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Abstract

Reliable identification of Inflammatory biomarkers from metagenomics data is a promising
direction for developing non-invasive, cost-effective, and rapid clinical tests for early diagno-
sis of IBD. We present an integrative approach to Network-Based Biomarker Discovery
(NBBD) which integrates network analyses methods for prioritizing potential biomarkers and
machine learning techniques for assessing the discriminative power of the prioritized bio-
markers. Using a large dataset of new-onset pediatric IBD metagenomics biopsy samples,
we compare the performance of Random Forest (RF) classifiers trained on features
selected using a representative set of traditional feature selection methods against NBBD
framework, configured using five different tools for inferring networks from metagenomics
data, and nine different methods for prioritizing biomarkers as well as a hybrid approach
combining best traditional and NBBD based feature selection. We also examine how the
performance of the predictive models for IBD diagnosis varies as a function of the size of the
data used for biomarker identification. Our results show that (i) NBBD is competitive with
some of the state-of-the-art feature selection methods including Random Forest Feature
Importance (RFFI) scores; and (ii) NBBD is especially effective in reliably identifying IBD
biomarkers when the number of data samples available for biomarker discovery is small.

Introduction

Inflammatory bowel disease (IBD) refers to disorders that involve chronic inflammation in the
gastrointestinal tract. The two main types of IBD are ulcerative colitis (UC), which is charac-
terized by continuous ascending inflammation from the rectum into the colon and periods of
relapse and remittance [1], and Crohn disease (CD), which is characterized by discontinuous
skip lesions affecting any part of the gastrointestinal tract [2]. Recent metagenome-wide
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association studies have implicated some changes in the microbial communities in the gut
microbiota with the onset and progression of IBD. [3-6]. However, the precise nature of the
changes in the gut microbiota in IBD remains to be fully understood [3].

IBD, particularly in children, fails to be correctly diagnosed, or diagnosed in a timely
fashion, because of the frequency of nonspecific symptoms at the onset of the disease [7, 8].
Although several non-invasive tests exist for IBD, none has been shown to be capable of diag-
nosing the two main IBD subtypes with sufficient accuracy [9]. Therefore, a biomarker signa-
ture for diagnosing IBD and differentiating between the two major IBD subtypes is highly
desirable [8, 10]. Identification of microbial biomarkers is a promising direction, not only for
predicting IBD onset but also for predicting IBD risk factors [11].

Identification of disease microbiomarkers from metagenomics data requires effective
computational and statistical methods for determining, from a very large number of candidate
biomarkers, a minimal subset of biomarkers that can accurately discriminate between two or
more phenotypes (e.g., IBD versus healthy). This task presents several challenges in practice
[12]: curse of dimensionality; high degree of sparsity of the metagenomics data; complexity of
the underlying biology; limitations of sequencing technology and of methods for determining
microbial composition and functional profiles from metagenomic data. To date, several statis-
tical methods have been proposed in the literature to compare an abundance of features (e.g.,
genes or operational taxonomic units (OTUs)) between two groups [13]. Some of these meth-
ods have been designed specifically for RNA-Seq data (e.g., DESeq [14] and edgeR [15])
while recent tools such as metagenomeSeq [16] and analysis of composition of microbiomes
(ANCOM) [17] have been developed specifically for metagenomics data, which often exhibits
greater sparsity than RNA-Seq data. Machine learning methods for feature selection [18] offer
a promising approach to identifying, from either RNA-Seq or metagenomics data, an optimal
subset of the features (potential biomarkers) that can be used to build predictive models that
can effectively diagnose a disease or discriminate between disease subtypes.

Recent analysis of microbial ecology networks (MEN) (where the nodes denote microbial
taxa and links denote some measure of correlations between the composition of the corre-
sponding taxa) derived from healthy and type 2 diabetes (T2D) groups has shown topological
differences between the two networks at the global, module (i.e., sub-networks or communi-
ties), and node levels and found that the differences in cluster membership of the nodes in the
two networks can serve as biomarkers for T2D [19]. Motivated by these findings, Abbas et al.
[20] hypothesized that MEN corresponding to different phenotypes should exhibit different
topologies, and the resulting differences in topology at the node and sub-network levels could
be exploited in biomarker discovery. They tested this hypothesis using a framework for net-
work-based biomarker discovery (NBBD). NBBD has two key modules: (i) A network con-
struction module for assembling MEN from the abundance data for microbial taxa (e.g.,
OTUs); (ii) A node importance scoring module for comparing MEN for the chosen pheno-
types and assigning a score to each node based on the degree to which the topological proper-
ties of that node differ across two networks. They reported results of experiments with a large
data set of new-onset pediatric IBD metagenomics biopsy samples showing that NBBD could
effectively discover IBD biomarkers [20].

In this study, we build on and extend the results of Abbas et al. [20] in two aspects: (i) We
introduce a novel node importance scoring method based on three different node resilience
measures [21] for identifying potential biomarkers. The strength of this approach is that the
optimal number of features used to specify a biomarker need not be fixed a priori; (ii) We
describe a hybrid approach for integrating network-based and random forest feature impor-
tance (RFFI) scores for improving the identification of a minimal subset of features to discrim-
inate between the phenotypes of interest (based on the relative abundance of the microbial
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taxa represented by the features). We also report results of extensive experiments with several
instantiations of the NBBD framework using five different network inference tools, nine node
importance scoring functions, and varying number of data samples used to perform feature
selection. Our results demonstrate the viability of the NBBD framework for biomarker identi-
fication, not only from extremely sparse and high-dimensional data but also from datasets
with small number of samples.

Materials and methods
Data sets

BIOM files (see http://biom-format.org) and meta-data (including age, gender, race, disease
severity, behavior, and location) for a large cohort IBD data set [3] were downloaded from the
QIITA database (https://qiita.ucsd.edu/) (Study ID: 1939). The data set consists of 1359 meta-
genomics samples including rectal tissue biopsy and fecal samples and each sample has 786
OTUs at the genus level that were extracted using the summarize_taxa.py QIIME script. We
filtered the data by discarding fecal samples and samples corresponding to patients with age
greater than 18 years. The resulting data set consists of metagenomic biopsy samples for 657
IBD and 316 healthy control cases, respectively. Thus, each sample (which correspond to a
row in the table), is encoded by a tuple of values that represent the relative abundances of the
various microbial taxa (indexed by the columns) in the sample. To evaluate our models, we
randomly split the data into training and test sets, named DS400 and DS573, such that the
training data has 200 healthy and 200 IBD samples, and the test data has 457 healthy and 116
IBD samples. It should be noted that predictive models are often tested on a data distribution
that reflects the natural distribution of the different classes. However, in this case, the available
IBD and Healthy samples do not reflect the natural distribution of IBD and Healthy cases in
the pediatric population. The prevalence of IBD worldwide has been reported to be close to
0.3% of the population [22]. Hence, given the high degree of class imbalance expected in the
natural distribution of data, we anticipate that the reported performance of all of the methods
in our comparison to substantially overestimate the true performance of the predictive models
were they to be deployed in a real-world setting. However, this should not impact the validity
of the overall conclusions from our study.

The training data is also used for feature selection (i.e., selecting a subset of features that are
most relevant for the classification task). In our experiments, we examined the effect of using a
small fraction of the training data for performing feature selection. Specifically, we experi-
mented with the following choices of data for feature selection, which we call the feature selec-
tion data sets (FSDS): DS50 C DS100 C FSD200 C DS300 C DS400, each with equal numbers
of IBD and healthy samples.

Network-Based Biomarker Discovery (NBBD) framework

We summarize the Network-based Biomarker Discovery (NBBD) framework below: (See Fig
1, adapted from [20]). Given a feature selection data set (FSDS) of metagenomics samples in
the form of a labeled OTU table: (i) The network construction module, produces two MEN,
one from the healthy samples, and one from the IBD samples, using the chosen network con-
struction tool (e.g., CoNet [23]); (ii) The node importance scoring module compares the two
networks and scores each node in terms of its contribution to the differences between the two
networks (as measured using one or more network similarity measures); (iii) The k highest
scoring nodes provide the k features used to train and evaluate binary classifiers for predicting
whether or not a given metagenomic sample belongs to a healthy of IBD individual.
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We evaluated the NBBD framework using five network construction methods and nine
node importance scoring methods summarized below.

Network construction methods

We experimented with several widely used methods for constructing MEN from metagenomic
data. We used the default parameters of each tool, unless noted otherwise. Each of these meth-
ods is briefly described as follows.

o SparCC: Sparse Correlations for Compositional data (SparCC) [24] infers a network of asso-
ciations between the microbial species based on the linear Pearson correlations between the
log-transformed components (e.g. OTUs). Since log transformation cannot be applied to
zeros, which are frequent in microbiome data, zeros are usually substituted with a small
value, called pseudo-count. SparCC makes two main underlying assumptions: (i) the num-
ber of nodes (e.g. OTUs) is large; and (ii) the underlying network is sparse. We applied the
implementation of SparCC included as part of the SPIEC-EASI tool [25].

o MB: The Meinshausen and Biithlmann (MB) method [26] is another technique for estimating
sparse networks based on estimation of the conditional independence restrictions of each
individual node in the graph. The MB method determines the direct neighbors of each target
node by finding the smallest subset of nodes such that the target node is conditionally inde-
pendent of the rest of the networks given the direct neighbors so identified. MB is also imple-
mented in SPIEC-EASI [25].

o RMT: Random Matrix Theory (RMT) method uses the Pearson correlation coefficient to
add an edge between two OTUs if their correlation is higher than a threshold. Instead of
using a user-defined threshold, RMT utilizes a procedure based on the Random Matrix The-
ory to automatically detect a reliable threshold. The method is implemented in the Molecular
Ecological Network Analysis Pipeline [27] available at http://ieg4.rccc.ou.edu/mena. We
used the default parameters except for the parameter controlling the number of OTUs that
build the network. An OTU was used if it is expressed in at least 25% of the samples. The
default value of that parameter is 50% of the samples, and with the parameter set to 50% the
method failed to construct the network.

o CoNet: This method infers the association network by combining two complementary
approaches to evaluate the significance of the associations [23]. The first approach is
an ensemble method of similarity or dissimilarity measures while the second is a novel
permutation-renormalization bootstrap method, ReBoot [23]. We followed the procedure
described in [28] to construct the networks for the IBD and healthy phenotypes.

Proxi: Proxi [29] is a Python package for proximity graph construction. In proximity graphs,
each node is connected by an edge (directed or undirected) to its nearest neighbors accord-
ing to some distance metric d. In our experiments, we set the number of neighbors to seven
and used the absolute value of Pearson’s Correlation between two vectors (subtracted from
one) as the distance function between two vectors.

Node importance scoring methods

We considered two approaches for scoring nodes (i.e., features) based on: (i) differences in the
topological properties of the nodes in the two networks [20]; (i) common nodes in the critical
attack sets [30] determined from the two networks. The first approach assumes that a bio-
marker has different patterns of interactions with other OTUs in healthy and IBD samples.
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The second approach assumes that biomarkers correspond to a special set of nodes, in the two
networks, called a critical attack set [30] such that the removal of nodes in the critical attack set
from a graph results in clustering the network into a number of subnetworks (i.e., microbial
communities in the case of MEN).

Node scoring using topological properties. Let G,(V;, E;) and G{(V), E;) be two graphs
constructed using two groups of metagenomics samples (e.g., healthy and IBD). The Node
Topological Property Scoring (NTPS) method scores each node v € V; N V;with respect to a
node topological property P as follows: score”(v) = |fp(v, G;) — fp(v, Gj))|, where fp(v, G) is the
value of the property P for a node v in a graph G. In this work, we experimented with the fol-
lowing node properties computed with NetworkX software [31]:

« Betweenness Centrality (btw): Betweenness centrality of a node v is defined as

fro(v, G) = 3 ) 2 where a(u, w) is the total number of shortest paths between u

a(u,w) u,v,we
and w and o(u, w|v) is the number of shortest paths between u and w passing through v.
n;l
Z:;l ()
where d(u, v) is the shortest path distance between u and v and n is the number of nodes that
can reach v.

o Closeness Centrality (cls): Closeness centrality of a node v is given by f, (v, G) =

o Average Neighbor Degree (and): The average neighborhood degree of a node v is given by
Jand(Vs G) = 5657 2uen(n ki Where N(v) denotes the set of neighbors of node v and k,, is the

INM)|
degree of node u € N(v).

o Clustering Coefficient (cc): For unweighted graphs, the clustering coefficient of a node v is

givenbyf (v,G) = ngvm, where T(v) is the number of triangles that include node v

and deg(v) is the degree of v.

« Node Clique Number (ncn): The node clique number of a node v is the size of the largest
maximal clique containing v. A clique is a subset of nodes such that there is an edge between
every pair of distinct nodes.

o Core Number (cn): The core number of a node v is the largest value k of a k-core containing
v, where a k-core is a maximal subgraph that contains nodes of degree k or more.

Critical Attack Set Scoring. Critical Attack Set Scoring (CASS) is based on a node resil-
ience clustering algorithm, NBR-Clust [21, 30]. We briefly describe below, the node resilience
measures (specifically the three utilized in this work) before proceeding to describe how they
are used to identify biomarkers.

Node-based resilience measures quantify the resilience of a network in terms of the extent
of damage (as measured by disruption of connectivity between otherwise connected compo-
nents or clusters of nodes) caused to the network by the removal of a set of critical nodes
(called the attack set) [32]. Because the nodes in the attack set are crucial for maintaining con-
nectivity across the network, removal of the nodes in the attack set can be expected to partition
the network into clusters that are isolated from (i.e., disconnected from) each other. Different
node resilience measures yield different attack sets with different degrees of sparseness [30]. In
this work, we focused on three measures, namely vertex attack tolerance (VAT), integrity, and
tenacity.

o The VAT of an undirected, connected graph G = (V, E) is defined as [32, 33]:
VAT(G) = min 15 },where S is an attack set and C,,,(V - S) is the largest

chﬁs#m{‘V’S’Cmux(V’S)H’l
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connected component in V — S. The goal is to identify small attack sets that consist of nodes
that are most cricial in preserving network connectivity.

Integrity is defined as [34]: I(G) = 1?151{|S| + C,..(V — S)}. Integrity balances the size of
C

max (

the attack set with the largest connected component in the network resulting from the
removal of the attack set. An increase in attack set size can more easily be offset by a decrease
in C,,4, which means that attack set sizes will tend to be larger than with VAT. Generally,
the attack set for integrity S; will include the most crucial nodes (as generated by VAT), plus
additional nodes that if removed, make the graph disconnected.

Tenacity is defined as [35]: T(G) = I&l&l{%}, where w(V — §) is the number of con-

nected components in V — S. This measure identifies nodes that, if removed,result in parti-
tioning the graph into a large number of components. Thus, the tenacity attack set Sy will
include almost all nodes that if removed, can make the graph disconnected.

In order to calculate these resilience measures, we utilized a heuristic known as Greedy
betweenness centrality (Greedy-BC) [36]. For a given resilience measure, the Greedy-BC
heuristic estimates candidate attack sets by iteratively selecting the node with highest
betweenness centrality and removing it from the network. This process results in a node-
removal ordering, which is used to calculate all three resilience measures. Each node is then,
in order, added to the attack set, with a new graph configuration being generated with each
iteration. The resilience measure is updated iteratively after each graph configuration update.
The goal is to iteratively optimize the resilience measure. This greedy heuristic can be used
to optimize VAT, integrity and tenacity with acceptable accuracy [32, 37]. Of the three resil-
ience measures [30], VAT tends to yield the smallest attack set while tenacity yields the larg-
est. A consequence of using the Greedy-BC heuristic is that the three attack sets are related as
follows: Sy, C §; C St

To select features for training IBD classifiers, we apply the NBR-Clust algorithm separately
to the the IBD and Healthy networks to obtain the critical attack sets for healthy (Gy) and
IBD (Gp) samples. We then select the nodes that are shared by the critical attack sets of both
graphs.

Identification and evaluation of IBD biomarkers

Given a training data set DS400, a feature selection data set (e.g., DS50), a test data set DS573,
a feature selection method (FSM), and the number of selected features k € {10, 20, 30, 40, 50,
60}: First, we applied the FSM to the feature selection data to determine top k features. Then,
we generated variants of the training and test data with only the selected features and used
them to train and estimate the performance of a Random Forest (RF) [38] classifier. In each
case, the input to the classifier consists of the relative abundance of the microbial taxa repre-
sented by the selected features. In our experiments, we used RF classifiers implemented in Sci-
kit-learn [39] with the number of estimators set to 500 trees.

In addition to our proposed network-based feature selection methods, we considered the
following traditional and commonly used feature selection methods: (i) Filter-based feature
selection using Information Gain (IG) and F-Statistic (FStat); (ii) Recursive Feature Extraction
(RFE) that uses LASSO [40] estimator for estimating the importance of features and removes
the lowest ranked 10 features at each iteration; (iii) RF Feature Importance (RFFI) which is an
embedded feature selection method where the FS data are used to train a RF classifier with 500
trees, and feature importance scores are then inferred from the learned model as suggested by
Breiman [38].
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We report the predictive performance of all IBD classifiers considered in this study as mea-
sured using Accuracy (ACC), Sensitivity (Sn), Specificity (Sp), Matthews Correlation Coeffi-
cient (MCC), and Area Under ROC Curve (AUC) [41].

Results
Feature selection improves the predictive performance of RF classifiers

Table 1 reports the performance of top (in terms of highest AUC and smallest number of
selected features) RF classifiers using five different feature selection data sets as well as using all
input features (FSM = None). For RF classifier without feature selection method, the AUC is
0.74. Using the smallest feature selection data set (DS50), the three traditional feature selection
methods yield RF classifiers with better AUC scores. The highest observed AUC corresponds
to a RF classifier trained using the top 50 features selected using RFFI method. On the other
hand, when using the largest feature selection dataset (DS400), all feature selection methods
yield models with AUC better than the baseline model with no feature selection. Interestingly,
RFFI seems to benefit substantially by increase in the size of the feature selection data set since
it returns only 20 features that are as discriminative as the 50 features determined using DS50.
We observed that some feature selection methods (e.g., IG) are sensitive to changes in the
FSDS. For example, the best subset of features returned using the IG filter is with DS300.
On the other hand, with DS400 (which includes all instances in DS300), the IG filter fails to

Table 1. Performance of the top (in terms of highest AUC and smallest number of selected features) performing RF classifiers for different choices of feature selec-
tion data set and traditional feature selection methods.

FSDS FSM # Features ACC Sn Sp MCC AUC
DS50 None NA 0.66 0.64 0.75 0.31 0.74
IG 60 0.65 0.62 0.78 0.32 0.76

FStat 60 0.63 0.64 0.62 0.21 0.69

RFE 40 0.69 0.66 0.78 0.36 0.79

RFFI 50 0.68 0.65 0.82 0.38 0.80

DS100 None NA 0.66 0.64 0.75 0.31 0.74
1G 60 0.65 0.62 0.74 0.29 0.75

FStat 20 0.68 0.66 0.72 0.32 0.74

RFE 50 0.66 0.62 0.81 0.35 0.78

RFFI 40 0.68 0.65 0.80 0.37 0.79

DS200 None NA 0.66 0.64 0.75 0.31 0.74
1G 20 0.69 0.68 0.73 0.34 0.79

FStat 50 0.68 0.67 0.72 0.31 0.75

RFE 60 0.65 0.62 0.76 0.30 0.78

RFFI 20 0.67 0.63 0.81 0.36 0.79

DS300 None NA 0.66 0.64 0.75 0.31 0.74
1G 30 0.69 0.66 0.80 0.38 0.80

FStat 60 0.68 0.67 0.75 0.34 0.76

RFE 60 0.68 0.65 0.80 0.36 0.79

RFFI 30 0.68 0.64 0.81 0.37 0.79

DS400 None NA 0.66 0.64 0.75 0.31 0.74
1G 60 0.64 0.61 0.73 0.28 0.75

FStat 40 0.70 0.69 0.72 0.34 0.76

RFE 60 0.64 0.62 0.73 0.28 0.76

RFFI 20 0.69 0.68 0.76 0.36 0.80

https://doi.org/10.1371/journal.pone.0225382.t001
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determine a good subset of selected features. We suspect that the biomarkers identified using
such unstable feature selection methods are likely to be unreliable.

Performance of network-based feature selection methods

Results in Table 1 demonstrate the superior performance of RF feature importance for identi-
fying a small subset of discriminative features from metagenomics data which is widely
acknowledged in the literature [42, 43]. Here, we report results of experiments (using the
framework in Fig 1) designed to address the following questions: (i) which network inference
tool learns graphs that could be suitable for our network-based feature selection method?; (ii)
how do the results of network-based feature selection using different Node Topological Prop-
erty Scoring (NTPS) and Critical Attack Set Scoring (CASS) compare to each other as well as
to results in Table 1?

First, for each of the five FSDS considered in our experimented and using graphs generated
by five NIMs, we evaluated our NBBD framework using six topological properties for NTPS
approach and k identified biomarkers for k € {10, 20, 30, 40, 50, 60}. A total of 900 experiments
were conducted and are reported in Tables A-E in in S1 File. Table 2 summarizes all these
tables for results obtained using DS50 by reporting the performance of top performing (in
terms of highest AUC and smallest number of selected features) RF classifiers. Table 2 reveals
the following interesting observations: (i) Models using networks generated by CoNet, Proxi,
and RMT achieve performance comparable to that of best performing models in Table 1 using
RFFI and RFE feature selection; (ii) The AUC of the top performing models obtained using
RMT graphs are consistently good (i.e., AUC scores in the range 0.77-0.78), while other NIMs
yield top performing models with a wider range of AUC scores; (iii) There is no single topolog-
ical property that can be used to train RF classifiers that outperform their counterparts trained
using other properties. However, the topological properties that work best appear to depend
on the network construction method used. For example, CoNet and Proxi based models
achieve their highest AUC scores using ‘and” and ‘cn’ properties, respectively. Even though
RMT based models have almost the same AUC for all six different topological properties, the
method seems to work best with ‘cc’ property since it reaches the highest AUC score of 0.78
using only 20 features whereas it requires at least 50 features using other properties.

Training Test
FSDS SR i Tost
f ‘ it te
/\ [ ] °
.. v
OTU N ° — p—
Tablel rain alidate
Network Node 4 _
— Inference Importance [~ > c!:lslstlﬁel;c N Cli.lSSlft'iel;
¢ N Tool Scorin "N | with top using tes
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OTU / i Feature
Table2 2 Importance
®e
N .0 oL e G2 Scores
— °

Fig 1. Overview of the NBBD framework. Feature Selection Dataset (FSDS) which is a subset of, or the same as, training data set in the form of two OTU tables
corresponding to two groups of metagenomics samples are first used to construct two networks. The node importance scoring modules compares topological
properties of shared nodes in the two networks and outputs scores to prioritize the input features. Top selected features are then used to train and evaluate a classifier.

https://doi.org/10.1371/journal.pone.0225382.9001
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Table 2. Performance of top (in terms of highest AUC and smallest number of selected features) performing RF classifiers for combinations of different choices of
Network Inference Method (NIM) and network-based feature selection using different properties for Node Topological Property Scoring. All results were obtained

using DS50 as the feature selection dataset.

NIM FSM # Features ACC Sn Sp MCC AUC
CoNet and 50 0.69 0.66 0.81 0.38 0.79
btw 30 0.67 0.64 0.78 0.34 0.78

cc 60 0.67 0.65 0.76 0.33 0.77

cls 60 0.66 0.63 0.77 0.32 0.74

cn 60 0.67 0.64 0.79 0.35 0.78

ncn 60 0.66 0.64 0.73 0.31 0.75

MB and 50 0.64 0.63 0.69 0.26 0.71
btw 50 0.65 0.62 0.77 0.31 0.74

cc 50 0.61 0.59 0.72 0.24 0.71

cls 50 0.63 0.61 0.69 0.24 0.72

cn 60 0.62 0.61 0.67 0.23 0.69

ncn 60 0.62 0.57 0.80 0.30 0.75

Proxi and 60 0.64 0.61 0.76 0.30 0.75
btw 50 0.69 0.67 0.78 0.36 0.77

cc 60 0.62 0.61 0.68 0.24 0.70

cls 50 0.57 0.53 0.72 0.20 0.67

cn 40 0.65 0.62 0.77 0.31 0.78

ncn 60 0.67 0.65 0.75 0.33 0.77

RMT and 50 0.66 0.64 0.75 0.32 0.78
btw 50 0.67 0.64 0.79 0.35 0.78

cc 20 0.68 0.66 0.78 0.35 0.78

cls 60 0.67 0.65 0.78 0.35 0.77

cn 60 0.68 0.66 0.75 0.33 0.77

ncn 60 0.68 0.66 0.76 0.34 0.78

SparCC and 60 0.61 0.57 0.73 0.25 0.69
btw 60 0.68 0.66 0.75 0.34 0.75

cc 40 0.60 0.57 0.71 0.23 0.70

cls 60 0.66 0.65 0.72 0.29 0.73

cn 50 0.66 0.64 0.72 0.29 0.72

ncn 60 0.63 0.60 0.74 0.28 0.71

https://doi.org/10.1371/journal.pone.0225382.t1002

Second, we repeated the experiments described in the preceding paragraph but using CASS
based on three node resilience measures as the Node Importance Scoring module in our
NBBD framework. The performance of the resulting RF classifiers are reported in Table F in
S1 File and summarized in Table 3 for DS50. Table F in S1 File shows that the highest AUC
score of 0.79 can be reached using DS100 and graphs learned using Proxi (and 28 features) or
SparCC (and 51 features) as well as using DS400 and graphs obtained using SparCC (and 54
features). Results in Table 3 suggest that the three CASS methods seem to need larger feature
selection data sets in order to reach a predictive performance comparable to those obtained
using traditional feature selection methods or NTPS methods. Unlike all other feature selec-
tion methods considered in this work, CASS methods do not require the user to provide the
number of features to be selected from the input data as a parameter.

In summary, our results suggest that the five NIMs, except MB [26], can be successfully
used in our NBBD framework for identifying discriminative features (i.e., potential IBD bio-
markers) from metagenomics data. Our results also show that network-based feature selection
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Table 3. Performance (highest AUC attained, and the smallest number of features chosen) by the top performing RF classifiers for combinations of different choices
of Network Inference Method (NIM) and network-based feature selection using three resilience measures for Critical Attack Set Scoring (CASS). Results obtained

using DS50 as the feature selection data set.
NIM FSM

AUC CoNet CASS_I
CASS_T

CASS_V

MB CASS_I
CASS_T

CASS_V

Proxi CASS_1
CASS_T

CASS_V

RMT CASS_I
CASS_T

CASS_V

SparCC CASS_I
CASS_T

CASS_V

https://doi.org/10.1371/journal.pone.0225382.t1003

# Features ACC Sn Sp MCC AUC
21 0.66 0.64 0.75 0.31 0.77
35 0.67 0.64 0.76 0.33 0.76
21 0.66 0.64 0.75 0.31 0.77
6 0.51 0.47 0.68 0.12 0.61
33 0.57 0.53 0.73 0.21 0.65

NA NA NA NA NA NA
11 0.65 0.63 0.72 0.28 0.72
39 0.65 0.64 0.70 0.27 0.73

1 0.25 0.07 0.96 0.04 0.51
8 0.49 0.46 0.58 0.03 0.52
12 0.56 0.52 0.72 0.19 0.64
3 0.64 0.64 0.61 0.21 0.62

117 0.66 0.64 0.74 0.31 0.76
125 0.66 0.64 0.72 0.30 0.76

NA NA NA NA NA NA

methods are comparable to some commonly used traditional feature selection methods includ-
ing the widely used RFFI. Moreover, with small size feature selection data sets, network-based
feature selection methods applied to RMT graphs outperform traditional feature selection
methods.

Performance of hybrid feature selection methods

Preliminary results reported in an early version of this work (Fig 4 in Abbas et al. [20]) show
that only 12 OTUs were shared among the three subsets of 30 biomarkers determined using
RFFI and two instances of the NBBD framework. Therefore, we hypothesize that the feature
importance scores estimated using RFFI and the best instances of our NBBD framework are
complementary with each other. To test this hypothesis, we developed a hybrid feature selec-
tion method that returns the product of RFFI and NBBD based on NTPSs as combined feature
importance. Results for the hybrid method are reported for each of the five FSDS using graphs
generated by five NIMs and instances of the NBBD framework using six topological properties
for the NTPS approach and the top k € {10, 20, 30, 40, 50, 60} biomarkers in Tables G-K in S1
File and the top performing RF classifiers using DS50 are reported in Table 4.

Table H in S1 File reports the results for RF classifier using hybrid feature selection based
on instances of the NBBD framework applied to MB graphs and shows that the two best per-
forming RF classifiers with AUC scores of 0.82 and 0.81 are obtained using the ‘and’ property
and the top 10 and 20 features (respectively). Interestingly, these two classifiers were trained
using features determined using MB graphs inferred from DS50. This is a substantial improve-
ment in performance compared with the RF model trained using RFFI and features deter-
mined using DS50 (see Table 1) which has an AUC score of 0.80 using 50 features. In addition,
several RF models with AUC scores higher than 0.80 were obtained using Proxi, RMT, and
SparCC graphs (see Tables G-K in S1 File).

Table 4 summarizes the results in Tables G-K in S1 File by reporting the top performing RF
classifiers obtained using DS50 (i.e., the smallest feature selection dataset). In this table, two
RF classifiers using MB and RMT graphs have equal AUC scores of 0.82. Several RF classifiers

PLOS ONE | https://doi.org/10.1371/journal.pone.0225382 November 22, 2019 10/21


https://doi.org/10.1371/journal.pone.0225382.t003
https://doi.org/10.1371/journal.pone.0225382

@ PLOS|ONE

Network-based biomarker discovery in inflammatory bowel diseases

Table 4. Performance of the top performing RF classifiers (with the highest AUC and using the smallest number of features) for combinations of different choices
of Network Inference Method (NIM) and hybrid feature selection based on RFFI and different properties for Node Topological Property Scoring. All results were
obtained using DS50 as the feature selection dataset.

GIM FS Method # Features ACC Sn Sp MCC AUC
CoNet and 30 0.68 0.65 0.79 0.36 0.79
btw 20 0.65 0.61 0.79 0.33 0.78

cc 60 0.66 0.64 0.74 0.31 0.74

cls 40 0.62 0.59 0.77 0.29 0.74

cn 40 0.66 0.64 0.75 0.32 0.76

ncn 40 0.67 0.65 0.75 0.32 0.76

MB and 20 0.73 0.72 0.76 0.40 0.82
btw 40 0.66 0.64 0.78 0.33 0.78

cc 20 0.66 0.62 0.79 0.34 0.77

cls 40 0.65 0.64 0.72 0.29 0.77

cn 10 0.69 0.68 0.74 0.34 0.76

ncn 20 0.65 0.61 0.80 0.34 0.79

Proxi and 50 0.68 0.66 0.77 0.35 0.78
btw 30 0.69 0.66 0.82 0.39 0.79

cc 50 0.65 0.62 0.77 0.31 0.78

cls 50 0.67 0.63 0.83 0.37 0.79

cn 40 0.62 0.60 0.70 0.24 0.73

ncn 40 0.68 0.65 0.80 0.36 0.79

RMT and 60 0.68 0.64 0.80 0.36 0.79
btw 40 0.64 0.60 0.80 0.32 0.78

cc 40 0.69 0.65 0.81 0.38 0.82

cls 50 0.69 0.66 0.80 0.37 0.80

cn 40 0.64 0.60 0.80 0.32 0.76

ncn 50 0.68 0.65 0.81 0.37 0.80

SparCC and 30 0.67 0.64 0.78 0.34 0.80
btw 40 0.70 0.68 0.78 0.37 0.79

cc 30 0.66 0.63 0.79 0.34 0.78

cls 30 0.67 0.64 0.80 0.36 0.78

cn 50 0.67 0.63 0.82 0.36 0.80

ncn 40 0.66 0.62 0.81 0.34 0.79

https://doi.org/10.1371/journal.pone.0225382.t004

Table 5. Performance comparison of top three RF classifiers obtained using traditional feature selection and hybrid feature selection methods.

reached an AUC score of 0.80, but only the model based on SparCC graphs is using a small
number of features. Comparing results in Tables 2 and 4 suggests that the RF classifiers using
hybrid feature selection outperform counterpart RF classifiers using NTPS only in terms of

predictive performance and/or number of features used to train the models.

Analysis of top performing models and the identified IBD biomarkers

Table 5 compares the performance of the top RF classifiers obtained using traditional feature
selection and hybrid feature selection methods evaluated in our experiments. Using a hybrid

NIM FSDS FS Method # Features ACC Sn Sp MCC AUC
NA DS400 RFFI 20 0.69 0.68 0.76 0.36 0.80
MB DS50 RFFI x and 20 0.73 0.72 0.76 0.40 0.82
RMT DS50 RFFI xcc 40 0.69 0.65 0.81 0.38 0.82
https://doi.org/10.1371/journal.pone.0225382.1005
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Table 6. AUC scores for top three RF classifiers obtained using RFFI feature selection and two hybrid feature
selection methods, MB_and and RMT_cc, using different feature selection datasets.

FSDS RFFI MB_and RMT _cc
DS50 0.76 0.82 0.82
DS100 0.78 0.76 0.79
DS200 0.79 0.75 0.77
DS300 0.77 0.79 0.77
DS400 0.80 0.78 0.75

https://doi.org/10.1371/journal.pone.0225382.t1006

scoring method combining RFFI (estimated from DS50) and ‘and’ scores (determined from
MB graphs), a RF classifier trained using the top 20 features outperforms the best RF devel-
oped using RFFI (estimated from DS400) in four out of five performance metrics. Table 6
shows the AUC scores for these three models using different FSDSs. Since feature selection
data sets are nested (i.e., DS50 C DS100 C FSD200 C DS300 C DS400), we expect feature selec-
tion methods to return the same or better subset of features as we increase the size of the FSDS
used. Our expectation is almost realized using the RFFI method, except that there is a drop

in AUC score when DS300 is used. On the other hand, our expectation is violated using the
hybrid feature selection methods. The highest AUC score is observed using DS50, and increas-
ing the size of the FSDS leads to a drop in classifier performance. This suggests that NIMs such
as MB and RMT might be highly unstable to changes in the input data. In other words, net-
works constructed from DS50 and DS400 (as an example) are substantially different. For
instance, Fig A in S2 File compares the four MB graphs generated using the MB method from
IBD and healthy samples in DS50 and DS400. We found that MB constructs two networks
(over the same set of nodes) but with a minimal overlap in edges from DS50 and DS400 data.
In the absence of the ground truth, we can not determine which network is closer to reality.
However, our results show that graphs inferred from DS50 allow our NBBD framework to
identify a better set of features.

Fig 2 shows the Venn diagram of unique and shared OTUs among the three subsets of fea-
tures used for training the top three models in Table 5. We found that the number of unique
OTUs in each subset is 7, 3, and 18 for RFFI, MB_and, and RMT_cc sets, respectively. Inter-
estingly, 17 out of the 20 features in MB_and are also in RMT_cc and 8 out of these 17 com-
mon OTUs are also shared with RFFI. Table L in S1 File lists the OTUs in these three sets of
selected features. We further conducted downstream statistical analysis of the common 8
OTUs which are highlighted in bold in Table L in S1 File. More precisely, we assessed the sig-
nificance of the difference between the medians of sample normalized relative abundance of
these OTUs in IBD and healthy populations using the Kruskal-Wallis nonparametric test
(Figs B-F in S2 File). Analysis of DS400 (Fig F in S2 File) shows significantly higher abun-
dance of (Aggregatibacter, Fusobacterium, and Sutterella) in IBD samples relative to healthy
samples. The increase of Aggregatibacter genus in IBD samples has been reported in several
recent studies [44, 45]. Also, the high abundance of Fusobacterium in IBD samples has been
suggested as a biomarker in several studies [3, 46]. Sutterella spp. have been frequently asso-
ciated with several human diseases including autism and IBD [47, 48]. However, other stud-
ies [49, 50] have suggested that Sutterella spp. are unlikely to play a role in the pathogenesis
of IBD. Fig F in S2 File also shows significant decreases in Roseburia, Dialister, and Clostri-
diales. These three biomarkers have been repeatedly reported in previous studies [51-53].
Finally, results of our statistical analysis reported in Fig F (S2 File) suggest that two of
our top identified genera biomarkers, Bacteroides and Oscillospira, have no significant
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MB and RFFI

RMT cc

Fig 2. Venn diagram of unique and shared features selected using RF Feature Importance (RFFI), network-based feature selection applied to MB (RMT)
networks and using ‘and’ (‘cc’) for node importance scoring.

https://doi.org/10.1371/journal.pone.0225382.9002

differences in IBD and control samples. Bacteroides is a dominant and biologically impor-
tant bacteria genus in the microbiota of the human gastrointestinal tract [54] and Oscillos-
pira is an under-studied bacterial genus that is hard to cultivate but is consistently being
identified in several human gut microbiota association studies [55]. This highlights the need
for developing more sophisticated differential abundance tests that take into account the
sparsity and compositional nature of metagenomics data.
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Sensitivity analysis of Kruskal-Wallis and Mann-Whitney nonparametric tests against the
number of samples analyzed has been conducted using all variants of FSDS. The complete
results of this analysis is reported in Figs B-K in S2 File. Surprisingly, both tests failed to show
any significant differences between IBD and healthy groups using DS50. Overall, the results
from the two nonparametric tests are in agreement with each other, and our results suggest
that at least 100 samples are needed for each group in order to demonstrate significant differ-
ences in the abundances of six out of the top eight identified biomarkers.

Comparative analysis of IBD and healthy networks

We show that interesting biological findings can be derived from comparative analysis of the
IBD and healthy ecological networks inferred from the DS400 training set using the RMT pro-
gram [27]. Our choice of RMT network inference tool is motivated by the superior perfor-
mance of the classifiers based on RMT networks (see Tables 2 and 5). In this analysis, we
compared the two networks at the global, module, and node levels and interpreted some of the
findings in the context of existing literature. Table M in S1 File reports several simple topologi-
cal properties of the IBD and health networks. Surprisingly, the values of these simple global
properties look similar in the two networks. Next, we consider differences between the two
networks at the module and node levels.

For module level comparisons, we used the MCODE clustering algorithm [56], imple-
mented as a Cytoscape [57] plugin, to extract top highly-connected modules in IBD and
healthy networks, respectively. Fig L in S2 File shows the highest scored module from each
network. We found that the top IBD module has 29 nodes while the top healthy module has
only 20 nodes. Interestingly, nodes in the healthy module have more interactions among
each other (i.e., average node degree is 16.7) while nodes in the IBD modules have less inter-
actions (i.e., average node degree is 14.1). In the healthy module, the top interacting genera
are Coprobacillus, Staphylococcus, Turicibacter, Clostridium. Each of them have 19 interact-
ing neighbor. In the IBD module, the top interacting node (genus) is Anaerostipes with 20
interacting neighbors. Anaerostipes genus is one of the major bacteria that utilize lactate to
produce butyrate, which is beneficial to colonic health [58]. Finally, we used DyNet [59] to
compare the top IBD and healthy modules. The results are shown in Fig M in S2 File, where:
green edges represent edges present only in healthy module; red edges represent edges pres-
ent only in IBD module; and gray edges represent edges present in both networks. The
results show that the two modules share five known genera. Fig N in S2 File shows the sub-
network including these five genera. All possible pairwise interactions among these five gen-
era are observed in Fig N in S2 File except for two pairs, (Parvimonas, Porphyromonas) and
(Epulopiscium, Desulfovibrio), where the interactions are exclusive in IBD and healthy mod-
ules, respectively. Interestingly Porphyromonas and Parvimonas can be found in the oral
cavity and the colon and were found to be more abundant in patients with colorectal cancer
(CRC) [60, 61].

We also analyzed the differences between IBD and healthy networks at the node level. Fol-
lowing Abbas and El-Manazalawy [19], we limited this analysis to nodes corresponding to our
identified potential biomarkers. Specifically, we generated biomarkers sub-networks including
the 8 common biomarkers identified in this study (see Table L in S1 File). Fig O in S2 File
shows that these eight OTUs seem to have more interactions among each other in the IBD
population (11 edges) than in the healthy control samples (6 edges). A major difference
between IBD and healthy biomarkers sub-networks is the Dialister node. In the healthy bio-
markers sub-network, Dialister is an isolated node, while in the IBD biomarker sub-network,
Dialister is interacting with the Bacteroides node. The preceding analyses set the stage for
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experimental validation and detailed assessment of the biological significance of the identified
interactions to be pursued as topics of future research.

Discussion

The past decade has witnessed a revolution in microbiology and microbiome research.
Advances in sequencing technologies and computational techniques coupled with large scale
collaborative efforts such as Human Microbiome Project (HMP) [62] and American Gut Proj-
ect [63] have generated unprecedented amounts of metagenomics data. Analysis and interpre-
tation of such data presents many statistical and computational challenges [64, 65]. One such
challenge has to do with the reliable identification of biomarkers (in the form of species, genes,
or pathways) that differentiate between two or more phenotypes [12].

To address this challenge, we have developed NBBD, a novel metagenomics system biology
framework for microbial biomarker discovery. The NBBD framework integrates network anal-
ysis and machine learning approaches for reliable identification of biomarkers from metage-
nomics data. Given two OTU tables corresponding to two phenotypes, NBBD uses any
existing tool for constructing phenotype specific networks from the data. Depending on the
tool used, these networks model the interactions, the correlations, or the proximity relation-
ships between microbes. Next, the nodes are scored using different scoring methods that quan-
tify the extent to which the nodes contribute to differences in the topological properties of the
nodes in the two networks. The k top-scoring nodes are used as the set of selected features to
train and test classifier using machine learning. We conducted extensive experiments to evalu-
ate the NBBD framework, configured using five different network inference tools and nine dif-
ferent node importance scoring methods, using a large data set from a cohort of 657 IBD and
316 healthy healthy pediatric metagenomics biopsy samples, respectively.

Although several tools for constructing microbial ecology networks from metagenomics
data have been developed, they leave considerable room for improvement [12, 66]. For exam-
ple, Weiss et al. [66] benchmarked the performance of eight correlation detection strategies on
simulated and real metagenomics data and showed significant inconsistency (in terms of num-
ber of edges) among graphs inferred using different tools. Using simulated data, they showed
that all of the tools exhibited extremely low precision (below 0.20). That is, for every identified
true edge, there are at least four false positive edges in the constructed network. While the five
network construction tools considered in our study are among the top performing tools in
Weiss et al. [66], they are far from perfect. It is indeed remarkable that the noisy networks pro-
duced by such tools can be used to reliably identify discriminative features and to identify
potential IBD biomarkers.

In this study, we performed experiments to examine the sensitivity of classifiers to the num-
ber of samples in the feature selection data set. To facilitate fair comparison between classifiers,
we used the entire training data for training the classifiers using the features determined based
on different subsets of the training data. Our results suggest that traditional feature selection
methods fail to determine a minimal subset of discriminative features from small feature selec-
tion datasets. Interestingly, we found that several network-based feature selection methods
returned a minimal subset of discriminative features using the smallest feature selection data
set, DS50.

In this work, we showed how to develop network-based feature selection methods using
arbitrary topological properties of vertices in the network (e.g., betweenness centrality, mem-
bership in attack sets, etc.) It would be interesting to explore other network based feature selec-
tion methods, e.g., using vertex similarity algorithm (e.g., SimRank [67] and ASCOS [68]),
network similarity algorithms (e.g., DeltaCon [69]), and network-based anomaly detection
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methods [70]. Work in progress is aimed at exploring the utility of these algorithms for devel-
oping more sophisticated Node Importance Scoring (NIS) modules for the NBBD framework.

Our sensitivity analysis also revealed that the microbial ecology networks constructed using
state-of-the-art network construction methods are highly sensitive to the data samples used to
construct the network. Needless to say, this lack of stability of network construction algorithms
has serious implications for subsequent biological interpretation of microbial ecology net-
works, and in the contest of our work, the reliability of the biomarkers discovered from analy-
sis of microbial ecology networks. In order for the predictive models trained using the features
selected using network-based feature selection methods) to be reliable, we need to ensure the
feature selection methods have a high degree of stability with respect to changes in the under-
lying network. Note that the stability of feature selection algorithms is a function of both the
properties of the algorithm itself as well as the data supplied to the algorithm. Hence, improve-
ments are needed on both fronts.

Fundamentally, constructing microbial ecology networks from metagenomic data requires
determining the correlation or similarity between (abundances of) microbial taxa from a rela-
tively small number of metagenomic samples. This problem is not fundamentally different
from the problem of determining gene co-expression networks from gene expression data
[71], or that of determining functional brain networks from fMRI data [72]. All of these appli-
cations present some shared challenges: In most cases, the number of features (genes, brain
regions, microbial taxa) far exceed the number of data samples; It is generally impossible,
without making additional assumptions or incorporating domain knowledge, to distinguish
between direct and indirect correlations; The choice of the correlation or similarity measure is
often application-dependent. Methods for microbial ecology network estimation from metage-
nomic data could benefit greatly from recent advances in high dimensional correlation matrix
estimation [73-76]. Work in progress is aimed at evaluating the applicability of such methods
in constructing stable microbial ecology networks from metagenomic data.

Conclusions

We have proposed a novel Network-Based Biomarker Discovery (NBBD) framework for
detecting disease biomarkers from metagenomics data. NBBD consists of two major customiz-
able modules: A network inference module, for constructing microbial ecology networks from
OTU tables extracted from the metagenomic data for the phenotypes of interest; and a node
importance scoring module, which compares the resulting phenotype-specific networks and
scores the nodes based on different measures of the node’s contribution to the differences
between the networks.

We have evaluated the proposed NBBD framework, using five different network construc-
tion methods, in combination with nine different node importance scoring methods, on a
large data set from a cohort of 657 IBD and 316 healhy pediatric metagenomics biopsy sam-
ples. Our results show that NBBD, when used to train predictive models for IBD diagnosis
from metagenomic data, is very competitive with some of the state-of-the-art feature selection
methods including the widely used method based on random forest feature importance scores.
Our results further show that a hybrid approach that combines NBBD scores and the random
forest feature importance scores yields further improvements in performance. Furthermore,
the proposed method is able to achieve its best observed performance using only 50 samples
for feature selection. Work in progress is aimed at further improving the two key components
of NBBD, e.g., by incorporating recent advances in high dimensional correlation matrix esti-
mation [73-76] to improve the reliability and the stability of the resulting networks, exploring
improved node scoring methods. Other promising directions for future research include
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systematic evaluation of the NBBD framework for biomarker discovery from different types of
omics data, integrative analyses of multi-omics data [77, 78], e.g., using information-preserv-
ing low-dimensional network embeddings [79].
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