POSTER: Understanding and Optimizing Persistent
Memory Allocation

Wentao Cai, Haosen Wen, H. Alan Beadle, Mohammad Hedayati, Michael L. Scott
Computer Science Department
University of Rochester
Rochester, NY, USA
{wcai6,hwen5,hbeadle,hedayati,scott}@cs.rochester.edu

Abstract

The proliferation of fast, dense, byte-addressable nonvolatile
memory suggests the possibility of keeping data in pointer-
rich “in-memory” format across program runs and even
crashes. For full generality, such data requires dynamic mem-
ory allocation. Toward this end, we introduce recoverability, a
correctness criterion for persistent allocators, together with a
nonblocking allocator, Ralloc, that satisfies this criterion. Ral-
loc is based on LRMalloc [8], with three key innovations. First,
we persist just enough information during normal operation
to permit reconstruction of the heap after a full-system crash.
Our reconstruction mechanism performs garbage collection
(GC) to identify and remedy any failure-induced memory
leaks. Second, in support of GC, we introduce the notion
of filter functions, which identify the locations of pointers
within persistent blocks. Third, to allow persistent regions to
be mapped at an arbitrary address, we employ the position-
independent pointer representation of Chen et al. [4], both
in data and in allocator metadata.

Experiments show that Ralloc provides scalable perfor-
mance competitive to that of both Makalu [2], the state-of-
the-art lock-based persistent allocator, and the best transient
allocators (e.g., JEMalloc [5]).

CCS Concepts - Software and its engineering — Al-
location / deallocation strategies; - Hardware — Non-
volatile memory; « Computing methodologies — Shared
memory algorithms.

1 Context and Challenges

The past few years have seen a flurry of work on persistent
data structures designed to ensure that information kept in
nonvolatile memory will remain consistent in the wake of
a crash. While one could in principle insist that allocation

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

PPoPP 20, February 22-26, 2020, San Diego, CA, USA

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6818-6/20/02.
https://doi.org/10.1145/3332466.3374502

and deallocation of memory blocks be integrated into the
failure-atomic operations performed on a persistent struc-
ture, this introduces nontrivial dependences among other-
wise independent structures that share the same allocator. It
also imposes a level of consistency (typically durable lineariz-
ability [7]) that is arguably unnecessary for the allocator:
we do not in general care whether calls to malloc and free
linearize so long as no block is ever used for two purposes
simultaneously or is permanently leaked.

Leaks may arise if a crash occurs between allocating a
block and attaching it persistently to the data structure—or
between detaching it and deallocating it. A possible solution,
exemplified by Intel’s PMDK [11], is to provide malloc-to
and free-from operations; these atomically and persistently
allocate a block and attach it to the structure at a specified
address, or break the last persistent pointer and return the
block to the free list. An alternative, exemplified by HPE’s
Makalu [2], supplements a standard malloc/free interface
with post-crash garbage collection to recover any blocks that
might otherwise have leaked.

Informally, we say an allocator is recoverable if it ensures
that, in the wake of post-crash recovery, the metadata of the
allocator will indicate that all and only the “in use” blocks
are allocated. In a malloc/free allocator with GC, “in use”
blocks are those reachable from a specified set of persistent
roots. Interestingly, given application-facilitated tracing, al-
most any correct, transient memory allocator can be made
recoverable under a full-system-crash failure model: in the
wake of a crash, a fresh copy of the allocator is reinitialized
to reflect the enumerated set of in-use blocks. Very little in
the way of allocator metadata needs to be persisted.

If long-lived data are to be kept “in memory” across pro-
gram runs, it seems attractive to allow them to be shared,
concurrently, by independently developed programs [6]. This
raises the prospect of independent process failures; it mo-
tivates the use of nonblocking data structures—and a non-
blocking allocator—to avoid the logging and on-line recov-
ery required by lock-based code. (In the absence of failures,
nonblocking algorithms also protect against performance
anomalies caused by inopportune preemption.)

This work was supported in part by NSF grants CCF-1422649, CCF-1717712,
and CNS-1900803, and by a Google Faculty Research award.


https://doi.org/10.1145/3332466.3374502

PPoPP 20, February 22-26, 2020, San Diego, CA, USA

1000 -+ Ralloc PMDK = JEMalloc <+ Ralloc
< Makalu LRMalloc < Makalu
5
750 g 75
= 173
2 g
8 500 2 :2: 50
@ L 3
£ k¢ s
- 250 \Y\ RS
8 £
e, E
U0 P S O PO p—
. e - S - D G 0
1 5 10 15 20 25 30 35 40 45 48 1 5 10 15 20
Threads
(a) Threadtest (lower is better)
2 Ralloc

Our allocator, Ralloc, is based on the (transient) LRMalloc [8],
which is in turn derived from Michael’s nonblocking allo-
cator [9]. Most metadata is transient and is reconstructed
after a crash. Thread-local caching allows most allocator op-
erations to be fulfilled without any synchronization. Empty
superblocks (contiguous collections of blocks) are kept on
a free list rather than being unmapped; this change allows
Ralloc to outperform LRMalloc, despite persistence.

Many tracing garbage collectors assume that each block
is self descriptive, at least with regard to size. Ralloc, by con-
trast, relies on the fact that all blocks in a given superblock
are of identical size. It persists this size whenever allocat-
ing a new superblock, which is rare; in a typical operation,
nothing needs to be explicitly persisted.

In a type-safe language, Ralloc could (in principle) rely
on type information provided by the compiler to enumerate
reachable blocks. To support unsafe languages like C/C++,
Ralloc relies by default on conservative collection [3]. Tracing
begins in a set of persistent roots, which must be exported by
the application, but further blocks are deemed reachable if
their starting addresses correspond to a word-aligned 64-bit
value that is itself in a reachable block.

The problem, of course, with conservative collection is the
possibility of memory leaks caused by false positives during
tracing. To mitigate this problem, Ralloc allows programmers
to specialize a filter function that enumerates internal point-
ers for a given type of block. As an example, the following
defines a filter function for binary tree nodes:

1 Class TreeNode 4 Func filter(TreeNode™ ptr)
2 L L visit(ptr—left) ;
3

visit(ptr—right) ;

Here visit recursively invokes the filter function of its target.

In keeping with Makalu but in contrast to PMDK, Ral-
loc provides a traditional malloc/free interface, rather than
malloc-to/free-from. In addition to making it easier to port
existing application code, this interface relieves the program-
mer of the need to keep track, in persistent memory, of nodes
that have been allocated but not yet attached to the main
data structure—perhaps because of speculation, or because
they are still being initialized.

... // content fields 5
left, right : TreeNode™ ; 6

PMDK

LRMalloc

25
Threads

(b) Larson (higher is better)

Caiet al.
- JEMalloc + Ralloc £ Built-in allocator
© Makalu
3 150 Tt
s ——
a ———
o
< 00 B R Rl > S EE - U
5 el
£ -9
[=2]
=]
3 50
£
S
0
3 35 40 45 48 i 5 10 15 20 25 30

Threads

(c) Memcached (higher is better)

To allow persistent structures to be mapped at different
virtual addresses in different processes and across multiple
executions, we implement position-independent data using
location-relative “off-holder” pointers [4]. These are sub-
stantially more flexible than the once-and-for-always fixed
addresses of Makalu and more space efficient than the 128-bit
base-plus-offset pointers of PMDK. Each off-holder speci-
fies the distance between its own location and that of the
pointed-at block.

3 Experiments

We evaluated the performance of Ralloc on an Intel server
using the well known Threadtest and Larson benchmarks [1]
and persistent Memcached from the WHISPER suite [10]. As
shown above, Ralloc consistently matches or outperforms
known alternatives.

References

[1] E.D.Berger, K. S. McKinley, R. D. Blumofe, and P. R. Wilson. Hoard: A
scalable memory allocator for multithreaded applications. In ASPLOS,
Cambridge, MA, Nov. 2000.

[2] K. Bhandari, D. R. Chakrabarti, and H.-J. Boehm. Makalu: Fast recov-
erable allocation of non-volatile memory. In OOPSLA, Amsterdam,
The Netherlands, Oct. 2016.

[3] H.-J. Boehm and M. Weiser. Garbage collection in an uncooperative
environment. Software: Practice and Experience, 18(9):807-820, Sept.
1988.

[4] G. Chen, L. Zhang, R. Budhiraja, X. Shen, and Y. Wu. Efficient sup-
port of position independence on non-volatile memory. In MICRO,
Cambridge, MA, Oct. 2017.

[5] J.Evans. A scalable concurrent malloc (3) implementation for FreeBSD.
In BSDCan Conf., Ottawa, ON, Canada, May 2006.

[6] M. Hedayati, S. Gravani, E. Johnson, J. Criswell, M. L. Scott, K. Shen,
and M. Marty. Hodor: Intra-process isolation for high-throughput data
plane libraries. In ATC, Renton, WA, July 2019.

[7] J. Izraelevitz, H. Mendes, and M. L. Scott. Linearizability of persistent
memory objects under a full-system-crash failure model. In DISC,
Paris, France, Sept. 2016.

[8] R.Leite and R. Rocha. LRMalloc: A Modern and Competitive Lock-Free
Dynamic Memory Allocator. In VECPAR, Séo Pedro, Brazil, Sept. 2018.

[9] M. M. Michael. Scalable lock-free dynamic memory allocation. In
PLDI, Washington DC, USA, June 2004.

[10] S. Nalli, S. Haria, M. D. Hill, M. M. Swift, H. Volos, and K. Keeton. An
analysis of persistent memory use with WHISPER. In ASPLOS, Xi’an,
China, 2017.

[11] A.Rudoff and M. Slusarz. Persistent memory development kit, Sept.
2014. http://pmem.io/pmdk/.


http://pmem.io/pmdk/

	Abstract
	1 Context and Challenges
	2 Ralloc
	3 Experiments
	References

