
Navigation Graph for Tiled Media Streaming
Jounsup Park

University of Illinois at Urbana-Champaign
Urbana, Illinois

jounsup@illinois.edu

Klara Nahrstedt
University of Illinois at Urbana-Champaign

Urbana, Illinois
klara@illinois.edu

ABSTRACT
After the emergence of video streaming services, more creative
and diverse multimedia content has become available, and now the
capability of streaming 360-degree videos will open a new era of
multimedia experiences. However, streaming these videos requires
larger bandwidth and less latency than what is found in conven-
tional video streaming systems. Rate adaptation of tiled videos and
view prediction techniques are used to solve this problem. In this
paper, we introduce the Navigation Graph, which models viewing
behaviors in the temporal (segments) and the spatial (tiles) domains
to perform the rate adaptation of tiled media associated with the
view prediction. The Navigation Graph allows clients to perform
view prediction more easily by sharing the viewing model in the
same way in which media description information is shared in
DASH. It is also useful for encoding the trajectory information in
the media description file, which could also allow for more efficient
navigation of 360-degree videos. This paper provides information
about the creation of the Navigation Graph and its uses. The per-
formance evaluation shows that the Navigation Graph based view
prediction and rate adaptation outperform other existing tiledmedia
streaming solutions. Navigation Graph is not limited to 360-degree
video streaming applications, but it can also be applied to other
tiled media streaming systems, such as volumetric media streaming
for augmented reality applications.

KEYWORDS
Tiled media streaming, View prediction, Rate adaptation

ACM Reference format:
Jounsup Park and Klara Nahrstedt. 2019. Navigation Graph for Tiled Media
Streaming. In Proceedings of Proceedings of the 27th ACM International Con-
ference on Multimedia, Nice, France, October 21–25, 2019 (MM ’19), 9 pages.
https://doi.org/10.1145/3343031.3351021

1 INTRODUCTION
Adaptive Bit-rate Streaming (ABS) has been used to control the
quality of videos available in Video on Demand (VoD) services.
Dynamic Adaptive Streaming over HTTP (DASH) [7] is one of
the most successful video adaptive streaming platforms. DASH
functions by generating multiple copies of the video segments

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MM ’19, October 21–25, 2019, Nice, France
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6889-6/19/10. . . $15.00
https://doi.org/10.1145/3343031.3351021

with different encoding qualities along with a Media Presentation
Description (MPD) file, which describes the videos information.
DASH clearly distinguishes the role of the server and the clients.
The server stores the video data as segments with multiple quality
choices and uses the media presentation description file to provide
video information to the clients. As the clients request the video
data, the server provides them with information from the MPD
file. The clients can then also request the video segments with
the proper quality to allow for continuous play. Since the video
segments are already encoded with a certain video encoder, the
server can send the segments as soon as requests are received. The
clients are responsible for rate adaptation. This allows the video to
be viewed on various types of devices without changing the video
server. Moreover, it is a Contents Delivery Network (CDN) friendly
platform, which allows clients to fetch the video segments either
from the server or from the cache, depending in which is closer to
the clients. CDN can lower the network congestion and the latency
by storing frequently viewed video segments in the cache.

360-degree videos have the potential to be the next major mul-
timedia format because they can be used for Virtual Reality (VR)
applications. However, in order to provide users with their desired
level of Quality of Experience (QoE), they need a much larger data
rate than VoD services currently provide. To show a similar num-
ber of pixels in the Field of View (FoV) or viewport (the video
area that viewers actually view), 360-degree videos need 4 times
higher resolution than conventional videos. Initially, 360-degree
video streaming services streamed the whole video to the view-
ers and the viewers extracted the viewports from the video they
wanted. This required a much larger bandwidth than conventional
videos. Regional quality control of videos based on the feedback
information from the client’s viewport helps to lower the required
bandwidth and makes the quality of the viewport better. Spatial Re-
lationship Descriptor (SRD) [7] is introduced to support tile-based
videos, such as multi-view point videos or omnidirectional videos
[5][13]. A large video can be divided into smaller tiles that can be
encoded independently using legacy video encoders, such as HEVC
[8]. Different algorithms are introduced to improve the viewport
quality by assigning more bits to the tiles in the viewport and fewer
bits to non-visible tiles. Utility maximized rate control algorithms
are introduced for the rate selection of tiles in unicast [13] and mul-
ticast [12] systems, where the utility means the expected quality of
the viewport.

In addition to requiring a larger bandwidth, 360-degree video
streaming systems require interaction between the server and the
clients since clients’ current viewport information must be reported
to the server. However, there is a latency between the server and
the clients that does not allow the viewport feedback information to
be directly applied to regional quality control. Therefore, regional
quality control needs to consider the clients’ future viewport, which

https://doi.org/10.1145/3343031.3351021
https://doi.org/10.1145/3343031.3351021

makes viewport prediction necessary for 360-degree video stream-
ing systems. Viewport prediction can rely on historical viewport
data [2][6][19][20] or video content-analysis result [21].

In this paper, we introduce the Navigation Graph concept, which
captures viewing behaviors and helps perform rate adaptation based
on view predictions. The Navigation Graph is a graph that consists
of Vertices (set of tiles in a segment) and Edges (transition probabil-
ities between vertices). We introduce how the Navigation Graph is
generated and a probability model of the view transitions is built,
how we deploy the Navigation Graph to perform a view prediction,
and finally how tiled media rate adaptation is executed.

This paper is organized as follows: Section 2 covers the back-
ground and related work. Section 3 describes the Navigation Graph.
Section 4 presents our view prediction algorithm and rate adapta-
tion algorithm using the Navigation Graph. Section 5 presents our
experimental results, and Section 6 concludes the paper.

2 BACKGROUND AND RELATED WORK
2.1 360-degree video streaming systems
360-degree videos are created by stitching together multiple videos
taken by multiple outward looking cameras that capture the whole
surrounding sphere. The sphere is then projected into the 2D plane
to make the 360-degree video easier to process and store. This also
makes it easy to use a conventional video encoder to compress
the video. Most 360-degree videos are stored in the server in a
rectangular shape.

DASH [7] is a popular video streaming platform that chooses
the bit-rate of the video according to network conditions. DASH
encodes the video into 1 to 15 seconds long segments, where each
segment consists of a sequence of video frames. Usually, 360-degree
videos have very high resolution in comparison to conventional
videos. Therefore, the original videos are cut into smaller videos,
called tiles, and encoded independently with different qualities
(representations). The encoded and stored video data are called seg-
ments, and they are delivered to clients upon request. The bit-rate
can change after each segment. SRD is also introduced to support
tiled video streaming. SRD includes the tile information which is
used to recover the viewport, for the client, i.e., each client watches
only a certain region of each video frame. The encoder information,
segment duration, SRD, and other necessary information are stored
as a Media Description Presentation (MPD), and clients can request
video segments based on the information in the MPD file using
HTTP get requests. Since the adaptation heuristic is not specified
in the MPD, clients can perform their own adaptation heuristics in
order to watch a video with the best quality. Clients then have play-
back buffers to store video segments, which will prevent stalling
under poor network conditions. The buffer status and measured
network throughput are used in the adaptation heuristics [9].

2.2 Rate Adaptation for Tiled Media
The simplest way to stream a 360-degree video would be to stream
the whole 360-degree viewing area as a single video stream. How-
ever, it takes too much bandwidth and it is not efficient since clients
actually view only a small portion of the whole 360-degree viewing
area. There are many studies that use tiled media rate adaptation to
try to transmit better tiles to the viewport and decrease the video

quality of non-visible tiles. BAS360 [18] performs spatial and tem-
poral rate adaptation. It generates multiple streaming units, which
consist of tiles of consecutive segments and selects the streaming
units with the lowest bandwidth waste rate to be transmitted to
clients. This method actually helps to optimize the spatial and tem-
poral variation in the video quality, where as most previous tiled
media streaming algorithms have only optimized the spatial quality.

A cross-user learning based system (CLS) [20] gathers the users’
fixation data on the server and gives more weight to the tiles with
more fixations. It can also utilize prior viewers’ fixation data to
optimize the weighting coefficients. It also performs the clustering
of the fixations to classify clients and chooses the weighting coeffi-
cients that should be used for each client. Sun et al. [15] propose a
multi-tier streaming system generating two separate streams that
deliver a base view and an enhanced view. It utilizes Scalable Video
Coding (SVC) [16] to enhance viewport quality by opportunistically
receiving enhanced layers.

Client-side playback buffer plays an important role preventing
stall events that can happen because of sudden drop of network
throughput [9]. Almquist et al. [1] examine the effects of prefetch-
ing of future video segments. Window-based adaptation (WBA)
[11] uses tile-based rate adaptation including spatial and temporal
rate selection, which can maximize expected utility in a window.
"Window" denotes the tiles and the segments that will be played
in the near future; these tiles and segments have a high impact on
clients’ viewport quality. WBA receives new chunks and updates
existing chunks within a window to maximize the utility which is
indicative of the expected quality of the viewport.

2.3 Viewport Prediction
A viewport prediction is critical for lowering the required band-
width because prediction error leads to waste bandwidth. Because
of the inevitable latency of the network, clients will receive video
segments a few milliseconds after they requested them. Therefore,
predicting the viewport becomes more difficult as the latency of the
network increases. A linear regression using a client’s past view-
port data is used to predict future viewports assuming their head
movement will continue follow similar patterns. A linear regres-
sion with a Gaussian prediction error [19] shows better prediction
performance than the prediction found using only a linear regres-
sion. Sun et al. [15] propose a viewport prediction algorithm using
recent samples that monotonically increase or decrease. Prediction
errors occur whenever the user turns his/her head in the opposite
direction.

While the viewport predictions rely solely on viewport data
from the viewer him/herself, a cross-user viewport prediction [20]
could further improve the prediction accuracy since the viewport
trajectory of multiple viewers could be correlated. The viewing
behavior is correlated with the video content, and it may help
predict future viewports. For example, if the video is recorded by
someone riding a roller coaster, the viewer may concentrate more
on the vanishing point in the direction the roller coaster is heading.
Therefore, we can find viewing patterns not only from prior viewers’
viewport data but also from video analysis.

Then deep reinforcement learning can be used to predict head
movements [21]: however, video analysis technology requires high

Figure 1: Segments, Tiles, Viewports and Views

computing power on the client’s side, which is often not possible.
Recently, videos are most frequently viewed on mobile devices that
have limited battery and computing power. Recent mobile devices
are becoming more powerful and can perform more complicated
processing, but still the complicated processing required for view-
port prediction can cause additional delays for future frame requests.
In this paper, we introduce the Navigation Graph concept and show
that it is useful for both single-user view prediction and cross-user
view prediction. Moreover, the Navigation Graph can be used to
encode important trajectories in videos using a powerful computer
on the video server side and can then share this information with
clients.

3 NAVIGATION GRAPH
DASH defines video segments that contain encoded video data. The
duration D of the segments is the basic unit of rate adaptation and
is usually between 1 to 15 seconds long. SRD is used to describe
the spatial relationships between tiles for regional quality control
based on viewers’ viewports. Figure 1 shows the segments, tiles,
viewports and views. The tiles cut the video into smaller spatial
regions, and then, the viewport can span multiple tiles within a
video frame. A video segment consists of multiple consecutive
frames, and viewport can change every frame. We define a "view" as
the union of all visible tiles within a segment duration D. Viewport
usually means the visible part of the video, but the view is defined as
a set of tiles in specific segment that is used for recovering viewports
in the video segment. Since the viewers move continuously, the
viewport can change within the duration of a segment. For example,
a video segment l = 1 starts at the time τ = τ0+D, and the viewport
spans tiles (2, 3), but the viewport changes to a different region of
the video that spans the tiles (3, 4) at the end of the segment l = 1.
Therefore, a set of tiles s1 = (2, 3, 4) is required for a segment l = 1
to recover the viewports from the tiles across the whole segment
l = 1. S describes a set of all possible combinations of tiles and s is
one of the elements. We define the view v as a tuple consisting of a
segment index l and a set of visible tiles s, where s is the union of all
visible tiles in the duration of a segment l . The temporal variation of
the view must be considered to perform the future view prediction
and manage the playback buffer. Therefore, a model that describes
the relationship between the views in series of segments is required.
We introduce the Navigation Graph G, which is a directed graph

Figure 2: System Overview

describing view transitions.

G = (V,E). (1)

The vertices are defined as

V = {v|v = (l , s), l ∈ {1, 2, ...,L} and s ∈ S} , (2)

where l is a segment index, L is the number of segments in a video
and S is the set of s configuring the views that clients have seen
at least once. E is a set of edges connecting the vertices, where at
least one transition happens.

E =
{
(vi , vj)|vi, j ∈ V,w(vi , vj) = p(vj |vi), i, j ∈ 1, ...,N

}
, (3)

wherew(vi , vj) is a weight function. We also define the matrix Ê
which consists of the transition probabilities from one vertex to
other vertices connected by edges in E,

Ê = RN×N =


p(v1 |v1) p(v1 |v2) · · · p(v1 |vN)

p(v2 |v1) p(v2 |v2) · · · p(v2 |vN)

...
...

. . .
...

p(vN |v1) p(vN |v2) · · · p(vN |vN)


(4)

where N is the number of vertices. The maximum number of ver-
tices is 2T × L, where the T is the number of tiles and L denotes
the number of segments. However, N counts only the vertices that
have been visited at least once. The Navigation Graph is expended
whenever it encounters a new view. For example, if only one viewer
has watched the video one time, there will be L vertices in the Nav-
igation Graph, because single viewer will watch only one view
per segment. However, as more viewers watch the same video, the
Navigation Graph will expend and the number of vertices N will
range between L and C × L depending on how various the viewing
patterns of clients are, where C is the number of clients.

We believe that the Navigation Graph concept has a great poten-
tial to be used by many different applications, but, in this paper, we
focus specifically on building a view transition model that is useful
for view prediction with the Navigation Graph.

3.1 View Transition Model
The Navigation Graph can build a view transition model both on
the client side and the server side. Since clients give their view
information to the server through the feedback channel, the video
server can use clients’ view information to update the Navigation
Graph. The Navigation Graph concept helps to share the view

information with a video server and other clients. Clients only
require to feedback segment index and T bits binary number to
share the view information. Another way to indicate the viewport
is using a quaternion [17] consisting of four floating numbers and
a time stamp, but with this method, it is not clear how often the
clients should report their viewport and which specific tiles are
required to render the viewport. This could be a source of prediction
error, because the viewport can change within the duration of a
segment, which can last from 1 sec to 15 sec.

Clients can build their own Navigation Graph by using their own
view information. Figure 2 shows that the video server owns the
global Navigation Graph, which is gathering all of the clients’ view
information for any particular video. Each client also has a Naviga-
tion Graph generated from their own view information. Therefore,
the client’s Navigation Graph learns the client’s distinctive viewing
patterns and the Navigation Graph on the server learns the viewing
patterns of all of the clients watching the same video.

3.1.1 Navigation Graph on Video Server. The video server can
generate a view transition model by collecting multiple viewers’
viewport feedback information. When a 360-degree video is newly
made and has never been seen by anyone, there are no vertices
or edge in G. As people start to request the video, the server also
starts to generate a Navigation Graph. All viewers who watch the
video contribute to updating the Navigation Graph, therefore a
new viewer can take advantages of past viewers’ data. The server
compares the current view vc received from the client with the
vertices in a set V. If the same vertex exists in V that is the same
as vc , then the server only updates the edges E and the transition
matrix Ê which describes the transition probabilities. Otherwise,
the Navigation Graph increases N by 1 and adds the vertex vc into
V as a vN , and updates the edges E and the transition matrix Ê. The
transition probability in Ê is updated as

p(vc |vp) =
number of clients moving their view from vp to vc

number of clients visiting vp
.

(5)
where the vp is a prior vertex that the client had visited before she
moved to the current vertex vc . Since there are no prior views at
the beginning of the video, E has elements only after the first view
transition happens. Vertices V and Edges E are updated every time
the server receives the view information from the clients. Figure 3
shows a Navigation Graph made by three clients’ view data. The
three clients visited a vertex v1, therefore, the denominator of
p(v2 |v1) and p(v3 |v1) is 3. Client 1 stays in the same set of visible
tiles while the other two clients switch their sets of visible tiles in
segment l − 1, and that is why the numerator of p(v2 |v1) is 1 and
the numerator of p(v3 |v1) is 2. Edges and transition probabilities
connecting vertices v2, v3, v4 and v5 are also generated in the same
manner. The Navigation Graph is stored in the server along with
the MPD files, and part of the Navigation Graph is transmitted
to clients upon their request to help them to predict future views
and ultimately to allow for the best rate of tile. Cross-user view
prediction is performed on the client’s end by receiving the part of
the Navigation Graph from the server (transition probabilities from
the current segment l to the future segments l +K that the client is
trying to predict). Clients only need to report one segment index
and a T bits binary number to indicate which tiles are required to

Figure 3: Navigation Graph in Video Server for Cross-User
View Prediction

render the viewports in the segment. In an extreme case, a single
vertex may consist of all the tiles in a segment if the client is looking
around the whole area of the 360-degree video within the duration
of a segment. Therefore, reporting the current view as a vertex
vc including all the tiles that are needed to generate the client’s
viewports over the duration of a segment simplifies the feedback
process.

3.1.2 Navigation Graph on Clients. The simplified Navigation
Graph in the client’s end is used for single-user view prediction
(SU). The simplified Navigation Graph for clients is defined as

Gc = (S,Ec), (6)

where the set S consists of sets of visible tiles s that are defined in
the previous section (Figure 1). All vertices sm ∈ S,m = 1, ...,M
are the vertices that a client has visited at least once. Ec consists
of edges connecting all vertices in S and the transition probability
matrix is defined as

Êc = RM×M =


p(s1 |s1) p(s1 |s2) · · · p(s1 |sM)

p(s2 |s1) p(s2 |s2) · · · p(s2 |sM)

...
...

. . .
...

p(sM |s1) p(sM |s2) · · · p(sM |sM)


(7)

whereM is the number of vertices. If the client is staying at the same
viewing position during the whole video,M = 1, since the client will
watch only one set of tiles. However,M can be at most L (number
of segments) if the client moves her head every segment to different
set of tiles across all segments of the video. The difference between
the original Navigation Graph G and the simplified version Gc is
the configuration of the vertices. The vertices for the simplified
Navigation Graph consist of the set of tiles S and do not include
a segment index. Êc elements present the transition probabilities
p(sc |sp) from vertices sp to vertices sc , where

p(sc |sp) =
number of transitions from sp to sc

number of times visiting the set of visible tiles sp
.

(8)

Figure 4: Navigation Graph in Clients for Single-User View
Prediction

Figure 4 shows how the Navigation Graph is constructed by four
consecutive video segments that a client has seen. When the video
starts at l − 3, the Navigation Graph only has one vertex that con-
sists of visible tiles s1. The client changes her head position in
segment l − 2 and requires a different set of tiles s2. Since there is
no corresponding vertex s2 in S, s2 is newly added into S, and an
edge is created to connect s1 and s2. The transition probabilities are
updated by (8).

This information is helpful to understand how the client behaves
in a certain head position. If a viewer tilts his/her head in order to
look upward, he/she may soon become uncomfortable and change
the position of his/her head. In this case, the head movement and
change in the view is not related to the video content, but due
to the head position itself. In contrast, if the viewer is looking
forward, which is a more comfortable head position, then he/she
will probably stay in the position longer. This may differ between
clients; therefore, clients have her own Navigation Graph to capture
the characteristics of the viewers. We provide detailed information
about how a transition matrix is used for view prediction for future
segments in the next section.

3.2 Trajectory Encoding
The view transition correlates with object trajectories in videos
since the viewers tend to look at the more interesting parts of a
video. An experiment in [20] shows that some tiles are more popu-
lar because they contain more interesting parts of the videos, which
could be objects, salient parts, or vanishing points. To find these
points, machine learning technologies are used with very powerful
computing hardware, which is not usually found on mobile devices.
The videos are stored on the server, and servers usually have bet-
ter computing power than the mobile devices. Therefore, we can
assume that the server can perform video analysis after it gets new
video content and can encode the important paths on the Naviga-
tion Graph, so that clients receive this information immediately
after they request a video segment. It helps clients to predict fu-
ture views more efficiently without performing complicated video
analysis.

Moreover, non-video content can also lead to head movement.
For example, audio guidance can cause a viewer to move according
to the instruction they hear, which cannot be captured by video
contents analysis. Since there are scene changes in the videos, view-
ers can easily lose direction in the 360-degree video. Therefore, the

video creator can encode a preferred trajectory in the Navigation
Graph to allow the viewer to easily find the place they should be
looking when the scene changes.

There are many different video analysis techniques that could
affect the view prediction results in many different ways. Therefore,
we focus on building view transition models using the Navigation
Graph in this paper, and we will discuss the view prediction based
on the trajectory encoding in future research.

4 VIEW PREDICTION AND RATE
ADAPTATIONWITH NAVIGATION GRAPH

The Navigation Graph based view transition model is useful for
modeling viewer’s spatial and temporal behavior to help predict
future views. Prediction results directly affect the rate adaptation
of tiled media. We first discuss view prediction methods using the
Navigation Graph concept. Second, a utility maximized rate adap-
tation algorithm is provided, which uses future view information,
estimated throughput, and current buffer status.

4.1 View Prediction Methods
We introduce two ways to predict future views based on the Nav-
igation Graph, which are Single-user view prediction (SU) and
Cross-user view prediction (CU).

4.1.1 Single-user View Prediction (SU). Without the help of the
server, clients can perform the prediction themselves using past
view transition data encoded as a Navigation Graph Gc . It is im-
portant to understand the viewing behavior of a viewer to predict
future views. Some viewers prefer to watch videos without much
movement, but some viewers prefer to move their head frequently.
A viewer’s viewing pattern also depends on their current viewing
direction. The Navigation Graph Gc has a recorded history of view
transitions; therefore, it can give probabilistic information about
future views based on past viewing behavior.

The probability that a viewer will change her head position from
the current set of visible tiles sc to another set of visible tiles sm
for 1 ≤ m ≤ M is the column vector of the Êc , which is defined as
a vector d1 = R1×M whose elements are p(sm |sc), for 1 ≤ m ≤ M .
For example, Êc is updated after the video started, and the viewer
is currently (segment l) at the vertex s1. The first column of Êc is
d1, which describes the probabilities that the viewer will have a set
of tiles sm ,m = 1, ...,M , in segment l + 1. We are also interested
in the future views in segments far from the current segment. To
predict a set of visible tiles in segment l + 2, we can perform a
matrix multiplication Êc × d1 to get d2. In general, we can define a
kth future transition probability as

dk = Ê(k−1)c d1. (9)

Since the vertices sm consist of many tiles, the probability pt,k
of needing a specific tile t in future segment k is given as

pt,k =
∑

∀m,t ∈sm

dmk (10)

where the t is the index of tile and dmk indicates themth element
of vector dk . We can generate a prediction matrix Ps = RT×K that

Figure 5: View Prediction and Rate Selection

has elements pt,k using the SU, where K is the index of the farthest
future segment we want to predict the view.

4.1.2 Cross-user View Prediction (CU). The Navigation Graph
in the media server is updated by all prior viewers’ view transitions.
Information about previous viewers’ view transitions is helpful
for understanding how other viewers change their view in the
same segment. The Navigation Graph provides the statistics for
how many times other viewers move from the current view to the
subsequent views. Since not all viewers behave in the same way,
the Navigation Graph gives the probabilistic clues of the next view
to the viewers. The probability that a viewer will change her view
from the current view vc to the next view vn is the column vector
of Ê, which is defined as b1 = R1×N , whose elements are p(vn |vc),
for 1 ≤ n ≤ N . We can also define a kth transition vector bk , which
represents the transition probabilities from the current vertex to
the vertices in the future segment l + k ; the k = 1, ...,K transition
happens after the current segment l as follows:

bk = Ê(k−1)b1. (11)

However, the current vertex could be a newly generated vertex if
previous viewers have never seen the set of tiles in the segment,
which means that there would be no outgoing connection to the
vertex, so we could not get any information about the next view
from the vertex. We can alternatively find the transition probability
using the closest vertex in V from the current vertex. The closest
vertex can be found by counting the number of common tiles that
has the same segment index with the current vertex.

Since the vertices consist of many tiles, the probability of needing
a specific tile t is given as

pt,k =
∑

∀n,t ∈vn
bnk (12)

Again, we can get a prediction matrix Pc = RT×K that has elements
pt,k .

4.1.3 View Prediction Method Selection. Both methods (SU and
CU) can contribute to the view prediction. However, the prediction
accuracy of the two methods differs in different situations. We mea-
sure the prediction accuracy of segment l +k−1 for SU and CU, and
decide which prediction method should be used for the prediction
of the segment l + k . We run both methods every prediction cycle
to evaluate which method work better and use only one prediction
method at a time (SU or CU). The reason we switch between the
two methods without doing a weighted sum is that the prediction
method with lower precision could introduce a prediction error. The
idea behind switching between the two methods is that the view
prediction should be done based on the user’s current behavior. If

the user’s current behavior is related to the video content, the CU
will work better. However, if the user is not interested in the video
content, SU will work better.

4.2 Utility Maximized Rate Selection
View Prediction results are given to the rate selection algorithm
along with estimated throughput and current buffer status. In this
section, we present an algorithm for utility maximization, where the
utility is defined as the expected view quality for next k segments.
The utility maximization problem is described as

maxU (q) =
∑
∀t,k

u
(
qt,k

)
pt,k (13)

subject to
R(q) =

∑
∀t,k

r
(
qt,k

)
≤ R, (14)

where qt,k ∈ {1, . . . ,Q} are the selected quality representations of
tile t for kth future segment, Q is the number of different copies of
same tile with different encoding parameters, u(qt,k) is the utility
that we can achieve by allocating theqt,k , and r (qt,k) is the datarate
that is required to receive the quality representation qt,k . We can
instead solve the easier problem of maximizing the Lagrangian as
follows:

U (q) − λR (q) =
∑
∀t,k

[
u
(
qt,k

)
pt,k − λr

(
qt,k

)]
(15)

for some λ > 0. Moreover,
maxq[U (q) − λR (q)]

=maxq
∑
∀t,k

[
u
(
qt,k

)
pt,k − λr

(
qt,k

)]
=

∑
∀t,k

maxq
[
u
(
qt,k

)
pt,k − λr

(
qt,k

)]
,

(16)

so the maximization problem can be solved independently for each
element for all k and t . For each λ, the solution is given as [11]

qt,k = argmaxqt,k
u(qt,k)pt,k
r (qt,k)

, (17)

which means that the clients should request video data chunks qt,k
quality that have the largest u(qt,k)pt,kr (qt,k)

value first. We used the log
of the assigned rate as a utility u(qt,k) = log r (qt,k) in this paper.

5 PERFORMANCE EVALUATION
5.1 Video Data Set and Network Traces
Nine 360-degree videos along with 48 users’ view traces [4] are used
for the performance evaluation. The videos are divided into tiles,
and the tiles are encoded with five different quantization parameter
(QP) values (22, 27, 32, 37, and 42) using ffmpeg [3]. Clients perform
the SU without help from the server, and the CU with the help of
the Navigation Graph on the server. Switching between SU and CU
(SU+CU) scheme is also tested to see how the two schemes help each
other to improve the view prediction performance. In this paper,
we consider two different network conditions. The first condition is
a stable network condition in which the mean packet arrival rate is
constant. If the client is connected to the Internet through a wired

network and there are only a few users, the network throughput
may be very stable. The second condition is a variable network in
which the mean packet arrival rate changes frequently. If the client
is connected to the Internet through a wireless network and there
are many users within a small area competing for the same wireless
network resources, the network throughput may be very unstable.
A real HSDPA network trace [14] is used in this condition.

5.2 View Prediction
We first measure the performance of view prediction methods (SU,
CU, and SU+CU) without considering the bandwidth variation. SU
starts to predict future view from second segment, since there is no
prior data to build the Navigation Graph in the first video segment.
The Navigation Graph is very sparse at that point, but it gets larger
and more accurate as more the viewing data are gathered. CU
requires other viewers data, therefore, 43 users’ view traces are
used to train the Navigation Graph on the server, and the remaining
5 users’ view traces are used to perform view predictions.

The prediction precision and the prediction error are measured.
First, the precision for kth future view prediction is measured as

T∑
t=1

min
{
pt,k ,дt,k

}
(18)

where дt,k is a normalized ground truth that indicates the visible
tiles as 1/(number of visible tiles) and non-visible tiles as 0, and
pt,k is a prediction probability value for tile t in the kth future
view. Figure 6a shows the mean precision of view prediction re-
sult for k segments, k = 1, ..., 5. SU+CU outperforms the other
schemes because it can opportunistically choose the better pre-
diction scheme. Since the uncertainty of the prediction makes the
precision worse, which means that it has higher chance of request-
ing non-visible tiles, the entropy value (level of uncertainty) is used
to select the scheme that will be used for future k segments when
there is no prior knowledge about precision performance. However,
after performing the first predictions, clients can get a precision
value (accuracy of the prediction) for SU and CU, and the client can
switch the prediction schemes between SU and CU. SU performs
very well for predicting the near future (k = 1), but its predictive
capabilities decline faster than CU with larger k because it relies
on the Markov property, which means that only the current status
is considered in the prediction of future views. CU shows better
prediction performance for k = 2, ..., 5 future views because the
Navigation Graph on the server provides the viewing history of
the previous clients. The prediction precision of SU+CU is better
than SU or CU. Second, the prediction errors are also measured
(Figure 6b) to see whether the necessary tiles are requested on time.
The prediction error is defined as the average of the number of tiles
that has pt,k = 0 but дt,k > 0 over the total number of tiles needed
to render the view. Therefore, it represents the percentage of visible
blank areas in the view. The prediction errors under each condi-
tion are less than 6%. Our system tends to have lower prediction
error for distant future prediction because the higher uncertainty
of distant future prediction causes the Navigation Graph to request
more redundant tiles.

The prediction precision of the proposed Navigation Graph based
scheme (SU+CU) scheme is comparedwith existing solutions, which

1 2 3 4 5

k

0.5

0.6

0.7

0.8

0.9

P
re

c
is

io
n

SU

CU

SU+CU

(a) Average Precision

1 2 3 4 5

k

0

0.02

0.04

0.06

0.08

0.1

P
re

d
ic

ti
o

n
 E

rr
o

r

SU

CU

SU+CU

(b) Average Prediction Error

Figure 6: View Prediction with the Navigation Graph

0 0.2 0.4 0.6 0.8 1

Predict Precision

0

0.2

0.4

0.6

0.8

1

C
D

F

LR

LR-G

CLS-1

CLS-2

SU+CU

(a) View Prediction of 1 sec after
current segment

0 0.2 0.4 0.6 0.8 1

Predict Precision

0

0.2

0.4

0.6

0.8

1

C
D

F

LR

LR-G

CLS-1

CLS-2

SU+CU

(b) View Prediction of 5 sec after
current segment

Figure 7: CDFs of View Prediction Precision

are Linear Regression (LR), Linear Regression with Gaussian dis-
tributed error (LR-G) [19], CLS-1, and CLS-2 [20]. For fair compar-
ison with existing schemes, we test the proposed algorithm with
same three videos and the same tile configuration (12×6) used in
[20]. Figure 7 shows that the proposed Navigation Graph based pre-
diction has better precision results than CLS-2, which is a state-of-
the-art method. LR works well for 1 second future view prediction,
but the Navigation Graph based prediction has better precision than
LR. The view prediction for 5 seconds in the future with LR does not
work very well because the viewer usually does not keep the same
viewing pattern for 5 seconds. The Navigation Graph again shows
the best precision performance in predicting the view for 5 seconds
in the future. The Navigation Graph based prediction outperforms
for near future prediction and distant future prediction.

5.3 Rate Selection
Good view prediction leads to the allocation of better video tiles to
the view, and higher prediction error leads to a higher chance of
seeing a blank area. However, the WBA [11][10] allows updates to
existing tiles if this improves the expected view quality more than
receiving new tiles. Therefore, prediction error or precision cannot
fully describe the view quality. Rate selection algorithms choose
the tiles’ representations based on the view prediction result, the
estimated network throughput, and the buffer status. We measure
the average viewport PSNR (V-PSNR) and the effective rate (eRate)
to see how the view prediction result and the tile configurations
affect the actual user experience. V-PSNR [22] is measured by com-
paring pixels in the original video used to render the viewport and
the pixels in the transmitted tiles used to render the viewport. eRate
measures the datarate that is actually used to render the viewport.
Figure 8 show the V-PSNR and the eRate for three stable network

MONO LR LR-G SU CU SU+CU

25

30

35

40

45

V
-P

S
N

R
 (

d
B

)

4x4

6x6

12x6

(a) V-PSNR (BW=2Mbps)

MONO LR LR-G SU CU SU+CU
0

0.5

1

1.5

2

2.5

3

e
R

a
te

 (
M

b
p

s
)

4x4

6x6

12x6

(b) Effective Rate (BW=2Mbps)

MONO LR LR-G SU CU SU+CU

25

30

35

40

45

V
-P

S
N

R
 (

d
B

)

4x4

6x6

12x6

(c) V-PSNR (BW=3Mbps)

MONO LR LR-G SU CU SU+CU
0

0.5

1

1.5

2

2.5

3
e

R
a

te
 (

M
b

p
s
)

4x4

6x6

12x6

(d) Effective Rate (BW=3Mbps)

MONO LR LR-G SU CU SU+CU

25

30

35

40

45

V
-P

S
N

R
 (

d
B

)

4x4

6x6

12x6

(e) V-PSNR (BW=4Mbps)

MONO LR LR-G SU CU SU+CU
0

0.5

1

1.5

2

2.5

3

e
R

a
te

 (
M

b
p

s
)

4x4

6x6

12x6

(f) Effective Rate (BW=4Mbps)

Figure 8: V-PSNR and eRate in Stable Network Conditions
with Different Tile Configurations

conditions (2Mbps, 3Mbps, and 4Mbps) and a variable network con-
dition. We test three different tile configurations (4×4, 6×6, and
12×6). With smaller tiles (12×6), we can achieve better V-PSNR
and eRate, because we can remove more redundant areas and as-
sign better representations for the visible part of the video. We can
see that the Navigation Graph based prediction schemes (SU, CU,
and SU+CU) outperform MONO, Linear Regression (LR) or Linear
Regression with Gaussian distributed error (LR-G). MONO does
not predict the view: therefore, it assumes all tiles have the same
probability of being seen in the future.

Figure 9 shows the V-PSNR and eRate for the three tile configu-
rations under six different view prediction schemes with realistic
variable network traces. The Navigation Graph based prediction
schemes (SU, CU and SU+CU) outperform the other schemes in
terms of V-PSNR and eRate because they have better view predic-
tion performance. SU+CU is the best, but SU also shows very similar
performance to SU+CU. This means that the view prediction of the
near future affects the real viewport quality more than the view of
prediction of the distant future since SU can predict segments in
the near future better than CU can.

The most computationally expensive part of the Navigation
Graph is searching for the vertex, which takes logM where M
is the number of vertices in the client-side Navigation Graph. The
number of vertices depends on the number of tiles and actual user
behavior. In our experiments, the actual number of vertices in the
Navigation Graph range between 4-34, 13-100, and 28-262 for 4×4,

MONO LR LR-G SU CU SU+CU

25

30

35

40

45

V
-P

S
N

R
 (

d
B

)

4x4

6x6

12x6

(a) V-PSNR

MONO LR LR-G SU CU SU+CU
0

0.5

1

1.5

2

2.5

3

e
R

a
te

 (
M

b
p
s
)

4x4

6x6

12x6

(b) Effective Rate

Figure 9: V-PSNR and eRate in Real Mobile Traces with Dif-
ferent Tile Configurations (Segment Duration = 1.0 sec)

MONO LR LR-G SU CU SU+CU

0

5

10

15

20

25

30

V
-P

S
N

R
 (

d
B

)

1.0 sec

1.5 sec

2.0 sec

(a) V-PSNR

MONO LR LR-G SU CU SU+CU
0

0.5

1

1.5

e
R

a
te

 (
M

b
p
s
)

1.0 sec

1.5 sec

2.0 sec

(b) Effective Rate

Figure 10: V-PSNR and eRate in Real Mobile Traces with Dif-
ferent Segment Durations (Tile Configuration = 6×6)

6×6 and 12×6 tile configurations respectively. Figure 10 shows the
V-PSNR and eRate with different segment durations (1.0 sec, 1.5
sec and 2.0 sec). We can see that a smaller segment duration helps
to deliver better video. Longer segments have a larger number of
required tiles, because clients have more opportunities to change
their viewport within a segment with the longer segment duration.
In other words, shorter segments help to track view changes more
precisely.

6 CONCLUSION
The Navigation Graph concept is introduced for tiled media stream-
ing systems. It helps to build a model of temporal and spatial view
transitions. It also supports encoding trajectories of objects or story
lines as a media descriptor. This paper presents the features of the
Navigation Graph and the detailed procedures for generating the
Navigation Graph. View prediction and rate adaptation algorithms
using the Navigation Graph are shown to improve the viewport
quality of the 360-degree video streaming systems. The evaluation
results show that the proposed Navigation Graph based view pre-
diction and rate adaptation algorithms outperform other existing
view prediction and tiled media rate adaptation schemes. The Navi-
gation Graph is not limited to 360-degree video streaming systems,
but it can be applied to any other tiled media, such as volumetric
media streaming systems.

ACKNOWLEDGMENTS
This work is supported by the Grainger College of Engineering,
Coordinated Science Laboratory and the Ralf and Catherine Fisher
Gift Funding. We would like to acknowledge Dr. Michael Zink and
Dr. Ramesh Sitaram from University of Massachusetts, Amherst for
their initial discussions about the concept of Navigation Graphs.

REFERENCES
[1] Mathias Almquist, Viktor Almquist, Vengatanathan Krishnamoorthi, Niklas Carls-

son, and Derek Eager. 2018. The Prefetch Aggressiveness Tradeoff in 360&Deg;
Video Streaming. In Proceedings of the 9th ACM Multimedia Systems Conference
(MMSys ’18). ACM, New York, NY, USA, 258–269. https://doi.org/10.1145/3204949.
3204970

[2] Y. Bao, H. Wu, T. Zhang, A. A. Ramli, and X. Liu. 2016. Shooting a moving
target: Motion-prediction-based transmission for 360-degree videos. In 2016 IEEE
International Conference on Big Data (Big Data). 1161–1170. https://doi.org/10.
1109/BigData.2016.7840720

[3] F. Bellard. https://www.ffmpeg.org. (FFmpeg https://www.ffmpeg.org).
[4] W. Chenglei, T. Zhihao, W. Zhi, and Y. Shiqiang. 2017. A Dataset for Exploring

User Behaviors in VR Spherical Video Streaming. In Proceedings of the 8th ACM on
Multimedia Systems Conference (MMSys’17). ACM, New York, NY, USA, 193–198.
https://doi.org/10.1145/3083187.3083210

[5] V. R. Gaddam, M. Riegler, R. Eg, C. Griwodz, and P. Halvorsen. 2016. Tiling in
Interactive Panoramic Video: Approaches and Evaluation. IEEE Transactions
on Multimedia 18, 9 (Sep. 2016), 1819–1831. https://doi.org/10.1109/TMM.2016.
2586304

[6] A. Ghosh, V. Aggarwal, and F. Qian. 2018. A Robust Algorithm for Tile-based 360-
degree Video Streaming with Uncertain FoV Estimation. CoRR abs/1812.00816
(2018). arXiv:1812.00816 http://arxiv.org/abs/1812.00816

[7] M. Hosseini and V. Swaminathan. 2016. Adaptive 360 VR Video Streaming Based
on MPEG-DASH SRD. In 2016 IEEE International Symposium on Multimedia (ISM).
407–408. https://doi.org/10.1109/ISM.2016.0093

[8] K. Misra, A. Segall, M. Horowitz, S. Xu, A. Fuldseth, and M. Zhou. 2013. An
Overview of Tiles in HEVC. IEEE Journal of Selected Topics in Signal Processing 7,
6 (Dec 2013), 969–977. https://doi.org/10.1109/JSTSP.2013.2271451

[9] J. Park. 2019. Video Streaming over the LWA Systems. In 2019 International
Conference on Computing, Networking and Communications (ICNC). 597–601.
https://doi.org/10.1109/ICCNC.2019.8685626

[10] J. Park, P. A. Chou, and J. Hwang. 2018. Volumetric Media Streaming for Aug-
mented Reality. In 2018 IEEE Global Communications Conference (GLOBECOM).
1–6. https://doi.org/10.1109/GLOCOM.2018.8647537

[11] J. Park, P. A. Chou, and J. Hwang. 2019. Rate-Utility Optimized Streaming of
Volumetric Media for Augmented Reality. IEEE Journal on Emerging and Selected
Topics in Circuits and Systems 9, 1 (March 2019), 149–162. https://doi.org/10.1109/
JETCAS.2019.2898622

[12] J. Park, J. Hwang, and H. Wei. 2018. Cross-Layer Optimization for VR Video
Multicast Systems. In 2018 IEEE Global Communications Conference (GLOBECOM).

206–212. https://doi.org/10.1109/GLOCOM.2018.8647389
[13] R. A. Patrice, M. Jean-Franois, and V. Nico. 2012. Interactive Omnidirectional

Video Delivery: A Bandwidth-Effective Approach. Bell Lab. Tech. J. 16, 4 (March
2012), 135–147. https://doi.org/10.1002/bltj.20538

[14] R.Haakon, E. Tore, V Paul, G. Carsten, and H. Paul. 2012. Video Streaming
Using a Location-based Bandwidth-lookup Service for Bitrate Planning. ACM
Trans. Multimedia Comput. Commun. Appl. 8, 3, Article 24 (Aug. 2012), 19 pages.
https://doi.org/10.1145/2240136.2240137

[15] L. Sun, F. Duanmu, Y. Liu, Y. Wang, Y. Ye, H. Shi, and D. Dai. 2019. A Two-Tier
System for On-Demand Streaming of 360 Degree Video Over Dynamic Networks.
IEEE Journal on Emerging and Selected Topics in Circuits and Systems 9, 1 (March
2019), 43–57. https://doi.org/10.1109/JETCAS.2019.2898877

[16] P. Wydrych, K. Rusek, and P. Cholda. 2013. Efficient Modelling of Traffic and
Quality of Scalable Video Coding (SVC) Encoded Streams. IEEE Communications
Letters 17, 12 (2013), 2372–2375. https://doi.org/10.1109/LCOMM.2013.110613.
132163

[17] C. Xavier, D. Francesca, and S. Gwendal. 2017. 360Degreee Video Head Move-
ment Dataset. In Proceedings of the 8th ACM on Multimedia Systems Conference
(MMSys’17). ACM, New York, NY, USA, 199–204. https://doi.org/10.1145/3083187.
3083215

[18] M. Xiao, C. Zhou, V. Swaminathan, Y. Liu, and S. Chen. 2018. BAS-360 : Exploring
Spatial and Temporal Adaptability in 360-degree Videos over HTTP/2. In IEEE
INFOCOM 2018 - IEEE Conference on Computer Communications. 953–961. https:
//doi.org/10.1109/INFOCOM.2018.8486390

[19] L. Xie, Z. Xu, Y. Ban, X. Zhang, and Z. Guo. 2017. 360ProbDASH: Improving
QoE of 360 Video Streaming Using Tile-based HTTP Adaptive Streaming. In
Proceedings of the 25th ACM International Conference on Multimedia (MM ’17).
ACM, New York, NY, USA, 315–323. https://doi.org/10.1145/3123266.3123291

[20] L. Xie, X. Zhang, and Z. Guo. 2018. CLS: A Cross-user Learning Based System
for Improving QoE in 360-degree Video Adaptive Streaming. In Proceedings of
the 26th ACM International Conference on Multimedia (MM ’18). ACM, New York,
NY, USA, 564–572. https://doi.org/10.1145/3240508.3240556

[21] M. Xu, Y. Song, J. Wang, M. Qiao, L. Huo, and Z. Wang. 2018. Predicting Head
Movement in Panoramic Video: A Deep Reinforcement Learning Approach. IEEE
Transactions on Pattern Analysis and Machine Intelligence (2018), 1–1. https:
//doi.org/10.1109/TPAMI.2018.2858783

[22] M. Yu, H. Lakshman, and B. Girod. 2015. A Framework to Evaluate Omnidirec-
tional Video Coding Schemes. In 2015 IEEE International Symposium on Mixed
and Augmented Reality. 31–36. https://doi.org/10.1109/ISMAR.2015.12

https://doi.org/10.1145/3204949.3204970
https://doi.org/10.1145/3204949.3204970
https://doi.org/10.1109/BigData.2016.7840720
https://doi.org/10.1109/BigData.2016.7840720
https://www.ffmpeg.org
https://www.ffmpeg.org
https://doi.org/10.1145/3083187.3083210
https://doi.org/10.1109/TMM.2016.2586304
https://doi.org/10.1109/TMM.2016.2586304
http://arxiv.org/abs/1812.00816
http://arxiv.org/abs/1812.00816
https://doi.org/10.1109/ISM.2016.0093
https://doi.org/10.1109/JSTSP.2013.2271451
https://doi.org/10.1109/ICCNC.2019.8685626
https://doi.org/10.1109/GLOCOM.2018.8647537
https://doi.org/10.1109/JETCAS.2019.2898622
https://doi.org/10.1109/JETCAS.2019.2898622
https://doi.org/10.1109/GLOCOM.2018.8647389
https://doi.org/10.1002/bltj.20538
https://doi.org/10.1145/2240136.2240137
https://doi.org/10.1109/JETCAS.2019.2898877
https://doi.org/10.1109/LCOMM.2013.110613.132163
https://doi.org/10.1109/LCOMM.2013.110613.132163
https://doi.org/10.1145/3083187.3083215
https://doi.org/10.1145/3083187.3083215
https://doi.org/10.1109/INFOCOM.2018.8486390
https://doi.org/10.1109/INFOCOM.2018.8486390
https://doi.org/10.1145/3123266.3123291
https://doi.org/10.1145/3240508.3240556
https://doi.org/10.1109/TPAMI.2018.2858783
https://doi.org/10.1109/TPAMI.2018.2858783
https://doi.org/10.1109/ISMAR.2015.12

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 360-degree video streaming systems
	2.2 Rate Adaptation for Tiled Media
	2.3 Viewport Prediction

	3 Navigation Graph
	3.1 View Transition Model
	3.2 Trajectory Encoding

	4 View Prediction and Rate Adaptation with Navigation Graph
	4.1 View Prediction Methods
	4.2 Utility Maximized Rate Selection

	5 Performance Evaluation
	5.1 Video Data Set and Network Traces
	5.2 View Prediction
	5.3 Rate Selection

	6 Conclusion
	Acknowledgments
	References

