of stable and unstable cones, we
may choose c1 > 0 such that diam(Mn+1

−kε−1) < ε for all n ≥ kε.

Now for n ≥ kε, let E be an (n, ε)-separated set. Given x, y ∈ E, we will show

that x and y cannot belong to the same set A ∈ P̊kε+n
−kε

.

Since x, y ∈ E, there exists j ∈ [0, n] such that d(T j(x), T j(y)) > ε. If x ∈ A ∈
P̊kε+n
−kε

, then x ∈
⋂kε+n

i=−kε
int(T−iPi) for some choice of Pi ∈ P. Then

(3.2) T jx ∈
kε+n−j⋂
i=−kε−j

T−iPi+j ⊂
kε⋂
−kε

T−iPi+j ∈ Pkε

−kε
.

Note that the element of Pkε

−kε
to which T j(x) belongs must have nonempty interior

since T−iPi has nonempty interior for each i ∈ [−kε, kε + n]. If y ∈ A, then T jy

would belong to the same element of Pkε

−kε
, which is impossible since diam(P̊kε

−kε
) < ε

and taking the closure of such sets does not change the diameter.
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Thus x, y ∈ E implies that x and y cannot belong to the same element of Pkε+n
−kε

with nonempty interior. On the other hand, if x belongs to an element of Pkε+n
−kε

with empty interior, then indeed the element containing x is an isolated point, and
y cannot belong to the same element. Thus #E ≤ #Pkε+n

−kε
.

Since this bound holds for every (n, ε)-separated set, we have rn(ε) ≤ #Pkε+n
−kε

.
Thus,

lim
n→∞

1

n
log rn(ε) ≤ lim

n→∞

1

n
log#Pkε+n

−kε
= h∗ .

Since this bound holds for every ε > 0, we conclude hsep ≤ h∗.
To prove the reverse inequality, we claim that there exists ε0 > 0, independent

of n ≥ 1 and depending only on the table Q, such that

(3.3) if x, y lie in different elements of Mn
0 , then dn(x, y) ≥ ε0.

To each point x in an element of Mn
0 , we can associate an itinerary (i0, i1, . . . , in)

such that T ij (x) ∈ Mij . If x, y have different itineraries, then for some 0 ≤ j ≤ n,

the points T j(x) and T j(y) lie in different components Mi, and so by definition
(2.1) we have, dn(x, y) = 10D ·maxi diam(Mi).

Now suppose x, y lie in different elements of Mn
0 , but have the same itinerary.

By definition of Mn
0 , the elements containing x and y are separated by curves in

Sn. Let j be the minimum index of such a curve. Then T j−1(x) and T j−1(y) lie
on different sides of a curve in S1 \ S0. Due to the finite horizon condition (our
slightly stronger version is needed here), there exists ε0 > 0, depending only on
the structure of S1, such that the two one-sided ε0-neighbourhoods of each curve
in S1 \ S0 are mapped at least ε0 apart. Thus either d(T j−1(x), T j−1(y)) ≥ ε0 or
d(T j(x), T j(y)) ≥ ε0.

With the claim proved, fix n ∈ N and ε ≤ ε0, and define E to be a set com-
prising exactly one point from each element of Mn

0 . Then by the claim, E is
(n, ε)-separated, so that #Mn

0 ≤ rn(ε) for each ε ≤ ε0. Taking n → ∞ and ε → 0
yields h∗ ≤ hsep. �

The following lemma gives the second claim of (3) in Theorem 2.3.

Lemma 3.5. h∗ = hspan.

Proof. Fix ε > 0 and choose kε as in the proof of Lemma 3.4 so that

diam(Mn+1
−kε−1) < ε

for all n ≥ kε. Choose one point x in each element of Pkε+n
−kε

, and let F denote the

collection of these points. We will show that F is an (n, ε)-spanning set for T .

Let y ∈ M and let By be the element of Pkε+n
−kε

containing y. If By is an isolated
point, then y ∈ F and there is nothing to prove. Otherwise, let xy = F ∩ By.
For each j ∈ [0, n], using the analogous calculation as in (3.2), we must have

T j(y), T j(xy) ∈ Bj ∈ Pkε

−kε
. Since diam(Pkε

−kε
) < ε, this implies d(T j(y), T j(xy)) <

ε for all j ∈ [0, n]. Thus F is an (n, ε)-spanning set. We have

lim
n→∞

1

n
log sn(ε) ≤ lim

n→∞

1

n
log#Pkε+n

−kε
= h∗ .

Since this is true for each ε > 0, it follows that hspan ≤ h∗.
To prove the reverse inequality, recall ε0 from the proof of Lemma 3.4. For ε < ε0

and n ∈ N, let F be an (n, ε)-spanning set. We claim #F ≥ #Mn
0 . Suppose not.

Then there exists A ∈ Mn
0 which contains no elements of F . Let y ∈ A and let
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x ∈ F . By the claim in the proof of Lemma 3.4, dn(x, y) ≥ ε0 since x and y lie
in different elements of Mn

0 . Since this holds for all x ∈ F , it contradicts the fact
that F is an (n, ε)-spanning set.

Since this is true for each (n, ε)-spanning set for ε < ε0, we conclude that sn(ε) ≥
#Mn

0 , and taking appropriate limits, hspan ≥ h∗. �

3.4. Easy direction of the variational principle for h∗. Recall that given a
T -invariant probability measure μ and a finite measurable partition A of M , the
entropy of A with respect to μ is defined by Hμ(A) = −

∑
A∈A μ(A) logμ(A), and

the entropy of T with respect to A is hμ(T,A) = limn→∞
1
nHμ

(∨n−1
i=0 T−iA

)
.

The following lemma gives the bound (4) in Theorem 2.3.

Lemma 3.6. h∗ ≥ sup{hμ(T ) : μ is a T -invariant Borel probability measure}.

Proof. Let μ be a T -invariant probability measure on M . We note that P is a
generator for T since

∨∞
i=−∞ T−iP separates points in M . Thus hμ(T ) = hμ(T,P)

(see for example [W, Thm 4.17]). Then,

hμ(T,P)= lim
n→∞

1

n
Hμ

(
n−1∨
i=0

T−iP
)
= lim

n→∞

1

n
Hμ(Pn−1

0 )≤ lim
n→∞

1

n
log(#Pn−1

0 )=h∗ .

Thus hμ(T ) ≤ h∗ for every T -invariant probability measure μ. �

4. The Banach spaces B and Bw and the transfer operator L
The measure of maximal entropy for the billiard map T will be constructed out

of left and right eigenvectors of a transfer operator L associated with the billiard
map and acting on suitable spaces B and Bw of anisotropic distributions. In this
section we define these objects, state and prove the main bound, Proposition 4.7, on
the transfer operator, and deduce from it Theorem 4.10, showing that the spectral
radius of L on B is eh∗ .

Recalling that the stable Jacobian of T satisfies JsT ≈ cosϕ [CM, eq. (4.20)],
the relevant transfer operator is defined on measurable functions f by

(4.1) Lf =
f ◦ T−1

JsT ◦ T−1
.

In order to define the Banach spaces of distributions on which the operator L will
act, we need preliminary notation: LetWs denote the set of all nontrivial connected
subsets W of stable manifolds for T so that W has length at most δ0 > 0, where
δ0 < 1 will be chosen after (5.4), using the growth Lemma 5.1. Such curves have
curvature bounded above by a fixed constant [CM, Prop 4.29]. Thus, T−1Ws = Ws,
up to subdivision of curves.

For every W ∈ Ws, let C1(W ) denote the space of C1 functions on W and for
every α ∈ (0, 1) we let Cα(W ) denote the closure12 of C1(W ) for the α-Hölder
norm |ψ|Cα(W ) = supW |ψ|+Hα

W (ψ), where

(4.2) Hα
W (ψ) = sup

x,y∈W
x�=y

|ψ(x)− ψ(y)|
d(x, y)α

.

12Working with the closure of C1 will give injectivity of the inclusion of the strong space in
the weak.
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We write ψ ∈ Cα(Ws) if ψ ∈ Cα(W ) for all W ∈ Ws, with uniformly bounded
Hölder norm.

4.1. Definition of norms and of the spaces B and Bw. Since the stable cone
Cs is bounded away from the vertical, we may view each stable curve W ∈ Ws

as the graph of a function ϕW (r) of the arclength coordinate r ranging over some
interval IW , i.e.,

(4.3) W = {GW (r) := (r, ϕW (r)) ∈ M : r ∈ IW } .

Given two curves W1,W2 ∈ Ws, we may use this representation to define a dis-
tance13 between them: Define

dWs(W1,W2) = |IW1
� IW2

|+ |ϕW1
− ϕW2

|C1(IW1
∩IW2

)

if IW1
∩ IW2

= ∅. Otherwise, set dWs(W1,W2) = ∞.
Similarly, given two test functions ψ1 and ψ2 on W1 and W2, respectively, we

define a distance between them by

d(ψ1, ψ2) = |ψ1 ◦GW1
− ψ2 ◦GW2

|C0(IW1
∩IW2

) ,

whenever dWs(W1,W2) < ∞. Otherwise, set d(ψ1, ψ2) = ∞.
We are now ready to introduce the norms used to define the spaces B and Bw.

Besides δ0 ∈ (0, 1), and a constant ε0 > 0 to appear below, they will depend on
positive real numbers α, β, γ, and ς so that, recalling s0 ∈ (0, 1) from14 (1.4),

(4.4) 0 < β < α ≤ 1/3 , 1 < 2s0γ < eh∗ , 0 < ς < γ .

(The condition α ≤ 1/3 is used in Lemma 4.4 which is used to prove embedding
into distributions. The number 1/3 comes from the 1/k2 decay in the width of
homogeneity strips (4.5). The upper bound on γ arises from use of the growth
lemma from Section 5.1. See (5.4).)

For f ∈ C1(M), define the weak norm of f by

|f |w = sup
W∈Ws

sup
ψ∈Cα(W )
|ψ|Cα(W )≤1

∫
W

f ψ dmW .

Here, dmW denotes unnormalized Lebesgue (arclength) measure on W .
Define the strong stable norm of f by15

‖f‖s = sup
W∈Ws

sup
ψ∈Cβ(W )

|ψ|
Cβ(W )

≤| log |W ||γ

∫
W

f ψ dmW ,

13dWs is not a metric since it does not satisfy the triangle inequality; however, it is sufficient for
our purposes to produce a usable notion of distance between stable manifolds. See [DRZ, Footnote
4] for a modification of dWs which does satisfy the triangle inequality.

14If γ > 1, we can get good bounds in Theorem 2.6. This is only possible if h∗ > s0 log 2.
15The logarithmic modulus of continuity in ‖f‖s is used to obtain a finite spectral radius.
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(note that |f |w ≤ max{1, | log δ0|−γ}‖f‖s). Finally, for ς ∈ (0, γ), define the strong
unstable norm16 of f by

‖f‖u = sup
ε≤ε0

sup
W1,W2∈Ws

dWs (W1,W2)≤ε

sup
ψi∈Cα(Wi)

|ψi|Cα(Wi)
≤1

d(ψ1,ψ2)=0

| log ε|ς
∣∣∣∣∫

W1

f ψ1 dmW1
−
∫
W2

f ψ2 dmW2

∣∣∣∣ .
Definition 4.1 (The Banach spaces). The space Bw is the completion of C1(M)
with respect to the weak norm | · |w, while B is the completion of C1(M) with
respect to the strong norm, ‖ · ‖B = ‖ · ‖s + ‖ · ‖u.

In the next subsection, we shall prove the continuous embeddings B ⊂ Bw ⊂
(C1(M))∗, i.e., elements of our Banach spaces are distributions of order at most one
(see Proposition 4.2). Proposition 6.1 in Section 6.4 gives the compact embedding
of the unit ball of B in Bw.

4.2. Embeddings into distributions on M . In this section we describe elements
of our Banach spaces B ⊂ Bw as distributions of order at most one on M . (This
does not follow from the corresponding result in [DZ1], in particular since we use
exact stable leaves to define our norms.) We will actually show that they belong
to the dual of a space Cα(Ws

H
) containing C1(M) that we define next: We did not

require elements of Ws to be homogeneous. Now, defining the usual homogeneity
strips

(4.5) Hk =
{
(r, ϕ) ∈ Mi :

π
2 − 1

k2 ≤ ϕ ≤ π
2 − 1

(k+1)2

}
, k ≥ k0 ,

and analogously for k ≤ −k0, we define Ws
H
⊂ Ws to denote those stable manifolds

W ∈ Ws such that TnW lies in a single homogeneity strip for all n ≥ 0. We
write ψ ∈ Cα(Ws

H
) if ψ ∈ Cα(W ) for all W ∈ Ws

H
with uniformly bounded Hölder

norm. Similarly, we define Cα
cos(Ws

H
) to comprise the set of functions ψ such that

ψ cosϕ ∈ Cα(Ws
H
). Clearly Cα(Ws

H
) ⊂ Cα

cos(Ws
H
).

Due to the uniform hyperbolicity (3.1) of T and the invariance of Ws and Ws
H
, if

ψ ∈ Cα(Ws) (resp., Cα(Ws
H
)), then ψ ◦ T ∈ Cα(Ws) (resp., Cα(Ws

H
)). Also, since

the stable Jacobian of T satisfies JsT ≈ cosϕ [CM, eq. (4.20)] and is 1/3 log-Hölder

continuous on elements of Ws
H
[CM, Lemma 5.27], then ψ◦T

JsT ∈ Cα
cos(Ws

H
) for any

α ≤ 1/3.
We can now state our first embedding result. An embedding Bw ⊂ (F)∗ (for

F = C1(M) or F = Cα(Ws
H
)) is understood in the following sense: for f ∈ Bw

there exists Cf < ∞ such that, letting fn ∈ C1(M) be a sequence converging to f
in the Bw norm, for every ψ ∈ F the following limit exists:

(4.6) f(ψ) = lim
n→∞

∫
fnψ dμSRB

and satisfies |f(ψ)| ≤ Cf‖ψ‖F .

Proposition 4.2 (Embedding into distributions). The continuous embeddings

C1(M) ⊂ B ⊂ Bw ⊂ (Cα(Ws
H))

∗ ⊂ (C1(M))∗

16The logarithmic modulus of continuity appears in ‖f‖u because of the logarithmic modulus
of continuity in ‖f‖s. Its presence in ‖f‖u causes the loss of the spectral gap.
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hold, the first two embeddings17 being injective. Therefore, since C1(M) ⊂ B ⊂ Bw

injectively and continuously, we have

(Bw)
∗ ⊂ B∗ ⊂ (C1(M))∗ .

Remark 4.3 (Radon measures). Proposition 4.2 has the following important con-
sequence: If f ∈ Bw is such that f(ψ) defined by (4.6) is nonnegative for all
nonnegative ψ ∈ F = C1(M), then, by Schwartz’s [Sch, §I.4] generalisation of the
Riesz representation theorem, it defines an element of the dual of C0(M), i.e., a
Radon measure on M . If, in addition, f(ψ) = 1 for ψ the constant function 1, then
this measure is a probability measure.

The following lemma is important for the third inclusion in Proposition 4.2.
Recalling (4.2), we define Hα

Ws
H

(ψ) = supW∈Ws
H

Hα
W (ψ).

Lemma 4.4. There exists C > 0 such that for any f ∈ Bw and ψ ∈ Cα(Ws
H
),

recalling (4.6),

|f(ψ)| ≤ C|f |w
(
|ψ|∞ +Hα

Ws
H

(ψ)
)
.

Proof. By density it suffices to prove the inequality for f ∈ C1(M). Let ψ ∈
Cα(Ws

H
). Since by our convention, we identify f with the measure fdμSRB, we

must estimate,

f(ψ) =

∫
f ψ dμSRB .

In order to bound this integral, we disintegrate the measure μSRB into conditional

probability measures μ
Wξ

SRB on maximal homogeneous stable manifolds Wξ ∈ Ws
H

and a factor measure dμ̂SRB(ξ) on the index set Ξ of homogeneous stable manifolds;
thus Ws

H
= {Wξ}ξ∈Ξ. According to the time reversal counterpart of [CM, Cor 5.30],

the conditional measures μ
Wξ

SRB have smooth densities with respect to the arclength

measure on Wξ, i.e., dμ
Wξ

SRB = |Wξ|−1ρξdmWξ
, where ρξ is log-Hölder continuous

with exponent 1/3. Moreover, supξ∈Ξ |ρξ|Cα(Wξ) =: C̄ < ∞ since α ≤ 1/3.

Using this disintegration, we estimate18 the required integral:

|f(ψ)| =
∣∣∣∣∣
∫
ξ∈Ξ

∫
Wξ

f ψ ρξ |Wξ|−1dmWξ
dμ̂SRB(ξ)

∣∣∣∣∣(4.7)

≤
∫
ξ∈Ξ

|f |w|ψ|Cα(Wξ)|ρξ|Cα(Wξ)|Wξ|−1dμ̂SRB(ξ)

≤ C̄|f |w
(
|ψ|∞ +Hα

Ws
H

(ψ)
) ∫

ξ∈Ξ

|Wξ|−1dμ̂SRB(ξ) .

This last integral is precisely that in [CM, Exercise 7.15] which measures the
relative frequency of short curves in a standard family. Due to [CM, Exercise 7.22],
the SRB measure decomposes into a proper family, and so this integral is finite. �

17We do not expect the third embedding to be injective, due to the logarithmic weight in the
norm.

18This is where we use fμSRB: Replacing μ̂SRB by the factor measure with respect to Lebesgue,
this integral would be infinite. UsingWs rather thanWs

H
may produce a finite integral with respect

to Lebesgue, but the ρξ may not be uniformly Hölder continuous on the longer curves.
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Proof of Proposition 4.2. The continuity and injectivity of the embedding of C1(M)
into B are clear from the definition. The inequality | · |w ≤ ‖ · ‖s implies the conti-
nuity of B ↪→ Bw, while the injectivity follows from the definition of Cβ(W ) as the
closure of C1(W ) in the Cβ norm, as described at the beginning of Section 4, so
that Cα(W ) is dense in Cβ(W ).

Finally, since C1(M) ⊂ Cα(Ws
H
), the continuity of the third and fourth inclusions

follow from Lemma 4.4. �

4.3. The transfer operator. We now move to the key bounds on the transfer
operator. First, we revisit the definition (4.1) in order to let L act on B and Bw:
We may define the transfer operator L : (Cα

cos(Ws
H
))∗ → (Cα(Ws))∗ by

Lf(ψ) = f
(
ψ◦T
JsT

)
, ψ ∈ Cα(Ws) .

When f ∈ C1(M), we identify f with the measure19

(4.8) fdμSRB ∈ (Cα
cos(Ws

H))
∗ .

The measure above is (abusively) still denoted by f . For f ∈ C1(M) the transfer
operator then indeed takes the form Lf = (f/JsT ) ◦T−1 announced in (4.1) since,

due to our identification (4.8), we have Lf(ψ) =
∫
Lf ψ dμSRB =

∫
f ψ◦T

JsT dμSRB.

Remark 4.5 (Viewing f ∈ C1 as a measure). If we viewed instead f as the measure
fdm, it is not clear whether the embedding Lemma 4.4 would still hold since the
weight cosW (crucial to [DZ1, Lemma 3.9]) is absent from the norms. Along these
lines, we do not claim that Lebesgue measure belongs to our Banach spaces.

Slightly modifying [DZ1] due to the lack of homogeneity strips, we could replace
|ψ|Cα(W ) ≤ 1 by |ψ cosϕ|Cα(W ) ≤ 1 in our norms. Then it would be natural to view
f as fdm, and the embedding Lemma 4.4 would hold, but the transfer operator
would have the form

Lcosf =
f ◦ T−1

(JsT ◦ T−1)(JT ◦ T−1)
,

where JT is the full Jacobian of the map (the ratio of cosines). We do not make
such a change since it would only complicate our estimates unnecessarily. Note that
the potentials of the operators L and Lcos differ by a coboundary, giving the same
spectral radius.

It follows from submultiplicativity of #Mn
0 that enh∗ ≤ #Mn

0 for all n. In
Section 5.3, we shall prove the supermultiplicativity statement Lemma 5.6 from
which we deduce the following upper bound for #Mn

0 .

Proposition 4.6 (Exact exponential growth). Let c1 > 0 be given by Lemma 5.6.
Then for all n ∈ N, we have enh∗ ≤ #Mn

0 ≤ 2
c1
enh∗ .

The following proposition (proved in Section 6) gives the key norm estimates.

19To show the claimed inclusion just use that dμSRB = (2|∂Q|)−1 cosϕdrdϕ.
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Proposition 4.7. Let c1 be as in Proposition 4.6. There exist δ0, C > 0, and
� ∈ (0, 1) such that20 for all f ∈ B,

|Lnf |w ≤ C

c1δ0
enh∗ |f |w ∀n ≥ 0 ;(4.9)

‖Lnf‖s ≤
C

c1δ0
enh∗‖f‖s ∀n ≥ 0 ;(4.10)

‖Lnf‖u ≤ C

c1δ0
(‖f‖u + n�‖f‖s)enh∗ ∀n ≥ 0 .(4.11)

If h∗ > s0 log 2 (where s0 < 1 is defined by (1.4)), then in addition there exist ς > 0
and C > 0 such that for all f ∈ B

(4.12) ‖Lnf‖u ≤ C

c1δ0
(‖f‖u + ‖f‖s)enh∗ ∀n ≥ 0 .

Remark 4.8. Replacing | log ε| by log | log ε| in the definition of ‖f‖u, we can replace
n� by a logarithm in (4.11).

In spite of compactness of the embedding B ⊂ Bw (Proposition 6.1), the above
bounds do not deserve to be called Lasota–Yorke estimates since (even replacing
‖ · ‖s + ‖ · ‖u by ‖ · ‖s + cu‖ · ‖u for small cu and using footnote 20) they do not lead
to bounds of the type ‖(e−h∗L)nf‖B ≤ σn‖f‖B +Kn|f |w for some σ < 1 and finite
constants Kn. We will nevertheless sometimes refer to them as “Lasota–Yorke”
estimates, in quotation marks.

Proposition 4.7 combined with the following lemma imply that L is a bounded
operator on both B and Bw.

Lemma 4.9 (Image of a C1 function). For any f ∈ C1(M) the image Lf ∈
(Cα(Ws))∗ is the limit of a sequence of C1 functions in the strong norm ‖ · ‖B.
Proof. Since our norms are weaker than the norms of [DZ1] (modulo the use of
homogeneity layers there), the statement follows from replacing LSRB by L in the
proofs of Lemmas 3.7 and 3.8 in [DZ1], and checking that the absence of homo-
geneity layers does not affect the computations. �

Proposition 4.7 gives the upper bounds in the following result (the bounds (4.14)
and (4.15) are needed to construct a nontrivial maximal eigenvector in Proposi-
tion 7.1).

Theorem 4.10 (Spectral radius of L on B). There exist � ∈ (0, 1), C < ∞ such
that,

(4.13) ‖Ln‖B ≤ Cn�enh∗ ∀n ≥ 0 .

There exists C > 0 such that, letting 1 be the function f ≡ 1, we have,

(4.14) ‖Ln1‖s ≥ |Ln1|w ≥ Cenh∗ ∀n ≥ 0 .

Recalling (4.9), the spectral radius of L on B and Bw is thus equal to exp(h∗) > 1.
If h∗ > s0 log 2 (with s0 < 1 defined by (1.4)), then, if ς > 0 and δ0 > 0 are

small enough, there exists C̃ < ∞ such that,

(4.15) ‖Ln‖B ≤ C̃enh∗ ∀n ≥ 0 .

The above theorem is proved in Subection 6.3.

20In fact the strong stable norm satisfies a stronger inequality: ‖Lnf‖s ≤ C
c1δ0

(σn‖f‖s +

|f |w)enh∗ for some σ < 1. We omit the proof since we do not use this.
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5. Growth lemma and fragmentation lemmas

This section contains combinatorial growth lemmas, controlling the growth in
complexity of the iterates of a stable curve. They will be used to prove the “Lasota–
Yorke” Proposition 4.7, to show Lemma 5.2, used in Section 6.3 to get the lower
bound (4.14) on the spectral radius, and to show absolute continuity in Section 7.3.

In view of the compact embedding Proposition 6.1, and also to get Lemma 5.4
from Lemma 5.2, we must work with a more general class of stable curves: We

define a set of cone-stable curves Ŵs whose tangent vectors all lie in the stable
cone for the map, with length at most δ0 and curvature bounded above so that

T−1Ŵs ⊂ Ŵs, up to subdivision of curves. Obviously, Ws ⊂ Ŵs. We define a set

of cone-unstable curves Ŵu similarly.

For W ∈ Ŵs, let G0(W ) = W . For n ≥ 1, define Gn(W ) = Gδ0
n (W ) inductively

as the smooth components of T−1(W ′) for W ′ ∈ Gn−1(W ), where elements longer

than δ0 are subdivided to have length between δ0/2 and δ0. Thus Gn(W ) ⊂ Ŵs for
each n and

⋃
U∈Gn(W ) U = T−nW . Moreover, if W ∈ Ws, then Gn(W ) ⊂ Ws.

Denote by Ln(W ) those elements of Gn(W ) having length at least δ0/3, and
define In(W ) to comprise those elements U ∈ Gn(W ) for which T iU is not contained
in an element of Ln−i(W ) for 0 ≤ i ≤ n− 1.

A fundamental fact [Ch2, Lemma 5.2] we will use is that the growth in complexity
for the billiard is at most linear:

∃ K > 0 such that ∀ n ≥ 0, the number of curves in S±n that intersect

at a single point is at most Kn.
(5.1)

5.1. Growth lemma. Recall s0 ∈ (0, 1) from (1.4). We shall prove the following.

Lemma 5.1 (Growth lemma). For any m ∈ N, there exists δ0 = δ0(m) ∈ (0, 1)

such that for all n ≥ 1, all γ̄ ∈ [0,∞), and all W ∈ Ŵs, we have

a)
∑

Wi∈In(W )

(
log |W |
log |Wi|

)γ̄

≤ 2(ns0+1)γ̄(Km+ 1)n/m ;

b)
∑

Wi∈Gn(W )

(
log |W |
log |Wi|

)γ̄

≤ min
{
2δ−1

0 2(ns0+1)γ̄#Mn
0 , 2

2γ̄+1δ−1
0

n∑
j=1

2js0γ̄(Km+1)j/m#Mn−j
0

}
.

Moreover, if |W | ≥ δ0/2, then both factors 2(ns0+1)γ̄ can be replaced by 2γ̄ .

Proof. First recall that if W ∈ Ŵs is short, then

(5.2) |T−1W | ≤ C|W |1/2 for some constant C ≥ 1, independent of W ∈ Ŵs,

[CM, Exercise 4.50]. The above bound can be iterated, giving |T−�W | ≤ C ′|W |2−�

,
where C ′ ≤ C2, for any number of consecutive “nearly tangential” collisions (colli-
sions with angle |ϕ| > ϕ0). Since in every n0 iterates, we have at most s0n0 nearly
tangential collisions and (1 − s0)n0 iterates that expand at most by a constant
factor Λ1 > 1 depending only on ϕ0, we see that

|T−n0W | ≤ C|W |2−s0n0
Λ
(1−s0)n0

1

=⇒ |T−2n0W | ≤ C1+2−s0n0 |W |2−2s0n0
Λ
(1−s0)n02

−s0n0

1 Λ
(1−s0)n0

1 .
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Iterating this inductively, we conclude

(5.3) |T−jW | ≤ C ′′|W |2−s0j

for all j ≥ 1,

where C ′′ ≥ 1 depends only on n0 and Λ1. Therefore, if δ0 is smaller than 1/C ′′,
we have

(
log |W |
log |Wi|

)γ̄

≤
(
2s0n

(
1− logC ′′

log |Wi|
))γ̄

≤ 2(ns0+1)γ̄ ∀ Wi ∈ Gn(W ) ,

since |Wi| ≤ δ0. Note that if |Wi| ≤ |W |, then log |W |
log |Wi| ≤ 1, so that such curves do

not contribute large terms to the sums in parts (a) and (b) of the lemma.

(a) Using the above argument, for any W ∈ Ŵs, we may bound the ratio of logs
by 2(n+1)s0γ̄ . Moreover, if |W | ≥ δ0/2, then since |Wi| ≤ δ0 < 2, we have

log |W |
log |Wi|

≤ log(δ0/2)

log δ0
= 1− log 2

log δ0
≤ 2 .

Now, fixing m and using the linear bound on complexity, choose δ0 = δ0(m) > 0
such that if |W | ≤ δ0, then T−�W comprises at most K�+1 connected components
for 0 ≤ � ≤ 2m. Such a choice is always possible by (5.2). Then for n = mj+ �, we
split up the orbit into j−1 increments of length m and the last increment of length
m+ �. Part (a) then follows by a simple induction, since elements of Imj(W ) must
be formed from elements of Im(j−1)(W ) which have been cut by singularity curves
in S−m. At the last step, this estimate also holds for elements of which have been
cut by singularity curves in S−m−� by choice of δ0.

(b) The bound on the ratio of logs is the same as in part (a). The first bound
on the cardinality of the sum follows by noting that each element of Gn(W ) is
contained in one element of Mn

0 . Moreover, due to subdivision of long pieces, there
can be no more than 2δ−1

0 elements of Gn(W ) in a single element of Mn
0 .

For the second bound in part (b), we may assume that |W | < δ0/2; otherwise,
we may bound the sum by 2γ̄+1δ−1

0 #Mn
0 , which is optimal for what we need. For

|W | < δ0/2, let F1(W ) denote those V ∈ G1(W ) whose length is at least δ0/2.
Inductively, define Fj(W ), for 2 ≤ j ≤ n − 1, to contain those V ∈ Gj(W ) whose
length is at least δ0/2, and such that T kV is not contained in an element of Fj−k(W )
for any 1 ≤ k ≤ j − 1. Thus Fj(W ) contains elements of Gj(W ) that are “long for
the first time” at time j.

We group Wi ∈ Gn(W ) by its “first long ancestor” as follows. We say Wi has
first long ancestor21 V ∈ Fj(W ) for 1 ≤ j ≤ n− 1 if Tn−jWi ⊆ V . Note that such
a j and V are unique for each Wi if they exist. If no such j and V exist, then Wi

has been forever short and so must belong to In(W ). Denote by An−j(V ) the set

21Note that “ancestor” refers to the backwards dynamics mapping W to Wi.
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of Wi ∈ Gn(W ) corresponding to one V ∈ Fj(W ). Now∑
Wi∈Gn(W )

(
log |W |
log |Wi|

)γ̄

=

n−1∑
j=1

∑
V�∈Fj(W )

∑
Wi∈An−j(V�)

(
log |W |
log |Wi|

)γ̄

+
∑

Wi∈In(W )

(
log |W |
log |Wi|

)γ̄

≤
n−1∑
j=1

∑
V�∈Fj(W )

(
log |W |
log |V�|

)γ̄ ∑
Wi∈An−j(V�)

(
log |V�|
log |Wi|

)γ̄

+ 2(ns0+1)γ̄(Km+ 1)n/m

≤
n−1∑
j=1

∑
V�∈Fj(W )

(
log |W |
log |V�|

)γ̄

2γ̄+1δ−1
0 #Mn−j

0 + 2(ns0+1)γ̄(Km+ 1)n/m

≤
n−1∑
j=1

2(js0+1)γ̄(Km+ 1)j/m2γ̄+1δ−1
0 #Mn−j

0 + 2(ns0+1)γ̄(Km+ 1)n/m

≤ 22γ̄+1δ−1
0

n∑
j=1

2js0γ̄(Km+ 1)j/m#Mn−j
0 ,

where we have applied part (a) from time 1 to time j and the first estimate in part
(b) from time j to time n, since each |V�| ≥ δ0/2. �

With the growth lemma proved, we can choose m and the length scale δ0 of
curves in Ws. Recalling K from (5.1) and the condition on γ from (4.4), we fix m
so large that

(5.4)
1

m
log(Km+ 1) < h∗ − γs0 log 2 ,

and we choose δ0 = δ0(m) to be the corresponding length scale from Lemma 5.1.
If h∗ > s0 log 2, then we take γ > 1, so that in fact 1

m log(Km+ 1) < h∗ − s0 log 2.

5.2. Fragmentation lemmas. The results in this subsection will be used in Sec-

tions 5.3 and 7.3. For δ ∈ (0, δ0) and W ∈ Ŵs, define Gδ
n(W ) to be the smooth

components of T−nW , with long pieces subdivided to have length between δ/2
and δ. (So Gδ

n(W ) is defined exactly like Gn(W ), but with δ0 replaced by δ.) Let
Lδ
n(W ) denote the set of curves in Gδ

n(W ) that have length at least δ/3 and let
Sδ
n(W ) = Gδ

n(W ) \ Lδ
n(W ). Define Iδ

n(W ) to be those curves in Gδ
n(W ) that have

no ancestors22 of length at least δ/3, as in the definition of In(W ) above. The
following lemma and its corollary bootstrap from Lemma 5.1a) and will be crucial
to get the lower bound on the spectral radius.

Lemma 5.2. For each ε > 0, there exist δ ∈ (0, δ0] and n1 ∈ N, such that for
n ≥ n1,

#Lδ
n(W )

#Gδ
n(W )

≥ 1− 2ε

1− ε
for all W ∈ Ŵs with |W | ≥ δ/3.

Proof. Fix ε > 0 and choose n1 so large that 3C−1
1 (Kn1+1)Λ−n1 < ε and Λn1 > e.

Next, choose δ > 0 sufficiently small that if W ∈ Ŵs with |W | < δ, then T−nW
comprises at most Kn+ 1 smooth pieces of length at most δ0 for all n ≤ 2n1.

22For k < n, we say that U ∈ Gδ
k(W ) is an ancestor of V ∈ Gδ

n(W ) if Tn−kV ⊆ U .
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Let W ∈ Ŵs with |W | ≥ δ/3. We shall prove the following equivalent inequality
for n ≥ n1:

#Sδ
n(W )

#Gδ
n(W )

≤ ε

1− ε
.

For n ≥ n1, write n = kn1 + � for some 0 ≤ � < n1. If k = 1, the above inequality
is clear since Sδ

n1+�(W ) contains at most K(n1 + �) + 1 components by assumption

on δ and n1, while |T−(n1+�)W | ≥ C1Λ
n1+�|W | ≥ C1Λ

n1+�δ/3. Thus Gδ
n(W ) must

contain at least C1Λ
n1+�/3 curves since each has length at most δ. Thus,

#Sδ
n1+�(W )

#Gδ
n1+�(W )

≤ 3C−1
1

K(n1 + �) + 1

Λn1+�
≤ 3C−1

1

Kn1 + 1

Λn1
< ε ,

where the second inequality holds for all � ≥ 0 as long as 1
n1

≤ log Λ, which is true
by choice of n1.

For k > 1, we split n into k − 1 blocks of length n1 and the last block of
length n1 + �. We group elements Wi ∈ Sδ

kn1+�(W ) by most recent23 long ancestor

Vj ∈ Lδ
qn1

(W ): q is the greatest index in [0, k−1] such that T (k−q)n1+�Wi ⊆ Vj and

Vj ∈ Lδ
qn1

(W ). Note that since |Vj | ≥ δ/3, then Gδ
(k−q)n1+�(Vj) must contain at

least C1Λ
(k−q)n1/3 curves since each has length at most δ. Thus using Lemma 5.1a)

with γ̄ = 0, we estimate

#Sδ
kn1+�(W )

#Gδ
kn1+�(W )

=

∑
Wi∈Iδ

kn1+�(W ) 1

#Gδ
kn1+�(W )

+

∑k−1
q=1

∑
Vj∈Lδ

qn1
(W )

∑
Wi∈Iδ

(k−q)n1+�
(Vj)

1

#Gδ
kn1+�(W )

≤ (Kn1 + 1)k

C1Λkn1/3
+

k−1∑
q=1

∑
Vj∈Lδ

qn1
(W )(Kn1 + 1)k−q∑

Vj∈Lδ
qn1

(W )C1Λ(k−q)n1/3

≤ 3C−1
1

k∑
q=1

(Kn1 + 1)qΛ−qn1 ≤
k∑

q=1

εq ≤ ε

1− ε
.

(5.5)

�

The following corollary is used in Corollary 7.9 and in Lemma 7.7.

Corollary 5.3. There exists C2 > 0 such that for any ε, δ, and n1 as in Lemma 5.2,

#Lδ
n(W )

#Gδ
n(W )

≥ 1− 3ε

1− ε
∀W ∈ Ŵs ∀n ≥ C2n1

| log(|W |/δ)|
| log ε| .

Proof. The proof is essentially the same as that for Lemma 5.2, except that for
curves shorter than length δ/3 one must wait n ∼ | log(|W |/δ)| for at least one
component of Gδ

n(W ) to belong to Lδ
n(W ).

More precisely, fix ε > 0 and the corresponding δ and n1 from Lemma 5.2. Let

W ∈ Ŵs with |W | < δ/3 and take n > n1. Decomposing Gδ
n(W ) as in Lemma 5.2,

we estimate the second term of (5.5) as before.

23We only consider what happens at the beginning of a block of length n1. It does not affect
our argument if Wi belongs to a long piece at an intermediate time, since we only consider the
cardinality of short pieces that can be created in each block of length n1 according to our choice
of δ.
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For the first term of (5.5), #Iδ
n(W )/#Gδ

n(W ), for δ sufficiently small, notice
that since the flow is continuous, either #Gδ

� (W ) ≤ K� + 1 by (5.1) or at least
one element of Gδ

� (W ) has length at least δ/3. Let n2 denote the first iterate �
at which Gδ

� (W ) contains at least one element of length more than δ/3. By the
complexity estimate (5.1) and the fact that |T−n2W | ≥ C1Λ

n2 |W | by (3.1), there

exists C̄2 > 0, independent of W ∈ Ŵs, such that n2 ≤ C̄2| log(|W |/δ)|.
Now for n ≥ n2, and some W ′ ∈ Gδ

n2
(W ),

#Iδ
n(W ) ≤ (Kn2 + 1)#Iδ

n−n2
(W ′) ≤ (Kn2 + 1)(Kn1 + 1)(n−n2)/n1� ,

while
#Gδ

n(W ) ≥ C1Λ
n−n2/3 .

Putting these together, we have,

#Iδ
n(W )

#Gδ
n(W )

≤ (Kn2 + 1)(Kn1 + 1)n/n1�

C1Λn/3
Λn2 ≤ εn/n1�(Kn2 + 1)Λn2 .

Since n2 ≤ C̄2| log(|W |/δ)|, we may make this expression < ε by choosing n so

large that n/n1 ≥ C2
log(|W |/δ)

log ε for some C2 > 0. For such n, the estimate (5.5) is

bounded by ε+ ε
1−ε ≤ 2ε

1−ε , which completes the proof of the corollary. �

Choose ε = 1/4 and let δ1 ≤ δ0 and n1 be the corresponding δ and n1 from
Lemma 5.2. With this choice, we have

(5.6) #Lδ1
n (W ) ≥ 2

3#Gδ1
n (W ) for all W ∈ Ŵs with |W | ≥ δ1/3 and n ≥ n1.

Notice that for W ∈ Ws, each element V ∈ Gδ1
n (W ) is contained in one element

of Mn
0 and its image TnV ⊂ W is contained in one element of M0

−n. Indeed, there
is a one-to-one correspondence between elements of Mn

0 and elements of M0
−n.

The boundary of the partition formed by M0
−n is comprised of unstable curves

belonging to S−n =
⋃n

j=0 T
j(S0). Let Lu(M0

−n) denote the elements ofM0
−n whose

unstable diameter24 is at least δ1/3. Similarly, let Ls(Mn
0 ) denote the elements of

Mn
0 whose stable diameter is at least δ1/3.
The following lemma will be used to get both lower and upper bounds on the

spectral radius via Proposition 5.5.

Lemma 5.4. Let δ1 and n1 be associated with ε = 1/4 by Lemma 5.2. There exist
Cn1

> 0 and n2 ≥ n1 such that for all n ≥ n2,

#Lu(M0
−n) ≥ Cn1

δ1#M0
−n and #Ls(Mn

0 ) ≥ Cn1
δ1#Mn

0 .

Proof. We prove the lower bound for Lu(M0
−n). The lower bound for Ls(Mn

0 ) then
follows by time reversal.

Let Iu(M0
−n) denote the elements of M0

−n whose unstable diameter is less than

δ1/3. Clearly, Iu(M0
−n) ∪ Lu(M0

−n) = M0
−n. Similarly, let Iu(T

jS0) denote the

set of unstable curves in T j(S0) whose length is less than δ1/3.
We first prove the following claim: #Iu(M0

−n) ≤ 2
∑n

j=1 #Iu(T
jS0) + K2n.

Recall that the boundaries of elements of M0
−n are comprised of elements of S−n =⋃n

i=0 T
iS0, which are unstable curves for i ≥ 1. We use the following property

established in Lemma 3.1: If a smooth unstable curve Ui ⊂ T iS0 intersects a smooth
curve Uj ⊂ T jS0 for i < j, then Uj must terminate on Ui. Thus if A ∈ Iu(M0

−n),

24Recall from Section 3 that the unstable diameter of a set is the length of the longest unstable
curve contained in that set.
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then either the boundary of A contains a short curve in T j(S0) for some 1 ≤ j ≤ n,
or ∂A contains an intersection point of two curves in T j(S0) for some 1 ≤ j ≤ n (see
Figure 3). But such intersections of curves within T j(S0) are images of intersections
of curves within T (S0), and the cardinality of cells created by such intersections is
bounded by some uniform constant K2 > 0 depending only on T (S0). Then, since
each short curve in T j(S0) belongs to the boundary of at most two A ∈ Iu(M0

−n),
the claim follows.

A

T j(S0)

Figure 3. A short cell A ∈ Iu(M0
−n) created by long elements of T j(S0).

Next, subdivide S0 into �0 horizontal segments Ui such that TUi is an unstable
curve of length between δ1/3 and δ1 for each i. Analogous to stable curves, let

Gδ1
j (U) denote the decomposition of the union of unstable curves comprising T jU

at length scale δ1. Then for j ≥ n1 using the time reversal of (5.6), we have

(5.7) #Iu(T
jS0) =

�0∑
i=1

#Iu(Gδ1
j−1(TUi)) ≤ 1

2

�0∑
i=1

#Lu(Gδ1
j−1(TUi)) .

Using the claim and (5.7) we split the sum over j into 2 parts,

(5.8) #Iu(M0
−n) ≤ K2n+ 2

n1−1∑
j=1

#Iu(T
jS0) +

n∑
j=n1

�0∑
i=1

#Lu(Gδ1
j−1(TUi)) .

The cardinality of the sum over the first n1 terms is bounded by a fixed constant
depending on n1, but not on n; let us call it C̄n1

. We want to relate the sum over
the terms for j ≥ n1 to Lu(M0

−n). To this end, we follow the proof of Lemma 5.2
and split n− j into blocks of length n1.

For each n1 ≤ j ≤ n − n1, write n − j = kn1 + � for some k ≥ 1. If V ∈
Lu(Gδ1

j−1(TUi)), then |Tn−jV | ≥ C1Λ
n−jδ1/3, while T

n−jV can be cut into at most

(Kn1 + 1)k pieces. Since we have chosen ε = 1/4 in the application of Lemma 5.2,
by choice of n1,

#Lu(Gδ1
n−1(TUi))≥4k#Lu(Gδ1

j−1(TUi)) for each n1≤j≤n− n1 and k=

⌊
(n− j)

n1

⌋
.

For n− n1 < j ≤ n, we perform the same estimate, but relating j with j + n1,

#Lu(Gδ1
j+n1−1(TUi)) ≥ 4#Lu(Gδ1

j−1(TUi)) for each n− n1 + 1 ≤ j ≤ n.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

MEASURE OF MAXIMAL ENTROPY FOR SINAI BILLIARD MAPS 409

Gathering these estimates together and using (5.8), we obtain,

#Iu(M0
−n)

≤ K2n+ C̄n1
+

n−n1∑
j=n1

4−(n−j)/n1�#Lu(T
nS0) +

n∑
j=n−n1+1

1
4#Lu(T

j+n1S0)

≤ 2K2n+ C̄n1
+ Cδ−1

1 n1#Lu(M0
−n) +

n∑
j=n−n1+1

Cδ−1
1 #Lu(M0

−j−n1
) ,

(5.9)

where the second inequality uses #Lu(T
�S0) ≤ Cδ−1

1 Lu(M0
−�) + K2 for � ≥ n,

which stems from the same noncrossing property used earlier: a curve in T �(S0)
must terminate on a curve in T i(S0) if the two intersect for i < �.

To estimate the final sum in (5.9), note that if A ∈ Lu(M0
−n−1), then A ⊆ A′ ∈

Lu(M0
−n). Moreover, there exists a constant B > 0, independent of n, such that

each A′ ∈ Lu(M0
−n) can contain at most B elements of Lu(M0

−n−1). (Indeed by

Lemma 3.3, B is at most |P̊|, and depends only on S1.) Inductively then,
n1∑
j=1

#Lu(M0
−n−j) ≤

n1∑
j=1

Bj#Lu(M0
−n) ≤ CBn1#Lu(M0

−n) .

Putting this estimate together with (5.9) yields,

#Iu(M0
−n) ≤ #Lu(M0

−n)Cδ−1
1 (n1 +Bn1) + Cn1

+ 2K2n .

Using #M0
−n = #Lu(M0

−n) + #Iu(M0
−n), this implies,

#Lu(M0
−n) ≥

#M0
−n − Cn1

− 2K2n

1 + Cδ−1
1 (n1 +Bn1)

.

Since #M0
−n increases at an exponential rate and n1 is fixed, there exists n2 ∈ N

such that #M0
−n − C̄n1

− 2K2n ≥ 1
2#M0

−n for n ≥ n2. Thus there exists Cn1
> 0

such that for n ≥ n2, #Lu(M0
−n) ≥ Cn1

δ1#M0
−n, as required. �

5.3. Exact exponential growth of #Mn
0—Cantor rectangles. It follows from

submultiplicativity of #Mn
0 that enh∗ ≤ #Mn

0 for all n. In this subsection, we shall
prove a supermultiplicativity statement (Lemma 5.6) from which we deduce the
upper bound for #Mn

0 in Proposition 4.6 giving the upper bound in Proposition 4.7,
and ultimately the upper bound on the spectral radius of L on B.

The following key estimate is a lower bound on the rate of growth of stable curves
having a certain length. The proof will crucially use the fact that the SRB measure
is mixing in order to bootstrap from Lemma 5.4.

Proposition 5.5. Let δ1 be the value of δ from Lemma 5.2 associated with ε = 1/4

(see (5.6)). There exists c0 > 0 such that for all W ∈ Ŵs with |W | ≥ δ1/3 and
n ≥ 1, we have #Gn(W ) ≥ c0#Mn

0 . The constant c0 depends on δ1.

This will be used for the lower bound in Section 6.3. It also has the following
important consequence.

Lemma 5.6 (Supermultiplicativity). There exists c1 > 0 such that ∀n, j ∈ N, with
j ≤ n, we have

#Mn
0 ≥ c1#Mn−j

0 #Mj
0 .
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We next introduce Cantor rectangles. LetW s(x) andWu(x) denote the maximal
smooth components of the local stable and unstable manifolds of x ∈ M .

Definition 5.7 ((Locally maximal) Cantor rectangles). A solid rectangle D in M
is a closed region whose boundary comprises precisely four nontrivial curves: two
stable manifolds and two unstable manifolds. Given a solid rectangle D, the locally
maximal Cantor rectangle R in D is formed by taking the union of all points in D
whose local stable and unstable manifolds completely cross D. Locally maximal
Cantor rectangles have a natural product structure: for any x, y ∈ R, W s(x) ∩
Wu(y) ∈ R, where W s/u(x) is the local stable/unstable manifold containing x. It
is proved in [CM, Section 7.11] that such rectangles are closed and as such contain
their outer boundaries, which coincide with the boundary of D. We shall refer to
this pair of stable and unstable manifolds as the stable and unstable boundaries of
R. In this case, we denote D by D(R) to emphasize that it is the smallest solid
rectangle containing R. We shall sometimes drop the words “locally maximal”
referring simply to Cantor rectangles R.

Definition 5.8 (Properly crossing a (locally maximal) Cantor rectangle). For a
(locally maximal) Cantor rectangle R such that

(5.10) inf
x∈R

mWu(Wu(x) ∩R)

mWu(Wu(x) ∩D(R))
≥ 0.9 ,

we25 say a stable curve W ∈ Ŵs properly crosses R if
a) W crosses both unstable sides of R;
b) for every x ∈ R, the intersection W ∩ W s(x) ∩ D(R) = ∅, i.e., W does not

cross any stable manifolds in R;
c) for all x ∈ R, the point W ∩Wu(x) divides the curve Wu(x)∩D(R) in a ratio

between 0.1 and 0.9, i.e., W does not come too close to either unstable boundary
of R.

Remark 5.9. The (unstable analogue of) condition b) is not needed in its full
strength, even in the proof of [CM, Lemma 7.90]. What is used there is that
the fake unstable is trapped between two real unstable that it does not cross. Since
the real unstable intersect and fully cross the target rectangle, this forces the fake
unstable to do so as well. For us, we reverse time and consider stable manifolds. For
real stable manifolds, condition b) is not needed at all: If a real stable fully crosses
the initial rectangle, then, when it intersects the target rectangle under iteration by
T−n, it must intersect a real stable manifold, and it must fully cross. (Otherwise,
the preimage of a singularity would lie on a real stable manifold in the interior of
the target rectangle. But this cannot be since real stable manifolds are never cut
going forward and so do not intersect the preimages of singularity curves except
at their end points.) When discussing proper crossing for real stable manifolds, we
will drop condition b) and allow W ∈ Ws to be one of the stable manifolds defining
R.

Proof of Proposition 5.5. Using [CM, Lemma 7.87], we may cover M by Cantor
rectangles R1, . . . , Rk satisfying (5.10) whose stable and unstable boundaries have
length at most 1

10δ1, with the property that any stable curve of length at least δ1/3

25This is a version of Definition 7.85 of [CM] formulated with stable (instead of unstable)
curves crossing R. We have also dropped any mention of homogeneous components, which are
used in the construction in [CM].
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properly crosses at least one of them. The cardinality k is fixed, depending only on
δ1.

Recall that Lu(M0
−n) denotes the elements of M0

−n whose unstable diameter is
longer than δ1/3. We claim that for all n ∈ N, at least one Ri is fully crossed in
the unstable direction by at least 1

k#Lu(M0
−n) elements of M0

−n. Notice that if

A ∈ M0
−n, then ∂A is comprised of unstable curves belonging to

⋃n
i=1 T

iS0, and

possibly S0. By definition of unstable manifolds, T iS0 cannot intersect the unstable
boundaries of the Ri; thus if A ∩Ri = ∅, then either ∂A terminates inside Ri or A
fully crosses Ri. Thus elements of Lu(M0

−n) fully cross at least one Ri and so at
least one Ri must be fully crossed by 1/k of them, proving the claim.

For each n ∈ N, denote by in the index of a rectangle Rin which is fully crossed
by at least 1

k#Lu(M0
−n) elements of M0

−n. The main idea at this point will be to
force every stable curve to properly cross Rin in a bounded number of iterates and
so to intersect all elements of M0

−n that fully cross Rin .
To this end, fix δ∗ ∈ (0, δ1/10) and for i = 1, . . . , k, choose a “high density” subset

R∗
i ⊂ Ri satisfying the following conditions: R∗

i has nonzero Lebesgue measure, and
for any unstable manifold Wu such that Wu ∩ R∗

i = ∅ and |Wu| < δ∗, we have
mWu (Wu∩R∗

i )
|Wu| ≥ 0.9. (Such a δ∗ and R∗

i exist due to the fact that mWu-almost

every y ∈ Ri is a Lebesgue density point of the set Wu(y) ∩ Ri and the unstable
foliation is absolutely continuous with respect to μSRB or, equivalently, Lebesgue.)

Due to the mixing property of μSRB and the finiteness of the number of rectangles
Ri, there exist ε > 0 and n3 ∈ N such that for all 1 ≤ i, j ≤ k and all n ≥ n3,
μSRB(R

∗
i ∩ T−nRj) ≥ ε. If necessary, we increase n3 so that the unstable diameter

of the set T−nRi is less than δ∗ for each i, and n ≥ n3.

Now let W ∈ Ŵs with |W | ≥ δ1/3 be arbitrary. Let Rj be a Cantor rectangle
that is properly crossed by W . Let n ∈ N and let in be as above. By mixing,
μSRB(R

∗
in

∩ T−n3Rj) ≥ ε. By [CM, Lemma 7.90], there is a component of T−n3W

that fully crosses R∗
in

in the stable direction. Call this component V ∈ Gδ1
n3
(W ).

By choice of Rin , this implies that #Gn(V ) ≥ 1
k#Lu(M0

−n), and thus

#Gn+n3
(W ) ≥ 1

k#Lu(M0
−n) =⇒ #Gn(W ) ≥ C′

k #Lu(M0
−n) ,

where C ′ is a constant depending only on n3 since at each refinement of M0
−j to

M0
−j−1, the cardinality of the partition increases by a factor which is at most |P̊|,

as noted in the proof of Lemma 5.4. The final estimate needed is #Lu(M0
−n) ≥

Cn1
δ1#M0

−n for n ≥ n2 from Lemma 5.4. Thus the proposition holds for n ≥
max{n2, n3}. It extends to all n ∈ N since #Mn

0 ≤ (#M1
0)

n and there are only
finitely many values of n to correct for. �

Proof of Lemma 5.6. Recall the singularity sets defined for n, k ∈ N by Sn =⋃n
i=0 T

−iS0 and S−k =
⋃k

i=0 T
iS0. Due to the relation, T−k(S−k ∪ Sn) = Sk ∪

T−kSn = Sn+k, we have a one-to-one correspondence between elements of Mn
−k

and Mn+k
0 .

Now fix n, j ∈ N with j < n. Using the above relation, we have

#Mn
0 = #Mn−j

−j = #
(
Mn−j

0 ∨M0
−j

)
.

In order to prove the lemma, it suffices to show that a positive fraction (indepen-

dent of n and j) of elements of Mn−j
0 intersect a positive fraction of elements of
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M0
−j . Note that ∂Mn−j

0 is comprised of stable curves, while ∂M0
−j is comprised

of unstable curves.
Recall that Lu(M0

−j) denotes the elements of M0
−j whose unstable diameter

is longer than δ1/3. Similarly, Ls(Mn−j
0 ) denotes those elements of Mn−j

0 whose
stable diameter is longer than δ1/3. By Lemma 5.4,

#Ls(Mn−j
0 ) ≥ Cn1

δ1#Mn−j
0 for n− j ≥ n2 .

Let A ∈ Ls(Mn−j
0 ) and let V ∈ Ŵs be a stable curve in A with length at

least δ1/3. By Proposition 5.5, #Gj(V ) ≥ c0#Mj
0. Each component of Gj(V )

corresponds to one component of V \ S−j (up to subdivision of long pieces in

Gj(V )). Thus V intersects at least c0#Mj
0 = c0#M0

−j elements of M0
−j . Since

this holds for all A ∈ Ls(Mn−j
0 ), we have

#Mn
0 = #

(
Mn−j

0 ∨M0
−j

)
≥ #Ls(Mn−j

0 ) · c0#Mj
0 ≥ Cn1

δ1c0#Mn−j
0 #Mj

0 ,

proving the lemma with c1 = c0Cn1
δ1 when n − j ≥ n2. For n − j ≤ n2, since

#Mn−j
0 ≤ (#M1

0)
n−j , we obtain the lemma by decreasing c1 since there are only

finitely many values to correct for. �

Proof of Proposition 4.6. Define ψ(n) = #Mn
0 e

−nh∗ , and note that ψ(n) ≥ 1 for
all n. From Lemma 5.6 it follows that

(5.11) ψ(n) ≥ c1ψ(j)ψ(n− j) for all n ∈ N and 0 ≤ j ≤ n.

Suppose there exists n1 ∈ N such that ψ(n1) ≥ 2/c1. Then using (5.11), we have

ψ(2n1) ≥ c1ψ(n1)ψ(n1) ≥
4

c1
.

Iterating this bound, we have inductively for any k ≥ 1,

ψ(2kn1) ≥ c1ψ(2n1)ψ(2(k − 1)n1) ≥ c1
4

c1

4k−1

c1
=

4k

c1
.

This implies that limk→∞
1

2kn1
logψ(2kn1) ≥ log 4

2n1
, which contradicts the definition

of ψ(n) (since limn→∞
1
n logψ(n) = 0). We conclude that ψ(n) ≤ 2/c1 for all

n ≥ 1. �

Our final result of this section demonstrates the uniform exponential rate of
growth enjoyed by all stable curves of length at least δ1/3.

Corollary 5.10. For all stable curves W ∈ Ŵs with |W | ≥ δ1/3 and all n ≥ n1,
we have

2δ1c0
9

enh∗ ≤ |T−nW | ≤ 4

c1
enh∗ .

Proof. For W ∈ Ŵs with |W | ≤ δ1/3, Lemma 5.1b) with γ̄ = 0 together with
Propositions 4.6 and 5.5 yield,

c0e
nh∗ ≤ c0#Mn

0 ≤ #Gn(W ) ≤ 2δ−1
0 #Mn

0 ≤ 4
c1δ0

enh∗ .

The upper bound of the corollary is completed by noting that

|T−nW | =
∑

Wi∈Gn(W )

|Wi| ≤ δ0#Gn(W ) .



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

MEASURE OF MAXIMAL ENTROPY FOR SINAI BILLIARD MAPS 413

The lower bound follows using (5.6) since #Gδ1
n (W ) ≥ #Gn(W ),

(5.12) |T−nW | =
∑

Wi∈Gδ1
n (W )

|Wi| ≥
δ1
3
#Lδ1

n (W ) ≥ 2δ1
9 #Gδ1

n (W ) ≥ 2δ1c0
9 enh∗ .

�

6. Proof of the “Lasota–Yorke” Proposition 4.7—spectral radius

6.1. Weak norm and strong stable norm estimates. We start with the weak
norm estimate (4.9). Let f ∈ C1(M), W ∈ Ws, and ψ ∈ Cα(W ) be such that
|ψ|Cα(W ) ≤ 1. For n ≥ 0 we use the definition of the weak norm on each Wi ∈
Gn(W ) to estimate

∫
W

Lnf ψ dmW =
∑

Wi∈Gn(W )

∫
Wi

f ψ ◦ Tn dmW ≤
∑

Wi∈Gn(W )

|f |w|ψ ◦ Tn|Cα(Wi) .

(6.1)

Clearly, sup |ψ ◦ Tn|Wi
≤ supW |ψ|. For x, y ∈ Wi, we have,

|ψ(Tnx)− ψ(Tny)|
dW (Tnx, Tny)α

· dW (Tnx, Tny)α

dW (x, y)α
≤ C|ψ|Cα(W )|JsTn|αC0(Wi)

(6.2)

≤ CΛ−αn|ψ|Cα(W ) ,

so that Hα
Wi

(ψ◦Tn) ≤ CΛ−αnHα
W (ψ) and thus |ψ◦Tn|Cα(Wi) ≤ C|ψ|Cα(W ). Using

this estimate and Lemma 5.1b) with γ̄ = 0 in equation (6.1), we obtain∫
W

Lnf ψ dmW ≤
∑

Wi∈Gn(W )

C|f |w ≤ Cδ−1
0 |f |w(#Mn

0 ) .

Taking the supremum over W ∈ Ws and ψ ∈ Cα(W ) with |ψ|Cα(W ) ≤ 1 yields
(4.9), using the upper bound on #Mn

0 in Proposition 4.6.
We now prove the strong stable norm estimate (4.10). Recall that our choice of

m in (5.4) implies 2s0γ(Km+ 1)1/m < eh∗ , where K is from (5.1). Define

(6.3) Dn = Dn(m, γ) := 22γ+1δ−1
0

n∑
j=1

2js0γ(Km+ 1)j/m#Mn−j
0 .

We claim that it follows from Proposition 4.6 that

(6.4) Dn ≤ Cenh∗ .

Indeed, by choice of γ and m, setting ε1 := h∗ − log(2s0γ(Km + 1)1/m) > 0, we
have

Dn = 22γ+1δ−1
0

n∑
j=1

2js0γ(Km+ 1)j/m#Mn−j
0 ≤ 22γ+1δ−1

0

n∑
j=1

e(h∗−ε1)j
2

c1
e(n−j)h∗

≤ 22γ+1δ−1
0

2

c1
enh∗

n∑
j=1

e−ε1j .

To prove the strong stable bound, let W ∈ Ws and ψ ∈ Cβ(W ) with |ψ|Cβ(W ) ≤
| log |W ||γ . Using equation (6.1), and applying the strong stable norm on each
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Wi ∈ Gn(W ), we write∫
W

Lnf ψ dmW =
∑
i

∫
Wi

f ψ ◦ Tn dmW ≤
∑
i

‖f‖s| log |Wi||−γ |ψ ◦ Tn|Cβ(Wi) .

From the estimate analogous to (6.2), we have |ψ ◦ Tn|Cβ(Wi) ≤ C|ψ|Cβ(W ) ≤
C| log |W ||γ . (Note that the contraction coming from the negative power of Λ in
(6.2) cannot be exploited; see footnote 20 and the comments after Remark 4.8.)

Thus, ∫
W

Lnf ψ dmW ≤ C‖f‖s
∑

Wi∈Gn(W )

(
log |W |
log |Wi|

)γ

≤ C‖f‖sDn ,

where we have used Lemma 5.1b) with γ̄ = γ.
Taking the supremum over W and ψ and recalling (6.4) proves (4.10), since we

have shown that ‖Lnf‖s ≤ CDn‖f‖s.

6.2. Unstable norm estimate. Fix ε ≤ ε0 and consider two curvesW 1,W 2 ∈ Ws

with dWs(W 1,W 2) ≤ ε. For n ≥ 1, we describe how to partition T−nW � into
“matched” pieces U �

j and “unmatched” pieces V �
i , � = 1, 2.

Let ω be a connected component of W 1 \ S−n. To each point x ∈ T−nω, we
associate a vertical line segment γx of length at most CΛ−nε such that its image
Tnγx, if not cut by a singularity, will have length Cε. By [CM, §4.4], all the tangent
vectors to T iγx lie in the unstable cone Cu(T ix) for each i ≥ 1 so that they remain
uniformly transverse to the stable cone and enjoy the minimum expansion given by
Λ.

Doing this for each connected component ofW 1\S−n, we subdivideW
1\S−n into

a countable collection of subintervals of points for which Tnγx intersects W 2 \ S−n

and subintervals for which this is not the case. This in turn induces a corresponding
partition on W 2 \ S−n.

We denote by V �
i the pieces in T−nW � which are not matched up by this process

and note that the images TnV �
i occur either at the endpoints of W � or because the

vertical segment γx has been cut by a singularity. In both cases, the length of the
curves TnV �

i can be at most Cε due to the uniform transversality of S−n with the
stable cone and of Cs(x) with Cu(x).

In the remaining pieces the foliation {Tnγx}x∈T−nW 1 provides a one-to-one cor-
respondence between points in W 1 and W 2. We further subdivide these pieces in
such a way that the lengths of their images under T−i are less than δ0 for each
0 ≤ i ≤ n and the pieces are pairwise matched by the foliation {γx}. We call
these matched pieces U �

j . Since the stable cone is bounded away from the vertical

direction, we can adjust the elements of Gn(W
�) created by artificial subdivisions

due to length so that U �
j ⊂ W �

i and V �
k ⊂ W �

i′ for some W �
i ,W

�
i′ ∈ Gn(W

�) for all

j, k ≥ 1 and � = 1, 2, without changing the cardinality of the bound on Gn(W
�).

There is at most one U �
j and two V �

j per W �
i ∈ Gn(W

�).

In this way we write W � = (
⋃

j T
nU �

j )∪ (
⋃

i T
nV �

i ). Note that the images TnV �
i

of the unmatched pieces must be short while the images of the matched pieces U �
j

may be long or short.
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We have arranged a pairing of the pieces U �
j = GU�

j
(Ij), � = 1, 2, with the

property:

If U1
j = {(r, ϕU1

j
(r)) : r ∈ Ij}, then U2

j = {(r, ϕU2
j
(r)) : r ∈ Ij} ,(6.5)

so that the point x = (r, ϕU1
j
(r)) is associated with the point x̄ = (r, ϕU2

j
(r)) by

the vertical segment γx ⊂ {(r, s)}s∈[−π/2,π/2] for each r ∈ Ij .

Given ψ� on W � with |ψ�|Cα(W �) ≤ 1 and d(ψ1, ψ2) ≤ ε, we must estimate

∣∣∣∣∫
W 1

Lnf ψ1 dmW −
∫
W 2

Lnf ψ2 dmW

∣∣∣∣ ≤
∑
�,i

∣∣∣∣∣
∫
V �
i

f ψ� ◦ Tn dmW

∣∣∣∣∣
+
∑
j

∣∣∣∣∣
∫
U1

j

f ψ1 ◦ Tn dmW −
∫
U2

j

f ψ2 ◦ Tn dmW

∣∣∣∣∣ .

(6.6)

We first estimate the differences of matched pieces U �
j . The function φj = ψ1 ◦Tn ◦

GU1
j
◦G−1

U2
j
is well-defined on U2

j , and we can estimate,

(6.7)∣∣∣∣∣
∫
U1

j

f ψ1 ◦ Tn−
∫
U2

j

f ψ2 ◦ Tn

∣∣∣∣∣≤
∣∣∣∣∣
∫
U1

j

f ψ1 ◦ Tn−
∫
U2

j

f φj

∣∣∣∣∣+
∣∣∣∣∣
∫
U2

j

f(φj−ψ2 ◦ Tn)

∣∣∣∣∣ .
We bound the first term in equation (6.7) using the strong unstable norm. As

before, (6.2) implies |ψ1 ◦Tn|Cα(U1
j )

≤ C|ψ1|Cα(W 1) ≤ C. We have |GU1
j
◦G−1

U2
j
|C1 ≤

Cg for some Cg > 0 due to the fact that each curve U �
j has uniformly bounded

curvature and slopes bounded away from infinity. Thus

(6.8) |φj |Cα(U2
j )

≤ CCg|ψ1|Cα(W 1) .

Moreover, d(ψ1 ◦Tn, φj) =
∣∣∣ψ1 ◦ Tn ◦GU1

j
− φj ◦GU2

j

∣∣∣
C0(Ij)

= 0 by the definition

of φj .
To complete the bound on the first term of (6.7), we need the following estimate

from [DZ1, Lemma 4.2]: There exists C > 0, independent of W 1 and W 2, such that

(6.9) dWs(U1
j , U

2
j ) ≤ CΛ−nnε =: ε1 ∀j .

In view of (6.8), we renormalize the test functions by CCg. Then we apply the
definition of the strong unstable norm with ε1 in place of ε. Thus,

(6.10)
∑
j

∣∣∣∣∣
∫
U1

j

f ψ1 ◦ Tn −
∫
U2

j

f φj

∣∣∣∣∣ ≤ (CCg)Cδ−1
0 | log ε1|−ς‖f‖u(#Mn

0 ) ,

where we used Lemma 5.1b) with γ̄ = 0 since there is at most one matched piece
U1
j corresponding to each component W 1

i ∈ Gn(W
1) of T−nW 1.

It remains to estimate the second term in (6.7) using the strong stable norm

(6.11)

∣∣∣∣∣
∫
U2

j

f(φj − ψ2 ◦ Tn)

∣∣∣∣∣ ≤ ‖f‖s| log |U2
j ||−γ |φj − ψ2 ◦ Tn|Cβ(U2

j )
.
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In order to estimate the Cβ-norm of the function in (6.11), we use that |GU2
j
|C1 ≤

Cg and |G−1
U2

j
|C1 ≤ Cg to write

(6.12) |φj − ψ2 ◦ Tn|Cβ(U2
j )

≤ Cg|ψ1 ◦ Tn ◦GU1
j
− ψ2 ◦ Tn ◦GU2

j
|Cβ(Ij) .

The difference can now be bounded by the following estimate from [DZ1, Lemma 4.4]:

(6.13) |ψ1 ◦ Tn ◦GU1
j
− ψ2 ◦ Tn ◦GU2

j
|Cβ(Ij) ≤ Cεα−β .

Indeed, using (6.13) together with (6.12) yields by (6.11)∑
j

∣∣∣ ∫
U2

j

f(φj − ψ2 ◦ Tn) dmW

∣∣∣
≤ C‖f‖s

∑
j

| log |U2
j ||−γ εα−β ≤ C| log δ0|−γ‖f‖sεα−β2δ−1

0 (#Mn
0 ) ,

(6.14)

where used (as in (6.10)) Lemma 5.1b) with γ̄ = 0 since there is at most one
matched piece U2

j corresponding to each component W 2
i ∈ Gn(W

2) of T−nW 2.
Since δ0 < 1 is fixed, this completes the estimate on the second term of matched
pieces in (6.7).

We next estimate over the unmatched pieces V �
i in (6.6), using the strong stable

norm. Note that by (6.2), |ψ� ◦ Tn|Cβ(V �
i ) ≤ C|ψ�|Cα(W �) ≤ C. The relevant sum

for unmatched pieces in Gn(W
1) is

(6.15)
∑
i

∫
V 1
i

fψ1 ◦ Tn dmV 1
i

with a similar sum for unmatched pieces in Gn(W
2).

We say an unmatched curve V 1
i is created at time j, 1 ≤ j ≤ n, if j is the first

time that Tn−jV 1
i is not part of a matched element of Gj(W

1). Indeed, there may
be several curves V 1

i (in principle exponentially many in n− j) such that Tn−jV 1
i

belongs to the same unmatched element of Gj(W
1). Define

Aj,k = {i : V 1
i is created at time j

and Tn−jV 1
i belongs to the unmatched curve W 1

k ⊂ T−jW 1} .

Due to the uniform hyperbolicity of T , and, again, uniform transversality of S−n

with the stable cone and of Cs(x) with Cu(x), we have |W 1
k | ≤ CΛ−jε.

Let δ1 be the value of δ ≤ δ0 from Lemma 5.2 associated with ε = 1/4 (recall
(5.6)). For a certain time, the iterate T−qW 1

k remains shorter than length δ1. In
this case, by Lemma 5.1a) for γ̄ = 0, its complexity grows subexponentially,

(6.16) #Gq(W
1
k ) ≤ (Km+ 1)q/m .

We would like to establish the maximal value of q as a function of j.
More precisely, we want to find q(j) so that any q ≤ q(j) satisfies the conditions:
(a) T−qW 1

k remains shorter than length δ1;

(b)
| log |T−qW 1

k ||−γ

| log ε|−ς
≤ 1.

For (a), we use (5.3) together with the fact that |W 1
k | ≤ CΛ−jε to estimate

|T−qW 1
k | ≤ δ1 ⇐= C ′′|W 1

k |2
−s0q ≤ δ1 ⇐= C ′′Λ−j2−s0q

ε2
−s0q ≤ δ1 .
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Omitting the ε2
−s0q

factor and solving the last inequality for q yields,

(6.17) q ≤ log j

s0 log 2
+ C2 , where C2 =

log( log Λ
| log(δ1/C′′)| )

s0 log 2
.

For (b), we again use (5.3) to bound |T−qW 1
k | ≤ C ′′(Λ−jε)2

−s0q

, so that

(6.18)
| log(Λ−jε)2

−s0q |−γ

| log ε|−ς
≤ 1 =⇒ 2γs0q| log ε|ς ≤ (| log ε|+ j log Λ)γ

implies (b). In turn, (6.18) is implied by

(6.19) q ≤ (γ − ς) log j

γs0 log 2
.

Since the bound in (6.19) is smaller than that in (6.17) for j larger than some fixed
constant depending only on δ1, s0, and C ′′, we will use (6.19) to define q(j).

Now we return to the estimate in (6.15). Grouping the unmatched pieces V 1
i by

their creation times j, we estimate, 26

∑
i

∫
V 1
i

f ψ1 ◦ Tn dmV 1
i

=
n∑

j=1

∑
i∈Aj,k

∫
Tn−jV 1

i

(Ln−jf)ψ ◦ T j =
n∑

j=1

∑
k

∫
W 1

k

(Ln−jf)ψ ◦ T j

≤
n∑

j=1

∑
k

∑
V�∈Gq(j)(W

1
k )

∫
V�

(Ln−j−q(j)f)ψ ◦ T j+q(j)

≤
n∑

j=1

∑
k

∑
V�∈Gq(j)(W

1
k )

‖Ln−j−q(j)f‖sC| log |V�||−γ

≤ C‖f‖s
n∑

j=1

#Mj
0#Mn−j−q(j)

0 (Km+ 1)q(j)/m| log(Λ−jε)|2−s0q(j)

)−γ ,

where we have used (6.16) to bound #Gq(j)(W
1
k ), the cardinality #Mj

0 to bound

the cardinality of the possible pieces W 1
k ⊂ T−jW 1, the estimate ‖Ln−j−q(j)f‖s ≤

C#Mn−j−q(j)
0 ‖f‖s, and, again |T−qW 1

k | ≤ C ′′(Λ−jε)2
−s0q

. We also have, by the
supermultiplicativity Lemma 5.6,

#Mj
0#Mn−j−q(j)

0 ≤ Ce−q(j)h∗#Mn
0 .

Thus using (b) in the definition of q(j) (or, more precisely, (6.18)), we estimate

(6.20)
∑
i

∫
V 1
i

fψ1 ◦Tn dmV 1
i
≤ C‖f‖s| log ε|−ς#Mn

0

n∑
j=1

(Km+1)q(j)/me−q(j)h∗ .

26When we sum the integrals in the first line over the different Tn−jV 1
i , we find the integral

over W 1
k since the union of those pieces is precisely W 1

k .
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For the final sum over j, we let ε2 = 1
m log(Km+ 1) and use (6.19),

n∑
j=1

(Km+ 1)q(j)/me−q(j)h∗ =

n∑
j=1

e−q(j)(h∗−ε2) ≤
n∑

j=1

e−(h∗−ε2)
(γ−ς) log j
γs0 log 2

=
n∑

j=1

j−(h∗−ε2)
γ−ς

γs0 log 2 .

Then by (6.20), since the exponent of j in the above sum is strictly negative by
choice of m (see (5.4)), there exist C < ∞ and � ∈ [0, 1) such that the contribution
to ‖Lnf‖u of the unmatched pieces is bounded by

(6.21)
∑
�,i

∣∣∣∣∣
∫
V �
i

f ψ� ◦ Tn dmW

∣∣∣∣∣ ≤ C| log ε|−ςn�#Mn
0‖f‖s .

Now we use (6.21) together with (6.10) and (6.14) to estimate (6.6)∣∣∣∣∫
W 1

Lnf ψ1 dmW −
∫
W 2

Lnf ψ2 dmW

∣∣∣∣
≤ Cδ−1

0 ‖f‖u| log ε1|−ς#Mn
0 + Cδ−1

0 (n�‖f‖s| log ε|−ς + ‖f‖sεα−β)#Mn
0 .

Dividing through by | log ε|−ς and taking the appropriate suprema, we complete
the proof of (4.11), recalling Proposition 4.6.

Finally, we study the consequences of the additional assumption h∗ > s0 log 2
on the estimate over unmatched pieces. In this case, again recalling (5.4) and
following, we may choose ς > 0 small enough such that

ε1 := h∗ −
1

m
log(Km+ 1)− γ

γ − ς
s0 log 2 > 0 .

Then
n∑

j=1

j−(h∗−ε2)
γ−ς

γs0 log 2 =

n∑
j=1

j−1−ε1
γ−ς

γs0 log 2 < ∞ .

Thus, by (6.20), the contribution to ‖Lnf‖u of the unmatched pieces is bounded
by

(6.22)
∑
�,i

∣∣∣∣∣
∫
V �
i

f ψ� ◦ Tn dmW

∣∣∣∣∣ ≤ C| log ε|−ς#Mn
0‖f‖s

if h∗ > s0 log 2. So we find (4.12) for h∗ > s0 log 2 by replacing (6.21) with (6.22).

6.3. Upper and lower bounds on the spectral radius. We now deduce the
bounds of Theorem 4.10 from the inequalities of Proposition 4.7 and the rate of
growth of stable curves proved in Proposition 5.5.

Proof of Theorem 4.10. The upper bounds (4.13) and (4.15) are immediate conse-
quences of Proposition 4.7. To prove the lower bound on |Ln1|w, recall the choice of
δ1 = δ > 0 from Lemma 5.2 for ε = 1/4, giving (5.6). Let W ∈ Ws with |W | ≥ δ1/3
and set the test function ψ ≡ 1. For n ≥ n1,∫

W

Ln1 dmW =
∑

Wi∈Gδ1
n (W )

∫
Wi

1 dmWi
=

∑
Wi∈Gδ1

n (W )

|Wi| ≥
2δ1
9

c0e
nh∗ ,(6.23)
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by (5.12). Thus,

(6.24) ‖Ln1‖s ≥ |Ln1|w ≥ 2δ1
9

c0e
nh∗ .

Letting n tend to infinity, one obtains limn→∞ ‖Ln‖1/nB ≥ eh∗ . �
6.4. Compact embedding. The following compact embedding property is crucial
to exploit Proposition 4.7 in order to construct μ∗ in Section 7.1.

Proposition 6.1 (Compact embedding). The embedding of the unit ball of B in
Bw is compact.

Proof. Consider the set Ŵs of (not necessarily homogeneous) cone-stable curves
with uniformly bounded curvature and the distance dWs(·, ·) between them defined
in Section 4.1. According to (4.3), each of these curves can be viewed as graphs of
C2 functions of the position coordinate r with uniformly bounded second derivative,
W = {GW (r)}r∈Iw = {(r, ϕW (r))}r∈IW . Thus they are compact in the C1 distance

dWs . Given ε > 0, we may choose finitely many Vi ∈ Ŵs, i = 1, . . . , Nε, such that
the balls of radius ε/2 in the dWs metric centered at the curves {Vi}Nε

i=1 form a

covering of Ŵs.

Since Ws ⊂ Ŵs, we proceed as follows. In each ball Bε/2(Vi) centered at Vi in

the space of C1 graphs, if Bε/2(Vi) ∩ Ws = ∅, then we choose one representative
Wi ∈ Bε/2(Vi) ∩Ws. Otherwise, we discard Bε/2(Vi). The balls of radius ε in the

dWs metric centered at the curves {Wi}Nε
i=1 constructed in this way form a covering

of Ws. (There may be fewer than Nε such curves due to some balls having been
discarded, but we will continue to use the symbol Nε in any case.)

We now argue one component of the phase space, M� = ∂B� × [−π/2, π/2], at a
time. Define S1� to be the circle of length |∂B�| and let Cg be the graph constant
from (6.8). Since the ball of radius Cg in the Cα(S1�) norm is compactly embedded

in Cβ(S1�), we may choose finitely many functions ψj ∈ Cα(S1�) such that the balls

of radius ε in the Cβ(S1�) metric centered at the functions {ψj}Lε
j=1 form a covering

of the ball of radius Cg in Cα(S1� ).
Now let W = GW (IW ) ∈ Ws, and ψ ∈ Cα(W ) with |ψ|Cα(W ) ≤ 1. Viewing IW

as a subset of S1� , we define the push down of ψ to IW by ψ = ψ◦GW . We extend ψ
to S

1
� by linearly interpolating between its two endpoint values on the complement

of IW in S1� . Since IW is much shorter than S1� , this can be accomplished while

maintaining |ψ|Cα(S1�)
≤ Cg.

Choose Wi = GWi
(IWi

) such that dWs(W,Wi) < ε and ψj such that |ψ −
ψj |Cβ(S1�)

< ε. Define ψj = ψj ◦G−1
Wi

and ψ̃j = ψj ◦G−1
W to be the lifts of ψj to Wi

and W , respectively. Note that |ψj |Cβ(Wi) ≤ Cg, |ψ̃j |Cβ(W ) ≤ Cg, while

d(ψj , ψ̃j) = |ψj ◦GWi
− ψ̃j ◦GW |C0(IWi

∩IW ) = 0 and |ψ − ψ̃j |Cβ(W ) ≤ Cgε .

Thus,∣∣∣∣∫
W

fψ dmW −
∫
Wi

fψj dmWi

∣∣∣∣
≤
∣∣∣∣∫

W

f(ψ − ψ̃j) dmW

∣∣∣∣+ ∣∣∣∣∫
W

fψ̃j dmW −
∫
Wi

fψj dmWi

∣∣∣∣
≤ ‖f‖s| log |W ||−γ |ψ − ψ̃j |Cβ(W ) + | log ε|−ς‖f‖uCg ≤ 2Cg‖f‖B| log ε|−ς .
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We have proved that for each ε > 0, there exist finitely many bounded linear
functionals �i,j(·) =

∫
Wi

· ψj dmWi
, such that for all f ∈ B,

|f |w ≤ max
i≤Nε,j≤Lε

�i,j(f) + 2Cg‖f‖B| log ε|−ς ,

which implies the relative compactness of B in Bw. �

7. The measure μ∗

In this section, we assume throughout that h∗ > s0 log 2 (with s0 < 1 defined by
(1.4)).

7.1. Construction of the measure μ∗—measure of singular sets (Theo-
rem 2.6). In this section, we construct a T -invariant probability measure μ∗ on
M by combining in (7.1) a maximal eigenvector of L on B and a maximal eigenvec-
tor of its dual obtained in Proposition 7.1. In addition, the information on these left
and right eigenvectors will give Lemma 7.3 and Corollary 7.4, which immediately
imply Theorem 2.6.

We first show that such maximal eigenvectors exist and are in fact nonnegative
Radon measures (i.e., elements of the dual of C0(M)).

Proposition 7.1. If h∗ > s0 log 2, then there exist ν ∈ Bw and ν̃ ∈ B∗
w such

that Lν = eh∗ν and L∗ν̃ = eh∗ ν̃. In addition27 ν and ν̃ take nonnegative values on
nonnegative C1 functions on M and are thus nonnegative Radon measures. Finally,
ν̃(ν) = 0 and ‖ν‖u ≤ C̄.

Remark 7.2. The norm of the space B depends on the parameter γ and is used in
the proof of the proposition. However, this proof provides ν and ν̃ which do not
depend on γ (as soon as 2s0γ < eh∗), and do not depend on the parameters β and
ς of B.

It is easy to see that |fϕ|w ≤ |ϕ|C1 |f |w (use |ϕψ|Cα(W ) ≤ |ϕ|C1 |ψ|Cα(W )).

Clearly, if f ∈ C1 and ϕ ∈ C1, then fϕ ∈ C1. Therefore, if h∗ > s0 log 2, a
bounded linear map μ∗ from C1(M) to C can be defined by taking ν and ν̃ from
Proposition 7.1 and setting

(7.1) μ∗(ϕ) =
ν̃(νϕ)

ν̃(ν)
.

This map is nonnegative for all nonnegative ϕ and thus defines a nonnegative
measure μ∗ ∈ (C0)∗ with μ∗(1) = 1. Clearly, μ∗ is a T invariant probability
measure since for every ϕ ∈ C1 we have

ν̃(νϕ) = e−h∗ ν̃(ϕL(ν)) = e−h∗ ν̃(L(ν(ϕ ◦ T ))) = ν̃(ν(ϕ ◦ T )) = ν̃(ν)μ∗(ϕ ◦ T ) .

Proof of Proposition 7.1. Let 1 denote the constant function28 equal to one on M .
We will take this as a seed in our construction of a maximal eigenvector. From (4.14)
in Theorem 4.10 we see that ‖Ln1‖B ≥ ‖Ln1‖s ≥ |Ln1|w ≥ C#Mn

0 ≥ Cenh∗ . Now,
consider

(7.2) νn =
1

n

n−1∑
k=0

e−kh∗Lk1 ∈ B , n ≥ 1 .

27Recall Proposition 4.2 and Remark 4.3.
28We could replace the seed function 1 by any C1 positive function f on M .
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By construction the νn are nonnegative, and thus Radon measures. By our as-
sumption on h∗ and (4.15) in Theorem 4.10 they satisfy ‖νn‖B ≤ C̄, so using the
relative compactness of B in Bw (Proposition 6.1), we extract a subsequence (nj)
such that limj νnj

= ν is a nonnegative measure, and the convergence is in Bw.
(Changing the value of γ does not affect ν since Bw does not depend on γ.) Since
L is continuous on Bw, we may write,

Lν = lim
j→∞

1

nj

nj−1∑
k=0

e−kh∗Lk+11

= lim
j→∞

(
eh∗

nj

nj−1∑
k=0

e−kh∗Lk1− 1

nj
eh∗1 +

1

nj
e−(nj−1)h∗Lnj1

)
= eh∗ν ,

where we used that the second and third terms go to 0 (in the B-norm). We thus
obtain a nonnegative measure ν ∈ Bw such that Lν = eh∗ν.

Although ν is not a priori an element of B, it does inherit bounds on the unstable
norm from the sequence νn. The convergence of (νnj

) to ν in Bw implies that

(7.3) lim
j→∞

sup
W∈Ws

sup
ψ∈Cα(W )

|ψ|Cα(W )≤1

(∫
W

ν ψ dmW −
∫
W

νnj
ψ dmW

)
= 0 .

Since ‖νnj
‖u ≤ C̄, it follows that ‖ν‖u ≤ C̄, as claimed.

Next, recalling the bound |
∫
f dμSRB| ≤ Ĉ|f |w from Proposition 4.2, setting

dμSRB ∈ (Bw)
∗ to be the functional defined on C1(M) ⊂ Bw by dμSRB(f) =∫

f dμSRB and extended by density, we define29

(7.4) ν̃n =
1

n

n−1∑
k=0

e−kh∗(L∗)k(dμSRB) .

Then, we have |ν̃n(f)| ≤ C|f |w for all n and all f ∈ Bw. So ν̃n is bounded
in (Bw)

∗ ⊂ B∗. By compactness of this embedding (Proposition 6.1), we can
find a subsequence ν̃ñj

converging to ν̃ ∈ B∗. By the argument above, we have

L∗ν̃ = eh∗ ν̃. The nonnegativity claim on ν̃ follows by construction.30

We next check that ν̃, which in principle lies in the dual of B, is in fact an
element of (Bw)

∗. For this, it suffices to find C̃ < ∞ so that for any f ∈ B we have

(7.5) ν̃(f) ≤ C̃|f |w .

Now, for f ∈ B and any n ≥ 1, we have

|ν̃(f)| ≤ |(ν̃ − ν̃n)(f)|+ |ν̃n(f)| ≤ |(ν̃ − ν̃n)(f)|+ |f |w .

Since ν̃n → ν̃ in B∗, we conclude |ν̃(f)| ≤ |f |w for all f ∈ B. Since B is dense in
Bw, by [RS, Thm I.7] ν̃ extends uniquely to a bounded linear functional on Bw,
satisfying (7.5). It only remains to see that ν̃(ν) > 0.

29We could again replace the seed μSRB by fμSRB for any C1 positive function f on M .
30To check γ-independence of ν̃, note that if γ̃ > γ, then, since the dual norms satisfy ‖ν̃ñj

−
ν̃‖∗,γ̃ ≤ ‖ν̃ñj

− ν̃‖∗,γ , the subsequence converges to ν̃ in the ‖ · ‖∗,γ̃-norm as well. If γ̃ < γ, then

a further subsequence of ñj must converge to some ν̃γ̃ in the ‖ · ‖∗,γ̃ norm. The domination then

implies ν̃ = ν̃γ̃ .
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Let (nj) (resp., (ñj)) denote the subsequence such that ν = limj νnj
(resp.,

ν̃ = limj ν̃ñj
). Since ν̃ is continuous on Bw, we have on the one hand

(7.6) ν̃(ν) = lim
j→∞

ν̃(νnj
) = lim

j

1

nj

nj−1∑
k=0

e−kh∗ ν̃(Lk1) = lim
j

1

nj

nj−1∑
k=0

ν̃(1) = ν̃(1) ,

where we have used that ν̃ is an eigenvector for L∗. On the other hand,

(7.7) ν̃(1) = lim
j→∞

1

ñj

ñj−1∑
k=0

e−kh∗(L∗)kdμSRB(1) = lim
j

1

ñj

ñj−1∑
k=0

e−kh∗

∫
Lk1 dμSRB .

Next, we disintegrate μSRB as in the proof of Lemma 4.4 into conditional measures

μ
Wξ

SRB on maximal homogeneous stable manifolds Wξ ∈ Ws
H
and a factor measure

dμ̂SRB(ξ) on the index set Ξ of stable manifolds. Recall that μ
Wξ

SRB = |Wξ|−1ρξdmW ,
where ρξ is uniformly log-Hölder continuous so that

(7.8) 0 < cρ ≤ inf
ξ∈Ξ

inf
Wξ

ρξ ≤ sup
ξ∈Ξ

|ρξ|Cα(Wξ) ≤ Cρ < ∞ .

Let Ξδ1 denote those ξ ∈ Ξ such that |Wξ| ≥ δ1/3 and note that μ̂SRB(Ξ
δ1) > 0.

Then, disintegrating as usual, we get by (6.23) for k ≥ n1,∫
Lk1 dμSRB =

∫
Ξ

∫
Wξ

Lk1 ρξ|Wξ|−1 dmWξ
dμ̂SRB(ξ)

≥
∫
Ξδ1

∫
Wξ

Lk1 dmWξ
cρ3δ

−1
1 dμ̂SRB(ξ) ≥ cρ

2c0
3

ekh∗ μ̂SRB(Ξ
δ1) .

Combining this with (7.6) and (7.7) yields ν̃(ν) = ν̃(1) ≥ 2cρc0
3 μ̂SRB(Ξ

δ1) > 0, as
required. �

We next study the measure of neighbourhoods of singularity sets and stable
manifolds, in order to establish (2.2) in Theorem 2.6.

Lemma 7.3. For any γ > 0 such that 2s0γ < eh∗ and any k ∈ Z, there exists
Ck > 0 such that

μ∗(Nε(Sk)) ≤ Ck| log ε|−γ ∀ε > 0 .

In particular, for any p > 1/γ (one can choose p < 1 if γ > 1), η > 0, and k ∈ Z,
for μ∗-almost every x ∈ M , there exists C > 0 such that

(7.9) d(Tnx,Sk) ≥ Ce−ηnp ∀n ≥ 0 .

Proof. First, for each k ≥ 0, we claim that there exists Ck > 0 such that for all
ε > 0,

(7.10) |ν(Nε(S−k))| ≤ C|1k,εν|w ≤ Ck| log ε|−γ ,

where 1k,ε is the indicator function of the set Nε(S−k). To prove the first inequality
in (7.10), first note that since S−k comprises finitely many smooth curves, uniformly
transverse to the stable cone, this also holds for the boundary curves of the set
Nε(S−k). By [DZ3, Lemma 5.3], we have 1k,εf ∈ B for f ∈ B; similarly (and by a
simpler approximation) if f ∈ Bw, then 1k,εf ∈ Bw. So the first inequality in (7.10)
follows from Lemma 4.4.

We next prove the second inequality in (7.10). Let W ∈ Ws and ψ ∈ Cα(W )
with |ψ|Cα(W ) ≤ 1. Due to the uniform transversality of the curves in S−k with the
stable cone, the intersection W ∩ Nε(S−k) can be expressed as a finite union with
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cardinality bounded by a constant Ak (depending only on S−k) of stable manifolds
Wi ∈ Ws, of lengths at most Cε. Therefore, for any f ∈ C1,

(7.11)

∫
Wξ

f 1k,ε ψ dmW =
∑
i

∫
Wi

f ψ dmWi
≤
∑
i

|f |w|ψ|Cα(Wi) ≤ CAk|f |w .

It follows that |1k,εf |w ≤ Ak|f |w for all f ∈ Bw. Similarly, we have |1k,εf |w ≤
Ak‖f‖s| log ε|−γ for all f ∈ B. Now recalling νn from (7.2), we estimate,

|1k,εν|w ≤ |1k,ε(ν − νn)|w + |1k,ενn|w ≤ Ak|ν − νn|w + C ′
k| log ε|−γ‖νn‖B .

Since ‖νn‖B ≤ C̄ for all n ≥ 1, we take the limit as n → ∞ to conclude that
|1k,εν|w ≤ Ck| log ε|−γ , concluding the proof of (7.10).

Next, applying (7.5), we have

μ∗(Nε(S−k)) = ν̃(1k,εν) ≤ C̃|1k,εν|w ≤ C̃Ck| log ε|−γ ∀k ≥ 0 .

To obtain the analogous bound for Nε(Sk), for k > 0, we use the invariance of μ∗.
It follows from the time reversal of (5.2) that T (Nε(S1)) ⊂ NCε1/2(S−1). Thus,

μ∗(Nε(S1)) ≤ μ∗(NCε1/2(S−1)) ≤ C1| log(Cε1/2)|−γ ≤ C ′
1| log ε|−γ .

The estimate for Nε(Sk), for k ≥ 2, follows similarly since T kSk = S−k.
Finally, fix η > 0, k ∈ Z and p > 1/γ. Since

(7.12)
∑
n≥0

μ∗(Ne−ηnp (Sk)) ≤ C̃Ckη
−γ
∑
n≥1

n−pγ < ∞,

by the Borel–Cantelli lemma, μ∗-almost every x ∈ M visits Ne−ηnp (Sk) only finitely
many times, and the last statement of the lemma follows. �

Lemma 7.3 will imply the following.

Corollary 7.4. a) For any γ > 0 so that 2s0γ < eh∗ and any C1 curve S uniformly
transverse to the stable cone, there exists C > 0 such that ν(Nε(S)) ≤ C| log ε|−γ

and μ∗(Nε(S)) ≤ C| log ε|−γ for all ε > 0.
b) The measures ν and μ∗ have no atoms, and μ∗(W ) = 0 for all W ∈ Ws and

W ∈ Wu.
c)
∫
| log d(x,S±1)| dμ∗ < ∞.

d) μ∗-almost every point in M has a stable and unstable manifold of positive
length.

Proof. a) This follows immediately from the bounds in the proof of Lemma 7.3
since the only property required of S−k is that it comprises finitely many smooth
curves uniformly transverse to the stable cone.

b) That ν and μ∗ have no atoms follows from part a). If μ∗(W ) = a > 0, then
by invariance, μ∗(T

nW ) = a for all n > 0. Since μ∗ is a probability measure and
Tn is continuous on stable manifolds,

⋃
n≥0 T

nW must be the union of only finitely

many smooth curves. Since |TnW | → 0 there is a subsequence (nj) such that
∩j≥0T

njW = {x}. Thus μ∗({x}) = a, which is impossible. A similar argument
applies to W ∈ Wu, using the fact that T−n is continuous on such manifolds.
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c) Choose γ > 1 and p > 1/(γ − 1). Then by Lemma 7.3,∫
| log d(x,S1)| dμ∗ =

∑
n≥0

∫
N

e−np (S1)\Ne−(n+1)p (S1)

| log d(x,S1)| dμ∗

≤
∑
n≥0

(n+ 1)pμ∗(Ne−np (S1)) ≤ 1 +
∑
n≥1

C1n
p(1−γ)(1 + 1/n)p < ∞.

A similar estimate holds for
∫
|log d(x,S−1)| dμ∗.

d) The existence of stable and unstable manifolds for μ∗-almost every x follows
from the Borel–Cantelli estimate (7.12) by a standard argument if we choose γ > 1,
p = 1, and eη < Λ (see, for example, [CM, Sect. 4.12]). �

Lemma 7.3 and Corollary 7.4 prove all the items of Theorem 2.6.

7.2. ν-almost everywhere positive length of unstable manifolds. We es-
tablish almost everywhere positive length of unstable manifolds in the sense of the
measure ν (the maximal eigenvector of L). The proof of this fact, as well as some
arguments in subsequent sections, will require viewing elements of Bw as leafwise
distributions; see Definition 7.5 below. Indeed, to prove Lemma 7.6, we make in
Lemma 7.7 an explicit connection31 between the element ν ∈ Bw viewed as a mea-
sure onM , and the family of leafwise measures defined on the set of stable manifolds
Ws.

While ν is not an invariant measure, the almost everywhere existence of positive
length unstable manifolds on every stable manifold W ∈ Ws follows from the
regularity inherited from the strong stable norm. This property may have some
independent interest as it has not been proved in previous uses of this type of norm
[DZ1, DZ3], and it will be important for proving the absolute continuity of the
unstable foliation for μ∗ (Corollary 7.9), which relies on the analogous property for
the measure ν (Proposition 7.8). Lemmas 7.6 and 7.7 will also be useful to obtain
that μ∗ has full support (Proposition 7.11).

Definition 7.5 (Leafwise distributions and leafwise measures). For f ∈ C1(M)
and W ∈ Ws, the map defined on Cα(W ) by

ψ �→
∫
W

f ψ dmW

can be viewed as a distribution of order α on W . Since we have the bound
|
∫
W

f ψ dmW | ≤ |f |w|ψ|Cα(W ), the map sending f ∈ C1 to this distribution of

order α on W can be extended to f ∈ Bw. We denote this extension by
∫
W

ψ f or∫
W

f ψ dmW , and we call the corresponding family of distributions (indexed by W )
the leafwise distribution (f,W )W∈Ws associated with f ∈ Bw. Note that if f ∈ Bw

is such that
∫
W

ψ f ≥ 0 for all ψ ≥ 0, then using again [Sch, §I.4], the leafwise

distribution on W extends to a bounded linear functional on C0(W ), i.e., it is a
Radon measure. If this holds for all W ∈ Ws, the leafwise distribution is called a
leafwise measure.

Lemma 7.6 (Almost everywhere positive length of unstable manifolds for ν). For
ν-almost every x ∈ M the stable and unstable manifolds have positive length. More-
over, viewing ν as a leafwise measure, for every W ∈ Ws, ν-almost every x ∈ W
has an unstable manifold of positive length.

31This connection is used in Section 7.3.
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Recall the disintegration of μSRB into conditional measures μ
Wξ

SRB on maximal
homogeneous stable manifolds Wξ ∈ Ws

H
and a factor measure dμ̂SRB(ξ) on the

index set Ξ of homogeneous stable manifolds, with dμ
Wξ

SRB = |Wξ|−1ρξdmW , where
ρξ is uniformly log-Hölder continuous as in (7.8).

Lemma 7.7. Let νWξ and ν̂ denote the conditional measures and factor measure
obtained by disintegrating ν on the set of homogeneous stable manifolds Wξ ∈ Ws

H
,

ξ ∈ Ξ. Then for any ψ ∈ Cα(M),∫
Wξ

ψ dνWξ =

∫
Wξ

ψ ρξ ν∫
Wξ

ρξ ν
∀ξ ∈ Ξ and dν̂(ξ) = |Wξ|−1

(∫
Wξ

ρξ ν
)
dμ̂SRB(ξ) .

Moreover, viewed as a leafwise measure, ν(W ) > 0 for all W ∈ Ws.

Proof. First, we we establish the following claim: For W ∈ Ws, we let n2 ≤
C̄2| log(|W |/δ1)| be the constant from the proof of Corollary 5.3. (This is the first
time � such that G�(W ) has at least one element of length at least δ1/3.) Then
there exists C̄ > 0 such that for all W ∈ Ws,

(7.13)

∫
W

ν ≥ C̄|W |h∗C̄2 .

Indeed, recalling (7.2) and using (6.23), we have for C̄ = 2c0
9 δ1−h∗C̄2

1 ,∫
W

ν = lim
nj

1

nj

nj−1∑
k=0

e−kh∗

∫
W

Lk1dmW

≥ lim
nj

1

nj

nj−1∑
k=n2

e−kh∗
∑

Wi∈Gn2
(W )

∫
Wi

Lk−n21dmWi

≥ lim
nj

1

nj

nj−1∑
k=n2

e−kh∗ 2δ1
9 c0e

h∗(k−n2) ≥ 2δ1
9 c0e

−h∗n2 ≥ C̄|W |h∗C̄2 .

This proves the last statement of the lemma.
Next, for any f ∈ C1(M), according to our convention, we view f as an element

of Bw by considering it as a measure integrated against μSRB. Now suppose (νn)n∈N

is the sequence of functions from (7.2) such that |νn−ν|w → 0. For any ψ ∈ Cα(M),
we have

νn(ψ) =

∫
M

νn ψ dμSRB =

∫
Ξ

∫
Wξ

νn ψ ρξ dmWξ
|Wξ|−1dμ̂SRB(ξ)

=

∫
Ξ

∫
Wξ

νn ψ ρξ dmWξ∫
Wξ

νn ρξ dmWξ

d(μ̂SRB)n(ξ) ,

(7.14)

where d(μ̂SRB)n(ξ) = |Wξ|−1
∫
Wξ

νn ρξ dmWξ
dμ̂SRB(ξ). By definition of conver-

gence in Bw (see for example (7.3)) since ψ, ρξ ∈ Cα(Wξ), the ratio of integrals
converges (uniformly in ξ) to

∫
Wξ

ψ ρξ ν/
∫
Wξ

ρξ ν, and the factor measure con-

verges to |Wξ|−1
∫
Wξ

ρξ dν dμ̂SRB(ξ). Note that since ρξ is uniformly log-Hölder,

and due to (7.13), we have
∫
Wξ

ν ρξ dmWξ
> 0 with lower bound depending only on

the length of Wξ.
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Finally, by Proposition 4.2 and Lemma 4.4, we have νn(ψ) converging to ν(ψ).
Disintegrating ν according to the statement of the lemma yields the claimed iden-
tifications. �

Proof of Lemma 7.6. The statement about stable manifolds of positive length fol-
lows from the characterization of ν̂ in Lemma 7.7, since the set of points with stable
manifolds of zero length has zero μ̂SRB-measure [CM].

We fixW ∈ Ws and prove the statement about ν as a leafwise measure. This will
imply the statement regarding unstable manifolds for the measure ν by Lemma 7.7.

Fix ε > 0 and Λ̂ ∈ (Λ, 1), and define O =
⋃

n≥1 On, where

On = {x ∈ W : n = min j such that du(T
−jx,S1) < εCeΛ̂

−j},

and du denotes distance restricted to the unstable cone. By [CM, Lemma 4.67],
any x ∈ W \O has unstable manifold of length at least 2ε. We proceed to estimate
ν(O) =

∑
n≥1 ν(On), where equality holds since the On are disjoint. In addition,

since On is a finite union of open subcurves of W , we have

(7.15)

∫
W

1On
ν = lim

j→∞

∫
W

1On
ν�j = lim

j→∞
�−1
j

�j−1∑
k=0

e−kh∗

∫
W

1On
Lk1 dmW .

We estimate two cases.

Case I (k < n). Write
∫
W∩On

Lk1 dmW =
∑

Wi∈Gk(W )

∫
Wi∩T−kOn

1 dmWi
.

If x ∈ T−kOn, then y = T−n+kx satisfies du(y,S1) < εCeΛ̂
−n and thus we

have du(Ty,S−1) ≤ Cε1/2Λ̂−n/2. Due to the uniform transversality of stable and
unstable cones, as well as the fact that elements of S−1 are uniformly transverse to

the stable cone, we have ds(Ty,S−1) ≤ Cε1/2Λ̂−n/2 as well, with possibly a larger
constant C.

Let rs−j(x) denote the distance from T−jx to the nearest endpoint of W s(T−jx),

where W s(T−jx) is the maximal local stable manifold containing T−jx. From the

above analysis, we see that Wi ∩ T−kOn ⊆ {x ∈ Wi : r
s
−n+k+1(x) ≤ Cε1/2Λ̂−n/2}.

The time reversal of the growth lemma [CM, Thm 5.52] gives mWi
(rs−n+k+1(x) ≤

Cε1/2Λ̂−n/2) ≤ C ′ε1/2Λ̂−n/2 for a constant C ′ that is uniform in n and k. Thus,
using Proposition 4.6, we find∫

W∩On

Lk1 dmW ≤ #Gk(W )C ′ε1/2Λ̂−n/2 ≤ Cekh∗ε1/2Λ̂−n/2 .

Case II (k ≥ n). Using the same observation as in Case I, if x ∈ T−n+1On, then

x satisfies ds(x,S−1) ≤ Cε1/2Λ̂−n/2. We change variables to estimate the integral
precisely at time −n+ 1, again using Proposition 4.6,∫

W∩On

Lk1 dmW =
∑

Wi∈Gn−1(W )

∫
Wi∩T−n+1On

Lk−n+11 dmWi

≤
∑

Wi∈Gn−1(W )

| log |Wi ∩ T−n+1On||−γ‖Lk−n+11‖s

≤
∑

Wi∈Gn−1(W )

| log(Cε1/2Λ̂−n/2)|−γCe(k−n+1)h∗ ≤ | log(Cε1/2Λ̂−n/2)|−γCekh∗ .
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Using the estimates of Cases I and II in (7.15) and using the weaker bound, we see
that, ∫

W

1On
ν�j ≤ C| log(Cε1/2Λ̂−n/2)|−γ .

Summing over n, we have,
∫
W

1O ν�j ≤ C ′| log ε|1−γ , uniformly in j. Since ν�j
converges to ν in the weak norm, this bound carries over to ν. Since γ > 1 and
ε > 0 was arbitrary, this implies ν(O) = 0, completing the proof of the lemma. �

7.3. Absolute continuity of μ∗—full support. In this subsection, we assume
throughout that γ > 1 (this is possible since we assumed h∗ > s0 log 2 to construct
μ∗).

Our proof of the Bernoulli property relies on showing first that μ∗ is K-mixing
(Proposition 7.16). As a first step, we will prove that μ∗ is ergodic (see the Hopf-
type Lemma 7.15). This will require establishing absolute continuity of the unstable
foliation for μ∗ (Corollary 7.9), which will be deduced from the following absolute
continuity result for ν.

Proposition 7.8. Let R be a Cantor rectangle. Fix W 0 ∈ Ws(R) and for W ∈
Ws(R), let ΘW denote the holonomy map from W 0 ∩ R to W ∩ R along unstable
manifolds in Wu(R). Then ΘW is absolutely continuous with respect to the leafwise
measure ν.

Proof. Since by Lemma 7.6 unstable manifolds comprise a set of full ν-measure, it
suffices to fix a set E ⊂ W 0∩R with ν-measure zero, and prove that the ν-measure
of ΘW (E) ⊂ W is also zero.

Since ν is a regular measure on W 0, for ε > 0, there exists an open set Oε ⊂ W 0,
Oε ⊃ E, such that ν(Oε) ≤ ε. Indeed, since W 0 is compact, we may choose Oε to
be a finite union of intervals. Let ψε be a smooth function which is 1 on Oε and 0
outside of an ε-neighbourhood of Oε. We may choose ψε so that |ψε|C1(W 0) ≤ 2ε−1.

Using (6.2), we choose n = n(ε) such that |ψε ◦ Tn|C1(T−nW 0) ≤ 1. Note this

implies in particular that Λ−n ≤ ε. Following the procedure described at the
beginning of Section 6.2, we subdivide T−nW 0 and T−nW into matched pieces U0

j ,

Uj and unmatched pieces V 0
i , Vi. With this construction, none of the unmatched

pieces TnV 0
i intersect an unstable manifold in Wu(R) since unstable manifolds are

not cut under T−n.
Indeed, on matched pieces, we may choose a foliation Γj = {γx}x∈U0

j
such that:

i) TnΓj contains all unstable manifolds in Wu(R) that intersect TnU0
j ;

ii) between unstable manifolds in Γj ∩T−n(Wu(R)), we interpolate via unstable
curves;

iii) the resulting holonomy Θj from TnU0
j to TnUj has uniformly bounded Jaco-

bian32 with respect to arc-length, with bound depending on the unstable diameter
of D(R), by [BDL, Lemmas 6.6, 6.8];

iv) pushing forward Γj to TnΓj in D(R), we interpolate in the gaps using un-

stable curves; call Γ the resulting foliation of D(R);
v) the associated holonomy map ΘW extends ΘW and has uniformly bounded

Jacobian, again by [BDL, Lemmas 6.6 and 6.8].

32Indeed, [BDL] shows the Jacobian is Hölder continuous, but we shall not need this here.
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Using the map ΘW , we define ψ̃ε = ψε ◦ Θ
−1

W , and note that |ψ̃ε|C1(W ) ≤
C|ψε|C1(W 0), where we write C1(W ) for the set of Lipschitz functions on W , i.e.,
Cα with α = 1.

Next, we modify ψε and ψ̃ε as follows: We set them equal to 0 on the images of
unmatched pieces, TnV 0

i and TnVi, respectively. Since these curves do not intersect

unstable manifolds in Wu(R), we still have ψε = 1 on E and ψ̃ε = 1 on ΘW (E).

Moreover, the set of points on which ψε > 0 (resp., ψ̃ε > 0) is a finite union of open
intervals that cover E (resp., ΘW (E)).

Following Section 6.2, we estimate

∫
W 0

ψε ν −
∫
W

ψ̃ε ν = e−nh∗

(∫
W 0

ψε Lnν −
∫
W

ψ̃ε Lnν

)
= e−nh∗

∑
j

∫
U0

j

ψε ◦ Tn ν −
∫
Uj

φj ν +

∫
Uj

(φj − ψ̃ε ◦ Tn) ν ,

(7.16)

where φj = ψε ◦Tn ◦GU0
j
◦G−1

Uj
, and GU0

j
and GUj

represent the functions defining

U0
j and Uj , respectively, defined as in (6.5). Next, since d(ψε ◦ Tn, φj) = 0 by

construction, and using (6.9) and the assumption that Λ−n ≤ ε, we have by (6.10),

(7.17) e−nh∗

∣∣∣∣∣∣
∑
j

∫
U0

j

ψε ◦ Tn ν −
∫
Uj

φj ν

∣∣∣∣∣∣ ≤ C| log ε|−ς‖ν‖u .

It remains to estimate the last term in (7.16). This we do using the weak norm,

(7.18)

∫
Uj

(φj − ψ̃ε ◦ Tn) ν ≤ |φj − ψ̃ε ◦ Tn|Cα(Uj) |ν|w .

By (6.12), we have

|φj − ψ̃ε ◦ Tn|Cα(Uj) ≤ C|ψε ◦ Tn ◦GU0
j
− ψ̃ε ◦ Tn ◦GUj

|Cα(Ij) ,

where Ij is the common r-interval on which GU0
j
an GUj

are defined.

Fix r ∈ Ij , and let x = GU0
j
(r) ∈ Uj and x̄ = GUj

(r). Since U0
j and Uj are

matched, there exists y ∈ U0
j and an unstable curve γy ∈ Γj such that γy ∩Uj = x̄.

By definition of ψ̃ε, we have ψ̃ε ◦ Tn(x̄) = ψε ◦ Tn(y). Thus,

|ψε ◦ Tn ◦GU0
j
(r)− ψ̃ε ◦ Tn ◦GUj

(r)|

≤ |ψε ◦ Tn(x)− ψε ◦ Tn(y)|+ |ψε ◦ Tn(y)− ψ̃ε ◦ Tn(x̄)|
≤ |ψε ◦ Tn|C1(U0

j )
d(x, y) ≤ CΛ−n ≤ Cε ,

where we have used the fact that d(x, y) ≤ CΛ−n due to the uniform transversality
of stable and unstable curves.

Now given r, s ∈ Ij , we have on the one hand,

|ψε ◦ Tn ◦GU0
j
(r)− ψ̃ε ◦ Tn ◦GUj

(r)−ψε ◦ Tn ◦GU0
j
(s) + ψ̃ε ◦ Tn ◦GUj

(s)| ≤ 2Cε ,

while on the other hand,

|ψε ◦ Tn ◦GU0
j
(r)− ψ̃ε ◦ Tn ◦GUj

(r)− ψε ◦ Tn ◦GU0
j
(s) + ψ̃ε ◦ Tn ◦GUj

(s)|

≤ (|ψε ◦ Tn|C1(U0
j )

+ |ψ̃ε ◦ Tn|C1(Uj))C|r − s| ,
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where we have used the fact that G−1
U0

j
and G−1

Uj
have bounded derivatives since the

stable cone is bounded away from the vertical.
The difference is bounded by the minimum of these two expressions. This is

greatest when the two are equal, i.e., when |r − s| = Cε. Thus

Hα(ψε ◦ Tn ◦GU0
j
− ψ̃ε ◦ Tn ◦GUj

) ≤ Cε1−α,

and so |φj − ψ̃ε ◦ Tn|Cα(Uj) ≤ Cε1−α. Putting this estimate together with (7.17)
and (7.18) in (7.16), we conclude,

(7.19)

∣∣∣∣∫
W 0

ψε ν −
∫
W

ψ̃ε ν

∣∣∣∣ ≤ C| log ε|−ς‖ν‖u + Cε1−α|ν|w .

Now since
∫
W 0 ψε ν ≤ 2ε, we have

(7.20)

∫
W

ψ̃ε ν ≤ C ′| log ε|−ς ,

where C ′ depends on ν. Since ψ̃ε = 1 on ΘW (E) and ψ̃ε > 0 on an open set
containing ΘW (E) for every ε > 0, we have ν(ΘW (E)) = 0, as required. �

We next state our main absolute continuity result.

Corollary 7.9 (Absolute continuity of μ∗ with respect to unstable foliations). Let
R be a Cantor rectangle with μ∗(R) > 0. Fix W 0 ∈ Ws(R) and for W ∈ Ws(R),
let ΘW denote the holonomy map from W 0 ∩R to W ∩R along unstable manifolds
in Wu(R). Then ΘW is absolutely continuous with respect to the measure μ∗.

To deduce the corollary from Proposition 7.8, we shall introduce a set Mreg of
regular points and a countable cover of this set by Cantor rectangles. The set Mreg

is defined by

Mreg = {x ∈ M : d(x, ∂W s(x)) > 0 , d(x, ∂Wu(x)) > 0} .
At each x ∈ Mreg, by [CM, Prop 7.81], we construct a (closed) locally maximal33

Cantor rectangle Rx, containing x, which is the direct product of local stable and
unstable manifolds (recall Section 5.3). By trimming the sides, we may arrange it
so that 1

2diam
s(Rx) ≤ diamu(Rx) ≤ 2diams(Rx).

Lemma 7.10 (Countable cover of Mreg by Cantor rectangles). There exists a
countable set {xj}j∈N ⊂ Mreg, such that

⋃
j Rxj

= Mreg and each Rj := Rxj

satisfies (5.10).

Proof. Let nδ ∈ N be such that 1/nδ ≤ δ0. As already mentioned, in the proof of
Proposition 5.5, for each n ≥ nδ, by [CM, Lemma 7.87], there exists a finite number
of Rx such that any stable manifold of length at least 1/n properly crosses one of
the Rx (see Section 5.3 for the definition of proper crossing, recalling that each Rx

must satisfy (5.10)). This fact follows from the compactness of the set of stable
curves in the Hausdorff metric. Call this finite set of rectangles {Rn,i}i∈Ĩn

.

Fix y ∈ Mreg and define ε = min{d(y, ∂W s(y)), d(y, ∂Wu(y)} > 0. Choose n ≥
nδ such that 2/n < ε. By construction, there exists i ∈ Ĩn such that W s(y) properly
crosses Rn,i. Now diams(Rn,i) ≤ 1/n, which implies diamu(Rn.i) ≤ 2/n < ε. Thus
Wu(y) crosses Rn,i as well. By maximality, y ∈ Rn,i. �

33Recall that, as in Section 5.3, by locally maximal we mean that y ∈ Rx if and only if
y ∈ D(Rx) and y has stable and unstable manifolds that completely cross D(Rx).
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Let {Rn,i : n ≥ nδ, i ∈ Ĩn} be the Cantor rectangles constructed in the proof
of Lemma 7.10. Since μ∗(M

reg) = 1, by discarding any Rn,i of zero measure, we
obtain a countable collection of Cantor rectangles

(7.21) {Rj}j∈N := {Rn,i : n ≥ nδ, i ∈ In}
such that μ∗(Rj) > 0 for all j and μ∗(

⋃
j Rj) = 1. In the rest of the paper we shall

work with this countable collection of rectangles.
Given a Cantor rectangle R, define Ws(R) to be the set of stable manifolds that

completely cross D(R), and similarly for Wu(R).

Proof of Corollary 7.9. In order to prove absolute continuity of the unstable folia-
tion with respect to μ∗, we will show that the conditional measures μW

∗ of μ∗ are
equivalent to ν on μ∗-almost every W ∈ Ws(R).

Fix a Cantor rectangle R satisfying (5.10) with μ∗(R) > 0, and W 0 as in the
statement of the corollary. Let E ⊂ W 0 ∩ R satisfy ν(E) = 0, for the leafwise
measure ν.

For any W ∈ Ws(R), we have the holonomy map ΘW : W 0 ∩R → W ∩R as in
the proof of Proposition 7.8. For ε > 0, we approximate E, choose n, and construct
a foliation Γ of the solid rectangle D(R) as before. Define ψε and use the foliation

Γ to define ψ̃ε on D(R). We have ψ̃ε = 1 on Ē =
⋃

x∈E γ̄x, where γ̄x is the element

of Γ containing x. We extend ψ̃ε to M by setting it equal to 0 on M \D(R).

It follows from the proof of Proposition 7.8, in particular (7.20), that ψ̃εν ∈ Bw,

and |ψ̃εν|w ≤ C ′| log ε|−ς . Now,

μ∗(ψ̃ε) = ν̃(ψ̃εν) = lim
j→∞

1

nj

nj−1∑
k=0

e−kh∗(L∗)kdμSRB(ψ̃εν)

= lim
j→∞

1

nj

nj−1∑
k=0

e−kh∗μSRB(Lk(ψ̃εν)) .

(7.22)

For each k, using the disintegration of μSRB as in the proof of Lemma 7.7 with the
same notation as there, we estimate,

μSRB(Lk(ψ̃εν)) =

∫
Ξ

∫
Wξ

Lk(ψ̃εν) ρξ dmWξ
|Wξ|−1 dμ̂SRB(ξ)

≤ C

∫
Ξ

|Lk(ψ̃εν)|w |Wξ|−1 dμ̂SRB(ξ)

≤ Cekh∗ |ψ̃εν|w ≤ Cekh∗ | log ε|−ς ,

where we have used (4.9) in the last line. Thus μ∗(ψ̃ε) ≤ C| log ε|−ς , for each ε > 0,
so that μ∗(Ē) = 0.

Disintegrating μ∗ into conditional measures μ
Wξ
∗ on Wξ ∈ Ws and a factor

measure dμ̂∗(ξ) on the index set ΞR of stable manifolds in Ws(R), it follows that

μ
Wξ
∗ (Ē) = 0 for μ̂∗-almost every ξ ∈ ΞR. Since E was arbitrary, the conditional

measures of μ∗ on Ws(R) are absolutely continuous with respect to the leafwise
measure ν.

To show that in fact μW
∗ is equivalent to ν, suppose now that E ⊂ W 0 has

ν(E) > 0. For any ε > 0 such that C ′| log ε|−ς < ν(E)/2, where C ′ is from (7.20),
choose ψε ∈ C1(W 0) such that ν(|ψε− 1E |) < ε, where 1E is the indicator function
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of the set E. As above, we extend ψε to a function ψ̃ε on D(R) via the foliation Γ,

and then to M by setting ψ̃ε = 0 on M \D(R).

We have ψ̃εν ∈ Bw and by (7.19)

(7.23) ν(ψ̃ε 1W ) ≥ ν(ψε 1W 0)− C ′| log ε|−ς for all W ∈ Ws(R) .

Now following (7.22) and disintegrating μSRB as usual, we obtain,

μ∗(ψ̃ε) = lim
n

1

n

n−1∑
k=0

e−kh∗

∫
Ξ

∫
Wξ

Lk(ψ̃εν) ρξ dmWξ
dμ̂SRB(ξ)

= lim
n

1

n

n−1∑
k=0

e−kh∗

∫
Ξ

⎛⎝ ∑
Wξ,i∈Gk(Wξ)

∫
Wξ,i

ψ̃ε ρξ ◦ T k ν

⎞⎠ dμ̂SRB(ξ) .

(7.24)

To estimate this last expression, we estimate the cardinality of the curves Wξ,i

which properly cross the rectangle R.
By Corollary 5.3 and the choice of δ1 in (5.6), there exists k0, depending only

on the minimum length of W ∈ Ws(R), such that #Lδ1
k (Wξ) ≥ 1

3#Gk(Wξ) for all
k ≥ k0.

By choice of our covering {Ri} from (7.21), all Wξ,j ∈ Lδ1
k (Wξ) properly cross

one of finitely many Ri. By the topological mixing property of T , there exists
n0, depending only on the length scale δ1, such that some smooth component of
T−n0Wξ,j properly crosses R. Thus, letting Ck(Wξ) denote those Wξ,i ∈ Gk(Wξ)
which properly cross R, we have

#Ck(Wξ) ≥ #Lδ1
k−n0

(Wξ) ≥ 1
3#Gk−n0

(Wξ) ≥ 1
3ce

(k−n0)h∗

for all k ≥ k0 + n0, where c > 0 depends on c0 from Proposition 5.5 as well as the
minimum length of W ∈ Ws(R).

Using this lower bound on the cardinality together with (7.23) yields,

μ∗(ψ̃ε) ≥ 1
3ce

−n0h∗
(
ν(ψε)− C ′| log ε|−ς

)
≥ C ′′(ν(E)− | log ε|−ς

)
.

Taking ε → 0, we have μ∗(Ē) ≥ C ′′ν(E), and so μW
∗ (Ē) > 0 for almost every

W ∈ Ws(R). �

A consequence of the proof of Corollary 7.9 is the positivity of μ∗ on open sets.

Proposition 7.11 (Full support). We have μ∗(O) > 0 for any open set O.

Proof. Suppose R is a Cantor rectangle with index set of stable leaves ΞR. We
call I ⊂ ΞR an interval if a, b ∈ I implies that c ∈ I for all c ∈ ΞR such that
Wc lies between Wa and Wb.

34 It follows from the proof of Corollary 7.9 that for
any interval I ⊂ ΞR such that μ̂SRB(I) > 0, then μ∗(

⋃
ξ∈I Wξ) > 0. Indeed, by

Lemma 7.7, ν̂ is equivalent to μ̂SRB (since ν(W ) > 0 for all W ∈ Ws, when ν is
viewed as a leafwise measure), so that μ̂SRB(I) > 0 implies ν̂(I) > 0. Then by
Lemma 7.6 there exists a Cantor rectangle R′ with D(R′) ⊂ D(R) and ΞR′ ⊂ I
such that ν(R′) > 0. Then we simply apply (7.24) and the argument following it

with ψ̃ε replaced by the characteristic function of
⋃

ξ∈ΞR′ Wξ.

34Notice that if I ⊂ Ξj is an interval such that μ̂SRB(I) > 0, then
⋃

ξ∈I Wξ ∩ Rj is a Cantor

rectangle which contains a subset satisfying the high density condition (5.10), so we can talk about
proper crossings.
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Then if O is an open set in M , it contains a Cantor rectangle R such thatD(R) ⊂
O and μSRB(R) > 0. It follows that μ̂SRB(ΞR) > 0, and so μ∗(

⋃
ξ∈ΞR

Wξ) > 0. �

7.4. Bounds on dynamical Bowen balls—comparing μ∗ and μSRB. In this
section we show upper and lower bounds on the μ∗-measure of dynamical Bowen
balls, from which we establish a necessary condition for μ∗ and μSRB to coincide.
(The lower bound will use results from Section 7.3.)

For ε > 0 and x ∈ M , we denote by Bn(x, ε) the dynamical (Bowen) ball at x of
length n ≥ 1 for T−1, i.e.,

Bn(x, ε) = {y ∈ M | d(T−j(y), T−j(x)) ≤ ε ∀ 0 ≤ j ≤ n}.
For η, δ > 0 and p ∈ (1/γ, 1], let Mreg(η, p, δ) denote those x ∈ Mreg such that

d(T−nx,S−1) ≥ δe−ηnp

. It follows from Lemma 7.3 that μ∗(
⋃

δ>0 M
reg(η, p, δ)) =

1.

Proposition 7.12 (Topological entropy and measure of dynamical balls). Assume
that h∗ > s0 log 2. There exists A < ∞ such that for all ε > 0 sufficiently small,
x ∈ M , and n ≥ 1, the measure μ∗ constructed in (7.1) satisfies

(7.25) μ∗(Bn(x, ε)) ≤ μ∗(Bn(x, ε)) ≤ Ae−nh∗ .

Moreover, for all η, δ > 0 and p ∈ (1/γ, 1], for each x ∈ Mreg(η, p, δ), and all ε > 0
sufficiently small, there exists C(x, ε, η, p, δ) > 0 such that for all n ≥ 1,

(7.26) C(x, ε, η, p, δ) e−nh∗−ηh∗C̄2n
p ≤ μ∗(Bn(x, ε)),

where C̄2 > 0 is the constant from the proof of Corollary 5.3.

Proof. Assume γ > 1. Fix ε > 0 such that ε ≤ min{δ0, ε0}, where ε0 is from the
proof of Lemma 3.4. For x ∈ M and n ≥ 0, define 1Bn,ε to be the indicator function
of the dynamical ball Bn(x, ε).

Since ν is attained as the (averaged) limit of Ln1 in the weak norm and since we
have

∫
W
(Ln1)ψdmW ≥ 0 whenever ψ ≥ 0, it follows that, viewing ν as a leafwise

distribution,

(7.27)

∫
W

ψ ν ≥ 0 for all ψ ≥ 0.

Then the inequality |
∫
W

ψ ν| ≤
∫
W

|ψ| ν implies that the supremum in the weak
norm can be obtained by restricting to ψ ≥ 0.

Let W ∈ Ws be a curve intersecting Bn(x, ε), and let ψ ∈ Cα(W ) satisfy ψ ≥ 0
and |ψ|Cα(W ) ≤ 1. Then, since Lν = eh∗ν, we have

(7.28)

∫
W

ψ 1Bn,ε ν =

∫
W

ψ 1Bn,ε e
−nh∗Lnν = e−nh∗

∑
Wi∈Gn(W )

∫
Wi

ψ◦Tn 1Bn,ε ◦Tn ν .

We claim that 1Bn,εν ∈ Bw (and indeed in B). To see this, note that

1Bn,ε =

n∏
j=0

1Nε(T−jx) ◦ T−j =

n∏
j=0

Lj
SRB(1Nε(T−jx)) ,

where, as in Section 1.3, LSRB denotes the transfer operator with respect to μSRB.
Since LSRB preserves B and Bw ([DZ3, Lemma 3.6]), it suffices to show that
1Nε(T−jx) satisfies the assumptions of [DZ3, Lemma 5.3]. This follows from the
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fact that ∂Nε(T
−jx) comprises a single circular arc, possibly together with a seg-

ment of S0, which satisfies the weak transversality condition of that lemma with
t0 = 1/2. Then applying [DZ3, Lemma 5.3] successively for each j yields the claim.

In the proof of Lemma 3.4, it was shown that if x, y lie in different elements
of Mn

0 , then dn(x, y) ≥ ε0, where dn(·, ·) is the dynamical distance defined in
(2.1). Since Bn(x, ε) is defined with respect to T−1, we will use the time reversal
counterpart of this property. Thus since ε < ε0, we conclude that Bn(x, ε) is
contained in a single component of M0

−n, i.e., Bn(x, ε)∩S−n = ∅, so that T−n is a

diffeomorphism of Bn(x, ε) onto its image. Note that 1Bn,ε ◦ Tn = 1T−n(Bn(x,ε)) and

that T−n(Bn(x, ε)) is contained in a single component of Mn
0 , denoted An,ε.

It follows that for each Wi ∈ Gn(W ) we have Wi ∩ An,ε = Wi. By (7.27), we
have ∫

Wi

(ψ ◦ Tn) 1T−n(Bn(x,ε)) ν ≤
∫
Wi

ψ ◦ Tn ν .

Moreover, there can be at most twoWi ∈ Gn(W ) having nonempty intersection with
T−n(Bn(x, ε)). This follows from the facts that ε ≤ δ0, and that, in the absence of
any cuts due to singularities, the only subdivisions occur when a curve has grown
to length longer than δ0 and is subdivided into two curves of length at least δ0/2.

Using these facts together with (6.2), we sum over W ′
i ∈ Gn(W ) such that

W ′
i ∩ T−n(Bn(x, ε)) = 0, to obtain∫

W

ψ 1Bn,ε ν ≤ e−nh∗
∑
i

∫
W ′

i

ψ ◦ Tn ν ≤ 2Ce−nh∗ |ν|w .

This implies that |1Bn,εν|w ≤ 2Ce−nh∗ |ν|w. Applying (7.5), implies (7.25).
Next we prove (7.26). Fix η, δ > 0 with eη < Λ and p ∈ (1/γ, 1], and let

x ∈ Mreg(η, p, δ). By [CM, Lemma 4.67] the length of the local stable manifold
containing x is at least δC1, where C1 is from (3.1). So by [CM, Lemma 7.87],
there exists a Cantor rectangle Rx containing x such that μSRB(Rx) > 0 and whose
diameter depends only on the length scale δC1. By the proof of Proposition 7.11,
we also have μ∗(Rx) > 0. In particular, μ̂∗(ΞRx

) = cx > 0, where ΞRx
is the index

set of stable manifolds comprising Rx. Let δ′ > 0 denote the minimum length of
Wξ ∩ D(Rx) for ξ ∈ ΞRx

, where D(Rx) is the smallest solid rectangle containing
Rx, as in Definition 5.7.

Choose ε > 0 such that ε ≤ min{δ0, ε0, δ′, δ}. As above, we note that Bn(x, ε)
is contained in a single component of M0

−n, and thus T−n(Bn(x, ε)) is contained
in a single component of Mn

0 . Moreover, T−n is smooth on Wu(x) ∩D(Rx). Now
suppose y ∈ Wu(x) ∩Rx. Then since x ∈ Mreg(η, p, δ),

d(T−ny,S−1) ≥ d(T−nx,S−1)− d(T−ny, T−nx) ≥ δe−ηnp − C1Λ
−n ≥ δ

2e
−ηnp

for n sufficiently large. It follows that for each ξ ∈ ΞRx
, there exists Wξ,i ∈

Gn(Wξ) such that W ′
ξ,i = Wξ,i ∩ T−n(Bn(x, ε)) is a single curve and |W ′

ξ,i| ≥
min{ δ

2e
−ηnp

, ε} ≥ ε
2e

−ηnp

. Thus recalling (7.13) and following (7.28) with ψ ≡ 1,∫
Wξ

1Bn,ε ν ≥ e−nh∗

∫
W ′

ξ,i

ν ≥ C̄e−nh∗ |W ′
ξ,i|h∗C̄2 ≥ C ′e−nh∗−ηh∗C̄2n

p

,

where C ′ depends on ε.
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Finally, using the fact from the proof of Corollary 7.9 that μW
∗ is equivalent to

ν on μ∗-a.e. W ∈ Ws, we estimate,

μ∗(Bn(x, ε)) ≥ μ∗(Bn(x, ε) ∩D(Rx)) =

∫
ΞRx

μ
Wξ
∗ (Bn(x, ε)) dμ̂∗(ξ)

≥ C

∫
ΞRx

ν(Bn(x, ε) ∩Wξ) dμ̂∗(ξ) ≥ C ′′e−nh∗−ηh∗C̄2n
p

μ̂∗(ΞRx
) .

�

Periodic points whose orbit do not have grazing collisions belong to Mreg. We
call them regular.

Proposition 7.13 (μ∗ and μSRB). Assume h∗ > s0 log 2. If there exists a regular
periodic point x of period p such that λx = 1

p log | det(DT−p|Es(x))| = h∗, then

μ∗ = μSRB.

Although h∗ may not be known a priori, using Proposition 7.13 it suffices to find
two regular periodic points x, y such that λx = λy, to conclude that μ∗ = μSRB.
(All known examples of dispersing billiard tables satisfy this condition.)

Proposition 7.13 relies on the following lemma.

Lemma 7.14. Let x ∈ Mreg be a regular periodic point. There exists A > 0 such
that for all ε > 0 sufficiently small, there exists C(x, ε) > 0 such that for all n ≥ 1,

C(x, ε)e−nλx ≤ μSRB(Bn(x, ε)) ≤ Ae−nλx .

Proof. Let x be a regular periodic point for T of period p. For ε sufficiently
small, T−i(Nε(x)) belongs to a single homogeneity strip for i = 0, 1, . . . , p. Thus if
y ∈ Bn(x, ε) ∩W s(x), then the stable Jacobians JsTn(x) and JsTn(y) satisfy the

bounded distortion estimate, | log JsTn(x)
JsTn(y) | ≤ Cdd(x, y)

1/3, for a uniform Cd > 0

[CM, Lemma 5.27]. It follows that the conditional measure on W s(x) satisfies

(7.29) C−1
x εe−nλx ≤ μ

W s(x)
SRB (Bn(x, ε)) ≤ Cxεe

−nλx

for some Cx ≥ 1, depending on the homogeneity strips in which the orbit of x lies.
Next, using again [CM, Prop 7.81], we can find a Cantor rectangle Rx ⊂ Nε(x)

with diameter at most ε/(2C1) and μSRB(Rx) ≥ CμSRB(Nε(x))/(2C1)
2, for a con-

stant C > 0 depending on the distortion of the measure. Note that Wu(x)∩D(Rx)
is never cut by S−n and lies in Bn(x, ε) by (3.1). Thus each W ∈ Ws(Rx) has a
component in Bn(x, ε) and this component has length satisfying the same bounds
as (7.29). Integrating over Bn(x, ε) as in the proof of Proposition 7.12 proves the
lemma. An inspection of the proof shows that the constant in the upper bound can
be chosen independently of x when ε is sufficiently small, while the constant in the
lower bound cannot. �

Proof of Proposition 7.13. If x is a regular periodic point, then the upper and lower
bounds on μ∗(Bn(x, ε)) from Proposition 7.12 hold with35 η = 0 for ε sufficiently
small. If λx = h∗, these do not match the exponential rate in the bounds on
μSRB(Bn(x, ε)) from Lemma 7.14. Thus for n sufficiently large, μ∗(Bn(x, ε)) =
μSRB(Bn(x, ε)). �

35Here, it is convenient to have the role of η explicit in (7.26).
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7.5. K-mixing and maximal entropy of μ∗—Bowen–Pesin–Pitskel Theo-
rem 2.5. In this section we use the absolute continuity results from Section 7.3 to
establish K-mixing of μ∗. We also show that μ∗ has maximal entropy, exploiting
the upper bound from Section 7.4. Finally, we show that h∗ coincides with the
Bowen–Pesin–Pitskel entropy.

Lemma 7.15 (Single ergodic component). If R is a Cantor rectangle with μ∗(R) >
0, then the set of stable manifolds Ws(R) belongs to a single ergodic component of
μ∗.

Proof. We follow the well-known Hopf strategy outlined in [CM, Section 6.4] of
smooth ergodic theory to show that μ∗-almost every stable and unstable manifold
has a full measure set of points belonging to a single ergodic component: Given a
continuous function ϕ on M , let ϕ+, ϕ− denote the forward and backward ergodic
averages of ϕ, respectively. Let Mϕ = {x ∈ Mreg : ϕ+(x) = ϕ−(x)}. When the
two functions agree, denote their common value by ϕ.

Now fix a Cantor rectangle R with μ∗(R) > 0. By Corollary 7.4, if γ > 1, then
μ∗(M

reg) = 1. So, by the Birkhoff ergodic theorem, μ∗(Mϕ) = 1. Thus for μ∗
almost every W ∈ Ws(R), the conditional measure μW

∗ satisfies μW
∗ (Mϕ) = 1. Due

to the fact that forward ergodic averages are the same for any two points in W ,
it follows that ϕ is constant on W ∩ Mϕ. The analogous fact holds for unstable
manifolds in Wu(R).

Let

Gϕ = {x ∈ Mϕ : ϕ is constant on a full measure subset of Wu(x) and W s(x)} .
Clearly, μ∗(Gϕ) = 1, so the same facts apply to Gϕ as Mϕ.

Let W 0,W ∈ Ws(R) be stable manifolds with μW0
∗ (Gϕ) = μW

∗ (Gϕ) = 1. Let
ΘW denote the holonomy map from W 0 ∩ R to W ∩ R. By absolute continuity,
Corollary 7.9, μW

∗ (ΘW (W 0 ∩Gϕ)) > 0. Thus ϕ is constant for almost every point

in ΘW (W 0 ∩ Gϕ). Let y be one such point and let x = Θ−1
W (y). Then since

x ∈ Wu(y) ∩Gϕ,
ϕ(x) = ϕ−(x) = ϕ−(y) = ϕ(y) ,

so that the values of ϕ on a positive measure set of points in W 0 and W agree.
Since ϕ is constant on Gϕ, the values of ϕ on a full measure set of points in W and
W 0 are equal. Since this applies to any W with μW

∗ (Gϕ) = 1, we conclude that
ϕ is constant almost everywhere on the set

⋃
W∈Ws(R)W . Finally, since ϕ was an

arbitrary continuous function, the set Ws(R) belongs (mod 0) to a single ergodic
component of μ∗. �

We are now ready to prove the K-mixing property of μ∗.

Proposition 7.16. (T, μ∗) is K-mixing.

Proof. We begin by showing that (Tn, μ∗) is ergodic for all n ≥ 1. Recall the
countable set of (locally maximal) Cantor rectangles {Ri}i∈N with μ∗(Ri) > 0,
such that

⋃
i Ri = Mreg from (7.21).

We fix n and let R1 and R2 be two such Cantor rectangles. By Lemma 7.15,
Ws(Ri) belongs (mod 0) to a single ergodic component of μ∗. Since T is topolog-
ically mixing, and using [CM, Lemma 7.90], there exists n0 > 0 such that for any
k ≥ n0, a smooth component of T−k(D(R1)) properly crosses D(R2). Let us call
Dk the part of this smooth component lying in D(R2).
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Since the set of stable manifolds is invariant under T−k, by the maximality of
the set Ws(R2), we have that T−k(Ws(R1)) ∩Dk ⊇ Ws(R2) ∩Dk. And since this
set of stable manifolds in R1 has positive measure with respect to μ̂∗, it follows
that μ∗(T

−k(Ws(R1))∩Ws(R2)) > 0. Thus R1 and R2 belong to the same ergodic
component of T . Indeed, since we may choose k = jn for some j ∈ N, R1 and
R2 belong to the same ergodic component of Tn. Since this is true for each pair
of Cantor rectangles Ri, Rj in our countable collection, and μ∗(

⋃
i Ri) = 1, we

conclude that Tn is ergodic.
We shall use the Pinsker partition

π(T ) =
∨

{ξ : ξ finite partition of M,hμ∗(T, ξ) = 0} .

Since T is an automorphism, the sigma-algebra generated by π(T ) is T -invariant.
Given two measurable partitions ξ1 and ξ2, the meet of the two partitions ξ1∧ξ2

is defined as the finest measurable partition with the property that ξ1 ∧ ξ2 ≤ ξj for
j = 1, 2. All definitions of measurable partitions and inequalities between them are
taken to be mod 0, with respect to the measure μ∗. It is a standard fact in ergodic
theory (see, e.g., [RoS]) that if ξ is a partition of M such that (i) Tξ ≥ ξ and (ii)∨∞

n=0 T
nξ = ε, where ε is the partition of M into points, then

∧∞
n=0 T

−nξ ≥ π(T )
(mod 0).

Define ξs to be the partition of M into maximal local stable manifolds. If
x ∈ M has no stable manifold or x is an endpoint of a stable manifold, then
define ξs(x) = {x}. Similarly, define ξu to be the partition of M into maximal
local unstable manifolds. Note that ξs is a measurable partition of M since it is
generated by the countable family of finite partitions given by the elements of Mn

0

and their closures. Similarly, M0
−n provides a countable generator for ξu.

It is a consequence of the uniform hyperbolicity of T that ξs satisfies (i) and (ii)
above. Also, ξu satisfies these conditions with respect to T−1, i.e., T−1ξu ≥ ξu and∨∞

n=0 T
−nξu = ε. Thus

∧∞
n=0 T

nξu ≥ π(T ).
Define η∞ =

∧∞
n=0(T

nξu ∧ T−nξs), and notice that η∞ ≥ π(T ) by the above.
Then since ξs ∧ ξu ≥ η∞, we have ξs ∧ ξu ≥ π(T ) as well.

We will show that each Cantor rectangle in our countable family belongs to one
element of ξs ∧ ξu (mod 0). This will follow from the product structure of each Ri

coupled with the absolute continuity of the holonomy map given by Corollary 7.9.
For brevity, let us fix i and set R = Ri. We index the curves W s

ζ ∈ Ws(R)

by ζ ∈ Z. Define μR = μ∗|R
μ∗(R) . We disintegrate the measure μR into a family of

conditional probability measures μW s

R , W s ∈ Ws(R), and a factor measure μ̂R on
the set Z. Then

μR(A) =

∫
ζ∈Z

μ
W s

ζ

R (A) dμ̂R(ζ) for all measurable sets A .

The set R belongs to a single element of ξs∧ξu if a full measure set of points can
be connected by elements of ξs and ξu even after the removal of a set of μ∗-measure
0. Let N ⊂ M be such that μ∗(N) = 0. By the above disintegration, it follows

that for μ̂R-almost every ζ ∈ Z, we have μ
W s

ζ

R (N) = 0.

Let W s
1 and W s

2 be two elements of Ws(R) such that μ
W s

j

R (N) = 0 for j = 1, 2.
For all x ∈ W s

1 ∩R, ξu(x) intersects W s
2 , and vice versa. Let Θ denote the holonomy

map from W s
1 to W s

2 . Then by Corollary 7.9, we have μ
W s

2

R (Θ(W s
1 ∩N)) = 0 and
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μ
W s

1

R (Θ−1(W s
2 ∩N)) = 0. Thus the set Θ(W s

1 \N) has full measure in W s
2 and vice

versa. It folllows that W s
1 and W s

2 belong to one element of ξs ∧ ξu. This proves
that R belongs to a single element of ξs ∧ ξu (mod 0).

Since ξs ∧ ξu ≥ π(T ), we have shown that each Ri belongs to a single element
of π(T ), mod 0. Since μ∗(Ri) > 0 and μ∗(∪iRi) = 1, the ergodicity of T and
the invariance of π(T ) imply that π(T ) contains finitely many elements, all having
the same measure, whose union has full measure. The action of T is simply a
permutation of these elements. Since (Tn, μ∗) is ergodic for all n, it follows that
π(T ) is trivial. Thus (T, μ∗) is K-mixing. �

Now that we know that μ∗ is ergodic, the upper bound in Proposition 7.12 will
easily36 imply that hμ∗(T ) = h∗.

Corollary 7.17 (Maximum entropy). For μ∗ defined as in (7.1), we have hμ∗(T ) =
h∗.

Proof. Since
∫
| log d(x,S±1)| dμ∗ < ∞ by Theorem 2.6, and μ∗ is ergodic, we may

apply [DWY, Prop 3.1]37 to T−1, which states that for μ∗-almost every x ∈ M ,

lim
ε→0

lim inf
n→∞

− 1
n log μ∗(Bn(x, ε)) = lim

ε→0
lim sup
n→∞

− 1
n log μ∗(Bn(x, ε)) = hμ∗(T

−1) .

Using (7.25) and (7.26) with p < 1, it follows that limn→∞ − 1
n log μ∗(Bn(x, ε)) =

h∗, for any ε > 0 sufficiently small. Thus hμ∗(T ) = hμ∗(T
−1) = h∗. �

Corollary 7.17 next allows us to prove Theorem 2.5 about the Bowen–Pesin–
Pitskel entropy.

Proof of Theorem 2.5. To show h∗ ≤ htop(T |M ′), we first use Corollary 7.17 and
the fact that μ∗(M

′) = 1 (since μ∗(Sn) = 0 for every n by Theorem 2.6) to see that

h∗ = hμ∗(T ) = sup
μ:μ(M ′)=1

hμ(T ) .

Then we apply the bound [Pes, (A.2.1)] or [PP, Thm 1] (by Remarks I and II there,
T need not be continuous on M) to get

sup
μ:μ(M ′)=1

hμ(T ) ≤ htop(T |M ′) .

To show htop(T |M ′) ≤ h∗, we use that [Pes, (11.12)] implies38 htop(T |M ′) ≤
ChM ′(T ), where ChM ′(T ) denotes the capacity topological entropy of the (invari-

ant) set M ′. Now, for any δ > 0, the elements of P̊k
−k = Mk+1

−k−1 form an open
cover of M ′ of diameter < δ, if k is large enough (see the proof of Lemma 3.4). By
adding finitely many open sets, we obtain an open cover Uδ of M of diameter < δ.
Next [Pes, (11.13)] gives that

ChM ′(T ) = lim
δ→0

lim
n→∞

1

n
log Λ(M ′,Uδ, n) ,

36It is not much harder to deduce this fact in the absence of ergodicity, using only (7.26) with
Theorem 2.3.

37This is a slight generalization of the Brin-Katok local theorem [BK], using [M, Lemma 2].
Continuity of the map is not used in the proof of the theorem, and so it applies to our setting.

38Just like in [PP, I and II], it is essential that M is compact, but the fact that T is not
continuous on M is irrelevant. Note also that [Pes, (A.3’), p. 66] should be corrected, replacing
“any ε > ε > 0” by “any ε > 1/m > 0”.
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where Λ(M ′,Uδ, n) is the smallest cardinality of a cover of M ′ by elements of∨n
j=0 T

−jUδ. Since for any n ≥ 1, the sets of
∨n

j=0 T
−jP̊k

−k form a cover of

M ′, the second equality of Lemma 3.3 (i.e., limn
1
n log#P̊k+n

−k = h∗) implies that
ChM ′(T ) ≤ h∗. �
7.6. Bernoulli property of μ∗. In this section, we prove that μ∗ is Bernoulli
by bootstrapping from K-mixing. The key ingredients of the proof, in addition to
K-mixing, are Cantor rectangles with a product structure of stable and unstable
manifolds, the absolute continuity of the unstable foliation with respect to μ∗, and
the bounds (2.2) on the neighbourhoods of the singularity sets. First, we recall
some definitions, following Chernov–Haskell [ChH] and the notion of very weak
Bernoulli partitions introduced by Ornstein [O].

Let (X,μX) and (Y, μY ) be two nonatomic Lebesgue probability spaces. A join-
ing λ of the two spaces is a measure on X × Y whose marginals on X and Y
are μX and μY , respectively. Given finite partitions39 α = {A1, . . . , Ak} of X
and β = {B1, . . . , Bk} of Y , let α(x) denote the element of α containing x ∈ X
(and similarly for β). Moreover, if x ∈ Aj and y ∈ Bj for the same value of j
(which depends on the order in which the elements are listed), then we will write
α(x) = β(y).

The distance d̄ defined below considers two partitions to be close if there is
a joining λ such that most of the measure lies on the set of points (x, y) with
α(x) = β(y): given two finite sequences of partitions {αi}ni=1 of X and {βi}ni=1 of
Y , define

d̄({αi}, {βi}) = inf
λ

∫
X×Y

h(x, y) dλ ,

where λ is a joining of X and Y and h is defined by

h(x, y) =
1

n
#{i ∈ [1, . . . , n] : αi(x) = βi(y)} .

We will adopt the following notation: If E ⊂ X, then α|E denotes the partition
α conditioned on E, i.e., the partition of E given by elements of the form A ∩ E
for A ∈ α. Similarly, μX( · |E) is the measure μX conditioned on E. If a property
holds for all atoms of α except for a collection whose union has measure less than
ε, then we say the property holds for ε-almost every atom of α.

If f : X → X is an invertible, measure preserving transformation of (X,μX),
and α is a finite partition of X, then α is said to be very weak Bernoullian (vwB)
if for all ε > 0, there exists N > 0 such that for every n > 0 and N0, N1 with

N < N0 < N1, and for ε-almost every atom A of
∨N1

N0
f iα, we have

(7.30) d̄({f−iα}ni=1, {f−iα|A}ni=1) < ε .

The following theorem from [OW] provides the essential connection between the
Bernoulli property and vwB partitions. (See also Theorems 4.1 and 4.2 in [ChH].)

Theorem 7.18. If a partition α of X is vwB, then (X,
∨∞

n=−∞ f−nα, μX , f) is

a Bernoulli shift. Moreover, if
∨∞

n=−∞ f−nα generates the whole σ-algebra of X,
then (X,μX , f) is a Bernoulli shift.

We are ready to state and prove the main result of this section.

39As we shall not need the norms of B and Bw in this section, we are free to use the letters α
and β to denote partitions instead of real parameters.
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Proposition 7.19. The measure μ∗ is Bernoulli.

Proof. First notice that since f is measure preserving in (7.30), then to prove that
a partition α is vwB, it suffices to show that for every ε > 0, there exist integers
m and N > 0 such that for every n,N0, N1 with N < N0 < N1, and for ε-almost

every atom A of
∨N1−m

N0−m f iα,

(7.31) d̄({f−iα}n+m
i=1+m, {f−iα|A}n+m

i=1+m) < ε .

To prove Proposition 7.19, we will follow the arguments in Sections 5 and 6 of
[ChH], only indicating where modifications should be made.

First, we remark that [ChH] decomposes the measure μSRB into conditional
measures on unstable manifolds and a factor measure on the set of unstable leaves.
Due to Corollary 7.9, we prefer to decompose μ∗ into conditional measures on
stable manifolds and the factor measure μ̂∗. For this reason, we exchange the roles
of stable and unstable manifolds throughout the proofs of [ChH].

To this end, we take f = T−1 in the set-up presented above, and X = M .
Moreover, we set α = M1

−1, since this (mod 0) partition generates the full σ-
algebra on M . We will follow the proof of [ChH] to show that α is vwB, and so by
Theorem 7.18, μ∗ will be Bernoulli with respect to T−1, and therefore with respect
to T . The proof in [ChH] proceeds in two steps.

Step 1 (Construction of δ-regular coverings). Given δ > 0, the idea is to cover M ,
up to a set of μ∗-measure at most δ, by Cantor rectangles of stable and unstable
manifolds such that μ∗ restricted to each rectangle is arbitrarily close to a product
measure. This is very similar to our covering {Ri}i∈N from (7.21); however, some
adjustments must be made in order to guarantee uniform properties for the Jacobian
of the relevant holonomy map.

On a Cantor rectangle R with μ∗(R) > 0, we can define a product measure
as follows.40 Fix a point z ∈ R, and consider R as the product of R ∩ W s(z)
with R ∩Wu(z), where W s/u(z) are the local stable and unstable manifolds of z,
respectively. As usual, we disintegrate μ∗ on R into conditional measures μW

∗,R, on

W ∩ R, where W ∈ Ws(R), and a factor measure μ̂∗ on the index set ΞR of the
curves Ws(R).

Define μp
∗,R = μ

W s(z)
∗,R × μ̂∗ and note that we can view μ̂∗ as inducing a measure

on Wu(z). Corollary 7.9 implies that μp
∗,R is absolutely continuous with respect to

μ∗. The following definition is taken from [ChH] (as mentioned above, a δ-regular
covering of M is a collection of rectangles which covers M up to a set of measure
δ).

Definition 7.20. For δ > 0, a δ-regular covering of M is a finite collection of
disjoint Cantor rectangles R for which,41

a) μ∗(
⋃

R∈R R) ≥ 1− δ.

b) Every R ∈ R satisfies
∣∣μp

∗,R(R)

μ∗(R) − 1
∣∣ < δ. Moreover, there exists G ⊂ R,

with μ∗(G) > (1− δ)μ∗(R), such that
∣∣dμp

∗,R
dμ∗

(x)− 1
∣∣ < δ for all x ∈ G.

40We follow the definition in [ChH, Section 5.1], exchanging the roles of stable and unstable
manifolds.

41The corresponding definition in [ChH] has a third condition, but this is trivially satisfied
in our setting since our stable and unstable manifolds are one-dimensional and have uniformly
bounded curvature.
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By [ChH, Lemma 5.1], such coverings exist for any δ > 0. The proof essentially
uses the covering from (7.21), and then subdivides the rectangles into smaller ones
on which the Jacobian of the holonomy between stable manifolds is nearly 1, in
order to satisfy item b) above. This argument relies on Lusin’s theorem and goes
through in our setting with no changes. Indeed, the proof in our case is simpler
since the angles between stable and unstable subspaces are uniformly bounded away
from zero, and the hyperbolicity constants in (3.1) are uniform for all x ∈ M .

Step 2 (Proof that α = M1
−1 is vwB). Indeed, [ChH] prove that any α with piece-

wise smooth boundary is vwB, but due to Theorem 7.18, it suffices to prove it for
a single partition which generates the σ-algebra on M . Moreover, using α = M1

−1

allows us to apply the bounds (2.2) directly since ∂α = S1 ∪ S−1.
Fix ε > 0, and define

δ = e−(ε/C′)2/(1−γ)

,

where C ′ > 0 is the constant from (7.33).
Let R = {R1, R2, . . . , Rk} be a δ-regular cover of M such that the diameters of

the Ri are less than δ. Define the partition π = {R0, R1, . . . , Rk}, where R0 = M \⋃k
i=1 Ri. For each i ≥ 1, let Gi ⊂ Ri denote the set identified in Definition 7.20b).
Since T−1 is K-mixing, there exists an even integer N = 2m, such that for any

integers N0, N1 such that N < N0 < N1, δ-almost every atom A of
∨N1−m

N0−m T−iα
satisfies,

(7.32)

∣∣∣∣μ∗(R|A)

μ∗(R)
− 1

∣∣∣∣ < δ for all R ∈ π .

Now let n,N0, N1 be given as above, and define ω =
∨N1−m

N0−m T−iα. [ChH]

proceeds to show that cε-almost every atom of ω satisfies (7.31) with ε replaced by
cε for some uniform constant c > 0. The first set of estimates in the proof is to
bound the measure of bad sets which must be thrown out, and to show that these
add up to at most cε.

The first set is F̂1, which is the union of all atoms in ω, which do not satisfy
(7.32). By choice of N , we have μ∗(F̂1) < δ.

The second set is F̂2. Let F2 =
⋃k

i=1 Ri \ Gi, and define F̂2 to be the union of

all atoms A ∈ ω, for which either μ∗(F2|A) > δ1/2, or

k∑
i=1

μp
∗,Ri

(A ∩ F2)

μ∗(A)
> δ1/2 .

It follows as in [ChH, p. 38], with no changes, that μ∗(F̂2) < cδ1/2 for some c > 0
independent of δ and k.

Define F3 to be the set of all points x ∈ M \ R0 such that W s(x) intersects the
boundary of the element ω(x) before it fully crosses the rectangle π(x). Thus if
x ∈ F3, there exists a subcurve ofW

s(x) connecting x to the boundary of (T−iα)(x)
for some i ∈ [N0 − m,N1 − m]. Then since π(x) has diameter less than δ, T i(x)
lies within a distance C1Λ

−iδ of the boundary of α, where C1 is from (3.1). Using
(2.2), the total measure of such points must add up to at most

(7.33)

N1−m∑
i=N0−m

C

| log(C1Λ−iδ)|γ ≤ C ′| log δ|1−γ
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for some C ′ > 0. Letting F̂3 denote the union of atoms A ∈ ω such that μ∗(F3|A) >

| log δ| 1−γ
2 , it follows that μ∗(F̂3) ≤ C ′| log δ| 1−γ

2 . This is at most ε by choice of δ.
Define F4 (following [ChH, Section 6.1], and not [ChH, Section 6.2]) to be the

set of all x ∈ M \ R0 for which there exists y ∈ Wu(x) ∩ π(x) such that h(x, y) >
0. This implies that Wu(x) intersects the boundary of the element (T iα)(x) for
some i ∈ [1 + m,n + m], remembering (7.31), and the definition of h. Using
again the uniform hyperbolicity (3.1), this implies that T−i(x) lies in a C1Λ

−iδ-
neighbourhood of the boundary of α. Thus the same estimate as in (7.33) implies

μ∗(F4) ≤ C ′| log δ|1−γ . Finally, letting F̂4 denote the union of all atoms A ∈ ω such

that μ∗(F4|A) > | log δ| 1−γ
2 , it follows as before that μ∗(F̂4) ≤ C ′| log δ| 1−γ

2 .
Finally, the bad set to be avoided in the construction of the joining λ is R0 ∪

(
⋃4

i=1 F̂i). Its measure is less than cε by choice of δ. From this point, once the
measure of the bad set is controlled, the rest of the proof in Section 6.2 of [ChH]
can be repeated verbatim. This proves that (7.31) holds for cε-almost every atom
of ω, and thus that α is vwB.

�

7.7. Uniqueness of the measure of maximal entropy. This subsection is de-
voted to the following proposition.

Proposition 7.21. The measure μ∗ is the unique measure of maximal entropy.

The proof of uniqueness relies on exploiting the fact that while the lower bound
on Bowen balls (or elements of M0

−n) cannot be improved for μ∗-almost every x,
yet if one fixes n, most elements of M0

−n should either have unstable diameter
of a fixed length, or have previously been contained in an element of M0

−j with
this property for some j < n. Such elements collectively satisfy stronger lower
bounds on their measure. Since we have established good control of the elements of
M0

−n and Mn
0 in the fragmentation lemmas of Section 5, we will work with these

partitions instead of Bowen balls.
Recalling (5.1), choose m1 such that (Km1+1)1/m1 < eh∗/4. Now choose δ2 > 0

sufficiently small that for all n, k ∈ N, if A ∈ Mk
−n is such that

max{diamu(A), diams(A)} ≤ δ2 ,

then A \ S±m1
consists of no more than Km1 + 1 connected components.

For n ≥ 1, define

B0
−2n = {A ∈ M0

−2n : ∀ j, 0 ≤ j ≤ n/2,

T−jA ⊂ E ∈ M0
−n+j such that diamu(E) < δ2} ,

with the analogous definition for B2n
0 ⊂ M2n

0 replacing unstable diameter by stable
diameter. Next, set B2n = {A ∈ M0

−2n : either A ∈ B0
−2n or T−2nA ∈ B2n

0 }.
Define G2n = M0

−2n \B2n.
Our first lemma shows that the set B2n is small relative to #M0

−2n for large n.
Let n1 > 2m1 be chosen so that for all A ∈ M0

−n, diam
s(A) ≤ CΛ−n ≤ δ2 for all

n ≥ n1.

Lemma 7.22. There exists C > 0 such that for all n ≥ n1,

#B2n ≤ Ce3nh∗/2(Km1 + 1)
n

m1
+1 ≤ Ce7nh∗/4 .
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Proof. Fix n ≥ n1 and suppose A ∈ B0
−2n ⊂ M0

−2n. For 0 ≤ j ≤ �n/2�, define
Aj ∈ M0

−�3n/2�−j to be the element containing T−(n/2�−j)A (note that T−kA ∈
Mk

−2n+k for each k ≤ 2n).

By definition of B0
−2n and choice of n1, we have max{diamu(Aj), diam

s(Aj)} ≤
δ2. Thus the number of connected components of Mm1

−�3n/2� in A0 is at most

Km1 + 1. Thus the number of connected components of Tm1A0 (one of which is
Am1

) is at most Km1 + 1. Since the stable and unstable diameters of Am1
are

again both shorter than δ2 (since A ∈ B0
−2n) and n > 2m1, we may apply this

estimate inductively. Thus writing �n/2� = �m1 + i for some i < m1, we have
that #{A′ ∈ B0

−2n : T−n/2�A′ ⊂ A0} ≤ (Km1 + 1)�+1. Summing over all possible
A0 ∈ M0

−�3n/2� yields by Proposition 4.6 and choice of m1,

#B0
−2n ≤ #M0

−�3n/2�(Km1 + 1)n/m1+1 ≤ Ce7nh∗/4 .

A similar estimate holds for #B2n
0 . Given the one-to-one correspondence between

elements of M0
−2n and M2n

0 , it follows that #B2n ≤ 2#B0
−2n, proving the required

estimate. �

Next, the following lemma establishes the importance of long pieces in providing
good lower bounds on the measure of partition elements.

Lemma 7.23. There exists Cδ2 > 0, such that for all j ≥ 1 and all A ∈ M0
−j such

that diamu(A) ≥ δ2 and diams(T−jA) ≥ δ2, we have42

μ∗(A) ≥ Cδ2e
−jh∗ .

Proof. As in the proof of Proposition 5.5, by [Ch1, Lemma 7.87], we may choose
finitely many (maximal) Cantor rectangles, R1, R2, . . . , Rk, with μ∗(Ri) > 0, and
having the property that every unstable curve of length at least δ2 properly crosses
at least one of them in the unstable direction, and every stable curve of length at
least δ2 properly crosses at least one of them in the stable direction. Let Rδ2 =
{R1, . . . , Rk}.

Now let j ∈ N, and A ∈ M0
−j with diamu(A) ≥ δ2 and diams(T−jA) ≥ δ2.

Notice that T−jA ∈ Mj
0. By construction, A properly crosses one rectangle Ri ∈

Rδ, and T−jA properly crosses another rectangle Ri′ ∈ Rδ. Let Ξi denote the index
set for the family of stable manifolds comprising Ri. For ξ ∈ Ξi, let Wξ,A = Wξ∩A.
Since T−jA properly crosses Ri′ in the stable direction and T−j is smooth on A,
it follows that T−j(Wξ,A) is a single curve that contains a stable manifold in the
family comprising Ri′ .

Let �δ2 denote the length of the shortest stable manifold in the finite set of
rectangles comprising Rδ2 . Then using (7.28) and (7.13), we have for all ξ ∈ Ξi,∫

Wξ,A

ν = e−jh∗

∫
T−j(Wξ,A)

ν ≥ e−jh∗C̄�h∗C̄2

δ2
,

where C̄, C̄2 > 0 are independent of δ and j.
Lastly, denoting by D(Ri) the smallest solid rectangle containing Ri (as in Defi-

nition 5.7) and using the fact from the proof of Corollary 7.9 that μW
∗ is equivalent

42It also follows from the proof of Proposition 7.12 that the upper bound μ∗(A) ≤ Ce−jh∗

holds for all A ∈ M0
−j for some constant C > 0 independent of j and δ2, but we shall not need

this here.
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to ν on μ∗-a.e. W ∈ Ws, we estimate,

μ∗(A) ≥ μ∗(A ∩D(Ri)) ≥
∫
Ξi

μ
Wξ
∗ (A) dμ̂∗(ξ)

≥ C

∫
Ξi

ν(A ∩Wξ) dμ̂∗(ξ) ≥ C ′
δ2e

−jh∗ μ̂∗(Ξi) ,

which proves the lemma since the family Rδ2 is finite. �

We may finally prove Proposition 7.21.

Proof. This follows from the previous two lemmas, adapting Bowen’s proof of
uniqueness of equilibrium states (see the use of [KH, Lemma 20.3.4] in [KH, Thm
20.3.7], as observed in the proof of [GL, Thm 6.4], noting that there is no need to
check that boundaries have zero measure).

Since μ∗ is ergodic, it suffices by a standard argument (see, e.g., the beginning
of the proof of [KH, Thm 20.1.3]) to check that if μ is a T -invariant probability
measure so that there exists a Borel set F ⊂ M with T−1(F ) = F and μ∗(F ) = 0
but μ(F ) = 1 (that is, μ is singular with respect to μ∗), then hμ(T ) < hμ∗(T ).

Observe first that the billiard map T (as well as its inverse T−1) is expansive,
that is, there exists ε0 > 0 so that if d(T j(x), T j(y)) < ε0 for some x, y ∈ M and
all j ∈ Z, then x = y. (Indeed, if x = y, then there is n ≥ 1 and an element of
either Sn or S−n that separates them. So x and y get mapped to different sides of
a singularity line and by (3.3) are separated by a minimum distance ε0, depending
on the table.)

For each n ∈ N, we consider the partition Qn of maximal connected components
ofM on which T−n is continuous. By Lemmas 3.2 and 3.3, Qn is M0

−n plus isolated
points whose cardinality grows at most linearly with n. Thus Gn ⊂ Qn for each
n. Define B̃n = Qn \ Gn. The set B̃n contains Bn plus isolated points, and so its
cardinality is bounded by the expression in Lemma 7.22, by possibly adjusting the
constant C.

By the uniform hyperbolicity of T , the diameters of the elements of T−n/2�(Qn)
tend to zero as n → ∞. This implies the following fact.

Sublemma 7.24. For each n ≥ n1 there exists a finite union Cn of elements of
Qn so that

lim
n→∞

(μ+ μ∗)((T
−n/2�Cn)�F ) = 0 .

Proof. See [Bo3, Lemma 2]: Let μ̄ = μ+μ∗ and Q̃n = T−n/2�(Qn). For δ > 0 pick
compact sets K1 ⊂ F and K2 ⊂ M \F so that max{μ̄(F \K1), μ̄((M \F )\K2)} < δ.

We have η = ηδ := d(K1,K2) > 0. If diam(Q̃) < η/2, then either Q̃ ∩ K1 = ∅
or Q̃ ∩ K2 = ∅. Let n = nδ be so that the diameter of Q̃n is < ηδ/2. Set

C̃n =
⋃
{Q̃ ∈ Q̃n : Q ∩ K1 = ∅}. Then K1 ⊂ C̃n and C̃n ∩ K2 = ∅. Hence,

μ̄(C̃n�F ) ≤ δ + μ̄(C̃n�K1) ≤ δ + μ̄(M \ (K1 ∪K2)) ≤ 3δ. Defining Cn = T n/2�C̃n
completes the proof. �

We remark that, since T−1(F ) = F , it follows that

(μ+ μ∗)(Cn�F ) = (μ+ μ∗)((T
n/2�Cn)�F )

also tends to zero as n → ∞.
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Since Q2n is generating for T 2n, we have

hμ(T
2n) = hμ(T

2n,Q2n) ≤ Hμ(Q2n) = −
∑

Q∈Q2n

μ(Q) logμ(Q) .

By the proof of Sublemma 7.24, for each n, there exists a compact set K1(n)

that defines C̃n = T−n/2�Cn, and satisfying K1(n) ↗ F as n → ∞. Next, we group

elements Q ∈ Q2n according to whether T−nQ ⊂ C̃n or T−nQ∩C̃n = ∅. Note that if
Q is not an isolated point, and if T−nQ ∩ C̃n = ∅, then T−nQ ∈ Mn

−n is contained

in an element of Mn/2�
−n/2� that intersects K1(n). Thus Q ⊂ TnC̃n = T �n/2�Cn.

Therefore,

2nhμ(T ) = hμ(T
2n) ≤ −

∑
Q∈Q2n

μ(Q) log μ(Q)

≤ −
∑

Q⊂TnC̃n

μ(Q) logμ(Q)−
∑

Q∈Q2n\(TnC̃n)

μ(Q) logμ(Q)

≤ 2

e
+ μ(TnC̃n) log#(Q2n ∩ TnC̃n) + μ(M \ (TnC̃n)) log#(Q2n \ (TnC̃n)) ,

where we used in the last line that the convexity of x log x implies that, for all

pj > 0 with
∑N

j=1 pj ≤ 1, we have (see, e.g., [KH, (20.3.5)])

−
N∑
j=1

pj log pj ≤
1

e
+ (logN)

N∑
j=1

pj .

Then, since −hμ∗(T ) =
(
μ(TnC̃n)+μ(M \(TnC̃n))

)
log e−h∗ for n ≥ n1, we write

2n(hμ(T )− hμ∗(T ))−
2

e

≤ μ(TnC̃n) log
∑

Q∈Q2n:Q⊂TnC̃n

e−2nh∗ + μ(M \ (TnC̃n)) log
∑

Q∈Q2n\(TnC̃n)

e−2nh∗

≤ μ(Cn) log

⎛⎝ ∑
Q∈G2n:Q⊂TnC̃n

e−2nh∗ +
∑

Q∈B̃2n:Q⊂TnC̃n

e−2nh∗

⎞⎠
+ μ(M \ Cn) log

⎛⎝ ∑
Q∈G2n\(TnC̃n)

e−2nh∗ +
∑

Q∈B̃2n\(TnC̃n)

e−2nh∗

⎞⎠ ,

(7.34)

where we have used the invariance of μ in the last inequality. By Lemma 7.22, both
sums over elements in B̃2n are bounded by Ce−nh∗/4. It remains to estimate the
sum over elements of G2n.

First we provide the following characterization of elements of G2n. Let Q ∈
G2n ⊂ M0

−2n. Since Q /∈ B0
−2n, there exists 0 ≤ j ≤ �n/2� such that T−jQ ⊂

Ej ∈ M0
−2n+j and diamu(Ej) ≥ δ2. We claim that there exists k ≤ �n/2� and

Ē ∈ M0
−2n+j+k such that Ej ⊂ Ē and diams(T−2n+j+kĒ) ≥ δ2.

The claim follows from the fact that T−2nQ /∈ B2n
0 . Thus there exists k ≤ �n/2�

such that T−2n+kQ ⊂ Ẽk ∈ M2n−k
0 with diams(Ẽk) ≥ δ2. But notice that
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T−2n+j+kEj ∈ M2n−j−k
−k contains T−2n+kQ. Thus letting Ẽ denote the unique ele-

ment ofM2n−j−k
0 containing both T−2n+j+kEj and Ẽk, we define Ē = T 2n−j−kẼ ∈

M0
−2n+j+k, and Ē has the required property since T−2n+j+kĒ ⊃ Ẽk.

By construction, Ē satisfies the assumptions of Lemma 7.23 since Ē ∈ M0
−2n+j+k

with diamu(Ē) ≥ δ2, and diams(T−2n+j+kĒ) ≥ δ2. Thus,

(7.35) μ∗(Ē) ≥ Cδ2e
(−2n+j+k)h∗ .

We call (Ē, j, k) an admissible triple for Q ∈ G2n if 0 ≤ j, k ≤ �n/2� and
Ē ∈ M0

−2n+j+k, with T−jQ ⊂ Ē and min{diamu(Ē), diams(T−2n+j+kĒ)} ≥ δ2.
Obviously, there may be many admissible triples associated to a given Q ∈ G2n;
however, we define the unique maximal triple for Q by taking first the maximum j,
and then the maximum k over all admissible triples for Q.

Let E2n be the set of maximal triples obtained in this way from elements of G2n.
For (Ē, j, k) ∈ E2n, let AM (Ē, j, k) denote the set of Q ∈ G2n for which (Ē, j, k) is
the maximal triple. The importance of the set E2n lies in the following property.

Sublemma 7.25. Suppose that (Ē1, j1, k1), (Ē2, j2, k2) ∈ E2n with j2 ≥ j1 and
(Ē1, j1, k1) = (Ē2, j2, k2). Then T−(j2−j1)Ē1 ∩ Ē2 = ∅.

Proof. Suppose, to the contrary, that there exist (Ē1, j1, k1), (Ē2, j2, k2) ∈ E2n with

j2 ≥ j1 and T−(j2−j1)Ē1 ∩ Ē2 = ∅. Note that T−(j2−j1)Ē1 ∈ Mj2−j1
−2n+j2+k1

while

Ē2 ∈ M0
−2n+j2+k2

.

Thus if k1 ≤ k2, then T−(j2−j1)Ē1 ⊂ Ē2, and so (Ē1, j1, k1) is not a maximal
triple for all Q ∈ AM (Ē1, j1, k1), a contradiction.

If, on the other hand, k1 > k2, then both T−(j2−j1)Ē1 and Ē2 are contained in
a larger element Ē′ ∈ M0

−2n+j2+k1
. Since Ē′ ⊃ Ē2, we have diamu(Ē′) ≥ δ2, and

since T−2n+j2+k1Ē′ ⊃ T−2n+j1+k1Ē1, we have diams(T−2n+j2+k1Ē′) ≥ δ2. Thus
neither (Ē1, j1, k1) nor (Ē2, j2, k2) is a maximal triple, also a contradiction. �

Note that by definition, if Q ∈ TnC̃n ∩ AM (Ē, j, k), then T−n+jĒ ∈ Mn−j
−n+k

contains T−nQ. Also, since j, k ≤ �n/2�, T−n+jĒ is contained in the same element

of Mn/2�
−n/2� that contains T−nQ and intersects K1(n). Thus T−n+jĒ ⊂ C̃n when-

ever TnC̃n ∩AM (Ē, j, k) = ∅. This also implies that AM (Ē, j, k) ⊂ TnC̃n whenever

TnC̃n ∩AM (Ē, j, k) = ∅.
Next, for a fixed (Ē, j, k) ∈ E2n, by submultiplicativity, since Ē ∈ M0

−2n+j+k

and G2n ⊂ M0
−2n, we have #AM (Ē, j, k) ≤ #Mj+k

0 . Now using Proposition 4.6
and (7.35), we estimate∑

Q∈G2n:Q⊂TnC̃n

e−2nh∗ ≤
∑

(Ē,j,k)∈E2n:Ē⊂Tn−j C̃n

∑
Q∈AM (Ē,j,k)

e−2nh∗

≤
∑

(Ē,j,k)∈E2n:Ē⊂Tn−j C̃n

Ce(−2n+j+k)h∗ ≤
∑

(Ē,j,k)∈E2n:Ē⊂Tn−j C̃n

C ′μ∗(Ē)

≤
∑

(Ē,j,k)∈E2n:Ē⊂Tn−j C̃n

C ′μ∗(T
−n+jĒ) ≤ C ′μ∗(C̃n) = C ′μ∗(Cn) ,

where the constant C ′ depends on δ2, but not on n. We have also used that
T−n+j1Ē1 ∩ T−n+j2Ē2 = ∅ for all distinct triples (Ē1, j1, k1), (Ē2, j2, k2) ∈ E2n,
by Sublemma 7.25, in order to sum over the elements of E2n. A similar bound
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holds for the sum over Q ∈ G2n \ (TnC̃n) since T−n+jĒ ⊂ M \ C̃n whenever

TnC̃n ∩ A(Ē, j, k) = ∅. Putting these bounds together allows us to complete our
estimate of (7.34),

2n(hμ(T )− hμ∗(T ))−
2

e
≤ μ(Cn) log

(
C ′μ∗(Cn) + Ce−nh∗/4

)
+ μ(M \ Cn) log

(
C ′μ∗(M \ Cn) + Ce−nh∗/4

)
.

Since μ(Cn) tends to 1 as n → ∞ while μ∗(Cn) tends to 0 as n → ∞ the limit
of the right-hand side tends to −∞. This yields a contradiction unless hμ(T ) <
hμ∗(T ). �
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