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Abstract

While developed largely for higher density and lower power,
byte-addressable nonvolatile memory can also allow data
to persist across program runs and system crashes without
the need to flush to disk or flash. If data is to be recovered
after a crash, however, care must be taken to ensure that the
contents of memory are consistent at all times. This can be
challenging in multithreaded applications with write-back
caches. We present QSTM, a persistent word-based software
transactional memory (STM) system to address this problem.
Unlike past such systems, QSTM is nonblocking and does
not require either the modification of target data structures
or the use of a wide CAS instruction.
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1 Introduction and Overview

The past 16 years have seen the development of dozens of
software transactional memory (STM) systems—far too many
to cite here. Most have been lock-based or otherwise block-
ing. Perhaps a dozen have been nonblocking; of these, most
but not all have tracked conflicts at object granularity—they
have been object-based rather than word-based.

The past 8 years have seen the development of several
persistent STM systems, whose transactions are not just iso-
lated and consistent, but also atomic and durable in the
face of whole-system crashes. Only one of these systems—
OneFile [4]—is nonblocking, and it has some serious limita-
tions: it allocates a full word of metadata next to every word
of “real” data, complicating data declarations, imposing 2x
space overhead, and necessitating the use of a wide CAS
instruction.
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Our QSTM system is also word-based and persistent, but
avoids the metadata-related limitations. It draws partial in-
spiration from the (transient) RingSTM system [5] but with a
REDO log based on the persistent lock-free queue of Friedman
etal. [2]. Eachentry in QSTM’s log represents a transaction,
with a unique timestamp, a status (not_writing, writing,
or complete), a Bloom filter of the locations written, and
a pointer to a detailed write set. Each ongoing transaction
maintains both read and write filters, but only the write fil-
ter is written into the queue entry. Transactions validate by
checking for intersections between their read filter and the
write filters of all transactions that have committed since
the validating transaction started. If such an intersection
exists then the transaction must abort. The validation step
is performed during each transactional read operation and
is repeated one more time before attempting to commit.

A thread commits by persisting a queue entry and then
durably enqueueing it. Queue entries are kept until their
respective writes have been performed and persisted, and
then the entry can be freed or reused. Note that if an en-
try is removed before an ongoing transaction has a chance
to validate against it then the transaction must abort. In
our implementation ongoing transactions reserve entries by
timestamp. To prevent a slow or stopped transaction from
reserving too many entries these reservations can safely be
ignored when the queue grows too large.

To allow any thread to perform the writes and flushes
of any committed transaction, each queue entry contains a
pointer to the corresponding write set. Since values can be
read directly out of these write sets, other threads do not
need to wait for write-back completion to make progress.

If we allowed multiple threads to concurrently perform
writeback, then any writes occurring after the first thread
has finished could cause an inconsistent state to be visible to
the other threads (that is, an earlier write might undo a later
write from the same transaction while the record is already
marked as complete). We solve this problem by locking a
queue entry before performing the writes, and by performing
write-back serially in order of commit time. The state field
in each queue entry is used to indicate the progress of the
write-back and as a lock.
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If a thread stalls while holding a lock for write-back, the
queue will begin to grow longer with each commit but ap-
plication progress will not be prevented. Additional trans-
actions can continue to commit indefinitely. In practice this
could result in unbounded memory usage, but nonetheless
provides nonblocking progress (assuming enough memory is
available). The memory usage problem can be solved by any
mechanism that supports bounded-time completion of the
write-back since the problem occurs only if a thread stalls
while performing write-back.

In addition to the usual head and tail queue pointers,
QSTM maintains a complete pointer that refers to the most
recent queue entry that is known to be marked complete;
this pointer is used during validation traversals.

After a crash, it is necessary only to recover the head
pointer and any entries that can be reached from it (in addi-
tion to any persistent memory used by the application, but
this is application-specific). All other memory formerly used
by QSTM can be reclaimed. The writes in recovered entries
must be performed and persisted and the queue reinitialized
to contain a single dummy entry for execution to resume.

2 Performance and Usability

We compare the performance of QSTM to that of OneFile [4]
using a hash map microbenchmark included with OneFile but
with some modifications. In the original version writers used
two separate transactions to delete and replace a key while in
our version these operations share a single transaction. We
also ran a version in which writers replaced ten keys in each
transaction to observe the effect of larger transactions. QSTM
was configured to use 128-byte Bloom filters and used the
Makalu [1] persistent memory allocator. These tests used 50%
writer transactions and 50% reader transactions. We tested
both the lock-free and wait-free versions of OneFile, shown
in the figure as OneFile-LF and OneFile-WF respectively.

We had also hoped to retrofit existing transactional bench-
marks to use OneFile, but ran into significant difficulties
with the APL All OneFile persistent data structures must be
declared using special reserved words to allocate metadata
adjacent to every word of “real” data. OneFile transactions
then take the form of C++ lambdas, and transactional field
accesses rely on operator overloading to update the metadata.
These conventions are not particularly onerous for newly
designed data structures, but proved difficult to retrofit into
code originally developed for transient data.

OneFile usually achieves higher throughput than QSTM,
especially when transactions are small. This is because of
the smaller number of steps required to commit a OneFile
transaction and the larger amount of contention on QSTM’s
global log. OneFile’s advantage, however, shrinks with larger
transactions (right subfigure), because QSTM allows any
number of transactions to commit while some other transac-
tion is performing write-back, while OneFile serializes this
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sequence. Significantly, OneFile’s use of per-word metadata
also imposes nearly 2x space overhead relative to QSTM.

3 Conclusions and Future Work

Nonblocking progress sets QSTM apart from most previ-
ous persistent TM systems. QSTM also consumes much less
space than OneFile, and requires neither a wide CAS instruc-
tion nor changes to data structure declarations. OneFile has
higher throughput, but both systems have a serial bottleneck
that limits scalability. We hope in future work to develop a
more scalable nonblocking persistent STM. We also hope to
mitigate the potential for unbounded memory usage when a
QSTM thread blocks while performing writes. One step may
be to use a protected library such as Hodor [3] to enforce
QSTM as the sole accessor to a memory region and to guar-
antee timely completion of QSTM write-back operations,
despite preemption or process crashes.
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