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ABSTRACT

Urgent science describes time-critical, data-driven scientific work-
flows that can leverage distributed data sources in a timely way to
facilitate important decision making. While our capacity for gener-
ating data is expanding dramatically, our ability to manage, analyze,
and transform this data into knowledge in a timely manner has
not kept pace. This paper explores how the computing continuum,
spanning resources at the edges, in the core, and in-between, can
be harnessed to support urgent science and discusses associated
research challenges. Using an Early Earthquake Warning (EEW)
workflow, which combines data streams from geo-distributed seis-
mometers and high-precision GPS stations to detect large ground
motions, as a driver, we propose a system stack that can enable the
fluid integration of distributed analytics across a dynamic infras-
tructure spanning the computing continuum.
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1 INTRODUCTION

Urgent science refers to a class of time-critical scientific applications
that leverage distributed data sources to facilitate important deci-
sion making in a timely manner. Examples of urgent science span
various domains ranging from applications that aim to improve
quality of life, monitor civil infrastructures, respond to natural dis-
asters and extreme events, and accelerate science. The exponential
growth of available digital data sources coupled with pervasive
access to nontrivial computing capabilities and the availability of
sophisticated data analytics including those based on Artificial
Intelligence and Machine Learning (AI/ML) has the potential to
enable end-to-end workflows that combine these elements to model,
manage, control, adapt and optimize sub-systems of interest.
However, while our capacity for collecting data is expanding
dramatically, our ability to manage, manipulate, and analyze this
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data, transform it into knowledge and understanding, and integrate
it with practice has not kept pace. For example, most popular data
analytics solutions, including those based on AI/ML, are cloud-
based and require transporting data from often distant edge devices
to a central location for processing. This limits the amount of data
that we can process and our ability to analyze and transform this
data into knowledge in a timely manner.

In our earlier work, we proposed the notion of a computing
continuum based on the fluid integration of resources at the edge,
in the core, in the network, and along the data path to support
dynamic and data-driven application workflows [1]. Key research
questions addressed by this prior work include: (1) how do we
determine what, where, and when data gets collected and analyzed
based on user objectives and user/system constraints; (2) how do we
program services to respond to changes in application objectives,
data availability and content; and (3) how does the application
react during execution to events of interest and trigger appropriate
actions.

Leveraging this vision of the computing continuum for urgent
science requires novel application and algorithmic formulations, as
well as a software stack that provides programming abstractions
and runtime mechanisms for dynamically (and opportunistically)
federating appropriate resources, and composing data-driven work-
flows where workflow composition and execution is defined by the
content and location of the data. Furthermore, the execution must
continually balance the computation or data movement’s cost with
the value of the operations to the application objectives.

In this paper, we build on our prior research and envisioned
software stack presented in [1] and explore how the computing
continuum can be leveraged to support a specific urgent science
workflow, i.e., the data-driven Earthquake Early Warning (EEW)
application workflow. This workflow combines data streams from
geo-distributed seismometers and high-precision GPS stations to
detect large ground motions, which can lead to hazards such as
tsunamis. Early warnings rely on a two-step ML algorithm that has
been validated using real data. The presented software stack allows
users to program reactive behaviors and orchestrate their execution
across the continuum while balancing computational costs with
the application’s value.

The rest of this paper is organized as follows. Section 2 presents
key research challenges in realizing urgent science and the EEW
workflow across the continuum. Section 3 introduces the concept of
continuum computing and provides background and related work.
Our unified framework is introduced in Section 4, and Section 5
illustrates how it is used to support the EEW workflow. Finally,
we discuss open research challenges in Section 6 and conclude the

paper.
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2 URGENT SCIENCE AND THE
EARTHQUAKE EARLY WARNING USE CASE

2.1 Urgent Science

As available data increases in scale, heterogeneity, and richness,
data-driven urgent workflows are enabling new and transforma-
tive applications across many disciplines. These workflows aim
to process machine-generated data in a timely manner to identify
context-sensitive features and events, and produce critical insights.
For example, emerging urban mobility applications rely on traffic
sensors’ processing large amounts of traffic data in real-time to
identify and alleviate traffic congestion. Similarly, autonomous cars
using sensors such as LIDAR and cameras are expected to gather
and process, in a timely manner, many TB’s of data per day [2].
Many of these workflows involve complex models that are based
on the efficient and time-constrained fusion of data from different
domains.

Urgent science workflows present additional requirements and
constraints due to the nature and distribution of the data, the com-
plexity of the models involved, the stringent error thresholds, and
the strict time constraints. The execution of these workflows has
to balance the need for a large amount of computational power to
reduce errors while ensuring the timely processing and assimilation
of essential data streams [3, 4].

2.2 Earthquake Early Warning

Earthquakes are amongst the most destructive natural disasters.
Networks of distributed seismic instruments on various scales are
used for earthquake detection. When an earthquake occurs, a real-
time network system installed to monitor seismic activity in a
region can detect it. Typically, a centralized data collection and
processing agency alerts relevant stakeholders. This centralized
data collection and processing limit the amount of data that can be
processed and how fast it can be processed. It motivates leveraging
the computing continuum. The goal of distributing the processing
is to speed-up detection while reducing data transfer costs (sending
only aggregated data to the cloud), fault tolerance (avoid isolation
of sensors), and better-utilizing resources (using resources at the
edge and in-transit).

When an earthquake strikes, the energy released is sent out as
seismic waves in all directions. The fastest waves, the waves that
arrive first, do not actually shake the ground in a damaging way.
We cannot even feel these primary or P-waves, but sensors can.
P-waves travel through Earth’s crust around 1.7 times faster than
secondary or shear waves (S-waves), propagating through Earth’s
interior and causing the ground to shake back and forth. Thus, there
is a lag between these two types of waves, and using them together
allows us to generate warning before the shaking starts and the
resulting damage.

Earthquake Early Warning (EEW) systems aim to provide alerts
before any damaging effects reach sensitive areas by detecting
P-waves before the S-waves arrive. It gives communities, organiza-
tions, and governments a valuable time window to take protective
actions. Warnings can be sent out to mobile phones, radio, and TV.
They can stop traffic and bridges, halt surgeries, and make deci-
sions on critical infrastructures such as gas pipelines. EEW systems
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Figure 1: An illustration of the Distributed Multi-Sensor
Earthquake Early Warning use-case (DMSEEW) [11]. Seis-
mic sensors located in the Edge send measurements to gate-
ways in the network which pre-process the data. Those pre-
processed data are sent to cloud servers which complete the
data processing and eventually broadcast earthquake alerts.

usually use hundreds to thousands of sensors scattered in different
geographical regions producing 3D time series, which indicates the
direction of the P-wave ground-motion (east-west, north-south and
up-down).

At present, there are EEW systems operational in several coun-
tries [5]. The Japan Meteorological Agency (JMA) began operating a
system in 2007 that consists of over 4,000 contributing stations, with
a typical station interval of about 20 km and performed efficiently
when an earthquake hit Japan in 2011 [6]. Mexico implemented
a seismic alert system in 1991, allowing for a warning time of 58
to 74 seconds [7]. Notable related efforts include novel algorithms
recently developed to locate earthquakes and to calculate their
magnitudes using P- and S-wave energy [8]. Recently, ShakeAlert
proposed to detect and disseminate EEW alerts using smartphones,
relying on the fact that they have become ubiquitous to the pub-
lic [9, 10].

The Distributed Multi-Sensor Earthquake Early Warning (DM-
SEEW) used in this work is a two-step stacking ensemble method
for earthquake detection [11]. It relies on the complementary nature
of GPS sensors and seismometers to obtain a precise assessment
of the magnitude. GPS sensors are better at characterizing high
magnitude, while seismometers are better for low magnitude. It
has two important data processing steps: a by-sensor time-series
classification and a by-region combination of sensor predictions, as
illustrated in Figure 1. This algorithm produces sensor-level class
predictions (normal activity, medium earthquake, or large earth-
quake) based on the data gathered by each sensor. It then aggregates
those sensor-level class predictions using a bag-of-words represen-
tation to calculate a final prediction for the earthquake category.
DMSEEW has been developed, evaluated, and validated using a
real-world dataset in collaboration with geoscientists !. The ability
to fuse data from GPS stations and seismometers differentiate this
work from existing methods to detect all the large earthquakes with
a precision of 100%, which is critical for any EEW system.

!Earthquake Early Warning Dataset. doi: 10.6084/m9.figshare.9758555
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3 CONTINUUM COMPUTING:
BACKGROUND AND RELATED WORK

3.1 The Continuum Computing Paradigm

The Computing Continuum represents a fluid integration of the
computational, storage, and network resources located the edges,
in the cloud, and in-between [12]. The data is generated at the
edges by sensors, scientific instruments, and personal devices. Edge
devices are usually limited in computational power and storage;
their principal function is to collect data and transmit them for
analysis. In-transit nodes are then in charge of performing aggre-
gation, filtering or preprocessing along the data path. Finally, far
from the data, the cloud provides the abstraction of unlimited re-
sources in well-provisioned datacenters. Figure 2 illustrates the key
dimensions of the computing continuum.

Traditional solutions focus on one particular dimension at a
time. Hence, most of the solutions are built on the premise that
data ingestion, management, and processing can be done in the
cloud, without the use of edge and in-transit tiers. Several edge-
based middleware solutions exist in the literature; however, they
often lack a uniform programming model framework for resource
management, data processing, and application servicing between
edge and cloud [13, 14]. Edge resources have limited availability,
are distributed geographically, and are often power constrained.

The in-transit tier brings value to applications by allowing quick
data triaging and processing while moving the data between geo-
graphically distributed nodes. Our previous work integrates approx-
imation and Software Defined Networks (SDN) to support tradeoffs
and network management on federated resources. Approximate
computing is used to optimize the balance between quality and
resource usage. For example, data may be processed with lower
accuracy to improve performance when appropriate [15]. SDN ap-
proaches enable programmable network management to provision
and reconfigure in-transit resources. This flexibility allows for a dy-
namic architecture for a better fit to application logic and prevents
bottlenecks [16].

The Cloud tier handles the heavy data processing using stream
processing frameworks and supporting data management systems.
Stream processing frameworks are responsible for data transfor-
mation, aggregation, and filtering using application logic. Manage-
ment systems provide key enabling services such as data ingestion
systems, key-value stores, or load-balancing and proxy servers. De-
spite the availability of well-provisioned computing resources in
the cloud, the increasing amount of data puts considerable stress on
the infrastructure. For example, limited network bandwidth can re-
sult in bottlenecks and underutilized cloud resources. Furthermore,
cloud providers’ current pricing models are based on the number of
messages between the edge and the cloud. As a result, transporting
all the data to the cloud is expensive (in terms of latency and costs)
but may also be wasteful.

Leveraging the computing continuum to support application
workflows effectively requires novel solutions for federating infras-
tructure, programming applications and services, and composing
dynamic workflows, which are capable of reacting in real-time to
unpredictable data sizes, availability, locations, and rates.
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Figure 2: An abstract view of the Computing Continuum.
Traversing the data path from the network edges, via in-
transit resources, to the core, resources typically increase in
scale and processing capacity, but also imply increasing la-
tency and data movement costs. Leveraging the continuum
implies effectively using resources along this data path to
balance timely processing with processing complexity and
quality of results.

3.2 Related Work

The Computing Continuum aggregates the architectural and algo-
rithmic challenges of its subcomponents while presenting new chal-
lenges related to their integration and overall management [1, 12].
As data analytics based on AI/ML techniques are becoming an
increasingly important component of data-driven application work-
flows, several studies have identified model optimization and ML
inference as the main vectors driving the use of resources at the
edge [17, 18]. Furthermore, execution mechanisms that leverage
data parallelism (partitioning data among units) and model par-
allelism (distributing the intelligence among units) have proven
effective for processing data streams [19, 20].

Early efforts in distributed training at the edge proposed to train
domain-specific models on devices, and only transmit the inferred
knowledge for fast inference [21-23]. Collaborative approaches for
inference leverage hybrid edge-to-cloud infrastructures to take the
offloading decision based on constraints such as the size of input
data, the model to be executed, and tradeoffs between the inference
accuracy and network latency and bandwidth [24, 25]. Other graph-
based approaches track pipelines and map them to geographically
distributed analytic engines ranging from small edge-based engines
to powerful multi-node cloud-based engines [26, 27].

Recent years have seen the availability of a growing number of
cloud-based stream processing frameworks. These frameworks rely
on data being moved to the cloud and are often agnostic to the spe-
cific characteristics and needs of particular data sources/devices [28].
Most of these works are application-specific and lack abstractions
for expressing objective for time-critical operations. Our strategy
for urgent science across the continuum aims for a general approach
with little assumptions on the data and resources capabilities.
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4 A FRAMEWORK FOR CONTINUUM
COMPUTING

In this section, we describe a unified framework for continuum com-
puting designed to enable data-driven workflows. The framework
provides the essential capabilities and services that are necessary
for executing workflows on infrastructure that integrates resources
across the continuum. These services include resource discovery,
mapping of computations to resources, and runtime management
and control. Furthermore, at the application level, the framework
enables developers to express requirements and constraints associ-
ated with stages of the workflow. Finally the framework supports
the autonomic management of workflow execution, balancing per-
formance, cost, and other metrics.

4.1 Architecture

A schematic overview of the framework architecture is presented
in Figure 3 and is described below.

Infrastructure Layer The infrastructure layer enables the dis-
covery, selection, and monitoring of resources. Resources include
data producers and streams (sensors, scientific instruments, IoT
devices, etc.) and computing resources and services (cloud services,
in-network services, cloudlets, etc.). This layer builds on the Asso-
ciative Rendezvous (AR) interaction model [29] to enable discovery
based on attributes rather than names. Using this model, data pro-
ducers and services/resource providers use keyword-based profiles
to locally describe resources/services as well as availability and
access constraints, and consumers use keywords and wildcards to
discover and interact with relevant resources. Note that profiles
can be locally changed, impacting which resources (data streams,
compute) are used.

Federation Layer The federation layer organizes selected re-
sources and services as logical groups based on attributes such as
performance and geographical location, and enables these resources
to be used to execute the workflow. The logical organization builds
on structured peer-to-peer overlays and provides lookup and mes-
saging services within the overlay. The federation layer supports
the synthesis of agile execution environments for data-driven work-
flows using relevant resources across the computing continuum
leveraging software-defined environment concepts. These execu-
tion environments autonomically evolve to balance performance
and costs as workflow requirements as well as the state of the
resource change.

Streaming Layer The streaming layer manages workflow exe-
cution and the associated data processing. Data-driven workflows
may involve merging data from multiple sources, the deployment
and configuration of steam processing engines, and the manage-
ment of the data flow between these engines. The streaming layer
provides programming abstractions to express which data streams
should be processed and where they should be processed based on
data content and using parameters such as available resources, net-
work capacity or application requirements. It also provides runtime
mechanisms to support these abstractions and enable workflow
execution.

Service Layer The service layer provides the interfaces that
expose the services provided by the lower layers that can be used
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Figure 3: Architecture of the unified framework composed
of four layers (extracted from [1]). Each layer exposes opera-
tors provided by the building blocks and enabling technolo-
gies, to enables data-driven workflows across the computing
continuum.

to described and execute workflow. It also provides access to ex-
ternal services such as services for longer-term data storage and
management.

4.2 Building blocks

R-Pulsar is a programming system and edge-based middleware for
enabling data-driven workflows that span edge and cloud resources.
It supports the definition of data-processing requirements including
what data should be process and where, as well as based on data-
content, the specification of tradeoffs between the quality and costs.
R-Pulsar has been shown to improve metrics such as end-to-end
latency, bandwidth consumption, and edge-to-cloud and cloud-to-
edge messaging cost for IoT-based workflows [14, 30].

The Virtual Data Collaboratory (VDC) is a data-intensive
cyberinfrastructure focused on providing large-scale federated data
management, analysis resources and tools for scientific applica-
tions [31]. VDC leverages regional data transfer notes (DTNs) and
federated data resources to support data services and enable collab-
orative data-intensive workflows.

CometCloud enables the dynamic composition of infrastruc-
ture services across multiple (academic and commercial) providers.
It enables on-demand scale-up, scale-down and scale-out based on
dynamic deadline-, budget-, and workload-based constraints in a
multi-cloud environment [32, 33].
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5 LEVERAGING THE COMPUTING
CONTINUUM FOR EEW URGENT SCIENCE

We use the EEW workflow as a driving use case for urgent science.
This model inference workflow can be seen as composed of 3 key
steps: data collection at the sensors, time-critical data processing
close to the sensors, and time-constrained aggregation and pro-
cessing of local results at a central computing facility. Early experi-
ments have shown significant variations in the latency measured
for processing one seismic event. Performance varies depending
on network technology and the mapping of functions to resources
along the data path. This is a major challenge for urgent science
workflows such as the EEW workflow, where only a couple of sec-
onds can be crucial for people to protect themselves before a strong
shaking of the ground [34]. This section describes how the frame-
work presented in Section 4 can be used to increase control over
performance and costs.

5.1 Managing data collection at edge sensors

In the EEW workflow, a large number of geographically distributed
seismometers and GPS sensors continuously produce data in the
form of a 3D time series streamed or queried on demand. For ex-
ample, in our experimental scenario, we emulate 1,000 sensors
deployed on 25 host machines. Each set of 20 sensors composes a
geographical region and is connected to one of the 50 Fog Gate-
way. Each sensor produces 1,200 messages at a frequency of 100Hz,
resulting in 12,000,000 messages that have to be processed. This
sensor data is then selectively processed close to the sensor loca-
tion for initial classification, which in our implementation is a Data
Transfer Nodes (DTN) located in the network.

The data collection step uses R-Pulsar to program query and
store operations on sensor data. Every sensor and computational
resource executes an R-Pulsar runtime instance that exposes a
semantic profile associated with the data and/or resources. Specifi-
cally, sensors declare an advertising profile with the type, frequency,
and precision of data they can produce, and requests to be notified
when a resource is interested in such data. DTNs declare their in-
terests in terms of the type of sensor data and the region of interest
for the first step of classification. The matching of profiles happens
dynamically, allowing DTN to received data streams and trigger
data processing either locally or in the cloud.

5.2 Data processing using edge/in-transit
resources

The EEW workflow classification step relies on window-based pro-
cessing to gather measurements streamed by each sensor, and per-
forming classification on this streamed data. Specifically, the DTNs
run the WEASEL-MUSE library for Multivariate Time Series classi-
fication [35] and Apache Flink for parallel stream processing [36].
Window-based processing stores a finite amount of data at the in-
transit resources, to which computations can be applied based on
the time that the event occurred on the device producing the data
(i.e., Event time). As it is only possible to wait for a finite period to
gather events within a particular window, Event time processing

incurs some latency while waiting for out-of-order events 2.

Zhttps://ci.apache.org/projects/flink/flink-docs-stable/dev/event_time.html
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Our design for fast-decision making relies on an estimation of
data processing cost and accuracy to dynamically adjust the map-
ping of computations. CometCloud aggregates time, estimated ac-
curacy and energy consumption metrics, and interacts with VDC
to configure and manage the connectivity between data processing
engines.

5.3 Aggregating and processing results at the
core

The prediction step filters the data streams by regions and predicts
the magnitude of eventual seismic events. This step is typically
executed at a central computing facility and relies on Apache Kafka
for data ingestion and Apache Flink for data processing. It uses
tumbling windows of 1 second to gather predictions from a given
region and calculate the final prediction.

Similar to in-transit resources, CometCloud acts with help from
VDC services, manages the configuration of stream processing en-
gines (Apache Kafka servers, Flink job managers and Zookeeper)
and collects relevant performance metrics. The application’s end-
to-end performance is tracked for each prediction in a distributed
knowledge base, along with associated provenance information.
The final predictions are available to the users as well as down-
stream decision-making systems.

6 SOME RESEARCH CHALLENGES

Extreme heterogeneity and uncertainty. The continuum rep-
resents extreme heterogeneity in the capabilities and capacities
of systems and services. This heterogeneity is furthered coupled
with extreme uncertainty arising from variabilities in the availabil-
ity and quality of data, resources, and services. Addressing this
heterogeneity requires application formulations and programming
abstractions that allow developers to expose natural flexibilities and
tradeoffs and define policies and mechanisms that can drive runtime
adaptions. For example, the integration of dynamic partial recon-
figuration, such as provided by Field Programmable Gate Arrays
(FPGAs), requires analysis and understanding of factors that affect
usability (overheads, constraints, energy consumption) to benefit
and facilitate the creation of ad-hoc clusters in the continuum.

Balancing requirements and expectation with constraints
and cost. Mapping user expectations and constraints in terms of
response time, solution quality, data resolution, cost, energy, etc.
With what is possible in a dynamic computation and communica-
tion environment, satisfying these requirements/constraints during
execution warrants the design of an autonomic control plane. Such
a control plan must be able to address cost/benefit tradeoffs at
runtime in a cross-layer manner and drive the autonomic reconfig-
uration of applications, resources, and services, including, for exam-
ple, provisioning new resources and services, adapting scheduling
strategies, selecting appropriate systems services, and/or adjusting
application parameters as necessary.

Ensuring end-to-end guarantees. While the seamless and
ephemeral composition of data, resources, and services towards en-
abling novel and impactful application is compelling, it also makes
providing end-to-end guarantees critical and challenging. Trans-
lating (often heterogeneous) local mechanisms for authentication,
privacy, provenance, etc., into end-to-end guarantees essential for
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enabling applications to take action requires new research and new
solutions.

7 CONCLUSION

The proliferation of digital data sources coupled with pervasive
access to non-trivial computing capabilities has the potential for
enabling new classes of near real-time, data-driven applications
and support urgent science.

However, harnessing the computing continuum for urgent sci-
ence workflows requires understanding the computing resources’
capabilities along the continuum, the dynamic application require-
ments, and desired quality and performance objectives in an inte-
grated manner. In this paper, we presented a conceptual framework
for enabling urgent science workflows across the computing con-
tinuum. Building on our prior work, we also presented an imple-
mentation architecture that includes infrastructure services that
automate the discovery of resources, programming abstractions to
enable developers to express what data to process, where to process
it, and how to manage resources along the data path. We use the
early earthquake warning urgent science use case to illustrate the
operation of the framework.

As for future work, an interesting direction is to design a general
model for balancing computational costs with the value provided
to the application in terms of solution accuracy to achieve timely
completion of operations.
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