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ABSTRACT
Data and services provided by shared facilities, such as large-scale
observing facilities, have become important enablers of scienti�c
insights and discoveries across many science and engineering disci-
plines. Ensuring satisfactory quality of service can be challenging
for facilities, due to their remote locations and to the distributed
nature of the instruments, observatories, and users, as well as the
rapid growth of data volumes and rates.

This research explores how knowledge of the facilities usage pat-
terns, coupled with emerging cyberinfrastructures can be leveraged
to improve their performance, usability, and scienti�c impact. We
propose a framework with a smart, internet-scale cache augmented
with prefetching and data placement strategies to improve data de-
livery performance for scienti�c facilities. Our evaluations, which
are based on the NSF Ocean Observatories Initiative, demonstrate
that our framework is able to predict user requests and reduce data
movements by more than 56% across networks.
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1 INTRODUCTION
Data and services provided by large-scale sensor networks, instru-
ments and observatories, coupled with the computation power
provided by Advanced Cyberinfrastructures (ACI), are increasingly
driving scienti�c insights and discoveries across many science and
engineering disciplines. As a result, the quality of service provided
by these facilities and the associated cyberinfrastructures is an
important concern and has a direct impact on the ability of re-
searchers to e�ectively use these facilities. However, ensuring the
performance of data delivery can be challenging due a to the remote
location and distributed nature of many of these instruments and
observatories. This data delivery challenge has been exacerbated by

the rapid growth of the data volume and variety being requested,
as well as size of the user communities consuming the data.

While application-level solutions have been proposed to reduce
the amount of data movement in geo-distributed data analytics [4,
8, 15] (and despite the general trend of bringing the application
code to the data) the pull-based data access interface that most
observatory repositories provide is becoming obsolete. Modern
dynamic, event-based and data-driven applications require push-
based Application Programming Interfaces, such as Pub/Sub, to
react to natural phenomena in near real-time [16]. Without a push-
based interface being available, the burden of optimizing data access
andmovements across geo-distributed application components falls
upon application developers. Cyberinfrastructure (CI) users have to
work around these limitations at the application level, repeatedly
polling data from the repositories and incurring long transfer times
due to the heterogeneity of the Wide-Area Networks (WAN) and
of the ever-increasing number of instruments and growing data
volume. Eventually, this lack of support from the CIs will impact
both the science impact of users and the quality of service of the
facilities.

This research addresses these challenges and explores how in-
formation about facilities’ access patterns, coupled with emerging
cyberinfrastructure solutions, can be used to improve the perfor-
mance, usability and scienti�c impact of data and services pro-
vided by these facilities. In order to understand the usage patterns
of large facilities we have conducted an analysis inspired by the
National Science Foundation (NSF) Ocean Observatory Initiative
(OOI) [18] and identi�ed several classes of users and usage pat-
terns (e.g., interactive vs. recurrent automated requests). We also
study the cyberinfrastructure requirements of these user classes
and usage patterns.

In particular, we exploit the Virtual Data Collaboratory (VDC)
platform [14] and propose to build up a smart internet-scale cache
framework. Through analysis of user access logs from the OOI
repository, we identify user access patterns and correlations among
user requests. Based on these discoveries, we design a prefetching
model and a data placement strategy that can potentially bene�t
most of the large scale observatories. To demonstrate this, we eval-
uate our solution against OOI access logs and show that such a
cache framework could signi�cantly improve the performance of
data retrieval for OOI users.

The main contributions of this paper are summarized as follows:

• We present the results of an analysis based on the NSF OOI,
and identify request patterns and correlations between them.
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• We propose a data prefetching model and cache data place-
ment strategies, as well as an internet-scale cache service
framework.

• We evaluate the model with log data extrapolated from the
NSF OOI data repository and demonstrate the performance
improvement for user data retrieval requests.

The remainder of the paper is structured as follows. Section 2
presents the motivation for building a distributed data cache frame-
work and related works. Section 3 analyzes the user access patterns
contained in OOI access logs. Section 4 describes the system design
and model. We provide an experimental evaluation of the system
performance in Section 5 through simulation. Finally, we conclude
the article and outline ongoing and future research activities.

2 BACKGROUND AND RELATEDWORK
This section discusses data exchange techniques in existing geo-
distributed applications, scienti�c work�ows and observatories to
draw motivations for this work.

2.1 Geo-distributed applications
Many scienti�c experiments are distributed in nature. Their dis-
tribution is sometimes due to the distance between the facilities
that generate data and those that store it; sometimes it is due to
researchers collaborating remotely; in many cases, it results from
both. This distribution creates various challenges.

For researchers, geo-distribution leads to di�culties in accom-
plishing relatively mundane tasks such as transferring and sharing
data sets, even when advanced networking technologies are avail-
able. Unlike the Large Hadron Collider (LHC) [5] or the Human
Genome Project [6], which can a�ord a dedicated cyberinfrastruc-
ture and a well-tuned software stack, for most of the geo-distributed
applications, the cost of retrieving data from remote repositories is
non-trivial and hard to avoid: repositories typically are not able to
provide co-located computing resource. Therefore, these applica-
tions have to transfer data to a remote computing facility.

Reducing the cost of geo-distributed applications’ data retrieval
from the repositories has not been holistically studied yet, although
several research works have proposed solutions to speci�c chal-
lenges. At the application level, research has been done on data
analytics [15], machine learning [4, 8] and Big Data processing [9]
in an attempt to alleviate the overhead of data exchange and com-
munication. Jiang et al. [10] explored caching the datasets shared in
common by geo-distributed applications to reduce network tra�c.
At a systems level, Liu et al. [12] studied the bottleneck of wide area
data transfer and exploited reinforcement learning [13] to continu-
ously �nd the ideal con�guration for Data Transfer Nodes (DTN)
and thus optimize networks for scienti�c applications.

However, these works only addressed the applications’ inter-
mediate data exchange or optimized the data transfers, they did
not seek to alleviate the application’s initial data retrieval cost and
user wait time. We believe that an optimal solution should combine
both comprehensive studies of applications and optimization at the
system level.

2.2 Scienti�c work�ows based on observatory
data

2.2.1 Observatory data. It refers to data related to the observation
of phenomena. Observatory data is typically produced by scienti�c
instruments and sensor networks and is hosted and distributed by
dedicated data repositories.

Observatory data has several de�ning characteristics. First, ob-
servatory data is immutable; most records are instantaneous values
of an observation of a certain nature at a given location, and the
complete history of these values form a time series. Second, obser-
vatory data is reused by di�erent applications for di�erent research
purposes; these two properties mean that most observatories op-
erate in a write once, read many storage mode. Third, observatory
data is frequently spatiotemporal data. Every spatiotemporal data
point has a spatial attribute that indicates the location where the
observation was made, often in the form of a (longitude, latitude)
couple. A timestamp attribute indicates when the observation was
made.

Li et al. have shown in [11] that about 80% of tile access patterns
for geospatial data have a locality feature, meaning that knowledge
of past queries can be used to improve the service of future queries.
The present work is partly based on the expectation that similar
locality features can be found in the spatiotemporal data managed
by scienti�c observatories, and that these features can be leveraged
to o�er advanced caching mechanisms, including prefetching.

2.2.2 Scientific workflows. They typically use observatory data
for two purposes. The �rst one is monitoring the occurrence of a
certain kind of event, which requires continuously examining the
freshest data available in short time intervals. The second purpose
is investigating the evolution of some natural phenomenon. Work-
�ows of this kind retrieve many data objects at once which span
long periods of time.

These two purposes for access usually correspond to two data
retrieval methods and have di�erent access patterns. For compat-
ibility, most observatories o�er HTTP interfaces (either through
a machine-to-machine interface such as a REST API, or through
an interactive portal). The API-based work�ows are usually pro-
grammed to periodically request a set of data objects for a �xed
time range, which makes their request patterns consistent and easy
to predict. On the other hand, the work�ows using interactive in-
terfaces usually involve a person and thus create access patterns
that are di�cult to predict based on previous queries.

Understanding the access patterns of work�ows would be useful
in improving the synchronous and pull-based transfer methods
used by most existing observatories, which limit opportunities for
the servers to optimize data delivery.

2.2.3 Observatory data retrieval correlation. Observatory data is
mainly used for scienti�c research purposes. The data retrieval
behavior is thus not random and there is a correlation between re-
quests in two aspects, i) data type, and ii) spatiotemporal property.

First, the observatory scienti�c work�ows have their own re-
search purposes. The types of data requested by the work�ows used
for research in a given discipline follow scienti�c laws. For exam-
ple, a weather forecast work�ow requires data about temperature,
wind speed, humidity, etc; air quality research programs require
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atmospheric metrics (carbon dioxide, ozone, etc.) tra�c data, and
so on. This establishes correlations in data access, according to the
types of work�ows accessing the data. Second, the observatory data
is spatiotemporal data. The application data retrieval also follows
rules in terms of locality and time series.

By learning data access patterns, it is feasible to improve user
data retrieval performance by developing a push-based and asyn-
chronous data delivery framework.

3 OBSERVATORY DATA ACCESS PATTERN
This section presents a study of the access logs of the OOI from the
month of November 2018, in order to classify users according to
their access patterns.

3.1 Mining correlation
3.1.1 Log data a�ributes. Each request includes a data object name,
instrument name, and requested time range. We model the user ac-
cess pattern by mining the correlation among these three attributes
individually.

3.1.2 Data object. The data object name represents the instrument
measurement data, often as a time series. For example, the “CTD”
instrument measures conductivity, temperature and depth. Achiev-
ing scienti�c insight from instrument data will generally require
the examination of several inter-related data objects, and so we
hypothesize correlation among user-requested data objects.

3.1.3 Instrument locality. OOI instruments are naturally distributed
into groups. As shown on the OOI website [2], they are clustered
into �ve groups, which are distributed in the Paci�c and Atlantic
Ocean. Each group is distant from the others and represents a re-
search area. We hypothesize that a user’s requests are aggregated
to one or few clusters and there is additionally spatial correlation
among its requests across the instruments within a cluster.

3.1.4 Time range. The time range indicates the start and end time
point of the data in which the user is interested. Because the obser-
vatory instruments have �xed data sampling frequency, the time
range is linearly proportional to the data size of the response.

3.1.5 Correlate user request pa�ern. To test this hypothesis, we
extract two attributes from the user requests, data object and in-
strument location and plotted them. Figure 1 is an example with 3
selected users. The y-axis is the enumerated data stream name. The
x-axis is the instrument location ID which is sorted by the instru-
ment clusters as mentioned in Section 3.1.3, so that adjacent number
correspond to instruments which are close to each other. For exam-
ple, the instrument location ID from #0 to #31 are instruments that
are located in the North Paci�c Ocean cluster.

By plotting requests user-by-user, we made several observations.
First, there is a correlation among data objects and instrument
locations. A user (e.g., User #1) would successively request the
same set of data objects from multiple locations. Second, users
share similar access patterns, such as User #1 and User #2, User
#1 and User #3. These observations provide feasibility for request
prediction and data cache.
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Figure 1: User request pattern analysis. The x-axis is the in-
strument location and the y-axis is the data object ID. The
visible line patterns suggest that correlations localities and
data objects exist.

3.2 User classi�cation
Users can be classi�ed into two categories according to their data
retrieval methods, interactive users and Machine-to-Machine (M2M)
users (programs). Through analyzing one month of OOI log data,
we found that 42.7% users are programs. These programs gener-
ated 99.9% of the requests and 98.8% of the total volume of data
movement from OOI.

Programs can be further classi�ed into real-time users and non-
real-time users according to their request interval. We noticed that
some users queried data at very high frequency (e.g. few seconds)
and thus classi�ed them as the real-time users.

Because programs’ access and request patterns are typically con-
sistent and easy to recognize, it is feasible to design a data prefetch-
ing model that improves the response time for their requests. In
other words, we can build a preemptive push-based data delivery
framework instead of the passive pull-based data delivery pattern
and therefore improve the user data retrieval performance.

4 SMART, INTERNET-SCALE CACHE
SERVICE FRAMEWORK

4.1 System infrastructure
4.1.1 Cyberinfrastructure platform. The target infrastructure is the
Virtual Data Collaboratory (VDC) platform [14]. The VDC uses the
Science DMZ model, a concept adopted by several other regional
and national cyberinfrastructures, such as the Paci�c Research
Platform (PRP) and the National Research Platform (NRP) [17]. The
Science DMZ model is a network of DTNs that act as access points
for the CIs and other institutions to connect to other institutions
on a dedicated Wide-Area Network. In our design, all participating
institutions are connected through a DTN, meaning all requests
and data transfers initiated by users have to go through at least
one of these fast I/O nodes. This architecture gives the DTNs the
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opportunity to transparently cache data, without incurring any
additional performance cost.

It is important to note that while all DTNs follow the same
Flash I/O Network Appliance (FIONA) standard proposed by the
Prism@UCSD project [1], there is still a lot of heterogeneity in the
network and between the nodes. First, it is impossible to guarantee
the same quality (throughput and latency) of service for all the links
at the scale of a country like the United States. This can, for example,
be observed on the PRP dashboard [3] that usually shows important
variations between network links. Second, nodes are purchased,
con�gured and installed by di�erent institutions and over long time
frames. While they have to implement the speci�cation, they can
still vary enough in terms of hardware (CPU, RAM, and storage)
and software to impact the framework performance.

This important heterogeneity along with the network topology
must be taken into account when designing our cache framework
and its prefetching and placement strategies in particular, in order
to deliver the best possible performance.

4.2 Prediction model
We train our prediction model on user requests from observatories.
Based on this information, we represent a log dataset as a sequence
R = hr1, r2, r3, . . . , rni. Each request tuple ri includes the name
of the data object (or stream) d; the location of the instrument l;
and the time range t. Equation 1 develops a requests sequence R
in which Dn = hd1,d2, . . . ,dni is the sequence of data streams,
Ln = hl1, l2, . . . , lni is the sequence of instrument locations and
Tn = ht1, t2, . . . , tni is the sequence of time ranges.

R = h(d1, l1, t1), (d2, l2, t2), . . . , (dn , ln , tn )i
= Dn ,Ln ,Tn

(1)

We observed that OOI users using the M2M interface (i.e., pro-
grams) usually have more consistent request patterns compared
to interactive users’ (i.e., humans) that are thus far more di�cult
to predict. In this work, we design a hybrid prediction model that
combines a historical record-based prediction method and an asso-
ciative rule mining method to model and predict both categories of
user requests.

4.2.1 Historical record-based prediction model. Through the analy-
sis of the OOI requests, we found that some users have consistent
patterns in their requests. These patterns, that are easily recogniz-
able in the information of the requests, can take di�erent forms:
i) requests are occurring at a �xed interval (e.g., every 4 hours);
ii) requests are for the same set of data objects; or iii) requests
are for a �xed-size sliding window. These requests can be easily
recognized in the historical record. As the framework reads through
the requests, it de�nes a pattern repeat threshold �r . Once a user’s
access pattern repeats over the threshold �r , the system marks it
as predictable and starts prefetching data in anticipation of future
requests.

The access interval of real-time programs is too short for prefetch-
ing data, so we categorize them as unprefetchable. These users make
up 2.7% of total users, and the remaining 54.6% automated users
are possibly prefetchable.

Figure 2: Clusters of users produced by K-Means withK = 10
for the OOI logs datasets. Clusters are represented by identi-
cal symbols and colors and contain users that share similar
features in terms of instrument location and data interest.

4.2.2 Associative rule mining prediction model. As discussed in Sec-
tion 2, observatory data has spatiotemporal attributes, and there
are correlations among user requests. We use the association rule
mining FP-Growth algorithm [7] to build up the prediction model,
as seen in other works [11, 19, 20]. FP-Growth will �nd an asso-
ciation among past requests to predict future requests based on
two attributes, the data object Dn and instrument location Ln . The
model is constructed as follows:

a) FP-tree construction: the frequent-pattern tree (FP-tree) is a
compact structure that stores quantitative information about fre-
quent patterns in a database. The algorithm �rst scans the training
dataset and counts the number of times a data point di 2 Di , li 2 Li
appears in the sequence of requests. This number is called support.
Then, the algorithm �nds the frequency 1-itemsets by comparing
the itemset support with a prede�ned support threshold �s . Finally,
it rescans the dataset and constructs the FP-tree.

b) FP-Growth: based on the FP-tree that contains association
rules between itemsets and their corresponding con�dence value
� j as in (di ,di+1,di+2, . . . ,di+m�1) !

⌦
di+m ,� j

↵
, the algorithm

�lters out association rules which have a con�dence lower than
the con�dence threshold �c , in order to form the complete set of
frequent patterns.

Selecting appropriate threshold values for support �s and con�-
dence �c is important to the model performance. We will determine
these values through experimentation in Section 5.

Once the model has predicted the data object that will be re-
quested next, the system places a copy of the object in the user’s
local DTN cache. This copy has the same time range as the user’s
last request for a di�erent object.

4.3 Virtual groups
In a geographically distributed scenario, the placement of cached
data is expected to have a signi�cant performance impact due to
variations in the network, as discussed earlier. Our objective here
is thus to place cached data as close as possible to potential users.
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Figure 3: Virtual groups and Local Data Hub (star). The lay-
ered architecture is inspired by [10]. On top of the physi-
cal infrastructure, users can belong to several groups (lay-
ers) that correspond to the clusters found by the K-Means
algorithm. Based on the distance between users, each virtual
group may be split into several sub-groups (represented by
circles).

To determine the optimal location for cached data, we rely on
users’ access patterns. We de�ne a virtual group as a group of users
that share common interests in data objects and are geographically
close to each other. In order to �nd users with similar interest, we
run the K-Means algorithm on the historical records and partition
the requests into K clusters. If a user requested data objects that
belong to di�erent clusters, then the user belongs to as many di�er-
ent virtual groups. Figure 2 shows the clustering result of the OOI
logs. The logs that we currently have do not contain any location
information; in order to group users that are geographically close,
we assume that their location information can be interpreted from a
user’s IP address and that we know which DTN each user accesses.

Figure 3 shows the concept of the virtual group. At the bottom
is the physical infrastructure composed of DTNs that acts as the
users’ access points to the network. Every past request made by a
user maps to a cluster. Each user is put in virtual groups depending
on which clusters they have accessed in the past, as shown in the
upper two layers. On the �gure, Virtual Group X and Virtual Group
Y are two clusters as output by K-Means. Each virtual group can
be further partitioned based on the relative distance between users
(circles).

The clustering algorithm is executed at a pre-de�ned frequency
(e.g. daily), which allows the system to adapt when new users join
the network or when existing users start accessing data objects that
belong to a cluster they have not accessed in the past.

4.4 Local data hub
Selecting an optimal DTN within each virtual group for storing the
cache data is critical for performance. In each group, we call this
DTN the local data hub. From the perspective of the DTN, there
are two parameters a�ecting the cache performance: the network
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Cache client

Cache server

Data Prefetching Engine

Figure 4: Cache system framework design.

throughput and the resource utilization (e.g., storage, CPU). From
the perspective of the user, if their request frequency is high, it is
better to choose the DTN they are connected to as the local data
hub, in order to improve locality.

For each DTN in a virtual group, the local data hub selection
algorithm accumulates the weighted values of the above three
factors: throughput, resource utilization, and the frequency of user
requests.

Equation 2 illustrates the local data hub selection approach. We
assume that virtual groupG hasn DTNs {�1,�2, ...,�n }. Within this
group, Pi j represents the network throughput from �i to �j and �p
is the weight for throughput.Ui represents the DTN device resource
utilization (e.g., storage and CPU) with weight �u . Fi represents the
frequency of request that comes from the virtual group members
that are connected to this DTN, and has weight �f . As the data hub,
we select the DTN Vdh that maximizes the sum of the three values.

Vdh =max(�p
n’
j,i

Pi j + �uUi + �f Fi ), 0 < i, j  n (2)

The local data hub selection algorithm is running at a de�ned
interval. Once the local data hub changes, the previous data hub
keeps the data that is already cached and its user-de�ned eviction
policy, while new data will be cached to the new data hub to keep
the recon�guration cost minimal.

4.5 System design
The framework features a server-client architecture, as shown in
Figure 4. The cache server hosts the Data Management and the
Data Prefetching engines that run the prediction and the clustering
algorithms discussed earlier in this section. The Data Management
Engine acts as a proxy to serve queries made by the users to the data
repositories. The cache server also maintains the cache index and
dynamically manages the virtual groups and the local data hubs.
The Data Prefetching Engine learns the user access pattern and
manages prefetching transfers from the repositories to the correct
DTN. In case of a cache miss (i.e. the object that is being requested
by a user is not in the local cache), the Prefetching Engine decides
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whether the object should be downloaded by the local cache from
a remote DTN or from the repository by comparing the transfer
costs of each. The prefetching model is periodically updated with a
pre-de�ned frequency, such as hourly or daily.

The cache client is running on the DTN network, close to the
user and is in charge of processing user requests. If the requested
data is not in the local DTN cache, it will pass the command to the
cache server. The Data Prefetching Engine records the request and
the Data Management Engine provides a data download link, either
from a local DTN cache or the original data repository according
to the data transfer cost. Once the user receives the data, the cache
client will cache them and evict old cache data if necessary.

It is noteworthy thatwith this architecture, the �ow of commands
goes only from the cache server to the cache clients, and that the
�ow of data goes directly from the repositories to the cache client.

5 PERFORMANCE EVALUATION
This section describes the experimental setup and results. Our ex-
periments are based on simulations of a distributed DTN network
similar to the VDC combined with PRP. Our experiments evalu-
ate the performance of the Smart Internet-Scale Cache framework
using the OOI logs.

5.1 Experimental setup
5.1.1 OOI data requests. The anonymized data log was obtained
extrapolating OOI requests from the month of November 2018.
This dataset contains over 17 million valid user pull records. As
user identities are anonymized, we cannot interpret user location
information and have to randomly distribute them to the DTN
network, which limits our ability to cluster users.

Because the logs do not contain the amount of data transferred
to satisfy a request, we have to infer this from the instrument
sampling frequency and time range. We de�ne the data density as
the size of a data object that an instrument generates every second,
in MB per second. Then, for each request, we can estimate the data
size through multiplying the density by the request time range
in seconds. The data density of each data object was calculated
through experiment. We retrieved 3 hours data for each of them
and dividing the total downloaded size by 10,800.

5.1.2 Simulate VDC DTN network. To simulate a realistic DTN net-
work, we selected eight 40GB-DTNs from the PRP web dashboard
and recorded their instant throughput and resource utilization on
Feb. 13, 2019 at 15:39:00. These eight DTNs are located in eight
distinct institutes in California. These nodes are distributed over a
large geographic area and their network throughput is heteroge-
neous, which is representative of an Internet-Scale DTN network.

We select one DTN as the access point to the OOI data repository
and randomly distribute all the OOI users to the other seven DTNs.
The DTN throughput value and resource utilization is only used
in selecting the local data hub; we leave the computation of data
transfer times as future work, as we don’t account for network
contention in this work.

5.1.3 Evaluation metric. From the cache point of view, data is
stored in a 3-tier hierarchy at the top of which is the data repository,
followed by the remote DTN caches, and the local DTN cache, in

the order of increasing data transfer speed to a user. Hence, our
cache strategy aims at moving data to the user’s connected DTN, in
order to allow the user applications to get as much data as possible
from the local DTN.

The experiments compute two metrics for evaluation: the cache
hit rate and the volume of data movement. Further, they are divided
in cache hit rate at remote DTNs, cache hit rate at local DTN, data
movement from remote DTN and data movement from local DTN.
Improving performances for users means maximizing the cache hit
rate at local DTN and data movement from local DTN.
For cache storage capacity, we chose values that are typically ob-
served on DTNs that implement the FIONA speci�cation [1]: 128GB,
256GB, 512GB, 1TB and 2TB.

5.2 Evaluation of the prediction model
parameters

This experiment aims at determining the optimal parameters for
the prediction model.

5.2.1 Historical record-based prediction model. A historical record-
based prediction mode is usually appropriate for programs, except
for real-time programs. Because these users query the freshest data
at a very high frequency, there is no su�cient time to prefetch
data for them. To determine if a user is prefetchable, we set the
pattern repeat threshold �r to 3 and the access interval threshold �a
to 60 seconds. This means that a user is considered prefetchable if
accesses the same objects in the same sequence at least three times,
with a pause of at least 60 seconds between each sequence. We
found these values to be su�cient to identify the repeated patterns
while excluding real-time users, and these values can be tuned in
the simulator.

5.2.2 Associative rulemining-based predictionmodel. The FP-growth
model has two major parameters, the support threshold �s and the
con�dence threshold �c . �s indicates how frequently the itemset
appears in the dataset and �c speci�es how often the rule has been
found to be true. There are trade-o�s in selecting these values;
higher �s values will result in selecting fewer itemset candidates
and higher �c will reduce the size of the ruleset. We vary these two
parameters and calculate the model’s precision and recall values.

In this experiment we initially train the prefetching model with
one week of OOI requests and retrain the model every day with the
freshest data. We then compute the average precision and recall for
each user at the end of the month. Figure 5 plots the average preci-
sion (top) and recall (bottom) of all the users with di�erent support
and con�dence threshold combinations. Based on these results the
values with the best trade-o� seem to be �s=30 and �c=0.5, as these
values maximize the recall while maintaining satisfying precision.
We �x these values and use them for the rest of the experiments.
Our results are however limited by the small size of our dataset,
since 37.3% of users made only a single request during that month,
and our initial training dataset is only one week. This experiment
still demonstrates the feasibility of prefetching for observatory data,
and we hope to improve these results by using larger datasets in
the future.

The next section evaluates the two prefetching models as part
of the whole Smart Cache framework.
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Figure 5: FP-Growthmodle performance evaluationwith dif-
ferent support �s and con�dence �c threshold combinations.
It illustrates the Precision (on top) and theRecall (on bottom)
result.
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Figure 7: Volume of data transfer from the OOI data repository and from the DTN caches under the four scenarios.

5.3 Evaluation of the Smart Cache framework
This experiment replays the transfers contained in the OOI logs and
compares the performance of the cache under di�erent strategies:
no cache, a simple cache without optimization, a simple cache with
virtual group data placement optimization and the Smart Cache.

5.3.1 Evaluation scenarios.
No cache: a scenario in which users retrieve data directly from the
data repository. This scenario is the baseline for all subsequent
experiments and the denominator for result normalizations.

Simple cache: adds a cache layer without any optimization such as
prefetching or data placement. We evaluate a simple Least Recently
Used (LRU) cache eviction mechanism to determine the impact of
data re-use.

Simple cache with Virtual Groups: cache with data placement
strategies, virtual groups, and local data hub. This scenario should
result in a higher cache hit rate at the local DTN and in improved
data retrieval performance thanks to data locality.

Smart cache: the smart cache incorporating the associative rule-
based prefetching model, the virtual groups and the data placement
strategies.

5.3.2 Results. Figure 6 shows the cache hit rate for the three cache
strategies, with varying storage space on the DTNs. We observe
that the simple cache alone with the smallest storage space (128GB)
achieves 17.6% of cache hit rate. This �rst result shows that there
exists some degree of data reuse to exploit.
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Our second scenario reveals that our data placement strategies,
virtual group and local data hub alone do not improve the cache hit
rates signi�cantly. Compared with the simple cache, the cache hit
rate at the local DTN is on average 0.44% greater. It should however
be noted that the total volume of data movement is on the scale of
TB and therefore even a 1% saving is on the scale of tens of GB.

Finally, we �nd that the Smart Cache can achieve higher hit
rate on local DTNs under restricted storage space. By adding the
prefetching mechanism, the smart cache can achieve 19.8% of hit
rate on the local DTN with 128GB storage, which is better then
the 1TB cache space with virtual groups and placement strategies
alone. Also, as the cache size increases, the cache hit rate does not
signi�cantly change, which means the smart cache can achieve
relative high cache hit within a restricted cache space.

Figure 7a plots the amount of data transferred from the repos-
itories in the four scenarios, normalized against the baseline (no
cache, i.e. all data is fetched directly from the repository). Simply
increasing the storage space of the DTNs results in a reasonable
reduction of the volume of data that users need to retrieve from the
remote repository. The Simple Cache and Simple Cache with Virtual
Groups scenarios still result in over 92% of data being transferred
from the data repository with 2TB of storage. However, diving into
the details of cache hits, Figure 7b shows that most cache data was
retrieved from the local DTN. In all cases, the reduction in data
movement from varying cache space from 128GB to 2Tb is less than
5%. This seem to mean that simply increasing the cache storage
space without changing the passive pull-based cannot improve the
performance of data delivery signi�cantly.

In contrast, the Smart Cache uses a prefetching mechanism to im-
plement a preemptive push-based data delivery model. This largely
reduces the amount of data transferred (to less than 43.3% of the no-
cache scenario under 128GB storage space) from the repository, and
makes the local DTN serve more than 56.6% of the data. Considering
that 54.6% users are prefetchable, our smart cache framework has
the potential to signi�cantly improve the data retrieval performance
for the users of scienti�c observatories.

6 CONCLUSION AND FUTUREWORK
In the context of increasing investments in large-scale sensor net-
works, instruments and observatories, this work studies how lever-
aging knowledge of past data retrieval requests made to scienti�c
facilities can help improve the user experience of future requests.
We have presented a smart, internet-scale cache with prefetching,
driven by data analytics and machine learning techniques, able to
predict future requests and preemptively place data close to the
users that are more likely to request it in the future. We have evalu-
ated our cache framework via simulation using a data set obtained
from Ocean Observatory Initiative (OOI) requests containing more
than 17 million transfer records. Evaluations show promising re-
sults with 57% reduction of data transfers from the OOI repository
compared to the current solution.

In the future, we plan to test our cache framework against more
data sets from di�erent scienti�c facilities. One particular challenge
that we are eager to address is evaluating the placement model with
actual location data, which is currently challenging due to privacy
constraints. In the meantime, we are working on a �rst prototype

implementation that will eventually be deployed on the Virtual
Data Collaboratory network.
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